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Abstract

The objective of this thesis is to develop new nonparametric estimation techniques to deal

with the problem of edge effect. First, we consider a shrinkage method using Bernstein

polynomials and a finite Gaussian mixture model to construct a semi-parametric den-

sity estimator. Efficiency and feasibility were confirmed by theoretical results and then

by applications on simulated real data sets. Then, we adopted a method based on two-

time scale stochastic approximation algorithms and Bernstein polynomials to improve the

Tenbush’s regression estimators. Some of its asymptotic properties were also discussed.

Experimental studies were conducted to compare this new approach with the Bernstein

estimator and the classical kernel estimator. Finally, we introduce a new method based

on the Lagrange polynomial and Chebytchev-Gauss points to construct non-parametric

estimators. We compare the new estimators with approaches based on Bernstein polyno-

mials as well as with approaches based on kernels. Applications based on real data are

envisaged to show the efficiency of these new methods as well as to compare them with

other estimators.

Keywords: Asymptotic properties, Bernstein polynomial, Distribution estimator, EM

algorithm, Lagrange polynomials, Gaussian mixture model, Kernel estimator, Shrinkage

estimator, Regression estimation, Tchebychev-Gauss points, Two-time-scale stochastic

approximation algorithms.
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Chapter 1

Introduction

Estimation is an intrinsic topic of statistics. For example, the estimation of regression

function is undoubtedly a useful tool of data analysis to explore the relationship between

a response variable and an explanatory variable. In addition, it has much to offer in terms

of such applications as forecasting future opportunities and risks in business, predicting

the causal relationships between parameters in biological systems and various other situ-

ations. It makes it possible to tackle observed phenomena, in a variety of fields such as

geology, oceanography, economics, epidemiology, environmental sciences. These phenom-

ena are often characterized by a real random variable X. Hence, the need to estimate the

probability density function f seems to be quite crucial. Basically, existing estimation

algorithms can be categorized into either parametric or non parametric approaches.

⋆ Within the parametric framework, in the case of density estimation, we suppose that

the model fθ is known, where θ is a vector parameter whose exact values are un-

known. We, thus, reduce the problem of estimating fθ to the problem of estimating

the parameter θ, which stands for the main objective of the parametric approach.

Several authors have developed statistical parametric models. Among them, we

state the Expectation Maximization (EM ) algorithm proposed by Dempster et al

(1977).

⋆ The non-parametric approach supposes no particular shape for the probability den-

sity f . In this situation, it is natural to estimate one of the unknown functions

characterizing the model (density function, regression...): this is the objective of

functional estimation. In this context, several methods have been set forward for

smooth estimation of density and distribution functions. The most popular one,

called kernel method, was elaborated by Rosenblatt (1956). The advances were car-

ried out by Parzen (1962) so as to estimate a density function. These estimators

10



have been further developed using stochastic approximation methods to make it

updated from a sample of size n to one of size n + 1 (see Mokkadem et al (2009)

and Slaoui (2014)). However, kernel methods display estimation problems at the

edges, when we have a random variable X with density function f supported on

a compact interval. Several solutions to this problem have been identified in the

literature. See, for instance, the original work of Vitale (1975) and extensions given

by Tenbusch (1994), Babu et al. (2002), Kakizawa (2004) and Babu and Chaubey

(2006).

The contribution of this thesis lies in establishing the interface between these large cate-

gories of estimations. The basic target of this research work resides in crystallizing new

techniques of estimation using Bernstein polynomial and Lagrange polynomial in order

to resolve the boundaries effects of kernel estimators. It rests upon the following parts:

• Non parametric estimation using Bernstein polynomials.

• Non parametric estimation using Lagrange polynomials.

This manuscript is structured as follows.

Part I First, our central focus is on considering the Bernstein polynomial in

order to construct non parametric recursive estimators of regression function and

semi parametric density approach. This is particularly appealing since Bernstein

polynomials are known to yield very smooth estimates that typically have acceptable

behaviour at the boundaries.

Contribution of Chapter 2: In this chapter, we introduce a brief review

of the scientific background and display the terminology notations required

to discuss the parametric and non parametric approaches. The opening was

marked by recalling some basic definitions of parametric models. Afterwards,

we explored the commonly used methods for non parametric estimation. In

a nut shell, this chapter corresponds to the cornerstone for the subsequent

chapters of this thesis.

Contribution of Chapter 3: This chapter revolves around the alleviation

of the boundary problem when the probability density function has a bounded

support. To this extent, we set forward a shrinkage method using the Bern-

stein polynomial and a finite Gaussian mixture model to construct a semi

parametric density estimator, which improves the approximation at the edges.

11



Some asymptotic properties of the proposed approach are addressed, such as

its probability convergence and its asymptotic normality. In order to assess

the performance of the proposed estimator, a simulation study and some real

data sets are undertaken.

Contribution of Chapter 4: In this chapter, we introduce a recursive esti-

mators of the regression function grounded upon the two-time-scale stochastic

approximation algorithms and the Bernstein polynomials. We investigate the

asymptotic properties of these estimators. We compare the proposed estima-

tors to the classic regression estimator using the Bernstein polynomial defined

by Tenbusch. Results revealed that our identified recursive estimators can

overcome the problem of the edges related kernel regression estimation with a

compact support. The proposed recursive two-time-scale estimators are com-

pared to the non recursive estimator elaborated by Tenbusch. The performance

of the two estimators is illustrated via simulations as well as two real datasets.

Part II The second goal of this research project is to display what seems to

be a new method based on Lagrange polynomial Li and Tchebytchev-Gauss points

in order to construct non parametric estimators and their recursive versions. The

Tchebytchev-Gauss points (xi)1≤i≤m correspond to the optimal choice of grids that

give the best convergence
m∑

i=1

v(xi)Li(.) → v(.) uniformly, when m → ∞, for any

continuous function v of class Ck (for k ≥ 1) on the interval [−1, 1] . This finding

was handled by Jackson in the early 20th century (see Jackson (1911), Jackson

(1912)), which stands for the main idea of the proposed estimators.

Contribution of Chapter 5: In this chapter, we exhibit a new method to es-

timate distribution function, based on Lagrange polynomials and Tchebytchev-

Gauss points. Some asymptotic properties of the proposed estimator are ex-

plored, such as its asymptotic bias, variance, mean squared error and Chung-

Smirnov propriety. The asymptotic normality and the uniform convergence of

the proposed estimator are equally tackled. To sum up, we would simply assert

that the performance of the proposed estimator is explored through a certain

simulation examples. This research work was the subject of the following pub-

lication: Helali and Slaoui (2020).

Contribution of Chapter 6: In this chapter, we are basically concerned

with introducing a recursive distribution estimator using Robbins Monro’s al-

12



gorithm and Lagrange polynomial. Such asymptotic properties of the proposed

estimator are examined, such as its asymptotic bias and variance. The asymp-

totic normality is also enacted. We attempt to demonstrate that the proposed

estimator outperforms the non recursive distribution function introduced in the

previous chapter, in terms of the asymptotic mean squared error and the com-

putational costs. Generally, the proposed estimator compares favorably with

other competitors in theoretical comparisons, as well as in simulation study

and in real data sets examples.

Thesis organization Chapters 2, 3, 4, 5 and 6 illustrate the contributions of the

thesis as pointed out above. The chapter concludes in a classical way, with a mini

chapter to wrap up the whole work and offer some research perspectives, while the

closing section highlights the different references invested in the document.
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Chapter 2

Mathematical preliminaries

In this chapter, the readers are introduced to some basic concepts of statistical estima-

tion. We first briefly display generalities and outstanding examples of the parametric

estimation. Then, we provide general approaches of non parametric estimation and we

detail methods allowing to determine optimal choice of smoothing parametric estimation.

Subsequently, we introduce the Robbins-Monro stochastic algorithm which creates the

recursive estimators. In this chapter, we consider X,X1, . . . , Xn (n ∈ N⋆), a sequence

of independent and identically distributed (i.i.d.) random variables having a common

unknown density function f and a distribution function F . In addition, departing from

the exhibited material, we shall invest the most pertinent concepts as well as prominent

results leading us to opt for this specific path of research.

2.1 Parametric estimation

In this section, we first present the basic definitions and properties for the parametric

estimation characterizing the unknown density f . Then, we shall provide a description of

the finite mixture Gaussian model and the EM algorithm.

2.1.1 Definition of parametric estimation

Let’s consider first the following definition.

Definition 2.1. A parametric family of densities is a parametric family of densities on

R, defined by

F = {fθ, θ ∈ Θ},
where fθ is a distribution on R and Θ is a subset of Rp.

14



The basic idea of Definition (2.1) is that for the parametric estimation approach,

the model structure of the distribution function is known beforehand. As matter of fact,

there are usually uniquely a few characteristic parameters in the distribution functions

that are needed to be estimated using different methods, such as the Maximum Likelihood

(ML) method, Least Square approach and Moment method. The ML estimator is likely

to be the most addressed notion theoretically, and the most used in practice, which is

illustrated in the following definition.

Definition 2.2. Assume all the distributions fθ have a probability density function (pdf)

lθ on R. Then the ML estimator θ̂ML of θ is defined by

θ̂ML ∈ argmax
θ∈Θ

lθ(x).

Let us display a simple example for the ML estimator.

Example 2.1.1. Consider θ ∈ R, and lθ is the pdf of n observations x1 . . . , xn from the

Gaussian distribution N (θ, 1) with mean θ and variance 1. In this case, we write

lθ(x1, . . . , xn) = (2π)−1/2 exp

(
−1

2

n∑

i=1

(xi − θ)2

)
. (2.1.1)

Maximizing the equation (2.1.1) yields the ML estimator θ̂ML =
1

n

n∑

i=1

xi. One can also

calculate E(θ̂ML) = θ. Therefore, the ML estimator is unbiased here.

Besides, owing to missing data, we need to find an estimator using an iterative

algorithm. The most frequently used algorithm is the EM algorithm. It was developed

by Dempster et al (1977). It is beneficial in a variety of incomplete-data problems.

2.1.2 Expectation maximization algorithm

The EM algorithm is an iterative way to find the ML estimator for the parameter θ, when

data are incomplete or have unobserved latent variables. Each EM iteration alternates

with an Expectation (E-step) and a maximization (M-step):

- The E-step holds the conditional expectation of the complete data log-likelihood

given the observed data, using the current fit for the parameters.

- The M-step computes parameters maximizing the expected log-likelihood found in

the E-step.
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The computation of the likelihood equation is costly and time consuming as this equa-

tion tends to become complex. Therefore, the EM algorithm rests on simplifying this

equation by using the log-likelihood equation instead of the likelihood equation. The EM

algorithm stands for a popular tool in statistical estimation issues involving incomplete

data or problems which can be posed in a similar form, such as the mixture parameters

estimation (see Dempster et al (1977), McLachlan and Peel (2004)). For a better and

thorough understanding of the EM algorithm, we try to elaborate in the next paragraph,

the case of a Gaussian mixture model.

The Gaussian mixture model:

Within the parametric framework, it is noteworthy that the Gaussian mixture model can

be used to estimate any density function. Consider X1, . . . , Xn, a sequence of i.i.d. with

common Gaussian mixture density defined by

g(x|θ) =
K∑

k=1

πkN (µk, σk)(x), (2.1.2)

where

θ = (π, µ, σ) = (π1 . . . , πK , µ1 . . . , µK, σ1, . . . , σK),

satisfies

0 ≤ πk ≤ 1,
K∑

k=1

πk = 1, µk ∈ R, σk > 0, for k = 1 . . . , K where K > 0,

and

N (µ, σ)(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
.

Finally, for each observed data point Xi, we associate a component label vector Zi in

order to manage the data clustering. This random vector Zi = (Zik)1≤k≤K is defined

such that Zik = 1 if the considered observation Xi is drawn form the kkt component of

the mixture, and Zik = 0 otherwise. Consequently, Zi is distributed as a multivariate

Bernoulli distribution with vector parameters (π1, . . . , πK) as follows:

P (Zi = zi) =
K∏

k=1

πzik
k .

Within the EM framework, (X1, . . . , Xn, Z1, . . . , Zn) corresponds to the complete data

and (Z1, . . . , Zn) stands for the hidden data. Hence, the complete-data log likelihood is

16



expressed by

L(X1, . . . , Xn, Z1, . . . , Zn, θ) =
n∑

i=1

K∑

j=1

Zij [log(πj) + log (N (µj, σj)(Xi))] .(2.1.3)

The two steps of the EM algorithm, after l iterations, are:

• E-step: The conditional expectation of the complete data log-likelihood given the

observed data, using the current fit θ(l), is defined by

ϕ
(
θ|θ(l)

)
= Eθ(l) (L(X1, . . . , Xn, Z1, . . . , Zn, θ)|X1, . . . , Xn) . (2.1.4)

The posterior probability that Xi belongs to the jth component of the mixture at

the lth iteration, is expressed as

τ
(l)
ij = Eθ(l) (Zij|X1, . . . , Xn) =

π
(l)
j N

(
µ
(l)
j , (σ

2)
(l)
j

)
(Xi)

∑K
h=1 π

(l)
h N

(
µ
(l)
h , (σ

2
h

)(l)
(Xi)

. (2.1.5)

Finally, we get

ϕ
(
θ|θ(l)

)
=

n∑

i=1

K∑

j=1

τ
(l)
ij [log(πj) + log (N (µj, σj)(Xi))] . (2.1.6)

• M-step: It consists of a global maximization of ϕ
(
θ|θ(l)

)
with respect to θ:

θ(l+1) = argmax
θ
ϕ
(
θ|θ(l)

)
. (2.1.7)

The updated estimates verify the following recursive formulas

π
(l+1)
j =

1

n

n∑

i=1

τ
(l)
ij , (2.1.8)

µ
(l+1)
j =

∑n
i=1 τ

(l)
ij Xi

∑n
i=1 τ

(l)
ij

, (2.1.9)

(σ2
j )

(l+1) =

∑n
i=1 τ

(l)
ij

(
Xi − µ

(l+1)
j

)2

∑n
i=1 τ

(l)
ij

. (2.1.10)
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We repeat these two steps until
∣∣∣∣θ(l+1) − θ(l)

∣∣∣∣ < ǫ, where ǫ is a fixed threshold of con-

vergence. The convergence properties of the EM algorithm have been investigated by

Dempster et al (1977) and by Wu (1983). Relying upon Jensen’s inequality, it can be

noticed that, as ϕ
(
θ|θ(l)

)
is increasing, the log-likelihood function is also increasing (see

Dempster et al (1977)). Consequently, the EM algorithm converges within a finite itera-

tions number and gives the parameters maximum likelihood estimates. Therefore, under

some conditions and according to Dempster et al (1977), we have

lim
l→∞

π
(l)
j = π̂j , lim

l→∞
µ
(l)
j = µ̂j and lim

l→∞
(σ2

j )
(l) = σ̂2

j almost surely (a-s). (2.1.11)

In what follows, we denote by θ̂ = (π̂1, . . . , π̂K , µ̂1, . . . , µ̂K, σ̂1, . . . , σ̂K).

In general, the parametric estimation will be more powerful if the form of the

distribution function is somehow known in advance. In addition, the estimation technique

is much simpler. However, sometimes, there is not enough prior information about the

model of the distribution. To solve the problem, non-parametric estimation approach is

set forward.

2.2 Non parametric estimation

Within the framework of the non parametric estimation, knowing that F is continuous,

we consider the estimation of F by using smooth functions instead of the empirical dis-

tribution function, which is not continuous. Numerous methods have been set forward

for smooth estimation of density and distribution functions. The most popular one, is

called kernel method. In this section, we recall some results concerning kernel estimators.

However, these methods have estimation problems at the edges, when we have a random

variable X with distribution function supported on a compact interval. For this rea-

son, we recall then, the estimators using Bernstein polynomials in order to overcome this

problem. Moreover, we detail methods allowing to determine optimal choice of smoothing

parametric estimation.

2.2.1 Kernel estimators

Kernel method is introduced by Rosenblatt (1956). The advances were carried out by

Parzen (1962) to estimate density function. Let f defined on R. We consider first the

definition of a kernel.
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Definition 2.3. A function K with a symmetric support [a, b] is called a kernel, if it

is a positive function, such as
∫ b

a
|K(x)|dx < ∞,, K(−x) = K(x),

∫ b

a
xK(x)dx = 0,∫ b

a
x2K(x)dx <∞ and

∫ b

a
K2(x)dx <∞.

All of these conditions make an asymptotically unbiased estimator with variance

tending to zero when n→ ∞ (see Tsybakov (2009)). Some classical examples of Kernels

are the following.

Example 2.2.1.

- The rectangular Kernel: K(u) = 1
2
1{|u|≤1}.

- The triangular Kernel: K(u) = (1− |u|)1{|u|≤1}.

- The Epanechnikov Kernel: K(u) = 3
4
(1− u2)1{|u|≤1}.

- The Gaussian Kernel: K(u) = 1√
2π

exp (−u2/2).

Kernel density estimation:

The Kernel estimator (see Rosenblatt (1956) and Parzen (1962)) of the density function

is provided by

f̂n(x) =
1

nhn

n∑

p=1

K

(
x−Xp

hn

)
, ∀x ∈ R, (2.2.1)

where (hn) dependent on the size n, is a bandwidth (smoothing parameter, a sequence

of positive real numbers that goes to zero). This approach is asymptotically unbiased

with a variance that goes to zero when n→ ∞ with an optimal choice of the bandwidth

(hn). Multiple approaches were invested to estimate the smoothing parameter (hn). The

most ones beneficial are the cross-validation criterion and the Plug-in approach, which

are further developed in the subsection (2.2.3).

Kernel distribution estimation:

The kernel distribution estimator was introduced by Nadaraya (1964) and was defined as

F̂n(x) =
1

n

n∑

p=1

K
(
x−Xp

hn

)
, ∀x ∈ R, (2.2.2)

where K(y) =

∫ y

−∞
K(u)du. Some theoretical properties of the estimator F̂n were ex-

plored (see among many others, Nadaraya (1964), Reiss (1981) and Peter (1985)). Reiss
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(1981) and Falk (1977) showed that Nadaraya’s kernel distribution estimator (5.1.1) has

an asymptotically better performance than the empirical distribution function which does

not consider the smoothness of F .

