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Introduction

Main Challenges

Main challenges with medical data
Small number of subjects:

potential poor population representativity
no statistically significant results
overfitting

Large data (e.g. MRIs, omic data, etc..) =⇒ thousands of dimensions

Need for

Dimensionality reduction
OR

/AND

Data augmentation

A solution?

Generative models: statistical hierarchical OR neural network based models

Issue

Most of the time, unable to generate faithfully with small data sets
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Introduction

Classic Data Augmentation

Adding some geometric transformations (shift, rotations ...)

Adding noise, blur ...

Original

Zoom Contrast change Rotation Gaussian noise Blur

Figure: Examples of transformations
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Introduction

Classic Data Augmentation - Shortcomings

Classic DA

Is data set dependent

May require the intervention of an expert “knowledge”

Figure: Nine figure rotated.

An attractive solution?

Generative models (Generative Adversarial Networks, Variational
Auto-Encoders ...)
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Introduction

Use of Generative Models for DA

GANs: wide use in many fields of application including medicine [YWB19]:

Magnetic Resonance Images (MRI) [STR+18, CMST17]

Computed Tomography (CT) [FADK+18, SYPS19]

X-ray [MMKSM18, SVD+18, WGG+20],

Positron Emission Tomography (PET) [BKK+17],

Mass spectroscopy data [LZL+19],

Dermoscopy [BAN18]

Mammography [KRO+18, WWCL18]

=⇒ Most of these studies involved either a quite large training set (above 1000
training samples) or quite small dimensional data.

=⇒ As of today, the HDLSS setting remains poorly explored.

=⇒ Use VAEs!
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Variational Auto-Encoder - The Idea Auto-Encoder

Auto-Encoder

The objective =⇒ Dimensionnality Reduction

Figure: Simple Auto-Encoder
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Variational Auto-Encoder - The Idea Auto-Encoder

AutoEncoder

Assumptions:

Let x ∈ X be a set a data. We assume that there exists z ∈ Z such that z is
a low dimensional representation of x

The encoder eθ and decoder dφ are functions modelled by neural networks
(NNs) such that θ and φ are the weights of the NNs

Let x ′ be the reconstructed samples, the objective is to have x ' x ′

The Objective function writes:

L = ‖x − x ′‖2 = ‖x − dφ(z)‖2 = ‖x − dφ(eθ(x))‖2

=⇒ The networks are optimised using stochastic gradient descent

φ← φ− ε · ∇φL
θ ← θ − ε · ∇θL
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Variational Auto-Encoder - The Idea Auto-Encoder

AutoEncoder - Shortcomings

How to generate new data ?

Figure: Generation procedure ?

Figure: Potential latent space

How to sample form the latent space?

The AutoEncoder was just trained to encode and decode the input data
without information on its structure or distribution.

=⇒ Need for a new framework
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VAE framework The idea

VAE - The Idea

An auto-encoder based model...

Figure: Simple Auto-Encoder

... but where an input data point is encoded as a distribution defined over
the latent space [KW14, RMW14]

Figure: VAE framework
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VAE framework Mathematical foundations

VAE - Mathematical Considerations

Let x ∈ X be a set of data and {Pθ, θ ∈ Θ} be a parametric model

We assume there exists latent variables z ∈ Z living in a smaller space such
that the marginal likelihood writes

pθ(x) =

∫
pθ(x |z)qprior(z)dz ,

where qprior is a prior distribution over the latent variables and pθ(x |z) is
referred to as the decoder

Example:

qprior = N (0, I ), pθ(x |z) =
D∏
i=1

B(πθi (z))

Objective:

Maximizing the likelihood of the model

Problem: The integral is often intractable.
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VAE framework Mathematical foundations

Variational inference

We have to use Variational Inference:

log pθ(x) = log

(∫
pθ(x |z)qprior(z)dz

)
= log

(∫
pθ(x , z)dz

)
= log

(∫
pθ(x , z)

q(z)

q(z)
dz

)
, for any pdf q

≥
∫ (

log
pθ(x , z)

q(z)

)
q(z)dz , using Jensen’s inequality

≥
∫

(log pθ(x , z)) q(z)dz − H(q(z))

with H the entropy of q(z).

