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Motivation

Classification/regression problems

Classical machine learning problems:

house pricing, stock exchange prediction... (regression problems)

medical applications, astrophysics... (classification problems)

Main properties:

Supervised setting (very large training dataset).

High-dimensional.

Structured data.
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Motivation

Motivation

Overparametrized neural networks perform well in many

experimental settings, why?

Does the training of neural networks exhibit a limit behavior when

the number of neurons is large?

When it exists, can we use the limiting dynamics to gain insights

on the optimization procedure and obtain theoretical results on the

convergence of the training procedure?
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Motivation

Energy landscape

Overparametrization has been extensively studied... In

overparametrized neural networks, landscapes are simpler.

Soltanolkotabi et al. (2019): one hidden layer ⇒ local minima are

global minima if N ≥ 2d .

Choromanska et al. (2015): multiple hidden layers (spin-glass model)

large N ⇒ critical points with low “energy” are local minima.

See also Pascanu et al. (2014), Pennington and Bahri (2017), Venturi

et al. (2018), Soudry and Hoffer (2018) for similar results.

What can we say about the gradient descent when N is large?
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Motivation

Gradient descent

In what follows we assume that (W k,N
n )n∈N is given by a SGD procedure.

In many cases, we can infer a limiting dynamics for (W k,N
n )n∈N.

Chizat and Bach (2018); Rotskoff and Vanden-Eijnden (2018);

Chizat (2019) – analysis using Wasserstein gradient flow,

Sirignano and Spiliopoulos (2018, 2020); Mei et al. (2018) – analysis

using probabilistic mean field approximations and McKean-Vlasov

SDE.
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Motivation

One-layer neural network

Our setting: One hidden layer neural network.

a loss function ` : R× R→ [0,+∞), e.g. `(x , y) = (x − y)2.

a feature function F : Rp︸︷︷︸
weights

× Rd︸︷︷︸
data

→ R, e.g. F (w , x) = σ(〈w , x〉)

(σ is the sigmoid function).

Given x , estimator ŷ given by ŷ = N−1∑N
k=1 F (w k,N , x).

We want to minimize the following population risk

RN(w 1:N) = Eπ [`(ŷ , y)] =

∫
(x,y)∈Rd×R

`

(
1

N

N∑
k=1

F (w k,N , x), y

)
dπ(x , y) ,

where π is the distribution of the data and w 1:N = (w k,N)k∈{1,...,N} ∈ (Rd)N .

Question: what can we say when N � d , i.e. when the network is

overparametrized?
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Motivation

A first example

RN(w1:N) =

∫
(x,y)∈Rd×R

`

(
N−1

N∑
k=1

F (wk,N , x), y

)
dπ(x , y) .

In this case d = 4 and N = 5.
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Mean field approximation

A mean-field formulation

We recall that we want to minimize

RN (w1:N )=
∫

(x,y)∈Rd×R `
(
N−1∑N

k=1 F (wk,N , x), y
)
dπ(x, y)

=
∫

(x,y)∈Rd×R R̂N (w1:N , x, y)dπ(x, y) ,

Stochastic Gradient Descent (SGD):

W k,N
n+1 −W k,N

n = −γN∂wk,N R̂N (W 1:N
n ,Xn,Yn)

= −
γN

N

{
Eπ
[
N∂

wk,N R̂N (W 1:N
n , ·, ·)

]
+ N∂

wk,N R̂N (W 1:N
n ,Xn,Yn)− Eπ

[
(N∂

wk,N R̂N (W 1:N
n , ·, ·)

]}
= −

γN

N

{
h(W k,N

n , νn) + ηn(W k,N
n , νn)

}
,

where γN is a step-size, νn = N−1∑N
k=1 δWk,N

n
(empirical measure), (Xn,Yn) i.i.d. and


H(w , ν, x, y) = ∂1`

(∫
Rp F (w , x)dν(w), y

)
∇F (w , x) ,

h(w , ν) =
∫

(x,y)∈Rd×R H(w , ν, x, y)dπ(x, y) ,

ηn(w , ν) = H(w , ν, xn, yn)−
∫

(x,y)∈Rd×R H(w , ν, x, y)dπ(x, y) .
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Mean field approximation

A continuous-time approximation

Stochastic Gradient Descent (SGD):

W k,N
n+1 = W k,N

n − (γN/N)
{
h(W k,N

n , νn) + ηn(W k,N
n , νn)

}
.

h is called the mean field approximation. We will work with the

continous-time version of SGD

dWk,N
t = h(Wk,N

t ,νN
t )dt + (γN/N)1/2Σ1/2(Wk,N

t ,νN
t )dBk

t ,

with Σ(w , ν) = Covπ[H(w , ν, ·, ·)] and (Bt)t≥0 Brownian motion.