Kernel regression estimation:

Regression corresponds to a set of statistical methods that are widely used to ana-

lyze the relationship between a target variable and one or more other variables. Let

(X, Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. pairs of random variables with joints density func-

tion g and let f such that f(x) =
∫

R

g(x, t)dt denote the density of X. The non parametric

regression model is represented as

Y = r(X) + ǫ, (2.2.3)

where ǫ and X are independent with E(ǫ) = 0. Then, the regression function is r(x) =

E(Y |X = x), which models the relationship between X and Y . In what follows, the

random variable Y is supposed to be integrable. The kernel regression estimator r is

based on the concept of the kernel density estimator as

r̂n(x) =

∫
yĝn(x, y)dy∫
ĝn(x, y)dy

1{
∫
ĝn(x,y)dy 6=0} =

∫
yĝn(x, y)dy

f̂n(x)
1{f̂n(x)6=0}, (2.2.4)

where ĝn is a kernel estimator of g defined as

ĝn(x, y) =
1

nh2n

n∑

p)1

K

(
x−Xp

hn

)
K

(
y − Yp
hn

)
. (2.2.5)

Using Equation (2.2.5) leads to

∫

R

yĝn(x, y)dy

=
1

nhn

n∑

p=1

K

(
x−Xp

hn

)[∫

R

y − Yp
hn

K

(
y − Yp
hn

)
dy +

∫

R

Yp
hn
K

(
y − Yp
hn

)
dy

]

=
1

nhn

n∑

p=1

K

(
x−Xp

hn

)[
hn

∫

R

uK(u)du+ Yp

∫

R

K(u)du

]
.

Substituting this result into (2.2.4), according to Equation (2.2.1) and definition of the

kernel function (2.3), we get the Nadaraya-Watson estimator of the regression function r
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(see Nadaraya (1964) and Watson (1964)) defined as,

r̂n(x) =

∑n
p=1 YpK

(
x−Xp

hn

)

∑n
p=1K

(
x−Xp

hn

) 1∑n
p=1 K

(
x−Xp
hn

)
6=0
. (2.2.6)

This estimator exhibits an undesirable behaviour at the boundaries of the support

of X (bias is of order h in the boundary region while it is of order h2 away from the

boundaries, see Wan and Jones (1994), Section 5.6.1). In fact, it is well known that

kernel estimators have a bias that is larger by a full order of magnitude in the boundary

region, when we have a random variable X with density function supported on a compact

interval.

Support problem:

We suppose for simplicity that there is a single known boundary to the support of the

density function f which we might as well take to be at the origin. Then, we deal

with positive data. For convenience, we consider a symmetric kernel (for instance, normal

kernels). Away from the boundary, which means that at any x > hn, the usual asymptotic

mean and variance expressions are applied. Let us now suppose that f has two continuous

derivatives everywhere, and that as n→ ∞, hn → 0, and nhn → 0. Hence

E(f̂n(x)) ≃ f(x) +
1

2
h2nf

′′(x)

∫
x2K(x)dx,

and

V ar(f̂n(x)) ≃ (nhn)
−1f(x)

∫
K2(x)dx.

Near from the boundary, the expression of the mean and the variance are different. Let

x = phn, we have

E(f̂n(x)) ≃ f(x)

∫ p

−∞
K(x)dx− f ′(x)

∫ p

−∞
xK(x)dx+

1

2
h2nf

′′(x)

∫ p

−∞
x2K(x)dx,

and

V ar(f̂n(x)) ≃ (nhn)
−1f(x)

∫ p

−∞
K2(x)dx.

These bias phenomena are named boundary bias. Multiple authors set forward methods

for reducing these phenomena such as data reflection (Schuster (1985)), boundary kernels

(Müller (1991) and Müller and Wang (1994)), the local linear estimator (Lejeune and Sarda

(1992) and Jones (1993)), the use of beta and gamma kernels (Chen (1996, 1999)). For

a smooth estimate of a density function with a finite known support, Vitale’s method

(Vitale (1975)) based on the Bernstein polynomials is illustrated in the next subsection.
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2.2.2 Bernstein estimators

In order to overcome the boundaries problem in the case of density estimation and the case

of distribution estimation, various methods were addressed such as the Bernstein polyno-

mial estimators (see the works of Vitale (1975), Tenbusch (1994), Babu et al. (2002) and

Kakizawa (2004)). The first steps in non parametric estimation methods based on Bern-

stein polynomials were undertaken in 1912 in order to construct a probabilistic demon-

stration of the classical Weierstrass theorem which corresponds to what follows:

Theorem 2.2.1. Any continuous function f on a segment [a, b] is a uniform limit of

polynomial functions on this segment. In other words, for everything ǫ > 0, there is a Q

polynomial such as:

∀x ∈ [a, b], |f(x)−Q(x)| < ǫ.

Within this framework, Bernstein (1912) introduced a family of polynomials, de-

fined as follows.

Bernstein polynomials

Definition 2.4. For m ∈ N and 0 ≤ k ≤ m, we call Bernstein’s polynomial,

bk(m, x) = Ck
mx

k(1− x)m−k.

These polynomials have several properties, such as

Proposition 2.1. Bernstein polynomials have the following properties:

1. Partition of the unit:
m∑

k=0

bk(m, x) = 1, ∀x ∈ [0, 1].

2. Positive:

bk(m, x) ≥ 0, ∀k ∈ {0, . . . , m}.

3. Symmetry:

bk(m, x) = bm−k(m, 1− x), ∀k ∈ {0, . . . , m}.

4. Recurrence formula:

bk(m, x) =





(1− x)bk(m− 1, x) if k = 0,

(1− x)bk(m− 1, x) + xbk−1(m− 1, x) if k ∈ {1, . . .m− 1},
xbk−1(m− 1, x) if k = m.
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From a probabilistic point of view, the polynomial bk(m, p) is the probability

P (X = p), where X is a random variable following a binomial law of parameter (m, p).

This is the idea that Bernstein adopted in his demonstration of the Weierstrass theorem,

which is otherwise written as follows.

Theorem 2.2.2. Let f : [0, 1] → R be a continuous function. We define the Bernstein

polynomial associated with f of order m ∈ N in terms of:

∀x ∈ [0, 1], Bm(f)(x) =
m∑

k=0

f

(
k

m

)
bk(m, x).

Thus, we have

lim
m→∞

||f −Bm(f)|| = lim
m→∞

sup
x∈[0,1]

|f(x)− Bm(f)(x)| = 0.

As an excellent reference for properties of Bernstein polynomials, we refer the

reader to Lorentz (1986). Vitale (1975) invested the preceding theorem to construct an

estimator of the distribution function which will be discussed in the next paragraph. In

the following, we assume that m = mn depends on n.

Distribution estimation

Vitale (1975) defined the estimator of F as follows,

F̃n,m(x) =
m∑

k=0

F n

(
k

m

)
bk(m, x), (2.2.7)

where F n(x) =
1

n

n∑

i=1

1Xi≤x is the empirical distribution function. We note that

F̃n,m(0) = 0 and F̃n,m(1) = 1.

The estimator defined in (2.2.7) was tackled by Babu et al. (2002) and Leblanc (2010,

2012a). The bias and the variance of the estimator F̃n,m are given in the following propo-

sition.

Proposition 2.2 (Leblan 2012). Let F be a continuous function and let it admit two

continuous and bounded derivatives on [0, 1]. We have for x ∈ (0, 1) that

Bias(F̃n,m(x)) = m−1b(x) + o(m−1),
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where b(x) = [x(x− 1)f ′(x)]/2. Besides, we have

V ar(F̃n,m(x)) = n−1σ2(x)−m−1/2n−1V (x) + ox
(
m−1/2n−1

)
,

where σ2(x) = F (x)[1− F (x)] and V (x) = f(x)[2x(1 − x)/π]1/2.

We note that if we consider h = m−1 as the ’bandwidth’ of the Bernstein estimator,

the bias of F̃n,m becomes O(m−1) = O(h), which is bigger than the typically obtained

bias using kernel estimators which have basically at least a bias as small as O(h2) (except

possibly near from the boundaries). In addition, the previous proposition implies that,

MSE(F̃n,m) = n−1σ2(x)−m−1/2n−1V (x) +m−2b2(x) + o(m−2) + ox
(
m−1/2n−1

)
.

The optimal choice of the order m that minimizes MSE is indicated by

mopt = n2/3

[
4b2(x)

V (x)
.

]2/3
.

it is noteworthy that the plug-in approach elaborated by Altman and Léger (1995) and

the cross-validation method of Bowman et al (1998) can also be adapted in the practical

choice of m. For further details, please refer back to the section (2.2.3). Starting from

the distribution estimator F̃n,m, Vitale constructed the density estimator fn,m which will

be handled in the following paragraph.

Density estimation

To obtain the density estimator fn,m using the Bernstein polynomial, we first write the

distribution estimator in the Babu et al. (2002) form as follows,

F̃n,m(x) =

m∑

k=0

fn

(
k

m

)
Bk(m, x), (2.2.8)

where fn(0) = 0, fn(k/m) = F̂n(k/m)− F̂n((k − 1)/m) for k = 1 . . .m

and Bk(m, x) =
∑m

j=k bj(m, x). With respect to x Equation (2.2.8), we obtain

f̃n,m(x) =

m∑

k=0

fn

(
k

m

)
d

dx
Bk(m, x)

= m

m−1∑

k=1

[
F n

(
k + 1

m

)
− F n

(
k

m

)]
bk(m− 1, x). (2.2.9)
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This estimator was introduced by Vitale (1975) and examined by Babu et al. (2002). In

addition, Bouezmarni and Rolin (2007) considered the case of unbounded densities As for,

Tenbusch (1994) and Babu and Chaubey (2006), they generalized this estimator to the

multidimensional case. For additional details, the reader can consult the work of Leblanc

(2012b) and Babu et al. (2002). Results are then exhibited for the bias and the variance

of the estimator f̃n,m.

Proposition 2.3 (Leblan 2012). Let f be a density function. We assume that f is a

continuous function with two derivatives bounded on [0, 1]. For x ∈ [0, 1], we have

Bias(f̃n,m(x)) = m−1δ1(x) + o(m−1),

where δ1(x) =
1
2
[(1− 2x)f ′(x) + x(1− x)f ′′(x)]. On the other side, we have

V ar(f̃n,m(x)) =

{
m1/2

n
f(x)ψ(x) + on

(
m1/2

n

)
if x ∈]0, 1[,

m
n
f(x) + ox

(
m
n

)
if x = 0, 1,

where ψ(x) = (4πx(1− x))−1/2.

If we consider that h = m−1 the bandwidth of the density estimator f̃n,m, we get

a bias of the order of O(h) for the estimator f̃n,m, which is bigger than that obtained

by the kernel estimator f̂n. On the other side, the variance of the estimator f̃n,m is of

the order of O(h−1/2/n)) for x ∈]0, 1[, which is small that that of the kernel estimator,

which is of the order of O(h−1/n). We also notice that the variance is of the order of

O(m1/2/n) within the interval ]0, 1[, but it is of a higher order that is equal to O(m/n) at

the boundaries. Based on the density estimator f̃n,m defined in (2.2.9), Tenbusch (1997)

identified a regression estimator using Bernstein polynomials, which is elucidated in the

next paragraph.

Regression estimation

Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. pairs of random variables with joints density

function g(x, y) and let f such that f(x) =
∫

R

g(x, t)dt, denote the density of X which is

supported on [0, 1]. Let E(|Y |) < ∞. The Bernstein estimator of the regression function
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r is x ∈ [0, 1]

r̃n,m(x) =





n∑
i=1

Yi
m∑
k=1

1{ k
m
<Xi

k+1
m

}bk(m− 1, x)

n∑
i=1

m∑
k=1

1{ k
m
<Xi

k+1
m

}bk(m− 1, x)
if

m∑
k=1

1{ k
m
<Xi

k+1
m

}bk(m− 1, x) 6= 0,

0 if
m∑

k=1

1{ k
m
<Xi

k+1
m

}bk(m− 1, x) = 0.

(2.2.10)

Like the smoother kernel, the Bernstein estimator corresponds to an intuitive estimator

of a regression function. At each point x0, the estimator is a weighted mean of the sample

Yi. However, contrarily to the kernel estimator, the Bernstein estimator does not always

use the same weight function (kernel). The Bernstein estimator rather adjusts the weight

function to the positions of the Xi’s in the predictor space. This adjustment of the weight

function amounts in better boundary behavior of the Bernstein estimator compared to

the Nadaraya-Watson estimator. To get a pertinent estimation by the kernel method

or Bernstein polynomials, it is significant to choose the smoothing parameters (hn) and

m. Some methods as far as the choice of these parameters are displayed in the next

paragraph.

2.2.3 Choice of smoothing parameter

Within the framework of non parametric estimators, several approaches were used to

estimate the smoothing parameter. Among the most famous and useful ones, we men-

tioned the cross-validation criterion and the Plug-in approach. A detailed comparison of

these techniques is stated in Delaigle and Gijbels (2004). We are basically interested in

following the principle of cross-validation.

Cross validation method

Step 1: The starting sample (X1, . . . , Xn) is cut into V packets L1, . . . , LV of the

same size n/V .

Step 2: For v = 1 . . . V ,

(a) We proposed an estimator f̂ v
h of the density f from all observations, except the

Lv package.
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(b) We proposed an estimator M̂ISE
v
(h) an estimator of the MISE(f̂ v

h) from Lv

package observations.

Step 3: A global risk estimator is constructed

M̂ISE
CV

f (h) =
1

V

V∑

v=1

M̂ISE
v
(h) and hopt = arg minh>0M̂ISE

CV

f (h).

In the following section, we will handle recursive estimators using the stochastic algorithm

of Robbins and Monro (1951).

2.3 Non parametric recursive estimation

Stochastic algorithms were frequently used in many research applications involving se-

quential change detection, system identification and transmission systems. The recursive

estimators can be updated with each supplementary new observation and grant multiple

advantages. They do not need extensive storage of data and they are fast to compute.

2.3.1 Methodology

The general form of stochastic algorithm is:

θn = θn−1 + γnφ (θn−1,Wn) + γ2nµn (θn−1,Wn) , (2.3.1)

where

• (γn) is a positive sequence of real numbers decreasing towards zero.

• (θn) the sequence to be recursively updated.

• (Wn) is a sequence of random variables representing the on-line observations.

• φ(θ,W ) is the function which essentially defines how the parameter θ is updated as

a function of new observation.

• µn (θn−1,Wn) is a small perturbation on the algorithm.

The behavior of this algorithm was investigated by Benveniste et al (1990), the special

case when µn = 0 was considered by Delyon (1996). Algorithm (4.7.10) coincides with

the one analysed by Kushner (1977), Ljung (1978) and Ruppert (1982):

θn = θn−1 + γn [φ(θn−1)−Wn + ηn] , (2.3.2)
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where

• ηn stands for a random variables converges to 0 almost surely.

• φ corresponds to a measurable unknown function.

They asserted that (2.3.2) includes the Robbins and Monro (1951) and Kiefer and Wolfowitz

(1952) stochastic approximation processes, which allow the search for zero θ⋆ of the func-

tion φ. The application of Robbins–Monro’s procedure to construct a stochastic approxi-

mation algorithm was identified by Révész (1973, 1977) and extended by Tsybakov (1990).

Most of the classical results for the Robbins–Monro and Kiefer–Wolfowitz processes re-

quire the assumption E [Wn|Fn−1] = 0, where Fn−1 stands for the σ-algebra of the events

occurring up the time n − 1. Under standard conditions on the function φ and on the

sequence (γn), Kushner and Yin (2003) highlighted that

θn → θ⋆ almost surely (a.s.).

In the following subsections, two examples of recursive estimators are constructed using

the Robbins and Monro algorithm.

2.3.2 Recursive kernel distribution estimator

In order to construct a stochastic algorithm, which approximates the function F at a

given point x, Slaoui (2014) defined an algorithm to search the zero of the function

h : y → F (x)− y as follows:

(i) we set F0(x) ∈ [0, 1].

(ii) For all n ≥ 1, we set

Fn(x) = Fn−1(x) + γnQn(x),

where the stepsize (γn) is a positive sequence of real numbers decreasing to zero and

(Qn) is a sequence of functions Qn : R → R defined by Qn(x) = φ(Fn−1(x))−Wn +

ηn. Using the fact that E(Wn|Fn−1) = 0, where Fn−1 stands for the σ-algebra of

the events occurring up the time n− 1, it comes E(Qn(x)) = F (x)− Fn−1(x) + ηn.

Following the approach of Révész (1973, 1977) and noting that

E
[
K(h−1

n (x−Xn))
]
= F (x) + ξn(x),

where ξn(x) goes to zero as n goes to infinity and K(z) =
∫ z

−∞K(u)du, we set

Qn(x) = K(h−1
n (x−Xn))− Fn−1(x).
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Therefore, the recursive estimator Fn of the distribution function F at the point x can be

stated as

Fn(x) = (1− γn)Fn−1(x) + γnK(h−1
n (x−Xn)). (2.3.3)

Further more, we suppose that F0(x) = 0. Let Πn =
n∏

j=1

(1− γj). As a matter of fact, we

infer from Equation (6.1.3) that Fn can be rewritten as

Fn(x) = Πn

n∑

k=1

Π−1
k γkK

(
x−Xk

hk

)
. (2.3.4)

it is inferred that, with an adequate choice of the stepsize (γn) and the bandwidth (hn),

the MWISE (Mean Weighted Integrated Squared Error) of the Slaoui’estimator Fn (7)

is smaller than that of Nadaraya’s estimator F̂n (5.1.1). A similar steps were invested

by Jmaei et al. (2017) to construct a recursive distribution estimator using Bernstein

polynomials in order to resolve the edge effects of kernel estimators.

2.3.3 Recursive kernel regression estimator

Slaoui (2016) developed a stochastic algorithm to construct a semi-recursive estimator of

the regression function r(x) = E(Y |X = x). First we construct a stochastic algorithm for

the estimation of the function a : x → r(x)f(x). Then, we define an algorithm of search

for the zero of the function l : y → a(x)− y as follows:

(i) We set a0(x) ∈ R.

(ii) For all n ≥ 1, we set an(x) = an−1(x)+βnWn, where the stepsize (βn) is a sequence of

positive real numbers that goes to zero andWn(x) = h−1
n YnK(h−1

n (x−Xn))−an−1(x).

Then, the considered estimator to recursively estimate the function a at the point x can

be written as

an(x) = Sn

n∑

k=1

S−1
k βkh

−1
k YkK

(
x−Xk

hk

)
,

where Sn =
∏n

j=1(1 − βj) and a0(x) = 0. Moreover, we use the estimator introduced in

Mokkadem et al (2009) to estimate recursively the density f at the point x as follows

fn(x) = (1− γn)fn−1(x) + γnh
−1
n K(h−1

n [x−Xn]),

where the stepsize (γn) is a sequence of positive real numbers that goes to zero. Let

f0(x) = 0, and Πn =
∏n

j=1(1 − γj). Then, it follows that one can estimate f recursively
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at the point x by

fn(x) = Πn

n∑

k=1

Π−1
k γkh

−1
n K

(
x−Xk

hk

)
.

Therefore, we consider the semi-recursive estimator for the regression function r at the

point x

rn(x) =

{
an(x)
fn(x)

if fn(x) 6= 0,

0 otherwise.

This semi-recursive estimator is very competitive to the non recursive one (2.2.6) at the

level of estimation error and it proves to be much better in terms of computational costs

using certain selected bandwidth (hn) and several special stepsizes (γn) and (βn).
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Part I

Non parametric estimation using

Bernstein polynomials
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Chapter 3

Semi parametric estimator using

Bernstein polynomials

Key words and phrases: Asymptotic properties, Bernstein polynomial, EM al-

gorithm, Gaussian mixture model, Kernel estimator, Shrinkage estimator.