The equality holds for q(z) = qθ(z |x).
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VAE framework Mathematical foundations

Variational inference: The ELBO

Well-know issue: the posterior q(z) = qθ(z |x) is intractable.

−→ use Expectation-Maximization like algorithms (MCMC-SAEM version if
needed)

OR approximate this posterior:

Introduce a parametric approximation:

qφ(z |x) ' pθ(z |x) ,

where for example qφ(z |x) = N (µφ(x),Σφ(x))
This leads to an unbiased estimate of the log-likelihood

p̂θ(x) =
pθ(x , z)

qφ(z |x)
, Ez∼qφ(z|x)[p̂θ(x)] = pθ(x) ,

and the definition of the Evidence Lower Bound (ELBO):

log pθ(x) ≥ Ez∼qφ(z|x)[log(pθ(x , z))− log(qφ(z |x))]

≥ ELBO

29 / 102



VAE framework Mathematical foundations

Variational inference: The ELBO

Well-know issue: the posterior q(z) = qθ(z |x) is intractable.

−→ use Expectation-Maximization like algorithms (MCMC-SAEM version if
needed)

OR approximate this posterior:
Introduce a parametric approximation:

qφ(z |x) ' pθ(z |x) ,

where for example qφ(z |x) = N (µφ(x),Σφ(x))

This leads to an unbiased estimate of the log-likelihood

p̂θ(x) =
pθ(x , z)

qφ(z |x)
, Ez∼qφ(z|x)[p̂θ(x)] = pθ(x) ,

and the definition of the Evidence Lower Bound (ELBO):

log pθ(x) ≥ Ez∼qφ(z|x)[log(pθ(x , z))− log(qφ(z |x))]

≥ ELBO

30 / 102



VAE framework Mathematical foundations

Variational inference: The ELBO

Well-know issue: the posterior q(z) = qθ(z |x) is intractable.

−→ use Expectation-Maximization like algorithms (MCMC-SAEM version if
needed)

OR approximate this posterior:
Introduce a parametric approximation:

qφ(z |x) ' pθ(z |x) ,

where for example qφ(z |x) = N (µφ(x),Σφ(x))
This leads to an unbiased estimate of the log-likelihood

p̂θ(x) =
pθ(x , z)

qφ(z |x)
, Ez∼qφ(z|x)[p̂θ(x)] = pθ(x) ,

and the definition of the Evidence Lower Bound (ELBO):

log pθ(x) ≥ Ez∼qφ(z|x)[log(pθ(x , z))− log(qφ(z |x))]

≥ ELBO

31 / 102



VAE framework Mathematical foundations

Variational inference: The ELBO

Well-know issue: the posterior q(z) = qθ(z |x) is intractable.

−→ use Expectation-Maximization like algorithms (MCMC-SAEM version if
needed)

OR approximate this posterior:
Introduce a parametric approximation:

qφ(z |x) ' pθ(z |x) ,

where for example qφ(z |x) = N (µφ(x),Σφ(x))
This leads to an unbiased estimate of the log-likelihood

p̂θ(x) =
pθ(x , z)

qφ(z |x)
, Ez∼qφ(z|x)[p̂θ(x)] = pθ(x) ,

and the definition of the Evidence Lower Bound (ELBO):

log pθ(x) ≥ Ez∼qφ(z|x)[log(pθ(x , z))− log(qφ(z |x))]

≥ ELBO

32 / 102



VAE framework Mathematical foundations

Variational inference: The ELBO

Objectives:

1. Optimize the ELBO as a function instead of the target distribution

Use stochastic gradient descent in both θ and φ

2. Optimize the ELBO as a bound to get closer to the target

Use sampling methods to produce samples z ∼ qθ(z |x)
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VAE framework Mathematical foundations

The Reparametrization Trick for stochastic gradient
descent

Since z ∼ N (µφ(x),Σφ(x)), the model is not amenable to gradient descent

(a) Back-propagation impossible

=⇒

(b) Back-propagation possible: samples are
differentiable functions of the parameters

=⇒ Optimization with respect to encoder and decoder parameters made possible !