Approximation results

If F is regular enough with bounded derivatives and bounded and if ` is

regular enough with bounded second-order derivatives then for any T ≥ 0,

there exists C ≥ 0 such that for any t ∈ [0,T ], N ∈ N and k ∈ {1, . . . ,N}

sup
t∈[0,T ]

E1/2

[∥∥∥Wk,N
t −W k,N

bNt/γNc

∥∥∥2
]
≤ C(γN/N)1/2 log(1 + (γN/N)−1) .
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Mean field approximation

From deterministic to stochastic

Approximation: We only need to consider

dWk,N
t = h(Wk,N

t ,νN
t )dt + (γN/N)1/2Σ1/2(Wk,N

t ,νN
t )dBk

t .

Until now  γN does not depend on N, see Mei et al. (2019, 2018);

Sirignano and Spiliopoulos (2020, 2018); Chizat (2019); Chizat and Bach

(2018); Rotskoff and Vanden-Eijnden (2018).

Our observation: with γN = γ for all N ∈ N∗ the obtained limiting

dynamics is not stochastic anymore.

 In what follows, we consider γN = γNβ .
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Mean field approximation

Propagation of chaos

Question: what can we say about the law of a fixed number of particles

when the total number of particles grow towards +∞?

→ propagation of chaos, see Sznitman (1991); Gottlieb (2000); Jourdain and

Méléard (1998)...

Propagation of chaos

The chaos propagates if for any t ≥ 0 and j ∈ N

lim
N→+∞

L((W 1,N
t , . . . ,W j,N

t )) = (λ?t )⊗j ,

for some distribution λ?t .

independence between the particles when N → +∞.

the particles have identical laws, λ?t .
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Mean field approximation

A basic result

Adapted from Sznitman (1991)

If for any N ∈ N, L(W N
0 ) = ρ⊗N with

∫
Rd ‖x‖2dρ(x) < +∞ and

dWk,N
t = b(Wk,N

t ,νN
t )dt + Σ(Wk,N

t ,νN
t )dBk

t ,

with for any w1,w2 ∈ Rd and µ1, µ2 ∈ P2(Rd)

‖b(w1, µ1)− b(w2, µ2)‖+ ‖Σ(w1, µ1)− Σ(w2, µ2)‖

≤ L {‖w1 − w2‖+ ‖µ1[f ]− µ2[f ]‖} , (1)

with f : Rd → Rd Lipschitz. Then for any T ≥ 0 and j ,N ∈ N with N ≥ j

E[supt∈[0,T ] ‖W
1:j,N
t −W1:j,?

t ‖2] ≤ CT ,jN
−1 .

with

dWk,?
t = b(Wk,?

t , λ?t )dt + Σ(Wk,?
t , λ?t )dBk

t .

(McKean-Vlasov process)
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Mean field approximation

The deterministic regime

First case: γN = γNβ with β ∈ [0, 1).

Convergence result (I)

For any ` ∈ N∗, T ≥ 0, there exists CT ≥ 0 such that for any β ∈ [0, 1),

E
[
supt∈[0,T ] ‖W

`,N
t −W`,?

t ‖2
]
≤ CTN

−(1−β) ,

with

dW`,?
t = h(W`,?

t , λ`,?t )dt , with λ`,?t the distribution of W`,?
t .

Deterministic McKean-Vlasov limit (ODE mean-field).

Rate of convergence N1−β .

For any `1, `2 ∈ N, λ`1,?
t = λ`2,?

t .
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Mean field approximation

The stochastic regime

Second case: γN = γNβ with β = 1.