Abstract 1: The central focus of this chapter is upon the alleviation of the boundary

problem when the probability density function has a bounded support. Mixtures of

beta densities have led to different methods of density estimation for data assumed

to have compact support. Among these methods, we mention Bernstein polynomials

which leads to an improvement of edge properties for the density function estimator.

In this chapter, we set forward a shrinkage method using the Bernstein polynomial

and a finite Gaussian mixture model to construct a semi parametric density estima-

tor, which improves the approximation at the edges. Some asymptotic properties of

the proposed approach are investigated, such as its probability convergence and its

asymptotic normality. In order to evaluate the performance of the proposed estima-

tor, a simulation study and some real data sets are carried out.

3.1 Introduction

Density estimation is a widely adopted tool for multiple tasks in statistical inference, ma-

chine learning, visualization, and exploratory data analysis. Existing density estimation

algorithms can be categorized into either parametric, semi parametric, or non parametric

approaches. In the non parametric framework, several methods have been set forward for

smooth estimation of density and distribution functions. The most popular one, called
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kernel method, was introduced by Rosenblatt (1956). The advances were carried out by

Parzen (1962) to estimate a density function. The reader is recommended to consult

the chapter of Härdle (1991) for an introduction of several kernel smoothing techniques.

However, kernel methods display estimation problems at the edges, when we have a ran-

dom variable X with density function f supported on a compact interval. Moreover, if

X1, . . . , Xn is a sample with same density f , it is well known in non parametric kernel

density estimation that the bias of the standard kernel density estimator

f̂n(x) =
1

nhn

n∑

i=1

K

(
x−Xi

hn

)
, (3.1.1)

is of a larger order near the boundary than that in the interior, where K is a kernel

(that is, a positive function satisfying
∫
K(x)dx = 1), and (hn) is a bandwidth (that is, a

sequence of positive real numbers that goes to zero). Let us now suppose that f has two

continuous derivatives everywhere, and that as n → ∞, h = hn → 0 and nh → 0. Let

x = ph for p > 0. Near the boundary, the expression of the mean and the variance are

indicated as

E

[
f̂n(x)

]
≃ f(x)

∫ p

−∞
K(x)dx− f ′(x)

∫ p

−∞
xK(x)dx+

1

2
h2f ′′(x)

∫ p

−∞
x2K(x)dx,

and

V ar
[
f̂n(x)

]
≃ (nh)−1f(x)

∫ p

−∞
K2(x)dx.

These bias phenomena are called boundary bias. Numerous authors have elaborated

methods for reducing these phenomena such as data reflection (Schuster (1985)), bound-

ary kernels (Müller (1991), Müller (1993) and Müller and Wang (1994)), the local lin-

ear estimator (Lejeune and Sarda (1992) and Jones (1993)), the use of beta and gamma

kernels (Chen (1999) and Chen (2000)), the bias reduction (Leblanc (2010) and Slaoui

(2018)). For a smooth estimator of a density function f with finite known support, there

have been several methods such as Vitale’s method (see Vitale (1975)) which is based on

the Bernstein polynomials and expressed as

f̃1,n,m(x) = m
m−1∑

k=0

[
F n

(
k + 1

m

)
− F n

(
k

m

)]
bk(m− 1, x), (3.1.2)

where F n is the empirical distribution function and bk(m, x) is the Bernstein polynomial.

This estimator was investigated in literature (Ghosal (2000), Babu et al. (2002), Kakizawa

(2004), Rao (2005)) and more recently by Leblanc (2010), Igarashi and Kakizawa (2014)

and Slaoui and Jmaei (2019).
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Within the parametric framework, it is noteworthy that the Gaussian mixture

model, can be used to estimate any density function, without any problem of estima-

tion on the edge. This refers to the fact that the set of all normal mixture densities is

dense in the set of all density functions under the L1 metric (see Li and Barron (2000)).

The investigation of mixture models stands for a full field in modern statistics. It is a

probabilistic model introduced by Pearson (1894) to illustrate the presence of subpop-

ulations within an overall population. It has been developed so far by various authors

like McLachlan and Peel (2004). It is used for data classification and it provides efficient

approaches of model-Based clustering. Roeder and Wasserman (1997) demonstrated that

when a Gaussian mixture model is used to estimate a density nonparametrically, the den-

sity estimator that uses the Bayesian information criterion of Schwarz (1978) to select the

number of components in the mixture, is consistent (see Leroux (1992)).

However, we obtain the nonparametric kernel estimate of a density if we fit a

mixture of n components in equal proportions 1/n, where n is the size of the observed

sample. As a matter of fact, it can be inferred that mixture models occupy an interesting

niche between parametric and nonparametric approaches to statistical estimation.

The problem at the edge does not arise for the parametric model. For this reason,

the basic idea of this work is to consider a shrinkage method using the Bernstein (Vi-

tale’s estimator) and the Gaussian mixture estimators, to construct a shrinkage density

estimator, in order to improve the approximation at the edge. A shrinkage estimator is

a convex combination between estimators (see James and Stein (1992)). Basically, this

implies that a naive or raw estimate is improved by combining it with other information.

The remainder of this chapter is organized as follows. In the next section, we

introduce a new semi parametric estimation approach based on the shrinkage method

using the Bernstein polynomials and the Gaussian mixture densities. In Section 6.3, the

consistency of the proposed estimator is exhibited as well as its asymptotic normality.

Section 6.4 highlights a simulation study that compares the performance of the proposed

approach with the Bernstein estimator and with the standard Gaussian kernel estimator.

The closing Section 6.5 crowns the whole work, wraps the conclusion and provides new

perspectives for future work.

3.2 Proposed approach

The proposed semi parametric approach rests upon the shrinkage combination between

the Gaussian mixture model and the Bernstein density estimators using the EM algo-
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rithm for the parameters estimations. The literature on shrinkage estimation is enor-

mous. From this perspective, it is noteworthy to mention the most relevant contribu-

tions. James and Stein (1992) were the first to introduce the classic shrinkage estimator.

Stein (1981) provided theory for the analysis of risk. Oman (Oman (1982a,b)) developed

estimators which shrink Gaussian density estimators towards linear subspaces. An in-

depth investigation of shrinkage theory is displayed in Chapter 5 of Lehmann and Casella

(1992).

The proposed semi parametric approach based upon estimating the density func-

tion f , relies on the same principle of Stein’s works, and there are two aspects along this

line. The first setting is non-parametric in the sense that we do not assume any paramet-

ric form of the density. The non-parametric setting is very important as it allows us to

perform statistical inference without making any assumption on the parametric form of

the true density f . The second setting is to consider the Gaussian mixture model, as a

parametric estimator, of the unknown density f .

In what follows, we consider X1, . . . , Xn a sequence of i.i.d. random variables

having a common unknown density function f supported on [0, 1]. We develop here a

shrinkage method to estimate the density function, which is divided into three steps:

Step 1 We consider the Bernstein estimator of the density function f which is defined

as

f̃1,n,m(x) = m
m−1∑

i=0

[
F n

(
i+ 1

m

)
− F n

(
i

m

)]
bi(m− 1, x) (3.2.1)

Step 2 We consider the Mixture Gaussian density as an estimator of the density

function f , given by

f̃2,n(x) =

K∑

k=1

π̂kN (µ̂k, σ̂k)(x), (3.2.2)

where µ̂k, σ̂k and π̂k are estimated by the EM algorithm defined in (2.1.11).

Step 3 We consider the shrinkage density estimator f̂n,m form defined by

fSh
n,m(x) = λf̃1,n,m(x) + (1− λ)f̃2,n(x),

and we use the EM algorithm to estimate the parameter λ ∈ [0, 1] of the proposed

model.

By the same way as considered in Section 2.1.2 of chapter 2, the two steps of the

EM algorithm, after t iterations, are denoted in terms of:
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1. E-step: The conditional expectation of the complete data log-likelihood given

the observed data, using the current λ(t), is provided by

Q(λ|λ(t)) =

n∑

i=1

Eλ(t) (Wi1 | Xi) log f̃1,n,m(Xi) + Eλ(t) (Wi2 | Xi) log f̃2,n(Xi),

where Wi = (Wi1,Wi2) is a discrete random vector, following a multivariate

Bernoulli distribution with vector parameters (λ, 1−λ). Using Bays’s formula,

we obtain the posterior probability in the tth iteration denoted by

τ
(t)
i1 =

f̃1,n,m(Xi)λ
(t)

λ(t)f̃1,n,m(Xi) + (1− λ(t))f̃2,n(Xi)
,

and

τ
(t)
i2 =

f̃2,n(Xi)λ
(t)

λ(t)f̃1,n,m(Xi) + (1− λ(t))f̃2,n(Xi)
= 1− τ

(t)
i1 .

2. M-step: It consists of a global maximization of Q(λ|λ(t)) with respect to λ:

λ(t+1) = argmax
λ

Q(λ | λ(t)).

The updated estimate of λ is indicated by:

λ(t+1) =
1

n

n∑

i=1

τ
(t)
i1 .

The estimation of λ is obtained from by iterating the EM algorithm until conver-

gence:

lim
t→∞

λ(t) = λ̂. (3.2.3)

Therefore, the proposed estimator of the density function f is defined by

fSh
n,m(x) = λ̂f̃1,n,m(x) + (1− λ̂)f̃2,n(x). (3.2.4)

Basically, it is a shrinkage estimator that shrinks the Bernstein estimator towards

the Gaussian Mixture density by a specified amount of λ. If λ = 1, the estimator fSh
n,m

reduces to the Bernstein estimator f̃1,n,n.
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3.3 Convergence

In this section, we derive some asymptotic properties of the proposed estimator fSh
n,m when

the sample size tends to infinity. First, we assume that λ and K are fixed. The following

proposition gives the probability convergence of the proposed estimator fSh
n,m.

Proposition 3.1 (Probability convergence). If m = o (n/ log(n)), then for x ∈ [0, 1] we

have

fSh
n,m(x)

P−→
n,m→+∞

λf(x) + (1− λ)f2(x),

where f2(x) =
∑K

j=1 πjN (µj, σ
2
j )(x), πj = E(Z1j), µj = E(X1 | Z1j = 1), σ2

j = V ar(X1 |
Z1j = 1) for j = 1, . . . , K and

P−→ denotes the convergence in probability.

The proof of Proposition 3.1 necessitates the following technical Lemma.

Lemma 3.1. Let (Sn)n≥1 be a sequence of i.i.d. random variables in the space of square

integral functions L2 with a common mean µ and let (Tn)n≥1 be a sequence of random

variables. Hence,

E(Sn|Tn) L2

−→
n→+∞

µ, where Sn =
1

n

n∑

i=1

Si,

where L2 denotes the mean quadratic convergence L2.

The proof of this lemma is reported in Zitouni et al (2018).

Proof: [Proof of Proposition 3.1] First, using Lemma 3.1 and following the same steps as

the proof of Theorem 4.4 in Zitouni et al (2018), we prove that π̂j
P−→

n→+∞
πj , lim

n→∞
µ̂j

P−→
n→+∞

µj , and σ̂2
j

P−→
n→+∞

σ2
j . Then according to Slutsky’s Theorem, we get

K∑

k=1

π̂kN (µ̂k, σ̂k)(x)
P−→

n→+∞

K∑

j=1

πjN (µj, σ
2
j )(x). (3.3.1)

Second, based on Theorem 3.1 in Babu et al. (2002), we obtain that

f̃1,n,m(x)
P−→

n→+∞
f(x) for x ∈ [0, 1]. (3.3.2)

In addition, referring to (3.3.1) and (3.3.2) and grounded on the application of Slutsky’s

Theorem, we conclude the proof.

To study the asymptotic normality of the estimator fSh
n,m given by (3.2.4), we set

forward the following assumptions in Redner and Walker (1984)

37



(A1) For almost x ∈ [0, 1], and for all i, j, h = 1 . . . , K, the partial derivatives ∂g/∂ξi,

∂2g/∂ξi∂ξj and ∂3g/∂ξi∂ξj∂ξh of the density g exist and satisfy that

∣∣∣∣
∂g(x|θ)
∂ξi

∣∣∣∣ ,∣∣∣∣
∂2g(x|θ)
∂ξiξj

∣∣∣∣ and

∣∣∣∣
∂3g(x|θ)
∂ξiξjξh

∣∣∣∣ are bounded respectively by Ji, Jij Jijh, where Ji and Jij

are integrable, and Jijh, satisfies

∫ 1

0

Jijh(x)g(x|θ̂)dx <∞,

and (ξ1, . . . , ξν) = (π1, . . . , πK , µ1 . . . , µK , σ1, . . . , σK).

(A2) The Fisher information matrix I(θ) is positively defined at θ̂.

Proposition 3.2 (Normality asymptotic). Under the regularity conditions (A1)-(A2),

if f(x) > 0 for all x ∈ [0, 1], 2 ≤ m ≤ (n/ logn) and lim
n,m→∞

n2/3/m = 0, then we get

n1/2m−1/4
[
fSh
n,m(x)− λf(x)− (1− λ)f2(x)

] D−→
n,m→+∞

N
(
0, λ2γ(x)

)
,

where γ(x) = f(x)(4πx(1 − x))−1/2, for x ∈]0, 1[ and
D−→ denotes the convergence in

distribution.

Proof: [Proof of Proposition 3.2] Using Theorem 3.2 in Babu et al. (2002), we obtain

n1/2m−1/4(f̃1,n,m(x)− f(x))
D−→

n,m→+∞
N (0, γ(x)).

Thus

n1/2m−1/4(λf̃1,n,m(x)− λf(x))
D−→

n,m→+∞
N (0, λ2γ(x)).

According to Theorem 3.1 in Redner and Walker (1984), we obtain
√
n(θ̂ − θ)

D−→
n→+∞

N (0, I(θ)−1).

Using delta method, we get

√
n(f̃2,n(x|θ̂)− f2(x|θ)) D−→

n→+∞
N
(
0, Df2(x|θ)I(θ)−1Df2(x|θ)T

)
,

with Df2(x|θ) is the Jacobian matrix of f2(x|θ) = f2(x) and f̃2,n(x|θ̂) = f̃2,n(x) . Since

m−1/4 → 0 if m→ ∞, then using Slutsky’s Theorem, we conclude the proof.

The following corollary is a consequence of the previous proposition which gives

an asymptotic confidence interval of the density f , for a risk α ∈]0, 1[.

38



Corollary 3.3.1. The 100(1− α)% asymptotic confidence interval of f(x) is given by

(
fSh
n,m ±

z1−α
2
λ̂
√
γ(x)√

nm−1/4

)
,

where z1−α
2

is the normal (1− α
2
) quantile.

In the next section, we study the performance of the proposed estimator in estimat-

ing different distributions by comparing it to the performances of the Bernstein estimator

and of the Gaussian kernel estimator.

3.4 Numerical studies

3.4.1 Comparison study

In this section, we investigate the performance of the proposed estimator given in (3.2.4),

through estimating different densities by comparing it to the performances of Bernstein

density estimator defined by f̃n,m(x) = m
m−1∑

k=1

[
F n

(
k + 1

m

)
− F n

(
k

m

)]
bk(m− 1, x) and

of the standard Gaussian kernel estimator defined by f̂n(x) =
1

nhn

n∑

i=1

K

(
x−Xi

hn

)
. We

apply the Bernstein estimator when the sample is concentrated on the interval [0, 1]. For

this purpose, we need to make some suitable transformations in different cases that are

listed below:

1. Suppose that X is concentrated on a finite support [a, b], then we work with the

sample values Y1, . . . , Yn where Yi = (Xi − a)/(b− a).

2. For the density functions concentrated on R, we can use the transformed sample

Yi = 1/2 + π−1 arctan(Xi) which transforms the range to the interval [0, 1].

3. For the support R+, we can use the transformed sample Yi = Xi/(1 +Xi), which

transforms the range to the interval [0, 1].

In the simulation study, three sample sizes are considered, n = 50, n = 100, and n = 200,

as well as the following density functions:

(a) the beta mixture density 0.5B(3, 9) + 0.5B(9, 3).

(b) the beta mixture density 0.5B(3, 1) + 0.5B(10, 10).
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(c) the normal mixture density 1/4N (2, 1) + 3/4N (−3, 1).

(d) the Chi-square χn(2) density.

(e) the gamma mixture density 0.5G(1, 6) + 0.5G(6, 1).

(f) the gamma mixture density 0.5G(1, 2) + 0.5G(4, 2).

Our sample will be decomposed into a learning sample of size 2/3 of the considered sample

on which the various statistical methods are constructed and a second sample of size 1/3

of the considered sample on which the predictive performances of the three methods are

tested. For each density function f and sample size n, we compute the Integrated Squared

Error (ISE), the integrated absolute error (IAE) and the Kullback-Leibler divergence

(KL) of the estimator fSh
n,m over N = 500 trials,

ÎSE =
1

N

N∑

k=1

ISE(f̂k), ÎAE =
1

N

N∑

k=1

IAE(f̂k) and K̂L =
1

N

N∑

k=1

KL(f̂k),

where f̂k is the estimator computed from the kth sample, and

ISE[f̂k] =

∫ 1

0

(
f̂k(x)− f(x)

)2
dx, IAE(f̂k) =

∫ 1

0

|f̂k(x)− f(x)|dx,

KL(f̂k|f) =
∫ 1

0

f̂k(x) log
f̂k(x)

f(x)
dx.

To select the optimal parameter K, we use the Gap Statistics algorithm. In each case,

we approximated the ISE of the Bernstein estimator (3.2.1), the proposed estimator

(3.2.4) (for integers 1 ≤ m ≤ 300 ) and the kernel estimator (3.1.1) (for h = i/1000 with

1 ≤ i ≤ 300) using N = 500 random samples of sizes n = 50, n = 100 and n = 200.
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Table 3.1: ISE for N = 500 trials of f̃n,m, f̂n and fSh
n,m, for n = 50, 100, 200.