Objective 1.
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VAE framework Mathematical foundations

Generating new samples

Back to the model:

pθ(x) =

∫
pθ(x |z)qprior(z)dz ,

We only need to sample z ∼ qprior(z) = N (0, I ) and feed it to the decoder.

Pros:

Very simple to use in practice

Cons:

The prior and posterior are not expressive enough to capture complex
distributions

Poor latent space prospecting
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VAE framework Tweaking the approximate posterior distribution

Tweaking the Approximate Posterior Distribution

Concerning Objective 2.

The ELBO can written as

ELBO = log pθ(x)−KL(qφ(z |x)||pθ(z |x))︸ ︷︷ ︸
≈0 if qφ(z|x)≈pθ(z|x)

.

Kullback-Leiber divergence ≥ 0 ⇒ make it vanish by tweaking the
approximate posterior qφ(z |x)

Produce variables z which targets the true posterior pθ(z |x) using a sample
z0 ∼ qinit

How? and how to ensure that the model would still be amenable to the
back-propagation ?
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VAE framework Tweaking the approximate posterior distribution

Solution 1: Normalizing Flows

Use smooth invertible parametrized mappings fψ to “sample” z [RM15]

Apply K transformations to z0 ∼ qinit (here qinit = qφ)

Final random variable zK = f Kx ◦ · · · ◦ f 1
x (z0) ∼ qφ(zK |x) with

qφ(zK |x) = qφ(z0|x)
K∏

k=1

| det Jf kx |
−1 , (1)

Objective 2.

although difficult to compute the Jacobian of these maps f K1
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VAE framework Tweaking the approximate posterior distribution

Solution 2: Hamiltonian VAE

Idea = Hybrid Monte Carlo Sampler [No11, DMS17, LBB+19],

Target density

pθ(z |x) =
pθ(x , z)

pθ(x)
∝ pθ(x , z) = πx(z) .

Introduce an auxiliary random variable ρ ∼ N (0,M) called “momentum”

Write the Hamiltonian:

Hx(z , ρ) = − log πx(z , ρ)

= − log πx(z) +
1

2
log((2π)d |M|) + ρ>M−1ρ

= Ux(z) + κ(ρ) .

Sample (z , ρ) with this dynamic.
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VAE framework Tweaking the approximate posterior distribution

Solution 2: Hamiltonian VAE

Use a discretization scheme

ρ(t + ε/2) = ρ(t)− ε

2
· ∇zH(z(t), ρ(t)) ,

z(t + ε) = z(t) + ε · ∇ρ(H(z(t), ρ(t + ε/2))) ,

ρ(t + ε) = ρ(t + ε/2)− ε

2
· ∇zH(z(t + ε), ρ(t + ε/2)) ,

(2)

A proposal (z̃ , ρ̃) is accepted with probability:

α = min
(

1, exp
(
− H(z̃ , ρ̃) + H(z , ρ)

))
=⇒ Creates an ergodic, time-reversible Markov Chain having πx as stationary
distribution.
Note that the Metropolis Hastings’ acceptation step has to be removed for the
back propagation to be possible.
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VAE framework Tweaking the approximate posterior distribution

Hamiltonian VAE

The graphical scheme [CDS18]

Figure: Hamiltonian VAE

Issue: Perform poorly when trained on small data set and so we need to define a
new framework

What about geometry?
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Toward a Geometry-Aware VAE The framework

Defining a New Framework

Assumptions:

As of now the latent space structure was supposed to be Euclidean (i.e.
Z = Rd)

Let us now relax this hypothesis and assume that Z is a Riemannian
manifold endowed with a metric G.

