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Correlation is not Causation



Directed Acyclic Graphs
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Definition (DAG): 
 is a Directed Acyclic 

Graph if and only if it has no cycle


Remark: loops are ok (e.g. )

G = (V = {1,…, n}, E ⊂ V × V )

X1 − X2 − X3
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not a DAG

Theorem (topological ordering): 
 is a Directed Acyclic


Graph if and only if it exists a topological ordering  

such that  such that  we have 


Example:  is a topological ordering

G = (V = {1,…, n}, E ⊂ V × V )
σ1, …, σn

∀i, j ∈ V (i, j) ∈ E σi < σj

σ = (1,2,3,6,5,4)



Directed Acyclic Graphs
Why not cyclic directed graph ?

What about feedback loops ?

Three models with the same distribution (Monneret 2019)
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Bayesian Networks
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Definition (Bayesian Network): 
 is a Bayesian Network if and only if  

is a DAG and 




with 

(G, ℙ) G = (V, E)

ℙ(X) =
n

∏
j=1

ℙ(Xj |Xpaj
)

paj = {i ∈ V, (i, j) ∈ E}

Example: 




NB: the topological ordering provide a generative procedure

ℙ(X1, …, X6) = ℙ(X1)ℙ(X2 |X1)ℙ(X3 |X1, X2)ℙ(X6 |X2)ℙ(X5 |X3, X6)ℙ(X4 |X5)

Example of conditional distribution: 

With Gaussian Bayesian Networks  but


we can use any GLM: binomial , Poisson , etc.

ℙ(Xi |Xpaj
= Z) ∼ 𝒩(Zβ, σ2)

ℬ(n, softmax(Zβ)) 𝒫(eZβ)



Markov Equivalence Class

X3

X2X1

X3

X2X1

X3

X2X1

Simulation

Es
tim

at
io

ns



Markov Equivalence Class
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Markov Equivalence Class

Theorem (2.1 in Andersson et al 1997): 
Two DAGs are Markov equivalent if and only if they have the same skeleton and

the same v-structures (also called immoralities). 

Definition (skeleton) : 
The skeleton of a DAG is the undirected 
graph induced by its (directed) edges

Definition (v-structure): 
 is a v-structure of a DAG iff:


 without  nor 
(A, B, C)
A → B ← C A → C A ← C

X3

X2X1

X3

X2X1

X3

X2X1

X3

X2X1

Same skeleton no v-structures Same skeleton different v-structures



Definition 3.3 from Andersson et al (1997)

CPDAG: Completed Partially 
Directed Acyclic Graph

Definition (CPDAG): 
The CPDAG (also called essential graph) is a PDAG representing the MEC

of a DAG. Directed edge iff shared by all DAGs, undirected otherwise.

Definition (strongly protected arrows): 
 is strongly protected in  if  occurs in at least one of the following 

configurations in the induced subgraph
a → b G a → b

Algorithm (Algo 1, Hauser & Bühlmann, 2012): we can build a CPDAG

from a DAG by dropping all arrows not strongly protected, updating the

edges, and repeat until convergence



CPDAG: Completed Partially 
Directed Acyclic Graph
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 strongly protected (Andersson et al,1997)a → b
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Posterior DAG Distribution



Toy-examples
Four reference DAGs

Experiments: 
• Simulate 200 observations using a GBN

• Exhaustive search over the DAG space

• Posterior  over 100 replicatesℙ(G |data)
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Interventions: Do operator
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Observation Do(X2 = x2) Do(X3 = x3, X6 = x6)

Example of interventions: 
• Clinical randomization 

• Gene knock-out 

• Knock-down/up

• Functional knock-out

Do(T = t)
Do(G = 0) ℙ(X |Do(Y = y)) ≠ ℙ(X |Y = y)



Causal Gaussian BN



Example



MLE with known DAG



Back to the Toy-examples
Four reference DAGs

Experiments: 
• Simulate 200 observations using a GBN

• Plus interventions !

• Exhaustive search over the DAG space

• Posterior  over 100 replicatesℙ(G |data)
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-Markov Equivalence Classℐ
Theorem (3.9 in Yang et al 2018): 
Two DAGs are -Markov equivalent with  if and only if they have the same

 skeleton and the same v-structures. 

ℐ ∅ ∈ ℐ

NB: strongly protected arrows (not from intervention node) of a -DAG with 

Are exactly the strongly -protected arrows of the DAG (Hauser & Bühlmann, 2012)

ℐ ∅ ∈ ℐ
ℐ
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-CPDAG: -Completed 
Partially Directed Acyclic Graph

ℐ ℐ
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 strongly protected (Andersson et al,1997)a → b
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-CPDAG: -Completed 
Partially Directed Acyclic Graph

ℐ ℐ

 strongly protected (Andersson et al,1997)a → b
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-CPDAG: -Completed 
Partially Directed Acyclic Graph

ℐ ℐ

 strongly protected (Andersson et al,1997)a → b
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Likelihood of a -CPDAGℐ
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ℙ(X1, X2, X6)

ℙ(X3 |X1, X2, I1)
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Likelihood of a chain 
component

Theoretical results: 

• If one intervention contains one element of the chain component it must

contain all of them (Theorem 18, Hauser & Bühlmann, 2012)


• A chain component is necessary chordal, elimination order provide DAG

representative (Appendix A.1, Hauser & Bühlmann, 2012)
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Likelihood of a chain 
component

Theoretical results: 

• If one intervention contains one element of the chain component it must

contain all of them (Theorem 18, Hauser & Bühlmann, 2012)


• A chain component is necessary chordal, elimination order provide DAG

representative (Appendix A.1, Hauser & Bühlmann, 2012)
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Example: with (perfect) elimination order  X3, X1, X2, X6
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Real life implementation



MCMC framework



Proposals & Implementation

DAG space: MC3 (Madigan & Raftery, 1995)

• Add/remove/flip arrow uniformly

• DAG constraint need smart update of route tables

• Available in structmcmc R package (Goudie, 2016)

• More constraints: max number of parents, fixed arrows

CPDAG space: He et al (2013), Castelleti et al (2018)

• Six moves: InsertU, DeleteU, InsertD, DeleteD, MakeV, RemoveV

• Plus one: ReverseD (Chickering 2002)

• Multiple theoretical conditions, asymmetric proposal

• https://github.com/FedeCastelletti/obayes_learn_essential_graphs



10 genes example



MCMC convergence

5 replications 

Design: fixed DAG and data (50 WT + 50 KO), 5000 MCMC iterations,

unconstrained search, acceptance rate   ≃ 40 %
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Marginal edge probability



Consensus DAG



Direct effects



In/out degrees



DAG clustering



Centroid DAG



Conclusions & Perspectives
Take-home messages: 
• Correlation is not causation

• CPDAGs = Markov equivalence class of DAGs

• Extension with interventions -CPDAGs

• Relatively « simple » with intervention nodes

• MCMC over DAG or CPDAG spaces

ℐ

What Next ? 
• MCMC over CPDAG not trivial

• What to do with a collection of DAGs or CPDAGs ?

• Clinical trials: mixing observations and interventions ?

• Gene regulation networks: best interventions ? 
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