[ISE for N = 500 trials of Bernstein estimator, standard Gaussian kernel estimator and

the proposed estimator fSh
n,m, for n = 50, n = 100 and n = 200. The bold values indicate

the smallest values of ISE.]
n mopt Proposed estimator Bernstein estimator kernel estimator

50 34 0.086288 0.101725 0.197497

0.5B(3, 9) + 0.5B(9, 3) 100 63 0.157977 0.158098 0.174251

200 97 0.141708 0.136258 0.148143

50 35 1.822368 1.824329 0.482152

0.5B(3, 1) + 0.5B(10, 10) 100 61 0.274204 0.626057 0.530446

200 100 0.373920 0.623460 0.474805

50 5 0.356460 1.521631 1.077352

1/4N (2, 1) + 3/4N (−3, 1) 100 2 0.254651 1.084614 1.641689

200 4 0.262561 1.117986 2.222369

50 2 0.162917 0.898103 1.154646

χn(2) 100 3 0.492752 2.483141 2.331765

200 3 0.525192 2.812448 4.936701

50 21 2.323582 2.599131 2.295932

0.5G(1, 6) + 0.5G(6, 1) 100 22 0.925537 2.718903 2.424656

200 39 0.846773 2.137174 2.053453

50 4 0.313388 0.656400 0.417980

0.5G(1, 2) + 0.5G(4, 2) 100 5 0.186290 0.577408 0.762742

200 8 0.253988 0.896995 1.397111

Departing from Tables 6.1, 6.2 and 6.3, we deduce that,

• For the case (b) of the beta mixture, the average KL of the kernel density estimator.

is smaller than that obtained by the proposed density estimator (3.2.4) and the

Bernstein estimator. However, in all the other cases, using an appropriate choice of

the degree m, the average KL of the density estimator (3.2.4) is smaller than that

achieved by the kernel estimator estimator and the Bernstein estimator even when

the sample size is large for same cases.

• Almost in all considered cases, the averages ISE and IAE of the density estimator

(3.2.4) is smaller than those obtained by the Bernstein estimator and those of the

kernel estimator.
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Figure 3.1: ISE for f̂n, f̃n,m and fSH
n,m

[ISE of the kernel estimator f̂n, of the Bernstein estimator f̃n,m and of the proposed

density estimator fSH
n,m of 0.5G(6, 1) + 0.5G(1, 6) for n = 200]
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Table 3.2: IAE for N = 500 trials of f̃n,m, f̂n and fSh
n,m, for n = 50, 100, 200.

[IAE for N = 500 trials of Bernstein estimator, standard Gaussian kernel estimator and

the proposed estimator fSh
n,m, for n = 50, n = 100 and n = 200. The bold values indicate

the smallest values of IAE.]
n Proposed estimator Bernstein estimator kernel estimator

50 0.180945 0.216329 0.391072

0.5B(3, 9) + 0.5B(9, 3) 100 0.327796 0.327927 0.367361

200 0.318701 0.299018 0.348499

50 0.884591 0.884942 0.621137

0.5B(3, 1) + 0.5B(10, 10) 100 0.435256 0.713915 0.669027

200 0.504220 0.668169 0.583057

50 0.575782 1.190177 0.953675

1/4N (2, 1) + 3/4N (−3, 1) 100 0.487738 1.006137 1.157838

200 0.498120 1.028269 1.238839

50 0.351205 0.807667 0.881866

χn(2) 100 0.657815 1.486974 1.415036

200 0.669269 1.573886 1.942776

50 1.326117 1.481910 1.374609

0.5G(1, 6) + 0.5G(6, 1) 100 0.862592 1.599692 1.499828

200 0.718135 1.249224 1.225502

50 0.414676 0.640596 0.516527

0.5G(1, 2) + 0.5G(4, 2) 100 0.383248 0.714844 0.782939

200 0.453948 0.883320 1.068483

Referring to Figure (3.4.1), we infer that all the estimators for the gamma mixture

density 0.5G(6, 1) + 0.5G(1, 6) do not have good approximations near x = 0. However,

the ISE of the proposed estimator is closer to zero compared to the Bernstein estimator

and the kernel estimator, specially near the edge x = 1.

In addition, the performed simulations reveal that, on average, the proposed ap-

proach can lead to satisfactory estimates near the boundaries, better than the classical

Bernstein estimator.
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Table 3.3: KL for N = 500 trials of f̃n,m, f̂n and fSh
n,m, for n = 50, 100, 200.

[KL for N = 500 trials of Bernstein estimator, standard Gaussian kernel estimator and

the proposed estimator fSh
n,m, for n = 50, n = 100 and n = 200. The bold values indicate

the smallest values of KL.]
n Proposed estimator Bernstein estimator kernel estimator

50 0.111333 0.107221 0.289818

0.5B(3, 9) + 0.5B(9, 3) 100 0.114439 0.115192 0.081830

200 0.018268 0.030360 0.060468

50 1.350244 1.351966 0.150096

0.5B(3, 1) + 0.5B(10, 10) 100 0.515686 0.555641 0.381406

200 0.837851 1.097354 0.575298

50 2.662741 3.352308 3.169852

1/4N (2, 1) + 3/4N (−3, 1) 100 2.655629 3.341980 4.196295

200 2.689781 3.377007 4.732324

50 0.281862 0.870222 1.537355

χn(2) 100 0.976450 1.572251 3.031783

200 0.960633 1.584022 4.702359

50 0.177888 0.130495 1.322299

0.5G(1, 6) + 0.5G(6, 1) 100 2.970688 3.914360 5.538142

200 1.332679 2.080956 3.498273

50 0.062893 0.589790 0.679154

0.5G(1, 2) + 0.5G(4, 2) 100 0.292017 0.805962 1.191070

200 0.528337 1.052789 1.952294

3.4.2 Real dataset

Old faithful data

In this subsection, we consider the well known Old Faithful data displayed in Table 2.2 of

Silverman (1986). These data concern the eruption lengths (in minutes) of 107 eruptions

of the Old Faithful geyser in Yellowstone National Park, U.S.A. These data are such that

mini(xi) = 1.67 and maxi(xi) = 4.93. Then, it is convenient to assume that the density of

eruption times is defined on the interval [1.5, 5] and transform the data into the interval

unit. The Monte Carlo procedure was performed and resulted in h = 0.1327 for the

standard kernel estimator,m = 60 for the Bernstein estimator and the proposed estimator.
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These estimators are exhibited in Figure 1 (right panel) along with an histogram of the

data. All the estimators are smooth and seem to capture the pattern highlighted by the

histogram. We record that the proposed estimator outperforms the other estimators near

the boundaries.

Tuna data

The last example concerns the tuna data reported in Chen (1996). The data are derived

from an aerial line transect survey of Southern Bluefin Tuna in the Great Australian Bight.

An aircraft with two spotters on board flies randomly over allocated line transects. These

data correspond to the perpendicular sighting distances (in miles) of 64 detected tuna

schools to the transect lines. The survey was conducted in summer when tuna data tend

to stay on the surface. The data are such that mini(xi) = 0.19 and maxi(xi) = 16.26.

The Monte Carlo procedure was performed and resulted in h = 0.1079 for the standard

kernel estimator, m = 13 for the Bernstein estimator and the proposed estimator. These

estimators are illustrated in Figure 3.4.2 (left panal) along with an histogram of the

data. All the estimators are smooth and seem to capture the pattern highlighted by the

histogram. We assert that the proposed estimator and the Bernstein estimator outperform

the standard kernel estimator near the boundaries.
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Figure 3.2: Quantitative comparison between the MSE of f̂n, of f̃n,m and of fSH
n,m.

[Quantitative comparison between the Mean Squared Error of the kernel estimator f̂n, of

the Bernstein estimator f̃n,m and of the proposed density estimator fSH
n,m, of Tuna data

(left panel) and of Old Faithful data (right panel).]

3.5 Conclusion

In this chapter, we proposed a shrinkage estimator of a density function based on the

Bernstein density estimator and using a finite Mixture Gaussian density. This method

rests on three steps. The first step consists of considering the Bernstein estimator f̃1,n,m.

The second relies upon the Gaussian Mixture density f̃2,n as an estimator of the unknown

density f . The last step consists of considering the shrinkage form λf̃1,n,m + (1 − λ)f̃2,n

and EM algorithm in order to estimate the parameter λ. The asymptotic properties of

this estimator were established. Afterwards, we demonstrated the effectiveness of the
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proposed method using some simulated and real data. We clarified how it can lead to

very satisfactory estimates near the boundaries and in terms of ISE, IAE and KL.

Eventually, we would simply assert that our research work is a step that may be taken

further, extended and built upon as it lays the ground and paves the way for future works

to elaborate a semi parametric regression estimator using the shrinkage method. We also

plan to work on the case where λ is a random variable.

47



Chapter 4

Recursive regression estimation based

on a stochastic algorithm

Key words and phrases: Bernstein polynomials; Regression estimation; Two-

time-scale stochastic approximation algorithms.

Abstract 2: In this chapter, we propose a recursive estimators of the regression

function based on the two-time-scale stochastic approximation algorithms and the

Bernstein polynomials. We study the asymptotic properties of this estimators. We

compare the proposed estimators with the classic regression estimator using the Bern-

stein polynomial defined by Tenbusch. Results showed that, our proposed recursive

estimators can overcome the problem of the edges associated with kernel regression

estimation with a compact support. The proposed recursive two-time-scale estima-

tors are compared to the non recursive estimator introduced by Tenbusch and the

performance of the two estimators are illustrated via simulations as well as two real

datasets.

4.1 Introduction

Nonparametric regression estimation methods have attracted a great deal of attention as

researchers have realized that parametric regression is not suitable for adequately fitting

curves to many datasets that arise in practice. There are many reasons for choosing the

nonparametric regression methods, no assumption should be made on the form of the

regression function, the complexity of the model will be determined completely by the

data, it is applicable for various design situations and it is easy to interpret.
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There have been several monograph on the nonparametric regression estimation,

see for instance Eubank (1988), Müller (1988), Härdle (1990), Hastie and Tishirani (1990),

where it is shown that nonparametric regression techniques have much to offer in appli-

cations, such as observational astronomy, forecasting future opportunities and risks in

business, causal relationships between parameters in biological systems and various other

situations.

The most famous nonparametric estimator of the regression function r : x →
E(Y |X = x), was proposed by Nadaraya (1964) and Watson (1964). In the current

work, we are concerned by the recursive estimation of a regression function. Recursive

estimation have become an increasingly important area of research. In many situations,

data arrives regularly so that it is impossible to store them in a traditional database. In

such a context, building a recursive estimator which does not require to store all the data

in memory is of great interest.

The recursive regression estimation was introduced first by Kiefer and Wolfowitz

(1952), extended by Révész (1973) using the Robbins-Monro’s procedure, generalized

by Mokkadem et al (2009) and studied by Slaoui (2015a,b,c). The semi-recursive ap-

proach was introduced by Slaoui (2016), while the recursive regression estimation for

independent functional data was established by Slaoui (2019, 2020).

However, kernel methods and their recursive improvements have estimation prob-

lems in the edges when the regression function has a bounded support. To overcome this

problem, their have been many methods such as the approach of regression estimation

using Bernstein polynomials proposed by Tenbusch (1997).

Bernstein polynomial was used in several directions to estimate a density of prob-

ability and distribution functions. See for instance, the original work of Vitale (1975), ex-

tended by Tenbusch (1994), Ghosal (2000), Babu et al. (2002), Kakizawa (2004), Kakizawa

(2011), Rao (2005), Leblanc (2010, 2012a,b), Igarashi and Kakizawa (2014), Jmaei et al.

(2017) and Slaoui and Jmaei (2019).

Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. pairs of random variables with joints

density function g(x, y) and let f such that f(x) =
∫

R

g(x, t)dt, denote the density of X

which is supported on [0, 1]. We denote by a(x) = f(x)r(x) and let E(|Y |) < ∞. The
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non recursive estimator defined by Tenbusch (1997) such that f(x) 6= 0, for x ∈ [0, 1]

r̃n,m(x) =





n∑
i=1

Yi
m∑
k=1

1{ k
m
<Xi

k+1
m

}bk(m− 1, x)

n∑
i=1

m∑
k=1

1{ k
m
<Xi

k+1
m

}bk(m− 1, x)
if

m∑
k=1

1{ k
m
<Xi

k+1
m

}bk(m− 1, x) 6= 0,

0 if
m∑

k=1

1{ k
m
<Xi

k+1
m

}bk(m− 1, x) = 0,

(4.1.1)

where bk(m, x) is the Bernstein polynomial of order m.

The aim of this chapter is to introduce two-time-scale stochastic approximation

algorithms in order to define a class of recursive estimators of a regression function based

on Bernstein polynomials. The two-time-scale stochastic approximation algorithms have

been defined by Borkar (1997), Konda and Borkar (1999), Bhatnagar et al. (2001), their

convergence rate studied by Konda and Tsitsiklis (1999), Mokkadem and Pelletier (2006a)

and Slaoui (2006).

In order to construct a recursive regression estimator defined by the two-time-scale

stochastic algorithm, at a point x such as f(x) 6= 0, we define an algorithm of search of

the common zero of the functions:

l1 : (y, z) 7→ f(x)− y and l2 : (y, z) 7→
r(x)f(x)

y
− z.

We proceed in the following way, for x ∈ [0, 1]: i) f0(x) > 0 and r0(x) ∈ R, ii) for n ≥ 1

{
fn(x) = fn−1(x) + γnW

(1)
n (x)

rn(x) = rn−1(x) + βnW
(2)
n (x)

where W (1)
n and W

(2)
n are the observations of the functions l1 and l2 at the point

(fn−1(x), rn−1(x)), and where the stepsizes (γn) and (βn) are two sequences of positive

real numbers that go to zero such that γn ≤ 1 and lim
n→∞

βnγ
−1
n = 0. Then, we estimate

f(x) and a(x) respectively by

m

m−1∑

k=0

1{ k
m
<Xn≤ k+1

m
}bk(m− 1, x) and mYn

m−1∑

k=0

1{ k
m
<Xn≤ k+1

m
}bk(m− 1, x).

Then, the two-time-scale stochastic approximation algorithm can be rewritten as:
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



fn(x) = (1− γn)fn−1(x) + γnm
m−1∑
k=0

1{ k
m
<Xn≤ k+1

m
}bk(m− 1, x),

rn(x) = (1− βn)rn−1(x) +
βnmYn

fn−1(x)

m−1∑
k=0

1{ k
m
<Xn≤ k+1

m
}bk(m− 1, x).

(4.1.2)

The aim of this chapter is to study the properties of the regression estimators defined

in (4.1.2), as a competitor for the non recursive estimator (4.1.1).

The remainder of this chapter is organized as follows. In the next section, we

present the assumptions and notations that we need to give the proprieties of our proposed

two-time-scale estimators (4.1.2). In Section 6.3, we state our main results. Section 6.4

is devoted to give some numerical comparison between our proposed recursive estima-

tors (4.1.2) and the non recursive estimtaor 6.3 through some simulation studies and then

through two real datasets. Some concluding remarks and possible future developments

are mentioned in Section 4.6. While, all the mathematical developments are deferred to

the Section 6.6.

4.2 Assumptions and notations

We define the following class of regularly varying sequences.

Definition 4.1. Let v ∈ R and (vn)n≥1 be a nonrandom positive sequence. We say that

(vn) ∈ GS(v) if

lim
n→+∞

n

[
1− vn−1

vn

]
= v.

This condition was introduced by Galambos and Seneta (1973) to define regularly

varying sequences. To study asymptotic the behaviours of the estimator rn defined by

equations (4.1.2) inside the interval [0, 1], we consider the following assumptions for a ∈
(0, 1/3):

(A1) (i) (mn) ∈ GS (a) with a ∈ (0, 1).

(ii) (βn) ∈ GS(−β) with β ∈ (3a, 1].

(iii) (γn) ∈ GS(−α) with α ∈ (min{3a, a+ 1− β}, β], such that

lim
n→∞

β−1
n γn

(
ln

n∑

k=1

γk

)−1

= ∞.

(iii) lim
n→∞

(nβn) > min {a, (β − a/2) /2}1{x∈(0,1)} +min {a, (β − a) /2}1{x∈{0,1}}.
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(A2) (i) v → g(v, w) is continuous on R.

(ii) For t > 0, v →
∫
R
|w|t g(v, w)dw is a bounded function.

Discussion of the assumptions

1. Assumptions (A1) and (A2) are regularity conditions which permit us to evaluate

the bias term and the variance term of the proposed estimator.

2. The intuition behind the use of such bandwidth (hn) belonging to GS (−a) is that

the ratio hn−1/hn is equal to 1 + a/n + o (1/n), similarly, we use the stepsize (βn)

belonging to GS (−β) then the ratio βn−1/βn is equal to 1 + β/n + o (1/n), the

application of Lemma 6.1 ensures that the bias and the variance will depend only

on hn and βn and not on h1, . . . , hn and β1, . . . , βn then the MISE will depend only

on hn and βn, which will be helpful to deduce an optimal bandwidth and an optimal

stepsize.

3. In order to help the readers to follow the main results obtained in this chapter, we

underline that the application of Lemma 6.1 under the assumption (A2) ensures,

Πn

∑n
k=1Π

−1
k βk = 1 + o (1), Πn

∑n
k=1Π

−1
k βkh

2
k = O (h2n) and Π2

n

∑n
k=1Π

−2
k β2

kh
−1
k =

O
(
βnh

−1
h

)
.

4. Assumption (A2) (iii) on the limit of (nβn) as n goes to infinity is usual in the

framework of stochastic approximation algorithms. It implies in particular that the

limit of
(
[nβn]

−1) is finite.

Throughout this chapter, we will use the following notations:

ξ = lim
n→∞

(nβn)
−1,

ψ(x) = (4πx(1− x))−1/2,

Wn(x) = mnYn

mn−1∑

k=0

1{ k
mn

<Xn≤ k+1
mn

}bk(mn − 1, x),

Zn(x) = mn

mn−1∑

k=0

1{ k
mn

<Xn≤ k+1
mn

}bk(mn − 1, x),

∆1(x) =
1

2
[(1− 2x)f ′(x) + x(1− x)f 2(x)],

∆2(x) =
1

2
[(1− 2x)(r′(x)f(x)− r(x)f ′(x))

+x(1− x)
(
r(2)(x)f(x) + r(x)f (2)(x) + 2f ′(x)r′(x)

)]
,
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Bias (x) =
(∆2 (x)− r (x)∆1 (x))

f (x)
,

V (x) =
Var [Y |X = x]ψ (x)

f (x) (2− (β − a/2) ξ)
1{x∈(0,1)} +

Var [Y |X = x]

f (x) (2− (β − a) ξ)
1{x∈{0,1}}.

4.3 Main results

Throughout this chapter we consider the two following sequences:

(vn) =
(
m

1/2
n 1{x∈(0,1)} +mn1{x∈{0,1}}

)
and (Vn) =

(
β
−1/2
n v−1

n

)
.

For simplicity, we let

A1
a,x =

{
a, x|a ∈ (0,

β

3
], x ∈ {0, 1}

}
, A2

a,x =

{
a, x|a ∈ (0,

2

5
β], x ∈ (0, 1)

}
,

A3
a,x =

{
a, x|a ∈ (

β

3
, 1), x ∈ {0, 1}

}
, A4

a,x =

{
a, x|a ∈ (

2

5
β, 1), x ∈ (0, 1)

}
.

Our first result is the following proposition, which gives the bias and the variance of the

proposed recursive estimator rn.

Proposition 4.1 (Bias and Variance of rn).