It was shown that exploiting the geometrical aspect of probability
distributions can lead to far more efficient sampling [GCC09, GC11]

Our ideas:

1 Exploit the manifold structure of the latent space to improve the posterior
sampling

2 Learn the metric defined in the latent space

3 Use the learned geometry to generate instead of the prior [CTSBA21]
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Toward a Geometry-Aware VAE The framework

Riemanian geometry principles

Riemanian manifold: (reduced to our model) Rd endowed with a metric G:
M = (Rd ,G).
=⇒ Rd not flat anymore, curved space (as montains)

Figure: Image taken from: Fast Marching Methods on Triangulated Domains : Kimmel, R., and
Sethian, J.A., Proceedings of the National Academy of Sciences, 95, pp. 8341-8435, 1998
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Toward a Geometry-Aware VAE The framework

Riemanian geometry principles

Riemanian manifold: (reduced to our model) Rd endowed with a metric G:
M = (Rd ,G).
=⇒ Rd not flat anymore, curved space (as montains)

Geodesic curves:

Length of a curve γ : [0, 1]→M from z1 to z2 living in a Riemannian
manifold M

L(γ) =

1∫
0

√
〈γ′(t), γ′(t)〉γ(t)dt γ(0) = z1, γ(1) = z2 . (3)

Geodesic paths = curve γ minimizing Eq. (3)
or equivalently minimizing the curve energy

E(γ) =

1∫
0

〈γ′(t), γ′(t)〉γ(t)dt γ(0) = z1, γ(1) = z2 .
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Toward a Geometry-Aware VAE The proposed model

1) Improve Posterior Sampling - Riemannian HMC

Rely on the Riemannian Hamiltonian Monte Carlo Sampler [GC11]:

Introduce a Position-specific random momentum ρ ∼ N (0,G(z))
Simulates the evolution (z(t), ρ(t)) of a particle whose motion is governed by
Hamiltonian dynamics on the manifold

The Hamiltonian writes

HRiem
x (z , ρ) = log ptarget(z) +

1

2
log((2π)D detG(z)) +

1

2
ρ>G(z)−1ρ .

Use of the “Generalized” Leapfrog integrator to sample from ptarget

Pros:

Use the underlying geometry of the data to improve sampling

Cons:

The metric is unknown
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Introduce a Position-specific random momentum ρ ∼ N (0,G(z))
Simulates the evolution (z(t), ρ(t)) of a particle whose motion is governed by
Hamiltonian dynamics on the manifold

The Hamiltonian writes

HRiem
x (z , ρ) = log ptarget(z) +

1

2
log((2π)D detG(z)) +

1

2
ρ>G(z)−1ρ .

Use of the “Generalized” Leapfrog integrator to sample from ptarget

Pros:

Use the underlying geometry of the data to improve sampling

Cons:

The metric is unknown
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Toward a Geometry-Aware VAE The proposed model

2) Learn the Metric - The Choice of the Metric

Parametric metric: [Lou19]:

G−1(z) =
N∑
i=1

LψiL
>
ψi

exp
(
− ‖z − ci‖2

2

T 2

)
+ λId ,

Lψi lower triangular matrices parametrized using neural networks

T temperature to smooth the metric

ci centroids

λ regularization factor

Pros:

Closed-form expression of the inverse metric =⇒ useful for geodesic
computation

Geodesics travel through most populated areas.
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Toward a Geometry-Aware VAE The proposed model

The Model - Riemannian Hamiltonian VAE

The graphical scheme

Figure: Riemannian Hamiltonian VAE.
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Toward a Geometry-Aware VAE The proposed model

The Learned Latent Space examples

Training samples:

Latent space and interpolations:
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The Learned Latent Space examples

Training samples:
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3) Improve Data Generation - Sample With the Metric

Idea:

Use a geometry-based sampling procedure: pdf driven by the metric

p(z) =
1S(z)

√
detG−1(z)∫

Rd

1S(z)
√

detG−1(z)dz
,

where S is a compact set and 1S(z) = 1 if z ∈ S , 0 otherwise.

