Simulation-based studies related to the G-computation for causal inference: an overview of recent results Yohann Foucher (1), Arthur Chatton (1,2), Maxime Léger (1,3), Florent Le Borgne (1,2) 1. INSERM UMR 1246 - SPHERE, Nantes University 2. IDBC - Groupe A2com. 3. Angers Hospital University Yohann.Foucher@univ-nantes.fr June 22, 2022 # • OOOO Introduction - Introduction - 2 Covariates to consider in GC - 3 GG with positivity near-violation - 4 GC with Machine Learning - 6 Conclusions ## Average causal effect Introduction - Let A denote the binary treatment (A = 1 for treatment and 0 otherwise). - Let Y denote the binary outcome (Y = 1 for event and 0 otherwise). - Let $Z = (Z_1, Z_2, ..., Z_k)$ denote the set of the k baseline covariates. - Let Y(1) and Y(0) be the two potential outcomes under the treatment and the control, respectively. - The average causal effect is : $$ACE = E[Y(1) - Y(0)]$$ It represents the mean difference between the outcomes of individuals if they had been treated or untreated. UNIVERSITE DE NANTES ## Three categories of methods for estimating the ACE - The regression of the treatment allocation to obtain propensity scores (PS): - Inverse Probability Weighting (IPW) - Full matching (FM) - Ftc. - The regression of the outcome for G-computation (GC) - The targeted maximum likelihood estimator (TMLE) as a doubly robust estimation which combines the outcome and treatment regressions - Ftc. Introduction 00000 4/22 # Literature related to GC is less prolific compared to PS-based methods - Suppose (Y_i, A_i, Z_i) a dataset of n independent realisations of (Y, A, Z). - The first step of GC is to fit f(Y|A, Z) - This outcome model is frequently referred to the Q-model. - The second step consists in predicting the two potential outcomes for each individual $i: \hat{Y}_i(1) = \hat{f}(Y|1, Z_i)$ and $\hat{Y}_i(0) = \hat{f}(Y|0, Z_i)$ - The average causal effect is then estimated by $$A\hat{C}E = n^{-1} \sum_{i} \left[\hat{Y}_{i}(1) - \hat{Y}_{i}(0) \right]$$ 5/22 Introduction # Three simulation-based were performed in the context of binary outcome and binary treatment - Which covariates should be considered in GC (true confounders, those causing the outcome, etc.)? - What is the robustness of GC to a near-violation of the positivity assumption? - $oldsymbol{0}$ What are the performances of GC associated with machine learning (ML)? Introduction #### Plan - Introduction - 2 Covariates to consider in GC - **3** GG with positivity near-violation - **4** GC with Machine Learning - Conclusions Covariates to consider in GC GG with positivity near-violation GC with Machine Learning Conclusion: ○●○○ ○○○○ ○○○○ ○○○○ #### Simulated data - 4 sample sizes (n = 100, 300, 500, 2000) - 2 treatment effect $(H_1 \text{ versus } H_0)$ 8/22 ## Compared methods We compared several methods (all based on logistic regression) : - GC : variance obtained by parametric simulations. - IPTW : stabilized weights and robust sandwich-type variance estimator. - FM: robust sandwich-type variance estimator. - TMLE : variance obtained by efficient influence curve. We compared different sets of covariates : - those causing outcome $(Z_1, Z_2, Z_3, Z_4, Z_5, Z_6)$. - those causing treatment $(Z_1, Z_2, Z_4, Z_5, Z_7, Z_8)$. - those causing outcome and treatment (true confounders : Z_1, Z_2, Z_4, Z_5). - all the covariates. 9/22 ### Results for n = 100 under H_1 Covariates to consider in GC 0000 | | | method | selection