1. Let Assumptions (A1)− (A2) hold such as f(x) > 0. Then

E [rn(x)]− r (x) = m−1
n Bias (x) 1

1− aξ
1A1

a,x

⋃
A2

a,x
[1 + o (1)]

+1A4
a,x
o

(√
βnm

1/2
n

)
+ 1A3

a,x
o
(√

βnmn

)
. (4.3.1)

Var [rn(x)] (4.3.2)

= βnm
1/2
n

Var [Y |X = x]ψ (x)

2− (β − a/2) ξ
1A4

a,x
[1 + ox (1)]

+βnmn
Var [Y |X = x]

2− (β − a) ξ
1A3

a,x
[1 + o (1)] + 1A1

a,x

⋃
A2

a,x
o
(
m−2

n

)
. (4.3.3)

The following proposition gives the mean squared error (MSE) of the proposed

two-time-scale recursive estimators rn.

Proposition 4.2 (MSE of rn). Let Assumptions (A1)− (A2) hold. Then

MSE [rn(x)] (4.3.4)
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= m−2
n

Bias2 (x)
(1− aξ)2

1A1
a,x

⋃
A2

a,x
[1 + o (1)] + βnm

1/2
n

Var [Y |X = x]ψ (x)

2− (β − a/2) ξ
1A4

a,x
[1 + ox (1)]

+βnmn
Var [Y |X = x]

2− (β − a) ξ
1A3

a,x
[1 + o (1)] + 1A1

a,x

⋃
A2

a,x
o
(
m−2

n

)
+ 1A4

a,x
o
(
βnm

1/2
n

)

+1A3
a,x
o (βnmn) . (4.3.5)

To minimize the MSE of rn(x) for x ∈ (0, 1) such that ψ(x) > 0, the stepsize (βn)

must be chosen in GS(−1) and (mn) must be in GS(2/5). To minimize the MSE of rn(x)

for x ∈ {0, 1} such that ψ(x) > 0, the stepsize (βn) must be chosen in GS(−1) and (mn)

must be in GS(1/3).

Corollary 4.3.1. Let Assumptions (A1)-(A2) hold. To minimize the MSE of the pro-

posed two-time-scale recursive estimators rn(x), the stepsize (γn) must be chosen equal to

(n−1). The optimal order (mn) should be equal to

26/5
(
5

3

)2/5
(

Bias4/5 (x)
ψ (x)2/5 Var [Y |X = x]2/5

)
n2/5

1{x∈(0,1)}

+ 61/3

(
Bias2/3 (x)

Var [Y |X = x]1/3

)
n1/3

1{x∈{0,1}},

and the corresponding MSE must be equal to

MSE [r̂n(x)] =
5

4
2−2/5

(
5

3

)6/5

ψ (x)4/5 Var [Y |X = x]4/5 Bias2/5 (x)n−4/5 [1 + o (1)]1{x∈(0,1)}

+
3

3
2−1/3

(
3

2

)4/3

Var [Y |X = x]2/3 Bias2/3 (x)n−2/3 [1 + o (1)]1{x∈{0,1}}.

Finally, the following proposition shows the asymptotic normality of the recursive

estimators rn.

Theorem 4.3.1 (Asymptotic normality of rn).

1. In the case when x ∈ (0, 1), if there exists c ≥ 0 such that β−1
n m

−5/2
n → c, (resp. the

case when x ∈ {0, 1}, if β−1
n m−3

n → c), then

Vn (rn(x)− r(x))
D→ N

( √
c

(1− aξ)
Bias (x) ,V (x)

)
.

2. In the case when x ∈ (0, 1), if β−1
n m

−5/2
n → ∞, (resp. the case when x ∈ {0, 1}, if

β−1
n m−3

n → ∞), then

mn (rn(x)− r(x))
P→ 1

(1− aξ)
Bias (x) .
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4.4 Numerical studies

The aim of this subsection is to compare our proposed two-time-scale estimators (4.1.2)

with the non recursive estimator (4.1.1), through a simulation. We consider the regression

model

Y = r(X) + ε,

where X ∼ N (0, 1) and ε ∼ N (0, σ2), where σ ∈ {0.05, 0.1, 1}. When using our pro-

posed two-time-scale algorithm (4.1.2), the stepsizes (γn, βn) are chosen to be equal to

(n−0.98, 0.31n−0.99). Moreover, in order to select the smoothing parameter (mn), we con-

sider a Monte Carlo procedure for each point x ∈ [0, 1]. We determine the parameter m

for 1 ≤ m ≤ 400 by minimizing

1

N

N∑

i=1

[rin,m(x)− r(x)]2,

with rin,m is the estimator of rn,m computed from the ith sample of size n. We choose

N = 500 trials for the Monte Carlo simulation. In our simulation study, we consider three

sample sizes; n = 50, n = 100, n = 200 and the following regression functions:

(a) r(x) = cos(x).

(b) r(x) = (1 + exp(x))−1.

(c) r(x) = 1 + 0.6x.

For each model and sample size n, we approximate the average integrated squared error

(ISE) and the integrated absolute error (IAE) of the estimator using N = 500 trials of

sample size n:

ISE =
1

N

N∑

k=1

ISE[rk], IAE =
1

N

N∑

k=1

IAE[rk],

where rk is the estimator computed from the kth sample, and

ISE(rk) =

∫ 1

0

(rk(x)− r(x))2dx, IAE(rk) =

∫

R

|rk(x)− r(x)|dx.

Table 6.2 shows that in terms of the average ISE and IAE of the two considered

estimators, the proposed two-time-scale recursive estimators (4.1.2) have a smaller ISE

and smaller IAE compared to the non recursive estimator (4.1.1) by using any one of the

three regression functions and by considering any one of the three different noise variance.
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4.5 Real dataset

An interesting subject of any dataset is to estimate the unknown regression in order

to predict the response variable Y when we know the explanatory variable X. In this

section, we apply our proposed two-time-scale estimators rn defined in (4.1.2) and the

non recursive estimator r̃n,m given in (4.1.1) on the following two datasets.

1. Firstly, we consider the CO2 dataset1 which contained 60 observations on two vari-

ables: Year and CO2 in August. Scientists recorded CO2 levels, in parts per million

(ppm), in the atmosphere for each Year from the start of 1958 through 2018. Fi-

nally, we used the Monte-Carlo method to obtain m = 60 for our recursive estimator

rn and m = 50 for the non recursive estimator r̃n,m. We observe that our estimator

is more close to the observed data, than the non recursive estimator, especially near

the boundaries.

2. Secondly, we consider the wage1 dataset which appear in R package np (see Wooldridge

(2000)). Cross-section wage data consisting of a random sample taken from the U.S.

Current Population Survey for the year 1976. There are 526 observations of the av-

erage hourly earnings and the years of education. We used the Monte-Carlo method

to obtain m = 68 for our recursive estimator rn and m = 170 for the non recursive

estimator r̃n,m. We observe that our estimator is more close to the observed data,

than the non recursive estimator, especially near the boundaries.

Figures 5.3 and 5.4 show that our proposed two-time-scale recursive estimators (4.1.2)

can give better results compared to the non recursive estimator (4.1.1).

1https://www.co2.earth/monthly-co2
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Figure 4.1: Qualitative comparison between rn and r̃n,m for CO2

dataset .

[Qualitative comparison between the two considered estimators.

Here we consider the CO2 dataset using our proposed estimator rn
with the stepsize (γn, βn) = (n−0.98, 0.31n−0.99) and the non

recursive estimator r̃n,m]

4.6 Concluding remarks

In the present chapter we investigated a recursive nonparametric regression estimator to

overcome the edge estimation problem based on Bernstein polynomials and stochastic

algorithm with two-time-scale. The proposed estimator asymptotically follows normal

distribution. Moreover, our proposed estimators attained the asymptotic convergence

rate O
(
n−4/5

)
within the interval (0, 1) and O

(
n−2/3

)
near the edges {0, 1}. A future

research direction would be to extend our findings to the setting of serially dependent

observations, α-mixing framework like in Khardani and Slaoui (2019). Another direction

is to investigate the data-driven bandwidth selection procedures (see Slaoui (2015c)),

which requires non trivial mathematics, this would go well beyond the scope of the present

chapter. We plan also to extend our approach to the case of locally linear two-time-scale

recursive regression (see Härdle et al. (2004) in the case of locally linear regression).
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Figure 4.2: Qualitative comparison between trn and r̃n,m for wage1

dataset .

[Qualitative comparison between the two considered estimators.

Here we consider the The wage1 dataset of the package np using

our proposed estimator rn with the stepsize

(γn, βn) = (n−0.98, 0.31n−0.99) and the non recursive estimator r̃n,m]

4.7 Auxiliary results and Mathematical developments

This section is devoted to the detailed proofs of our results. Throughout this chapter we

consider the following notations:

ξ′ = lim
n→∞

(nγn)
−1, sn(x) =

n∑
k=1

γk,

Πn =
n∏

j=1

(1− βj), Qn =
n∏

j=1

(1− γj), C = 1√
2
+ 4

(
1−

√
2/3
)
.

Let us first state the following technical lemmas.

Lemma 4.1 (Mokkadem et al (2009)). Let (vn) ∈ GS(v), (γn) ∈ GS(−γ), and let

l > 0 such that l − vξ > 0. We have

lim
n→∞

vnΠ
l
n

n∑

k=1

Π−l
k

γk
vk

=
1

l − vξ
.

58



Moreover, for all positive sequence (αn) such that lim
n→∞

αn = 0, and all δ ∈ R

lim
n→∞

vnΠ
l
n

[
n∑

k=1

Π−l
k

γk
vk
αk + δ

]
= 0.

Let us now use the following decomposition:

rn(x)− r(x) =
1

f(x)
[Tn(x) +Rn,1 (x) +Rn,2 (x) +Rn,3 (x) +Rn,4 (x)] +Rn,5 (x) ,

where

Tn(x) = Πn

n∑

k=1

Π−1
k βk [Wk(x)− r(x)Zk(x)] , (4.7.1)

Rn,1 (x) = r(x)Πn

n∑

k=1

Π−1
k βk
γk

[fk(x)− fk−1(x)] ,

Rn,2 (x) = Πn

n∑

k=1

Π−1
k βk[Wk(x)− E(Wk(x))]

[
f(x)− fk−1(x)

fk−1(x)

]
,

Rn,3 (x) = Πn

n∑

k=1

Π−1
k βk[E(Wk(x))− a(x)]

[
f(x)− fk−1(x)

fk−1(x)

]
,

Rn,4 (x) = r(x)Πn

n∑

k=1

Π−1
k βk

[
(f(x)− fk−1(x))

2

fk−1(x)

]
,

Rn,5 (x) = Πn (r0(x)− r(x)) .

Lemma 4.2. Under assumptions (A1)-(A2), we have

fn (x)− f (x) = O
(
max{

√
γn ln(sn)vn, v

−2
n }
)
.

Lemma 4.3. Under assumptions (A1)-(A2), we have

Rn,1 (x) = Rn,2 (x) = Rn,3 (x) = Rn,4 (x) = Rn,5 (x) = o
(
max{

√
βnvn, v

−2
n }
)
.

Lemma 4.4. Let Em(x) =
m∑

k=0

b2k(m, x). We have

(i) 0 ≤ Em(x) ≤ 1, for x ∈ [0, 1].

(ii) Em(x) = m−1/2[ψ(x) + ox((1)], for x ∈ (0, 1).

(iii) Em(0) = Em(1) = 1.
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(iv) Let g be any continuous function on [0, 1]. Thenm1/2

∫ 1

0

g(x)Em(x)dx =

∫ 1

0

g(x)ψ(x)dx+ o(1).

Lemma 4.5. For x ∈ [0, 1], we have

E(Zk(x)) = f(x) + ∆1(x)m
−1
k + o(m−1

k ), (4.7.2)

E(Wk(x)) = r(x)f(x) + ∆2(x)m
−1
k + o(m−1

k ), (4.7.3)

V ar(Wk(x)) =
(
m

1/2
k E(Y 2 | X = x)f(x)ψ(x) + ox

(
m

1/2
k

))
1{x∈(0,1)}

+
(
E[Y 2 | X = x]f(x)mk + ox(mk)

)
1{x∈{0,1}}, (4.7.4)

V ar(Zk(x)) =
(
f(x)ψ(x)m

1/2
k + ox

(
m

1/2
k

))
1{x∈(0,1)}

+ (f(x)mk + o(mk))1{x∈{0,1}}, (4.7.5)

and

Cov(Wk(x),Zk(x)) =
(
r(x)f(x)ψ(x)m

1/2
k + ox

(
m

1/2
k

))
1{x∈(0,1)}

+ (r(x)f(x)mk + ox(mk))1{x∈{0,1}}. (4.7.6)

4.7.1 Proof of lemma 4.2

In order to prove this lemma, we referred to the proposition 3.1 of Slaoui and Jmaei (2019)

and we followed the same steps of proof of theorem 2 page 44 of Slaoui (2006).

4.7.2 Proof of lemma 4.3

Let us first state the following notation,

(ζn)n =

{ √
βnvn if lim

n→∞
βnm

2
nvn = ∞,

v−2
n otherwise.

First, we have Rn,5 (x) = o(ζn).

60



Proof of lemma 4.3 for Rn,1

We first note that Rn,1 can be written as,

Rn,1 (x) = Πn

n∑

k=1

Π−1
k βk
γk

[fk(x)− fk−1(x)]

= Πn

n∑

k=1

Π−1
k βk
γk

[fk(x)− f(x)]− Πn

n∑

k=1

Π−1
k βk
γk

[fk−1(x)− f(x)]

= Πn

n−1∑

k=1

Π−1
k βk
γk

[fk(x)− f(x)] +
βn
γn

[fn(x)− f(x)]− Πn
Π−1

1 β1
γ1

[f0(x)− f(x)]

−Πn

n−1∑

k=1

Π−1
k+1βk+1

γk+1

[fk(x)− f(x)]

= Πn

n−1∑

k=1

Π−1
k βk
γk

(
1− Πk

Πk+1

βk+1

βk

γk
γk+1

)
(fk(x)− f(x)) +

βn
γn

(fn(x)− f(x))

−Πn
β1

(1− β1)γ1
(f0(x)− f(x)). (4.7.7)

Moreover, in view of (A1), we infer that

1− Πk

Πk+1

βk+1

βk

γk
γk+1

= 1− 1

(1− βk+1)

β−1
k

β−1
k+1

γk
γk+1

= O(βk). (4.7.8)

Then, the application of Lemma 4.2 together with (4.7.7) and (4.7.8), ensures that

Rn,1 (x) = O

(
Πn

n∑

k=1

Π−1
k

β2
k

γk
(fk(x)− f(x)) +

βn
γn

(fn(x)− f(x)) + Πn

)

= O

(
Πn

n∑

k=1

Π−1
k

β2
k

γk
(γkvk ln sk)

1/2 +Πn

n∑

k=1

Π−1
k

β2
k

γk
v−2
k +

βn
γn

(γnvn ln sn)
1/2 +

βn
γn
v−2
n

)

+O (Πn)

= O

(
Πn

n∑

k=1

Π−1
k βko

(√
βkvk

)
+Πn

n∑

k=1

Π−1
k βko(v

−2
k ) + o

(√
βnvn

)
+ o(v−2

n ) + Πn

)

= O

(
Πn

n∑

k=1

Π−1
k βko(ζn)

)
+ o(ζn) +O(Πn)

= o(ζn).
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Proof of lemma 4.3 for Rn,2

Throughout this proof we use the following notation:

Lk(x) = Wk(x)− E(Wk(x)),

Gk(x) =
f(x)− fk(x)

fk(x)
,

Mn(x) =

n∑

k=1

Π−1
k βkLk(x)Gk−1(x).

First, we set Fk = σ((X1, Y1), . . . , (Xk, Yk)), and we note that the increasing process of

the martingale (Mn(x) satisfies,

< M >n (x) =
n∑

k=1

E
[
Π−2

k β2
kL2

k(x)G
2
k−1(x) | Fk−1

]

=

n∑

k=1

Π−2
k β2

kG
2
k−1(x)E

[
L2

k(x) | Fk−1

]

=

n∑

k=1

Π−2
k β2

kG
2
k−1(x)E(L2

k(x))

=

n∑

k=1

Π−2
k β2

kG
2
k−1(x)V ar(Wk(x)).

In view of (4.7.4), the application of Lemma 4.2 ensures that

< M >n (x) = O

(
n∑

k=1

Π−2
k β2

k

(
f(x)− fk−1(x)

fk−1(x)

)2

vk

)

= O

(
n∑

k=1

Π−2
k β2

k

(
γk ln(sk)vk + v−4

k

)
vk

)

= O

(
n∑

k=1

Π−2
k β2

kv
2
kγk ln(sk) +

n∑

k=1

Π−2
k β2

kv
−3
k

)
. (4.7.9)

Let us first consider the case when lim
n→∞

nβn = ∞. The application of Lemma 6.1 gives

< M >n (x) = O
(
Π−2

n βnγn ln(sn)v
2
n +Π−2

n βnv
−3
n

)
.

Moreover, we note that for all ǫ > 0 we have

ln(Π−2
n ) =

n∑

k=1

ln(1− βk)
−2 =

n∑

k=1

(2βk + o(βk))
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= O

(
n∑

k=1

βkk
ǫ

)
.

Since we have βnnǫ ∈ GS(−(β−ǫ)) with (β−ǫ) < 1. The application of Lemma 6.1 ensures

that lim
n→∞

nβnn
ǫ

∑n
k=1 βkk

ǫ
= 1− (β − ǫ). It comes that ln(Π−2

n ) = O(n1+ǫβn). Moreover, the

sequences (βnγn ln(sn)v
2
n) and (βnv

−3
n ) tend to zero. It comes that,

ln < M >n (x) = O
(
ln(Π−2

n )
)
= O

(
n1+ǫβn

)
.

Then, the application of Theorem 1.3.15 in Duflo (1997), ensures that for any δ > 0,

|Mn(x) | = o
(
< M >1/2

n (x) (ln < M >n (x))
1+δ
2

)
+O(1)

= o
(
Π−1

n

(
β1/2
n γ1/2n ln(sn)

1/2vn + β1/2
n v−3/2

n

)
(n1+ǫβn)

1+δ
2

)
+ O(1).

Now, we set ǫ > 0 and δ > 0 such that
(
(γnv

2
n)

1/2
(n1+ǫβn)

1+δ
2

)
∈ GS(µ) with µ < 0.

For more precision, the existence of ε and δ should be ensured by the condition α >(
a1{x∈{0,1}} +

a
2
1{x∈(0,1)}

)
+ 1− β. Moreover, we obtain

Πn |Mn(x)| = o
(
(βnvn)

1/2 (γnvn)
1/2 ln(sn)

1/2
(
n1+ǫβn

) 1+δ
2 + (βnvn)

1/2 v−2
n

(
n1+ǫβn

) 1+δ
2

)

+O(Πn)

= o
(
(βnvn)

1/2 + v−2
n

)
+ o(ζn)

= o(ζn).