Use of classic MCMC sampler (e.g. Hamiltonian Monte Carlo)

Pros:

G−1 easily computable

Samples “close” to the data
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Toward a Geometry-Aware VAE A new way to generate data

Sampling Comparison

(a) VAE - N (0, I )
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Toward a Geometry-Aware VAE A new way to generate data

Sampling Comparison - Higher Dimension

(a) reduced MNIST (120) (b) reduced EMNIST (120) (c) reduced Fashion (120)
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Toward a Geometry-Aware VAE Sensitivities and robustness on toy data

Data Augmentation

1. Framework

2. Toy Data

3. Medical Imaging
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Data Augmentation - Framework

In
pu

t
da

ta

VAE
modelTrain

Test

CNN model
(training)

Synthetic
data

Validation

CNN model
(trained)

Figure: Data Augmentation pipeline

Performances are estimated using cross-validation.
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Data Augmentation

1. Framework

2. Toy Data

3. Medical Imaging
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Robustness Across Data Sets

Table: Classification results on reduced data sets (∼ 50 samples per class)

MNIST
MNIST EMNIST

FASHION
(unbal.) (unbal.)

Baseline 89.9± 0.6 81.5± 0.7 82.6± 1.4 76.0± 1.5
Baseline + Synthetic

Basic Augmentation (X5) 92.8± 0.4 86.5± 0.9 85.6± 1.3 77.5± 2.0
Basic Augmentation (X10) 88.2± 2.2 82.0± 2.4 85.7± 0.3 79.2± 0.6
Basic Augmentation (X15) 92.8± 0.7 85.8± 3.4 86.6± 0.8 80.0± 0.5

VAE - 200∗ 88.5± 0.9 84.0± 2.0 81.7± 3.0 78.6± 0.4
VAE - 2k∗ 92.2± 1.6 88.0± 2.2 86.0± 0.2 79.3± 1.1
Ours-200 91.0± 1.0 84.1± 2.0 85.1± 1.1 77.0± 0.8
Ours-500 92.3± 1.1 87.7± 0.9 85.1± 1.1 78.5± 0.9
Ours-1k 93.2± 0.8 89.7 ± 0.8 87.0± 1.0 80.2 ± 0.8
Ours-2k 94.3 ± 0.8 89.1± 1.9 87.6 ± 0.8 78.1± 1.8

* Using a standard normal prior to generate

Classic DA is data set dependent

Vanilla VAE performs as well as classic DA
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Robustness Across Data Sets

Table: Classification results on reduced data sets (∼ 50 samples per class) on synthetic
samples only

MNIST
MNIST EMNIST

FASHION
(unbal.) (unbal.)

Baseline 89.9± 0.6 81.5± 0.7 82.6± 1.4 76.0± 1.5
Synthetic Only

VAE - 200∗ 69.9± 1.5 64.6± 1.8 65.7± 2.6 73.9± 3.0
VAE - 2k∗ 86.5± 2.2 79.6± 3.8 78.8± 3.0 76.7± 1.6
Ours-200 87.2± 1.1 79.5± 1.6 77.0± 1.6 77.0± 0.8
Ours-500 89.1± 1.3 80.4± 2.1 80.2± 2.0 78.5± 0.8
Ours-1k 90.1± 1.4 86.2± 1.8 82.6± 1.3 79.3± 0.6
Ours-2k 92.6± 1.1 87.5± 1.3 86.0± 1.0 78.3± 0.9

* Using a standard normal prior to generate

The proposed model seems to create diverse samples relevant to the classifier
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Robustness Across Classifiers

(a) reduced MNIST balanced

MLP SVM kNN Random Forest
70

75

80

85

90

95

100

A
cc

u
ra

cy

baseline

augmented (200)

augmented (500)

augmented (1000)

augmented (2000)

synthetic (200)

synthetic (500)

synthetic (1000)

synthetic (2000)

(b) reduced MNIST unbalanced

MLP SVM kNN Random Forest
50

60

70

80

90

100

Ac
cu

ra
cy

baseline
augmented (200)
augmented (500)

augmented (1000)
augmented (2000)
synthetic (200)

synthetic (500)
synthetic (1000)
synthetic (2000)

72 / 102



Toward a Geometry-Aware VAE Sensitivities and robustness on toy data

A Note on the Method Scalability
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Figure: Benchmark classifier accuracy according to the number of samples in the training
set on MNIST.
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Data Augmentation

1. Framework

2. Toy Data

3. Medical Imaging
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Results on Neuroimaging data Materials

Datasets and classification task

Classification task: Alzheimer’s disease patients (AD) vs Cognitively Normal
participants (CN) using T1-weighted MR images.