strategy | mean bias | | | | log OR | | | | | |--|-----|--------|-----------------------|-----------|---------|--------------|--------|--------|-------|---------|--------------|-----------| | Heatment 0.002 -0.001 -0.003 0.006 0.580 0.786 -5.7 94.1 14.0 common 0.002 -0.001 -0.003 0.006 0.552 0.735 -4.2 94.8 15.1 entire -0.001 -0.001 0.001 0.013 0.558 0.768 -8.8 93.3 16.9 entire -0.000 -0.001 -0.001 0.013 0.558 0.768 -8.8 93.3 16.9 entire -0.000 -0.001 -0.001 0.008 0.578 0.727 10.8 97.3 7.8 entire -0.000 -0.001 -0.001 0.000 0.716 0.837 -1.2 95.1 9.8 entire -0.002 -0.001 -0.003 0.003 0.587 0.743 6.6 96.8 8.8 entire -0.003 -0.001 0.002 0.005 0.741 0.838 -1.5 95.2 9.6 entire -0.003 -0.001 0.000 0.002 0.059 0.741 0.838 -1.5 95.2 9.6 entire -0.003 -0.001 0.000 0.002 0.059 0.741 0.838 -1.5 95.2 9.6 entire -0.003 0.000 | n | | | π_0 | π_1 | $\Delta \pi$ | log OR | MSE | MSE* | VEB (%) | coverage (%) | power (%) | | Occident Common Content Content Common Content Co | 100 | GC | outcome | 0.000 | -0.001 | -0.001 | 0.012 | 0.526 | 0.716 | -6.2 | 94.1 | 17.7 | | Part | | | treatment | 0.002 | -0.001 | -0.003 | 0.006 | 0.580 | 0.786 | -5.7 | 94.1 | 14.0 | | Part Outcome 0.000 0.001 0.001 0.008 0.578 0.727 10.8 97.3 7.8 10.000 0.000 0.001 0.000 0.001 0.000 0.716 0.837 0.1.2 95.1 9.8 0.000 | | | common | 0.002 | -0.001 | -0.003 | 0.006 | 0.552 | 0.735 | -4.2 | 94.8 | 15.1 | | Part Treatment -0.000 -0.001 -0.001 0.000 0.716 0.837 -1.2 95.1 9.8 | | | entire | -0.001 | -0.001 | -0.001 | 0.013 | 0.558 | 0.768 | -8.8 | 93.3 | 16.9 | | IPTW common 0.002 -0.001 -0.003 0.003 0.587 0.743 6.6 96.8 8.8 | | IPTW | outcome | 0.000 | -0.001 | -0.001 | 0.008 | 0.578 | 0.727 | 10.8 | 97.3 | 7.8 | | 100 | | | treatment | -0.000 | -0.001 | -0.001 | 0.000 | 0.716 | 0.837 | -1.2 | 95.1 | 9.8 | | TMLE | | | common | 0.002 | -0.001 | -0.003 | 0.003 | 0.587 | 0.743 | 6.6 | 96.8 | 8.8 | | TMLE variable vari | | | entire | -0.003 | -0.001 | 0.002 | 0.005 | 0.741 | 0.838 | -1.5 | 95.2 | 9.6 | | TMLE common | | TMLE | outcome | -0.001 | -0.001 | 0.000 | 0.002 | 0.694 | 0.794 | 30.0 | 95.7 | 5.8 | | common -0.000 -0.001 -0.001 -0.001 0.702 0.794 10.4 95.3 7.3 entire -0.003 -0.001 0.001 -0.013 0.886 0.953 412.2 98.8 0.5 outcome -0.004 -0.001 0.003 0.022 0.665 0.787 -16.7 90.1 18.9 FM treatment -0.006 -0.001 0.004 0.017 0.822 0.911 -32.3 81.3 25.2 | | | treatment | 0.000 | -0.001 | -0.001 | -0.020 | 0.876 | 0.955 | 183.3 | 98.8 | 1.0 | | outcome -0.004 -0.001 0.003 0.022 0.665 0.787 -16.7 90.1 18.9 FM treatment -0.006 -0.001 0.004 0.017 0.822 0.911 -32.3 81.3 25.2 | | | common | -0.000 | -0.001 | -0.001 | -0.001 | 0.702 | 0.794 | 10.4 | 95.3 | 7.3 | | treatment -0.006 -0.001 0.004 0.017 0.822 0.911 -32.3 81.3 25.2 | | | entire | -0.003 | -0.001 | 0.001 | -0.013 | 0.886 | 0.953 | 412.2 | 98.8 | 0.5 | | FM | | FM | outcome | -0.004 | -0.001 | 0.003 | 0.022 | 0.665 | 0.787 | -16.7 | 90.1 | 18.9 | | common -0.001 -0.001 -0.000 0.010 0.653 0.795 -15.3 91.0 17.5 | | | treatment | -0.006 | -0.001 | 0.004 | 0.017 | 0.822 | 0.911 | -32.3 | 81.3 | 25.2 | | | | | common | -0.001 | -0.001 | -0.000 | 0.010 | 0.653 | 0.795 | -15.3 | 91.0 | 17.5 | | entire -0.008 -0.001 0.006 0.022 0.842 0.921 -33.8 80.3 26.7 | | | entire | -0.008 | -0.001 | 0.006 | 0.022 | 0.842 | 0.921 | -33.8 | 80.3 | 26.7 | - No bias for GC, IPTW, TMLE. - The highest power was for GC with the covariates causing outcome. UNIVERSITÉ DE NANTES #### Plan - Introduction - 2 Covariates to consider in GC - 3 GG with positivity near-violation - **4** GC with Machine Learning - 6 Conclusions ### Extrapolation issue from the Q-model #### Simulated data - Z_1 was generated with a 10% prevalence. The near-violation concerned : - 0% of the datasets for n > 500. - 1.3% for *n* = 200 subjects. - 14.1% for n = 100 subjects. - The extrapolation issue was proportional to the interaction level. #### Results - T-IPW and T-TMLE are the truncated IPW and TMLE with bounds at the 10th and 90th percentiles. - GC and TMLE were the most robust methods UNIVERSITÉ DE NANTES only high extrapolation issue lead to substantial bias. #### Plan - Introduction - 2 Covariates to consider in GC - 3 GG with positivity near-violation - **4** GC with Machine Learning - 6 Conclusions ## Method: a super learner (SL) applicable in practice with small sample size and computation time - The SL consists in averaging the predictions obtained from the four approaches: - Lasso logistic regression. A was forced. All the possible interactions between A and covariates Z were tested. B-splines for the quantitative covariates Z. - Elasticnet logistic regression with similar assumptions. - Neural network with one hidden layer. - Support vector machine with a radial basis function kernel. - The tunning parameters and the weights were obtained by maximizing the average AUC of a ten-fold cross-validation. - The variance was obtained by bootstrap cross validation. - The tuning parameters being estimated once on the entire sample. ovariates to consider in GC GG with positivity near-violation GC with Machine Learning OOO OOO #### Simulated data ## Results in terms of Mean Bias (MB). ### Results in terms of power #### Plan - Introduction - 2 Covariates to consider in GC - **3** GG with positivity near-violation - **4** GC with Machine Learning - 6 Conclusions #### Conclusions #### The main advantages of the GC: - The GC is simple to implement. - The GC is a powerful method, especially when considering the covariates causing the outcome. - The GC is quite robust to the positivity near violation, except for high extrapolation issues. - The proposed SL allows to prevent the Q-model misspecification. - The automatic algorithm allows bootstrapping the entire estimation procedure, including the Q-model construction, in the variance estimation. #### The main limitation of the GC: • It does not constitute a doubly robust estimator. Conclusions ### References - G-computation, propensity score-based methods, and targeted maximum likelihood estimator for causal inference with different covariates sets: a comparative simulation study. **Chatton** et al. Sci Rep. 2020. - Q G-computation and machine learning for estimating the causal effects of binary exposure statuses on binary outcomes. Le Borgne et al. Sci Rep. 2021 - 3 Causal inference in case of near-violation of positivity: comparison of methods. Léger et al. In revision. Conclusions