Now, in the case when the sequence (nβn) is bounded when n goes to infinity. The

application of Lemma 6.1 for all (Cn) ∈ GS(0) together with (4.7.9), ensures that

< M >n (x) = O

(
n∑

k=1

Π−2
k βk

[
(βkvk) (γkvk ln(sk)) + (βkvk) v

−4
k

]
)

= O

(
n∑

k=1

Π−2
k βk

[
o (βkvkCk) + o

(
v−4
k Ck

)]
)

= o

(
n∑

k=1

Π−2
k βko

(
ζ2kCk

)
)

= o
(
Π−2

n ζ2nCn
)
.

Moreover, since the sequence (nβn) is bounded when n goes to infinity, in this case, we

have Π−1
n ∈ GS(ξ−1) and ln (Π−2

n ζ2nLn) = O(lnn). Then, the application of Theorem

1.3.15 in Duflo (1997), ensures that for all δ > 0,

|Mn(x) | = o
(
< M >1/2

n (x) (ln < M >n (x))
1+δ
2

)
+O(1)
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= o
(
Π−1

n ζnC1/2
n ln(n)

1+δ
2

)
+O(1).

Thus, for δ = 1 and Ln = (lnn)−2, we get Πn | Mn(x) |= o(ζn), which ensures that

Rn,2 (x) = o (ζn) .

Proof of lemma 4.3 for Rn,3

The application of Lemma 6.1 together with Lemma 4.2, ensures that

Rn,3 (x) = Πn

n−1∑

k=0

Π−1
k+1βk+1[E(Wk+1(x))− a(x)]

[
f(x)− fk(x)

fk(x)

]

= Πn

n−1∑

k=0

Π−1
k+1βk+1[∆2(x)m

−1
k+1 + o(m−1

k+1)]

[
f(x)− fk(x)

fk(x)

]

= O

(
Πn

n−1∑

k=0

Π−1
k+1βk+1m

−1
k+1 | f(x)− fk(x) |

)

= o(ζn).

Proof of lemma 4.3 for Rn,4

The application of Lemma 4.2 ensures that

Rn,4 (x) = Πn

n∑

k=1

Π−1
k βkO

(
(f(x)− fk−1(x))

2
)

= O

(
Πn

n∑

k=1

Π−1
k βk((γkvk ln sk) + v−4

k )

)

= o(ζn).

4.7.3 Proof of Proposition 4.1

The application of Lemma 6.1 together with (4.7.1) and (4.7.2), ensures that in the case

when a, x ∈ A1
a,x

⋃A2
a,x,

E(Tn(x)) =
1

1− aξ
(∆2(x)− r(x)∆1(x) + o(1))m−1

n , (4.7.10)

in the case when a, x ∈ A3
a,x, we have E(Tn(x)) = o

(√
βnmn

)
, and in the case when

a, x ∈ A4
a,x, we have E(Tn(x)) = o

(√
βnm

1/2
n

)
.
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Let assumptions (A1) - (A′
3) hold such as f(x) > 0 for x ∈ {0, 1}. The asymptotic

behaviour of rn − r is given by the one of Tn. More precisely, we establish the following

lemma.

Lemma 4.6. 1. In the case when x ∈ (0, 1), if there exists c ≥ 0 such that β−1
n m

−5/2
n →

c, (resp. the case when x ∈ {0, 1}, if β−1
n m−3

n → c), then

VnTn(x)
D→ N

( √
c

(1− aξ)
Bias (x) f (x) ,V (x) f 2 (x)

)
.

2. In the case when x ∈ (0, 1), if β−1
n m

−5/2
n → ∞, (resp. the case when x ∈ {0, 1}, if

β−1
n m−3

n → ∞), then

mn Tn(x)
P→ 1

(1− aξ)
Bias (x) f (x) .

Proof: Let us first note that,

Tn(x)− E(Tn(x)) = Πn

n∑

k=1

{vk(x)− E(vk(x))} ,

where

vk(x) = Π−1
k βk(Wk(x)− r(x)Zk(x)).

Let us now assume that, when a, x ∈ A3
a,x

⋃A4
a,x, we have

Vn (Tn (x)− E [Tn (x)])
D→ N

(
0,V (x) f 2 (x)

)
. (4.7.11)

In the case when a, x ∈ A1
a,x

⋃A2
a,x, (4.3.2) gives mn (Tn (x)− E (Tn (x)))

P→ 0. Let

us now prove (4.7.11), for this purpose, we set

Bk (x) = Π−1
k βk {vk(x)− E(vk(x))} . (4.7.12)

Moreover, since Var (Tk (x)) = O
(
m

1/2
k [1 + ox (1)]1A4

a,x
+mk [1 + o (1)]1A3

a,x

)
, the appli-

cation of Lemma 6.1 ensures that

Y2
n =

n∑

k=1

Var (Bk (x)) =

n∑

k=1

Π−2
k β2

kVar (vk(x)) ,

=
βnm

1/2
n

Π2
n

V (x) + ox

(
βnm

1/2
n

Π2
n

)
1A4

a,x
+ o

(
γnmn

Π2
n

)
1A3

a,x
.
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Further, the application of Lemma 6.1 ensure that for all p > 0

E
[
|Bk (x)|2+p] = m2+p

k E


|Yk − r(x)|2+p

{
mk−1∑

j=0

1{
j

mk
<Tk≤ j+1

mk

}bj(mk − 1, x)

}2+p



= O
(
m

3(2+p)/4
k

)
1A4

a,x
+O

(
m2+p

k

)
1A3

a,x
. (4.7.13)

Using the fact that limn→∞ (nγn) >
2α−a

4
1A4

a,x
+ α−a

2
1A3

a,x
, there exists p > 0 such that

limn→∞ (nγn) >
(

1+p
2+p

α− 3
4

)
1A4

a,x
+
(

1+p
2+p

α− 3
2

)
1A3

a,x
. Lemma 6.1, gives

n∑

k=1

E
[
|Bk ((x)|2+p] = O

(
n∑

k=1

Π−2−p
k β2+p

k E
[
|Tk (x)|2+p]

)

= O
(
γ1+p
n Π−2−p

n m3(2+p)/4
n

)
1A4

a,x
+O

(
γ1+p
n Π−2−p

n m2+p
n

)
1A3

a,x
,

from which we deduce that

1

Y2+p
n

n∑

k=1

E
[
|Bk ((x)|2+p] = O

(
mn[γnmn]

p/2
)
= o (1) .

The convergence in (4.7.11) then follows from the application of Lyapounov’s Theorem.
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Table 4.1: Average ISE and IAE for N = 500 trials of r̃n,m and rn.

[Average ISE and IAE for N = 500 trials of r̃n,m and rn with the choice

(γn, βn) = (n−0.98, 0.31n−99). The bold values indicate the smallest values.]

ISE IAE

Model n Recursive non recursive Recursive non recursive

σ = 0.05

50 0.108152 0.263466 0.278830 0.512572

(a) 100 0.146173 0.275628 0.342211 0.523425

200 0.172898 0.265569 0.385824 0.514904

50 0.149485 0.261717 0.374100 0.511469

(b) 100 0.180104 0.250942 0.416693 0.500793

200 0.219903 0.256299 0.461882 0.506157

50 0.192147 0.246308 0.375262 0.495552

(c) 100 0.166492 0.241962 0.345006 0.491480

200 0.315283 0.242560 0.488220 0.492026

σ = 0.1

50 0.237895 0.279316 0.459012 0.527103

(a) 100 0.142256 0.273119 0.339965 0.521741

200 0.205788 0.261468 0.429494 0.510851

50 0.240268 0.262336 0.478994 0.512000

(b) 100 0.186827 0.263747 0.422515 0.513192

200 0.168894 0.260439 0.403971 0.510155

50 0.241451 0.236557 0.432593 0.485448

(c) 100 0.169090 0.2400389 0.354381 0.489659

200 0.669683 0.237169 0.714953 0.486410

σ = 1

50 0.153426 0.245387 0.256094 0.495342

(a) 100 0.089536 0.231082 0.242418 0.480270

200 0.081775 0.216917 0.234569 0.465104

50 0.076953 0.238752 0.257034 0.487440

(b) 100 0.069710 0.214250 0.231290 0.460268

200 0.086527 0.240928 0.263234 0.488604

50 0.044846 0.259154 0.113061 0.508533

(c) 100 0.030788 0.236227 0.074095 0.483667

200 0.026170 0.227478 0.078804 0.474521
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Part II

Non parametric estimation using

Lagrange polynomials
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Chapter 5

Estimation of a distribution function

using Lagrange polynomial

Key words and phrases: Asymptotic properties, Distribution estimator, La-

grange polynomials, Tchebychev-Gauss points.

Abstract 3: The estimation of the distribution function of a real random vari-

able is an intrinsic topic in non parametric estimation. To this end, a distribution

estimator based on Lagrange polynomials and Tchebychev-Gauss points, is intro-

duced. Some asymptotic properties of the proposed estimator are investigated, such

as its asymptotic bias, variance, mean squared error and Chung-Smirnov propriety.

The asymptotic normality and the uniform convergence of the estimator are also

established. Lastly, the performance of the proposed estimator is explored through a

certain simulation examples.

5.1 Introduction

Non parametric distribution estimation is undoubtedly a useful tool of data analysis,

which is reflected by the multiple literary works addressing the topic. Let X1, . . . , Xn be

a sequence of i.i.d. random variables having a common unknown distribution function F

with associated density f supported on a compact interval. Within the framework of the

non parametric estimation, since we know that F is continuous, we consider the estimation

of F by using smooth functions rather than the empirical distribution function, which is

not continuous. Several methods have been set forward for smooth estimation of density

and distribution functions. The most popular one, called kernel method, is introduced by

69



Rosenblatt (1956). The advances were carried out by Parzen (1962) to estimate density

function. The kernel distribution estimator was identified by Nadaraya (1964) as

F̂n(x) =
1

n

n∑

i=1

K
(
x−Xi

hn

)
. (5.1.1)

The properties of F̂n have been known for a long time, for example its uniform con-

vergence towards F with continuous f (Nadaraya (1964), Winter (1973), Yamato

(1973)), then unconditionally on f (Singh et al (1983)) and its asymptotic normality

(Watson and Leadletter (1964)). Winter (1979) also demonstrated that F̂n checks the

Chung-Smirnov property with probability 1.

However, Kernel methods have estimation problems at the edges, when we have a

random variable X with distribution function supported on a compact interval. In order

to overcome this problem, various methods such as the Bernstein polynomial density

and distribution estimators were introduced first by Vitale (1975) and then extended

by Tenbusch (1994), Babu et al. (2002) and Kakizawa (2004). In particular, following

Babu et al. (2002), the estimator using Bernstein polynomial with order ν > 0 of the

distribution F is defined as

F̃n,ν(x) =
ν∑

k=0

F n (k/ν) bk(ν, x), (5.1.2)

with F n is the empirical distribution function and bk(ν, x) is the Bernstein polynomial.

This estimator is asymptotically unbiased. Babu et al. (2002) found also that F̃n,ν to be

uniformly strongly consistent. Babu and Chaubey (2006) adapted the Bernstein estimator

to the problem of estimating a multivariate distribution function (including the case of

dependent observations under α mixing). Leblanc (2009) reported that it has the Chung-

Smirnov property, as n→ ∞.

In this chapter, we present what appears to be a new method based on Lagrange

polynomials and Tchebytchev-Gauss points. When we have a random variable X with dis-

tribution F supported on a compact interval [a, b] such as a < b, we can transform X into

Y, a random variable with support [−1, 1] through the transformation Y =
X − (a+ b)/2

(b− a)/2
.

Transformations such as Y = 2X/(1 +X)− 1 and Y = 2π−1 arctan(X) can be used

to cover the cases of random variables X with support R+ and R respectively. Once

the random variable X is transformed into Y, we can apply Lagrange polynomials with

Tchebytchev-Gauss points to approximate the distribution function of Y on the interval

[−1, 1]. In the theoretical part of this chapter, we consider the case where f is supported
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on [−1, 1], and we propose an estimator using Lagrange polynomial with order m > 0 of

the distribution F using Lagrange polynomial expressed as,

Fn,m(x) =

m∑

i=1

F n(xi)Li(x), (5.1.3)

where, for all i = 1 . . .m, xi = cos ((2i− 1)π/2m) are Tchebytchev-Gauss points,

Li(x) =
m∏

j=1
j 6=i

x− xj
xi − xj

is the Lagrange polynomial, and F n denotes the empirical distribution function obtained

from a random sample of size n. The points (xi)1≤i≤m are the zeros of the Tchebytchev

polynomial Tm(x) = cos(m arccos(x)). Also, according to Austin (2016), using this choice

of points, we have

sup
x∈[−1,1]

∣∣∣∣∣
m∑

i=1

v(xi)Li(x)− v(x)

∣∣∣∣∣ ≤ (π/2)k||v(k)||∞/((m+ 1)(m) . . . (m− k + 2)),

for any continuous function v of class Ck (for k ≥ 1) on the interval [−1, 1] . This result

was studied by Jackson in the early 20th century (see Jackson (1911), Jackson (1912)).

His results can also be found in Cheney (1966), chapter 4, section 6, page 147, which

is the main idea of the proposed estimator. As an excellent reference for properties of

Lagrange polynomial with Tchebytchev-Gauss points in the deterministic case, we refer

the reader to Austin (2016). To the best of our knowledge, the estimator presented here

has not been studied so far, which stands for the basic motivation of the chapter.

The main objective of this chapter is to study the properties of the distribution

estimator (5.1.3). We consider first the mean squared error for a fixed x, for −1 < x < 1,

and split it into bias squared and variance terms. Then, we establish the uniform con-

vergence of this estimator, the Chung-Smirnov property and the (pointwise) asymptotic

normality of the proposed estimator. Basically, the remainder of the chapter is organized

as follows. In the next section, we display the assumptions and notations. In Section 6.3,

we exhibit our main results. Section 6.4 highlights a simulation study that compares the

performance of the proposed estimator Fn,m with the Bernstein estimator (5.1.2) and with

the kernel (standard Gaussian kernel) estimator (5.1.1). Section 6.6 provides the proofs

of our theoretical results.
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5.2 Lagrange polynomials

Lagrange polynomials, named after Joseph-Louis Lagrange, are used to interpolate a series

of points by a polynomial that passes exactly through these points. Let first consider the

following theorem.

Theorem 5.2.1. Let x0, . . . , xn be n+1 distinct numbers, and let f be a function defined

on a domain [a, b] containing these numbers. Then the polynomial defined by

pn(x) =
n∑

i=0

f(xi)Li(x)

is the unique polynomial of degree ≤ n that satisfies

p(xj) = f(xj), j = 0 . . . n.

The polynomial pn is called the interpolating polynomial of f and the polynomial Li which

meets this equality is Lagrange interpolation polynomial.This Lagrange polynomial is given

by

Lk(x) =
∏

i=0,i 6=k

(x− xi)

(xk − xi)
for each k = 0, . . . , n.

The Lagrange polynomials have several properties, such as

Proposition 5.1. 1. For i, j = 0 . . . n, we have

Li(xj) =

{
0 if i 6= j,

1 if i = j,

2.
∑n

i=0 Li(x) = 1.

3. Barycentric form

Lj(x) =
Tn(x)

T ′
n(xj)(x− xj)

for j = 0 . . . n,

where Tn(x) = cos(n arccos(x)) is the Tchebytchev polynomial.

5.3 Assumptions and Notations

We consider the following definition.
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Definition 5.1. Let g be a function defined on [−1, 1]. g is said to be Lipschitz of order

α ∈ (0, 1] if there exists a positive constant c such that

| g(x)− g(y) |≤ c | x− y |α,

for all x, y ∈ [−1, 1]. For convenience, we write g ∈ Lip(α, c).

To study the asymptotic behaviours of the estimator (5.1.3) inside the interval

[−1, 1], the following assumption is considered:

(A1) F is of class C2 on [−1, 1].

(A2) f and f ′ are bounded.

Throughout this chapter, we let i = 1 . . .m, x ∈ [−1, 1] for m ≥ 1, and we consider the

following notations:

θi = (2i− 1)π/2m, σ2(x) = F (x)(1−F (x)), xi = cos (θi): Tchebytchev-Gauss points,

Am(x) =
m∑

i=1

F (xi)Li(x), b(x) = f(x)/2 + f ′(x)(x− 1)/4− f ′′(x)(1 + x2 − 2x)/12,

Li(x) =
m∏

j=1
j 6=i

x− xj
xi − xj

: Lagrange polynomial, Tm(x) = cos(m arccos(x)): Tchebytchev

polynomial.

5.4 Main Results

Our first result is the following proposition which sets forward the bias and the variance

of Fn,m.

Proposition 5.2 (Bias and variance of Fn,m). Under assumption (A1), we have for

x ∈ [−1, 1],

Bias(Fn,m(x)) = πm−2Tm(x)b(x) + o(m−2), (5.4.1)

V ar(Fn,m(x)) = n−1σ2(x) +O(n−1m−1/2). (5.4.2)

Notice that for x ∈]0, 1[, the bias of the Bernstein estimator F̃n,ν and the bias of

the kernel estimator F̂n are given respectively by

Bias(F̃n,ν(x)) = ν−1b(x) + o(ν−1),

73



Bias(F̂n(x)) =
1

2
h2f ′(x)µ2(K) + o(h2),

where µ2(K) =
∫ 1

0
z2K(z)dz. The previous result implies that, in the case when ν = m,

the bias of the estimator Fn,m is O(m−2) is smaller than the one obtained using the

Bernstein polynomial, which has a bias of order O(m−1). On the one hand, if we consider

h = m−1 and f ′ is bounded, we notice that the bias of Fn,m is O(m−2) = O(h2), which is

asymptotically similar to the bias obtained using the kernel estimator F̂n, that is generally

O(h2) except near the boundaries. On the other hand, if f is bounded, it is well known

that the variance of the Bernstein estimator and the variance of the kernel estimator are

given respectively by

V ar(F̃n,ν(x)) = n−1σ2(x) +O(ν−1/2n−1),

V ar(F̂n(x)) = n−1σ2(x) +O(hn−1).

In this respect, another consequence of the previous result is that in the case when ν = m,

the variance of Fn,m is asymptotically similar to the variance of the estimator obtained

using Bernstein polynomial. On the other side, in order to compare the proposed estimator

and the kernel estimator, we consider some classical choices, which are m = n and h =

n−1/3, this choice is motivated by the optimal bandwidth based on the minimization of

the MSE. We notice that in the case where f is bounded and x ∈]0, 1[, the variance of

Fn,m is n−1σ2(x) +O(n−3/2), which is asymptotically smaller than the variance obtained

using kernel estimator, namely n−1σ2(x) +O(n−4/3). In addition, it is well known that

MSE(F n(x)) = V ar(F n(x)) = n−1σ2(x).

In conclusion, regarding the performance of the proposed estimator, we point out that

• The three considered estimators and the empirical distribution F n are asymptoti-

cally equivalent in terms of MSE up to the first order.