Table: Summary of participant demographics, mini-mental state examination (MMSE)
and global clinical dementia rating (CDR) scores at baseline.

Data set Label Obs. Age Sex M/F MMSE CDR

ADNI
CN 403 73.3± 6.0 185/218 29.1± 1.1 0: 403
AD 362 74.9± 7.9 202/160 23.1± 2.1 0.5: 169, 1: 192, 2: 1

AIBL
CN 429 73.0± 6.2 183/246 28.8± 1.2 0: 406, 0.5: 22, 1: 1
AD 76 74.4± 8.0 33/43 20.6± 5.5 0.5: 31, 1: 36, 2: 7, 3: 2
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Results on Neuroimaging data Materials

MRI preprocessing

Bias field correction (N4ITK) + linear registration (ANTS) + cropping

Figure: Preprocessed MRI used in the study

Find wonderful data at:
/network/lustre/dtlake01/aramis/datasets/adni/caps/caps_v2021
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Results on Neuroimaging data Materials

Synthesized images

Figure: Example of two true patients compared to two generated by our method. Can
you find the intruders ? 77 / 102
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Synthesized images

Figure: Example of two true patients compared to two generated by our method. Can
you find the intruders ?
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Evaluation procedure
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Results on Neuroimaging data Methods

CNN architectures for classifier

Baseline architectures provided by a previous study [WTSDM+20]
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Results on Neuroimaging data Methods

CNN architectures for classifier

Optimized architectures opitmize with random search procedure for this training
set (ClinicaDL)
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Results on Neuroimaging data Methods

Experiments

Four series of experiments:

baseline architecture on train-50

baseline architecture on train-full

optimized architecture on train-50

optimized architecture on train-full

For each experiment 20 CNNs are run and the performance is the mean value of
the 20 performance values.
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Results on train-50 with baseline CNN

Table: Mean test performance of each series of 20 runs trained with the baseline
hyperparameters on train-50 set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 66.3± 2.4 67.2± 4.1
real (high-resolution) 67.9± 2.3 66.5± 3.0

500 synthetic + real 69.4± 1.6 68.5± 2.5
1000 synthetic + real 70.5± 2.1 70.6± 3.1
2000 synthetic + real 71.2± 1.6 72.8± 2.2
3000 synthetic + real 72.6± 1.6 73.6± 3.0
5000 synthetic + real 74.1 ± 2.2 76.1± 3.6

10000 synthetic + real 74.0± 2.7 74.9± 3.2

Increase of balanced accuracy of 6.2 points on ADNI and 8.9 points on AIBL
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Results on train-full with baseline CNN

Table: Mean test performance of each series of 20 runs trained with the baseline
hyperparameters on train-full set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 77.7± 2.5 78.4± 2.4
real (high-resolution) 80.6± 1.1 80.4± 2.6

500 synthetic + real 82.2± 2.4 82.9± 2.5
1000 synthetic + real 84.4± 1.8 83.7± 2.3
2000 synthetic + real 85.9± 1.6 83.8± 2.2
3000 synthetic + real 85.8± 1.7 84.4± 1.8
5000 synthetic + real 85.7± 2.1 84.2± 2.2

10000 synthetic + real 86.3± 1.8 85.1± 1.9

Increase of balanced accuracy of 5.7 points on ADNI and 4.7 on AIBL

84 / 102



Results on Neuroimaging data Results

Results on train-50 with optimized CNN

Table: Mean test performance of each series of 20 runs trained with the optimized
hyperparameters on train-50 set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 75.5± 2.7 75.6± 4.1
real (high-resolution) 72.1± 3.1 71.2± 5.1