Convergence result (II)

For any ` ∈ N∗, T ≥ 0, there exists CT ≥ 0 such that

E
[
supt∈[0,T ] ‖W

`,N
t −W`,?

t ‖2
]
≤ CTN

−1 .

with

dW`,?
t = h(W`,?

t , λ`,?t )dt + γ1/2Σ(W`,?
t , λ`,?t )dB`t .

Stochastic McKean-Vlasov limit (SDE mean-field).

Convergence rate N−1.

For any `1, `2 ∈ N, λ`1,?
t = λ`2,?

t .
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Mean field approximation

Stochastic/Deterministic

depending on the scaling γN ∼ γNβ we obtain two different

regimes.

For β ∈ [0, 1), the SDE is an ODE and λ?t satisfies the following

Fokker-Planck equation.

∂tλ
?
t = −

d∑
i=1

∂i (λ
?
t hi ) .

For β = 1, the SDE is an SDE and λ?t also satisfies a Fokker-Planck

equation

∂tλ
?
t = −

N∑
i=1

∂i (λ
?
t hi ) + (γ/2)

d∑
i=1

d∑
j=1

∂i,j(λ
?
t Σi,j) .

Larger stepsizes enforce some entropic regularization of the model.
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Experiments

A toy experiment

MNIST dataset → classification task between ten digits.

Fully connected, one hidden layer.

ReLU activation function.

Cross-entropy loss.

Question : what happens when we train SGD for N large with stepsize

γN = γNβ and β ∈ [0, 1]?

16 / 21



Quantitative Propagation of Chaos for SGD in Wide Neural Networks

Experiments

Different regimes

Figure 1: First line β = 0.5, second β = 0.75, third β = 1 (recall γN = γNβ)
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Experiments

From stochastic to deterministic

Figure 2: as γ → 0 we converge towards the deterministic model.
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Experiments

Regularization effect

Values N = 5000 N = 5000 N = 10000 N = 10000

of N and β β = 0.75 β = 1.0 β = 0.75 β = 1.0

Train acc. 100% 97.2% 100% 97.2%

Test acc. 55.5% 56.5% 56.0% 56.5%

Table 1: β = 1 setting exhibits better regularization properties.
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Experiments

Conclusion

The study of overparametrized (wide) neural networks gives some

insights on what happens when we optimize neural networks...

Limiting dynamics

Independence of weights

Equivalence with PDE evolutions

Ongoing work:

Propagation of chaos = Law of large numbers, how about a CLT?

Sirignano and Spiliopoulos (2020),

Extension to deep networks, is the analysis still valid? What kind of

behavior is specific to the depth of the network?

Stationary solutions of the PDE are not easy to compute → fixed

point equations. Properties of these solutions?
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Experiments

Thank your for your attention!

Our paper: https://arxiv.org/abs/2007.06352
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Experiments

A first model

RN (w1:N ) =

∫
(x,y)∈Rd×R

`

N−δ
N∑

k=1

F (wk,N
, x), y

 dπ(x, y) ,

with δ ∈ [0, 1). (Recall that in the previous setting δ = 1)

In this case, lazy training occurs, see Chizat et al. (2019). Why lazy? → weights don’t move a lot, see

https://rajatvd.github.io/NTK/.

SGD is provably close to a linear model, i.e. Neural Tangent Kernel (NTK) gradient descent.

Figure 3: Figure extracted from Ghorbani et al. (2019) → poor performance of NTK.
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Comparison

Only the case β = 0 has been previously studied: Sirignano and

Spiliopoulos (2018); Mei et al. (2018); Chizat and Bach (2018); Rotskoff

and Vanden-Eijnden (2018); Sirignano and Spiliopoulos (2020).

Weak convergence of SGD (Sirignano and Spiliopoulos, 2018,

Theorem 1.6), (Mei et al., 2018, Theorem 3)(high probability)

Central limit theorem (Sirignano and Spiliopoulos, 2020, Theorem 1.5);

(Chizat and Bach, 2018, Theorem 2.6) and (Rotskoff and

Vanden-Eijnden, 2018, Proposition 3.2) → gradient flows techniques +

convergence if strongly convex.
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