• The proposed estimator asymptotically dominates the Bernstein estimator F̃n,ν in

terms of bias and in terms of MSE in the case when f is bounded.

• Under the assumption (A2), the proposed estimator is asymptotically similar to

the kernel estimator F̂n in terms of bias without any additional assumptions, and

dominates the kernel estimator in terms of MSE under some classical conditions.

We complete our study with the following proposition which reveals that Fn,m is

strongly consistent.
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Proposition 5.3 (Uniform convergence of Fn,m). Under assumption (A1), if n,m→
∞, then

‖Fn,m − F‖∞ → 0 a.s.

In this chapter, we prove that the estimator Fn,m satisfied the Chung-Smirnov

property, which quantifies its extreme fluctuations about F , as m → ∞, under certain

regularity conditions on F . Let Gn be any estimator of the distribution function F .

Therefore, Gn is said to satisfy the Chung-Smirnov property when

lim
n→∞

(
2n

log log n

)1/2

sup
x∈[−1,1]

|Gn(x)− F (x)| ≤ 1, a.s. (5.4.3)

We know that the empirical distribution function F n satisfies the above property. To be

more accurate, we have

lim
n→∞

(
2n

log log n

)1/2

sup
x∈[−1,1]

∣∣F n(x)− F (x)
∣∣ = 1. (5.4.4)

This was proved by Chung (1949) and Smirnov (1944). The following proposition demon-

strates that Fn,m satisfies this property under certain conditions.

Proposition 5.4 (Chung Smirnov property for Fn,m). Let F ∈ Lip(α, c) for some

c > 0. If m,n→ ∞ and
√
nm−α/2 → 0, then Fn,m satisfies equation (5.4.3).

Finally, the following proposition indicates the asymptotic normality of the esti-

mator (5.1.3).

Proposition 5.5 (Asymptotic normality of Fn,m). Assume (A1) holds and m,n→ ∞.

For x ∈ (−1, 1), we have

n1/2 (Fn,m(x)− Am(x))
L→ N (0, σ2(x)).

Note that, under an appropriate choice of bandwidth, a result similar to proposition

5.5 was recorded by Watson and Leadletter (1964) for general kernel estimators, and by

Leblanc (2012a) for the Bernstein estimator of distribution functions.

5.5 Application

5.5.1 Simulations

In this section, we investigate the performance of the proposed estimator in estimating

different distributions by comparing it to the performances of Bernstein estimator and
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of the standard Gaussian kernel estimator. We can apply Bernstein estimator and the

proposed estimator when the sample is concentrated on the intervals [0, 1] and [−1, 1],

respectively. In order to enact the comparison between the estimators (5.1.1), (5.1.2) and

(5.1.3), applicable in general, we list below suggested transformations in different cases:

(1) Suppose that X is concentrated on a finite support [a, b], then we work with the

sample values Y1, . . . , Yn where Yi = (Xi − a)/(b− a).

(2) For the distributions functions concentrated on R, we can use the transformed sam-

ple Yi = 1/2 + π−1 arctan(Xi) which transforms the range to the interval [0, 1].

(3) For the support R+, we can use the transformed sample Yi = Xi/(1 +Xi) which

transforms the range to the interval [0, 1].

In our simulation study, six sample sizes are considered, n = 10, n = 50, n = 100, n = 150,

n = 200, n = 250 and the following distribution functions:

1− The beta distribution B(3, 2),

2− The beta distribution B(2, 2),

3− The gamma distribution G(1, 6),

4− The mixture beta distribution 0.5B(2.5, 6) + 0.5B(9, 1).

For each distribution function and sample size n, we compute the Integrated Squared

Error (ISE) of the estimator over N = 500 trials,

ISE[F ] =

∫ 1

0

(
F̂ (x)− F (x)

)2
dx, (5.5.1)

where F̂ is an estimator of the distribution F . To select the smoothing parameters m, ν

and h , we consider the Monte Carlo procedure for each point x ∈ [0, 1]. We determine

the parameters m (for 1 ≤ m ≤ 300), ν (for 1 ≤ ν ≤ 300) and h (for h = i/1000 with

1 ≤ i ≤ 300), which minimizes ISE, which is approximated by

1

N

N∑

i=1

ISEi(F̂ ),

where ISEi(F̂ ) is the value of ISE computed from the ith sample of size n and obtained

from (6.4.1).
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Table 5.1: ISE for N = 500 trials of F̃n,ν, F̂n and Fn,m, for n = 10, 50, 100 I

[ISE for N = 500 trials of Bernstein estimator, standard Gaussian Kernel estimator and

the proposed estimator Fn,m, for n = 10, n = 50 and n = 100. The bold values indicates

the smallest values of ISE.]
n mopt Lagrange Bernstein Kernel

10 10 0.032331 0.013258 0.019944

B(3, 2) 50 50 0.003819 0.004411 0.005014

100 100 0.002198 0.002431 0.002999

10 10 0.009598 0.006958 0.012854

B(2, 2) 50 50 0.001302 0.001717 0.002420

100 100 0.564e−3 0.802e−3 0.001132

10 10 0.037654 0.038798 0.040357

G(1, 6) 50 50 0.005205 0.006879 0.006393

100 100 0.001780 0.002236 0.002052

10 10 0.005359 0.003579 0.007807

0.5B(2.5, 6) + 0.5B(9, 1) 50 50 0.001326 0.001515 0.001767

100 100 0.699e−3 0.727e−3 0.820e−3
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Figure 5.1: Qualitative comparison between F̃n,ν, F̂n and Fn,m I

[Qualitative comparison between the Bernstein estimator F̃n,ν , the kernel estimator F̂n

and the proposed distribution estimator Fn,m, for N = 500 samples of size n = 50 (left

panel) and of size n = 100 (right panel) for the beta distribution B(3, 2).]

From figures 6.1-6.2 and tables 6.1-6.2, we conclude that

• In the considered distributions (1)-(4), by choosing the appropriate m, ν and h, the

ISE of the distribution estimator (5.1.3) is smaller than that of Kernel estimator
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Table 5.2: ISE for N = 500 trials F̃n,ν , F̂n and Fn,m, for n = 150, 200, 250 II

[ISE for N = 500 trials of Bernstein estimator F n,ν , standard Gaussian kernel estimator

F̂n and the proposed estimator Fn,m, for n = 150, n = 200 and n = 250. The bold values

indicates the smallest values of ISE. ]
n mopt Lagrange Bernstein Kernel

150 150 0.001799 0.002023 0.002342

B(3, 2) 200 200 0.001596 0.001782 0.001763

250 250 0.001258 0.001447 0.001462

150 150 0.377e−3 0.489e−3 0.718e−3

B(2, 2) 200 200 0.264e−3 0.327e−3 0.522e−3

250 250 0.229e−3 0.289e−3 0.392e−3

150 150 0.540e−3 0.896e−3 0.676e−3

G(1, 6) 200 200 0.107e−3 0.200e−3 0.115e−3

250 250 2.921e−5 4.996e−5 5.429e−5

150 150 0.503e−3
0.501e−3 0.568e−3

0.5B(2.5, 6) + 0.5B(9, 1) 200 200 0.379e−3 0.380e−3 0.486e−3

250 250 0.309e−3
0.309e−3 0.354e−3
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Figure 5.2: Qualitative comparison between F̃n,ν, F̂n and Fn,m II

[Qualitative comparison between the Bernstein estimator F̃n,ν , the kernel estimator F̂n

and the proposed distribution estimator Fn,m, for N = 500 samples of size n = 50 (left

panel) and of size n = 100 (right panel) for the exponential distribution

0.5B(2.5, 6) + 0.5B(9, 1).]

(5.1.1) and Bernstein estimator (5.1.2) even when the sample size is very large.

• The ISE decreases as the sample size increases.
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5.5.2 Real dataset

We consider two examples that highlight the features of the proposed estimator Fn,m:

1. At first time, the data show 50 alignments of a coding DNA sequence of the growth

factor receptor of a Norwegian rat EGFR (Rattus norvegicus egfr gene, partial cds),

which is available in the site https://www.ncbi.nlm.nih.gov/. For convenience,

we analyzed the original data rescaled to the unit interval. Finally, we used the

Monte Carlo method to obtain m = 50 for our proposed estimator, m = 35 for the

Bernstein estimator and h = 0.636438 for the kernel estimator.

2. At the second time, we used Salvister data which appear in R package kerdiest

(Quintela-del-Río and Estévez-Pérez (2012)). These data contain 85 observations

of the annual peak instantaneous flow levels of the Salt River near Roosevelt, AZ,

USA, for the period 1924-2009, obtained from the National Water Information Sys-

tem. For convenience, we analyzed the original data rescaled to the unit interval.

Finally, we used the Monte Carlo method to obtain m = 85 for our proposed esti-

mator, m = 80 for the Bernstein estimator and h = 0.06 for the kernel estimator.

3. The third data show the failure time (breakdowns of electronic devices) in operating

hours. These data contain 18 observations and are introduced by Wang (2000). For

convenience, we analyzed the original data rescaled to the unit interval. Finally, we

used the Monte Carlo method to obtain m = 18 for our proposed estimator, m = 15

for the Bernstein estimator and h = 0.20559 for the kernel estimator.

4. Moreover, we used attenu data which appear in R package datasets (Joyner and Boore

(2004)). These data contain 182 observations of the numeric moment magnitude at

various stations for 23 earthquakes in California. For convenience, we analyzed the

original data rescaled to the unit interval. Finally, we used the Monte Carlo method

to obtain m = 182 for our proposed estimator, m = 180 for the Bernstein estimator

and h = 0.0305 for the kernel estimator.

In the real examples, the three estimators are compared with the empirical distribution

F n. Then, for any considered estimator F̂ of the distribution function F , we propose to

compute the ISE defined as:

ISE(F̂ ) =

∫ 1

0

(
F̂ (x)− F n(x)

)2
dx.
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Figure 5.3: Qualitative comparison between F̃n,ν , F̂n and Fn,m, for S A DNA data.

[Qualitative comparison between the Bernstein estimator F̃n,ν , the kernel estimator F̂n

and the proposed distribution estimator Fn,m, for S A DNA data.]
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Figure 5.4: Qualitative comparison between F̃n,ν , F̂n and Fn,m, for Saltriver data.

[Qualitative comparison between the Bernstein estimator F̃n,ν(x), the kernel estimator

F̂n and the proposed distribution estimator Fn,m, for Saltriver data.]
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Figure 5.5: Qualitative comparison between F̃n,ν(x), F̂n and Fn,m, for failure data.

[Qualitative comparison between the Bernstein estimator F̃n,ν(x), the kernel estimator

F̂n and the proposed distribution estimator Fn,m, for failure time data. ]
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Figure 5.6: Qualitative comparison between F̃n,ν(x), F̂n and Fn,m, for magnitude data.

[Qualitative comparison between the Bernstein estimator F̃n,ν(x), the kernel estimator

F̂n and the proposed distribution estimator Fn,m, for magnitude data.]
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Table 5.3: ISE of F̃n,m, F̂n and Fn,m, for S A DNA data and Saltriver data.

[ISE of Bernstein estimator, standard Gaussian kernel estimator and the proposed

estimator Fn,m, for S A DNA data and Saltriver data. The bold values indicates the

smallest values of ISE. ]
Data set Proposed estimator Bernstein estimator Kernel estimator

S A DNA 0.334860e−3 0.647956e−3 0.466513e−3

Saltriver 4.586125e−5 0.112049e−3 0.756750e−3

Table 5.4: ISE of F̃n,m, F̂n and Fn,m, for magnitude data and failure time data.

[ISE of Bernstein estimator, standard Gaussian kernel estimator and the proposed

estimator Fn,m, for magnitude data and failure time data. The bold values indicates

the smallest values of ISE.]

Data set Proposed estimator Bernstein estimator Kernel estimator

Failure time 0.000549 0.000760 0.001088

Magnitude 0.000223 0.000929 0.000695

Departing from Tables 6.3-5.4 and figures 5.3-5.6, we infer that the ISE of the

proposed estimator is smaller than the ISE of the Bernstein estimator and the ISE of the

kernel estimator, thus demonstrating the effectiveness of our considered estimator. We

remark also from figures 5.3-5.6, that the curve of the proposed estimator passes exactly

through the Lagrange polynomial interpolation points.

5.6 Conclusion

The central focus of this chapter is upon suggesting an estimator of the distribution

function using Lagrange polynomials and Tchebytchev-Gauss points. We showed that a

few important properties contributing to the popularity of kernel estimator and Bern-

stein estimator of distribution function are also satisfied by the proposed estimator. The

asymptotic laws of the proposed estimator are established under general conditions. We

also argued that the proposed estimator asymptotically dominates the Bernstein estima-

tor in terms of bias. Through a simulation study and a simple data set examples, we have

demonstrated how the proposed estimator can lead to satisfactory estimates of the distri-

bution function. To sum up, our simulations also suggest that the proposed estimator is
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quite promising and interesting as it behaves well when compared with both the Bernstein

estimator and the Gaussian kernel estimator. To this extent, we could simply assert that

our work is a step may be taken further as it lays the ground and offers new perspectives

for future works to extend this investigation by considering a recursive version and com-

pare the obtained estimators to the one adopted by Slaoui (2014) and Jmaei et al. (2017).

We plan also to consider the estimation of a density function in a recursive framework and

then the estimation of a regression function in a recursive framework by using Lagrange

polynomials (see Slaoui (2015c), Slaoui (2016)).

5.7 Appendix

Throughout the proofs, we use the following notations:

R(1)
m =

m∑

k=1

sin θk
sin(mθk)

, R(2)
m =

m∑

k=1

xk sin θk
sin(mθk)

, R(3)
m =

m∑

k=1

cos(2θk) sin θk
sin(mθk)

,

Jm(x) =
m∑

k=1

| xk − x | L2
k(x), Sm(x) =

m∑
k=1

L2
k(x), λm(x) =

m∑

k=1

|Lk(x)| Lebesgue func-

tion,

Λm = max
x∈[−1,1]

λm(x) lebesgue constant, for j ∈ {0, 1, 2}, Pj,m(x) =
m∑
k=1
k<l

(xk−x)jLk(x)Ll(x).

In order to prove Theorems 6.1-6.3, we establish the following technical lemmas 5.1 and

5.2 stated below.

Lemma 5.1. For m ≥ 1, we have

R
(1)
m = sin(π/2m), R

(2)
m = sin(π/m)/2, R

(3)
m = (sin(3π/2m)− sin(π/2m))/2.

Lemma 5.2. For x ∈ [−1, 1], we have

i)
m∑

k=1

(xk − x)Lk(x) = −Tm(x)
m

R(1)
m = − π

2m2
Tm(x) + o(m−2),

ii)

m∑

k=1

(xk − x)2Lk(x) =
Tm(x)

m

(
xR(1)

m − R(2)
m

)
=

π

2m2
Tm(x)(x− 1) + o(m−2),
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iii)

m∑

k=1

(xk − x)3Lk(x) = −Tm(x)
m

(
R

(1)
m +R

(3)
m

2
+ x2R(1)

m − 2xR(2)
m

)

= − π

2m2
Tm(x)(1 + x2 − 2x) + o(m−2).

Proof: [Proof of lemma 1] We first note that R(1)
m , R(2)

m and R(3)
m can be rewritten as:

R(1)
m =

− cos(π/2m)

2

m∑

k=1

[sin (k (π/m+ π)) + sin (k (π/m− π))]

+ sin(π/2m)/2
m∑

k=1

[cos (k (π/m− π)) + cos (k (π/m+m))] .

R(2)
m =

−1

4
cos(π/m)

m∑

k=1

sin(k(2π/m+ π))− 1

4
cos(π/m)

m∑

k=1

sin(k(2π/m− π))

+
1

4
sin(π/m)

m∑

k=1

cos(k(2π/m− π)) +
1

4
sin(π/m)

m∑

k=1

cos(k(2π/m+ π)).

R(3)
m = −1

4

m∑

k=1

sin(3θk + kπ) + sin(3θk − kπ)− 1

4

m∑

k=1

sin(−θk + kπ) + sin(−θk − kπ).

Using for t ∈ R,
m∑

k=1

cos(kt) =
cos(mt/2) sin((m+ 1)t/2)

sin(t/2)
and

m∑

k=1

sin(kt) =
sin(mt/2) sin((m+ 1)t/2)

sin(t/2)
,

some classical computations provide

R(1)
m = sin(π/2m) =

π

2m
+ o(m−1),

R(2)
m =

1

2
sin(π/m) =

π

2m
+ o(m−1),

R(3)
m =

1

2
(sin(3π/2m)− sin(π/2m)) =

π

2m
+ o(m−1).

Proof: [Proof of lemma 2 ] First, we have (see Feldheim (1939) page 10)

Lk(x) =
Tm(x)

T ′
m(xk)(x− xk)

(5.7.1)

and − sin θkT
′
m(cos θk) = −m sin(mθk). It follows that

m∑

k=1

(xk − x)Lk(x) = −Tm(x)
m

R(1)
m .
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m∑

k=1

(xk − x)2Lk(x) =
xTm(x)

m
R(1)

m − Tm(x)

m
R(2)

m ,

m∑

k=1

(xk − x)3Lk(x) =
−Tm(x)
2m

(
R(1)

m +R(3)
m

)
− Tm(x)x

2

m
R(1)

m + 2
Tm(x)

m
R(2)

m .

5.7.1 Proof of proposition 6.1

Clearly, we have

E(Fn,m(x)) = Am(x).

The expansion of Taylor-Young ensures that for 1 ≤ k ≤ m,

E(Fn,m(x)) = F (x) + f(x)
m∑

k=1

(xk − x)Lk(x) +
f ′(x)

2

m∑

k=1

(xk − x)2Lk(x)

+
f ′′(x)

6

m∑

k=1

(xk − x)3Lk(x) + o

(
m∑

k=1

(x− xk)
3 Lk(x)

)
.

The application of Lemma 5.1 together with Lemma 5.2 yield the equation (5.4.1). Let’s

now focus on calculating the variance of our estimator.

First, we set (ηi)1≤i≤n =
(∑m

k=1

(
1{Xi≤xk} − F (xk)

)
Lk(x)

)
1≤i≤n

, it comes that

Fn,m(x)−Am(x) =

m∑

k=1

(
F n(xk)− F (xk)

)
Lk(x)

=
1

n

m∑

k=1

(
n∑

i=1

1{Xi≤xk} − F (xk)

)
Lk(x)

=
1

n

n∑

i=1

ηi.