500 synthetic + real 75.6± 2.5 76.0± 4.2
1000 synthetic + real 77.8± 2.3 80.9± 3.2
2000 synthetic + real 76.9± 2.4 80.0± 3.6
3000 synthetic + real 77.8± 1.9 81.2± 3.7
5000 synthetic + real 76.9± 2.5 80.9± 2.7

10000 synthetic + real 78.0±2.1 81.9±2.2

Increase of balanced accuracy of 2.5 points on ADNI and 6.3 points on AIBL

85 / 102



Results on Neuroimaging data Results

Results on train-full with optimized CNN

Table: Mean test performance of each series of 20 runs trained with the optimized
hyperparameters on train-full set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 85.5± 2.4 81.9± 3.2
real (high-resolution) 85.7± 2.5 84.4± 1.7

500 synthetic + real 86.0± 1.8 83.2± 2.4
1000 synthetic + real 86.5± 1.9 83.7± 2.0
2000 synthetic + real 87.2±1.7 84.0± 2.0
3000 synthetic + real 85.8± 2.6 83.6± 3.2
5000 synthetic + real 86.4± 1.3 83.5± 2.2

10000 synthetic + real 86.7± 1.8 84.3±1.8

Increase of balanced accuracy of 1.5 point on ADNI and -0.1 point on AIBL

86 / 102



Results on Neuroimaging data Results

Conclusion

We have proposed

a new geometry aware VAE-based data augmentation framework relevant for
representing and classifying data in the HDLSS setting.

Validated on classification tasks on toy and real-life data sets in particular in
the High dimension low sample size setting.
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Conclusion

We have proposed

a new geometry aware VAE-based data augmentation framework relevant for
representing and classifying data in the HDLSS setting.

Validated on classification tasks on toy and real-life data sets in particular in
the High dimension low sample size setting.

Strengths:

Independent on the nature of the data set: from 2D images (MNIST,
EMNIST, FASHION) to 3D medical images (ADNI and AIBL),

Relevant synthetic data: classifiers achieved a similar or better classification
performance when trained only on synthetic data than on the real train set.

Classifier independence: MLP, random forest, k-NN and SVM (on toy data
sets) ; baseline and optimized parameters (on medical images).
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Results on Neuroimaging data Results

Conclusion

We have proposed

a new geometry aware VAE-based data augmentation framework relevant for
representing and classifying data in the HDLSS setting.

Validated on classification tasks on toy and real-life data sets in particular in
the High dimension low sample size setting.

Limitations - what could be improved:

No extensive search on VAE architecture.

Would it benefit from the use of longitudinal data?

train-50 is still large compared to some medical data sets. . .
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Implementation available
https://clementchadebec.github.io/projects/

AND Extensive comparison of data generation based on VAEs
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Thank you!

https://clementchadebec.github.io/projects/

Contacts:

clement.chadebec@inria.fr
stephanie.allassonniere@inria.fr
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Clustering

True labels
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Figure: Euclidean and Riemannian k-medoids custering.
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Figure: Distance maps.
101 / 102



Results on Neuroimaging data Results

Results - Clustering

Data set Model Subset 1 Subset 2 Subset 3 Mean

Synthetic data
linear 53.88 62.52 71.63 62.68

geodesic 71.41 81.39 79.49 77.43

MNIST 1
linear 89.73 93.11 91.80 91.55

geodesic 91.68 94.51 95.63 93.94

MNIST 2
linear 68.24 69.22 79.05 71.17

geodesic 70.35 71.34 79.64 73.78

MNIST 3
linear 75.55 75.76 81.70 77.67

geodesic 76.08 77.94 81.96 78.66

FashionMNIST 1
linear 90.47 91.63 86.78 89.63

geodesic 91.44 92.55 87.46 90.48

FashionMNIST 2
linear 92.20 91.26 93.30 92.25

geodesic 93.56 91.80 94.12 93.16

FashionMNIST 3
linear 72.46 79.58 83.16 78.40

geodesic 74.89 81.88 84.83 80.53

Table: F1-Scores.
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