Moreover, since E (Fn,m(x)− Am(x)) = 0, it follows that

V ar (Fn,m(x)− Am(x)) = E
[
(Fn,m(x)− Am(x))

2]

= V ar (Fn,m(x))

=
1

n2

n∑

i=1

V ar(ηi)

=
1

n
E(η21).
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Now, we define for any x ∈ [−1, 1] and for i ≥ 1, ϕi(x) = 1{Xi≤x} − F (x). We infer that

E(η2i ) = E



(

m∑

k=1

ϕi(xk)Lk(x)

)2



= E

[
m∑

k,l=1

ϕi(xk)Lk(x)ϕi(xl)Ll(x)

]

=
m∑

k,l=1

E [ϕi(xk)ϕi(xl)]Lk(x)Ll(x). (5.7.2)

Moreover, we have

E [ϕi(xk)ϕi(xl)] = E
[(
1{Xi≤xk} − F (xk)

) (
1{Xi≤xl} − F (xl)

)]

= E
(
1{Xi≤xk}1{Xi≤xl}

)
− F (xk)F (xl)

= E
(
1{Xi≤min(xk ,xl)}

)
− F (xk)F (xl)

= F (min(xk, xl))− F (xk)F (xl)

= min(F (xk), F (xl))− F (xk)F (xl).

Substituting this result for (5.7.2) leads to

E(η2i ) =

m∑

k,l=1

[min(F (xk), F (xl))− F (xk)F (xl)]Lk(x)Ll(x)

=

m∑

k=1

F (xk)L2
k(x) + 2

m∑

k=1
k<l

F (xk)Lk(x)Ll(x)− Am(x)
2. (5.7.3)

We need now to find an asymptotic expression for (5.7.3). For this reason, we first expand

F (xk) about x to state that for all 0 ≤ k ≤ m, F (xk) = F (x) +O(|xk − x|). This allows

us to write the first term of (5.7.3) as

m∑

k=1

F (xk)L2
k(x) =

m∑

k=1

[F (x) +O(|xk − x|)]L2
k(x)

=
m∑

k=1

F (x)L2
k(x) +

m∑

k=1

O(|xk − x| L2
k(x))

= F (x)Sm(x) +O(Jm(x)),

where Jm(x) =
m∑
k=1

| xk − x | L2
k(x).
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For the second term of (5.7.3), we instead write F (xk) as

F (xk) = F (x) + (xk − x)f(x) +O((xk − x)2).

Moreover, we have

2P0,m(x) + Sm(x) =

m∑

k,l=1

Lk(x)Ll(x).

Since

m∑

k,l=1

Lk(x)Ll(x) = 1,

it comes that

P0,m(x) =
1

2
(1− Sm(x)).

Then

m∑

k=1
k<l

F (xk)Lk(x)Ll(x) =

m∑

k=1
k<l

(
F (x) + (xk − x)f(x) +O((xk − x)2)

)
Lk(x)Ll(x)

=
m∑

k=1
k<l

F (x)Lk(x)Ll(x) +
m∑

k=1
k<l

(xk − x)f(x)Lk(x)Ll(x)

+

m∑

k=1
k<l

O
(
(xk − x)2Lk(x)Ll(x)

)

= F (x)P0,m(x) + f(x)P1,m(x) +O(P2,m(x))

=
1

2
F (x)(1− Sm(x)) + f(x)P1,m(x) +O(P2,m(x)).

Moreover, we have

2

m∑

k=1
k<l

F (xk)Lk(x)Ll(x) = F (x)(1− Sm(x)) + 2f(x)P1,m(x) +O(m−4).

Therefore,

E(η2i ) = F (x) + 2f(x)P1,m(x) +O(Jm(x)) +O(P2,m(x))−A2
m(x)

= F (x)(1− F (x)) + 2f(x)P1,m(x) +O(Jm(x)) +O(m−4)
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= σ2(x) + 2f(x)P1,m(x) +O(Jm(x)) +O(P2,m(x)). (5.7.4)

Now, using Cauchy-Schwartz’s inequality combined with the fact that |Lk(x)| ≤ 1, we get

|Jm(x)| =

∣∣∣∣∣
m∑

k=1

|xk − x| L2
k(x)

∣∣∣∣∣

≤
∣∣∣∣∣

(
m∑

k=1

(xk − x)2Lk(x)

)∣∣∣∣∣

1/2 ∣∣∣∣∣

(
m∑

k=1

L3
k(x)

)∣∣∣∣∣

1/2

≤
[( π

m2
+ o

(
m−2

))
Sm(x)

]1/2
.

On the other side, using the fact that Λm ≤ 2
π
ln(m + 1) + 1 (see Brutman (1978)), we

obtain

Sm(x) ≤
(

m∑

k=1

|Lk(x)|
)2

≤ Λ2
m ≤ 4

π2
ln(m+ 1)2 + 1 +

4

π
ln(m+ 1).

As a matter of fact, we infer that Jm(x) = O(m−1/2). Now, it follows from (5.7.1), that

P2,m(x) = [(1− x)2 +O(m−2)]
m∑

k=1
k<l

Lk(x)Ll(x)

= [(1− x)2 +O(m−2)]

m∑

k=1
k<l

O(m−2).

It follows that P2,m(x) = O(m−1). Moreover, we have

P1,m(x) =

m∑

k=1

(xk − x)Lk(x)

m∑

l=k+1

Ll(x)

= [1− x+O(m−2)]

m∑

k=1
k<l

O(m−2).

Hence, we obtain P1,m(x) = O(m−1) and equation (5.4.2) follows.

5.7.2 Proof of proposition 5.3

We first use the fact that

‖Fn,m − F‖ ≤ ‖Fn,m −Am‖+ ‖Am − F‖ .
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The use of Jackson’s theorem, ensures that

lim
m→∞

‖Am − F‖ = 0.

Moreover, we have

Fn,m(x)− Am(x) =
m∑

k=1

(
F n(xk)− F (xk)

)
Lk(x),

it comes that

‖Fn,m − Am‖ ≤ max
1≤k≤m

∣∣F n(xk)− F (xk)
∣∣ .

In addition, the application of Clivenco-Cantelli’s theorem, ensures that

lim
n→∞

∥∥F n − F
∥∥ = 0,

which conclude the proof.

5.7.3 Proof of proposition 5.4

First, we note that for all m ≥ 1,

‖Fn,m − F‖ ≤
∥∥F n − F

∥∥+ ‖Am − F‖ .

Moreover, as F ∈ Lip(α, c), Jackson (1911, 1912) implies that

‖Am − F‖ = O

(
log(m)

mα/2

)
.

It follows that

lim
n→∞

un ‖Fn,m − F‖ ≤ lim
n→∞

un
∥∥F n − F

∥∥+ lim
n→∞

un ‖Am − F‖ ,

where un = (2n/ log logn)1/2, for all n ≥ 1. Now, using equation (5.4.4), we obtain

lim
n→∞

un
∥∥F n − F

∥∥ = 1 a.s.

Moreover, since n1/2m−α/2 → 0 when n, m→ ∞, we have

lim
n→∞

un ‖Am − F‖ = lim
n→∞

(2n)1/2

(log log n)1/2
logm

mα/2

= lim
n→∞

√
n

mα/2

= 0.

It comes that, lim
n→∞

un ‖Fn,m − F‖ ≤ 1. This completes the proof of proposition 5.4.
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5.7.4 Proof of proposition 6.3

Since we have

Fn,m(x)− Am(x) =
1

n

n∑

i=1

ηi.

It follows that,

n1/2 (Fn,m(x)−Am(x)) =
n∑

i=1

ηi
n1/2

.

Now, in order to check the Lindeberg condition, we notice for all n ≥ 1 and for i = 1, . . . , n

Xi,n =
ηi
n1/2

and s2n =
n∑

i=1

E(X2
i,n).

We have

n1/2 (Fn,m(x)− Am(x)) =

n∑

i=1

Xi,n,

with (Xi,n)i≥1 is a sequence of i.i.d. random variables such that E(Xi,n) = 0. Further, we

have for n ≥ 1,

s2n =

n∑

i=1

E(X2
i,n) =

n∑

i=1

1

n
E(η2i ) = E(η21).

However, in the light of (5.7.4), we have lim
n→∞

s2n = σ2(x). Indeed, using the Cauchy-

Schwarz inequality, Lk(x) ≤ 1 and by inferring the proof of proposition 6.1, we get

lim
n→∞

Jm(x) = 0 and lim
n→∞

P1,m(x) = 0. Moreover, since
m∑
k=0

Lk(x) = 1, we have

|η1| =

∣∣∣∣∣
m∑

k=1

(
1{Xi≤xk} − F (xk)

)
Lk(x)

∣∣∣∣∣ ≤
m∑

k=1

∣∣1{Xi≤xk} − F (xk)
∣∣Lk(x)

≤
m∑

k=1

(1 + 1)Lk(x) = 2.

It comes that

X2
1,n1 |X1,n|

sn
>ε

=
η21
n
1{|η1|>snn1/2ε}

≤ 4

n
1{|η1|>snn1/2ε}.
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Hence,

n∑

i=1

E

[
X2

i,m1 |Xi,m|

sn
>ε

]
≤ 4

n

n∑

i=1

1{|ηi|>snn1/2ε}.

Moreover, we have s2n → σ2(x) when n→ ∞, then Lindeberg’s condition

lim
n→∞

1

s2n

n∑

i=1

E

[
X2

i,n1 |Xi,n|

sn
>ε

]
= 0,

is fulfided. thus by Lindeberg-Feller’s central limit theorem, we get

n1/2 (Fn,m(x)− Am(x))
L→ N (0, σ2(x)),

which concludes the proof.
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Chapter 6

Recursive distribution estimator based

on stochastic algorithm

Key words and phrases: Asymptotic properties, Distribution estimation, La-

grange polynomial, Stochastic approximation algorithm, Tchebychev-Gauss points.

Abstract 4: In this chapter, our central focus is upon introducing a recursive distri-

bution estimator using Robbins Monro’s algorithm and Lagrange polynomial. Some

asymptotic properties of the proposed estimator are investigated, such as its asymp-

totic bias and variance. The asymptotic normality is also established. We show that

the proposed estimator outperforms the non recursive distribution function in terms

of the asymptotic mean squared error. Generally, the proposed estimator compares

favorably with other competitors in theoretical comparisons, a simulation study and

a real data sets examples.

6.1 Introduction

Distribution estimation is undoubtedly a beneficial tool of data analysis, occurring in mul-

tiple domains like actuarial sciences or finance, life sciences, engineering, under different

names such as lifetime, survival distributions. LetX1 . . .Xn be a sequence of i.i.d. random

variables having an underlying unknown distribution function F and associated density

function f . Within the parametric framework, the model structure is already determined.

For instance, the normal distribution form N (µ, σ2). The unique target is to estimate the

parameters, namely µ and σ. In the non parametric setting, the model structure is not

identified. In this chapter, our central focus is upon introducing a recursive distribution
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estimator using Robbins Monro’s algorithm and Lagrange polynomial. Some asymptotic

properties of the proposed estimator are investigated, such as its asymptotic bias and

variance. The asymptotic normality is also established. We show that the proposed es-

timator outperforms the non recursive distribution function in terms of the asymptotic

mean squared error. Generally, the proposed estimator compares favorably with other

competitors in theoretical comparisons, a simulation study and a real data sets examples.

The application of Robbins–Monro’s procedure to construct a stochastic approximation

algorithm was introduced by Révész (1973, 1977) and extended by Tsybakov (1990). As

examples for recursive estimators of the distribution function, we display the recursive

kernel distribution estimator identified by Slaoui (2014)

Fn,K(x) = Πn

n∑

k=1

Π−1
k γkK

(
x−Xk

hk

)
, (6.1.1)

where K(z) =
∫ z

−∞K(u)du, K is a kernel and (hn) is a bandwidth; and the recursive

distribution estimator using the Bernstein polynomial defined by Jmaei et al. (2017)

Fn,B(x) = Πn

n∑

k=1

Π−1
k γkBk(x), (6.1.2)

where Bn(x) =
∑m

k=0 1{Xn≤k/m}bk(m, x) and bk(m, x) = Ck
mx

k(1− x)m−k is the Bernstein

polynomial of order m > 0. In this chapter, we construct a stochastic algorithm, which

approximates the function F using Lagrange polynomial, at a given point x. We suppose

that f is supported on [−1, 1] and we define an algorithm of search of the zero of the

function φ : y → F (x)− y. Using Robbins and Monro (1951) recursive scheme, we set:

(i) F0(x) ∈ [0, 1],

(ii) For all n ≥ 1, we set Fn(x) = Fn−1(x) + γnJn(x), where the stepsize (γn) is

a positive sequence of real numbers decreasing to zero and (Jn) is a sequence

of functions Jn : R → R defined by Jn(x) = φ(Fn−1(x)) − Wn + βn. Using

the assumption of Robbins-Monro’s procedure defined by E(Wn|Fn−1) = 0, where

Fn−1 stands for the σ-algebra of the events occurring up the time n − 1, we have

E(Jn(x)) = F (x)− Fn−1(x) + βn. Following the approach of Révész (1973, 1977)

and noting that E

(
m∑

k=1

1{Xn≤xk}Lk(x)

)
= F (x) + ξn(x), where ξn(x) goes to zero

as n goes to infinity, we set Jn(x) =
∑m

k=1 1{Xn≤xk}Lk(x)− Fn−1(x).
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Therefore, the recursive estimator Fn of the distribution function F at the point x can be

started as

Fn(x) = (1− γn)Fn−1(x) + γn

m∑

k=1

1{Xn≤xk}Lk(x). (6.1.3)

Moreover, we suppose that F0(x) = 0. We let

Πn =
n∏

j=1

(1− γj) and Zn(x) =
m∑

k=1

1{Xn≤xk}Lk(x).

Then, it follows from the Equation (6.1.3) that Fn can be rewritten as

Fn(x) = Πn

n∑

k=1

Π−1
k γkZk(x). (6.1.4)

The basic objective of this chapter is to investigate the properties of the recursive distribu-

tion estimator defined by the stochastic approximation algorithm (6.1.4). The assessment

of its performance is fulfilled through enacting its comparison with the non recursive

distribution estimator defined by Helali and Slaoui (2020) and the recursive estimators

(6.1.1) - (6.1.2). The remainder of the chapter is organized as follows. In Section 6.2, we

highlight the notations and assumptions. In section 6.3, we display the main results: the

bias, variance and asymptotic normality. Section 6.4 is devoted to the application results

obtained, first through simulations (subsection 6.4.1) and second using a real data set

(subsection 6.4.2). We draw the conclusion in Section 6.5, and Section 6.6 exhibits the

proofs of the theoretical results.

6.2 Assumptions and notations

We first define the following class of regularly varying sequences.

Definition 6.1. Let γ ∈ R and (ψn)n≥1 be a nonrandom positive sequence. We write

(ψn) ∈ GS(γ), if

lim
n→∞

n

[
1− ψn−1

ψn

]
= γ. (6.2.1)

Condition (6.2.1) was introduced by Galambos and Seneta (1973) to define regu-

larly varying sequences (see also Bojanic and Seneta (1973)). Note that the acronym GS
stands for (Galambos and Seneta). Typical sequences in GS(γ) are, for b ∈ R, nγ(logn)b,

nγ(log logn)b, and so on. To investigate the asymptotic behaviours of the estimator

(6.1.4), we make the following assumptions:
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(A1) F is of class C2 on [−1, 1].

(A2) f , f ′ and f ′′ are bounded.

(A3) (γn) ∈ GS(−α), α ∈
(
1
2
, 1
]
.

(A4) (mn) ∈ GS(a), a ∈ (0, 1).

(A5) lim
n→∞

nγn ∈ (min(2a, (α+ a)/2),∞).

Discussion on the assumptions:

• Assumptions (A1)-(A2) are standard in density estimation.

• Assumptions (A3)-(A4) gives conditions for the stepsize and the degree of the

Lagrange polynomial which allows getting the bias and variance of the proposed

estimator.

• Assumption (A5) on the limit of (nγn) as n → ∞ is usual within the framework

of stochastic approximation algorithms. It implies, in particular, that the limit of

([nγn]
−1) is finite.

Throughout this chapter, we let i = 1 . . .m, x ∈ [−1, 1] for m ≥ 1, and we consider the

following notations:

Πn =

n∏

j=1

(1− γj), Zn(x) =

m∑

k=1

1{Xn≤xk}Lk(x), ξ = lim
n→∞

(nγn)
−1, θi = (2i− 1)π/2m,

σ2(x) = F (x)(1−F (x)), xi = cos (θi): Tchebytchev-Gauss points, Am(x) =

m∑

i=1

F (xi)Li(x),

b(x) = f(x)/2+f ′(x)(x−1)/4−f ′′(x)(1+x2−2x)/12, Li(x) =
m∏

j=1
j 6=i

x− xj
xi − xj

: Lagrange

polynomial, Tm(x) = cos(m arccos(x)): Tchebytchev polynomial.

6.3 Main results

The first result is the bias, variance, and mean squared error (MSE) of Fn.

Proposition 6.1 (Bias and variance of Fn). Let Assumptions (A1)–(A5) hold.
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(1) If 0 < a ≤ α
3
, then

Bias(Fn(x)) = O(m−2
n ). (6.3.1)

If α
3
< a < 1

Bias(Fn(x)) = o
(√

γnm−1
n

)
. (6.3.2)

(2) If α
3
≤ a < 1, then

V ar(Fn(x)) =
σ2(x)

2− αξ
γn +O(γnm

−1
n ). (6.3.3)

If α
4
≤ a < α

3
, then

V ar(Fn(x)) = σ2(x)
1

2− αξ
γn + o(γn). (6.3.4)

If 0 < a < α
4
, then

V ar(Fn(x)) = o(m−4
n ). (6.3.5)

The bias and the variance of the estimator Fn defined by the stochastic approxi-

mation algorithm, depend heavily on the choice of the stepsize (γn) and the degree (mn).

Let us first state the following proposition, which provides the MSE of the recursive

estimator defined in (6.1.4).

Proposition 6.2 (MSE of Fn). Let Assumptions (A1)–(A5) hold.

(1) If a ∈]0, α/4[,
MSE(Fn(x)) = O(m−4

n ).

(2) If a ∈ [α/4, α/3[,

MSE(Fn(x)) =
σ2(x)

2− αξ
γn + o(γn) +O(m−4

n ).

(3) If a = α/3,

MSE(Fn(x)) =
σ2(x)

2− αξ
γn +O(m−4

n ) +O(γnm
−1
n ).

(4) If a ∈]α/3, 1[,
MSE(Fn(x)) =

σ2(x)

2− αξ
γn +O(γnm

−1
n ).
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The following corollary is a by-product of the previous proposition, which affords

the optimal orders (mn) and (γn) of the estimator Fn minimizing the MSE.

Corollary 6.3.1. Let Assumptions (A1)–(A5) hold. To minimise the MSE of Fn, we

need to choose (mn) ∈ GS(1/3) and (γn) ∈ GS(−1).

The previous result implies that, to minimize MSE(Fn(x)), a must be equal to

α/3. In this case,

MSE(Fn(x)) =
σ2(x)γ20
2γ0 − 1

n−1 +O(n−4/3), (6.3.6)

where γn = γ0n
−1. The following remarks show that, for a special choice of the stepsize

(γn) and the degree (mn), the proposed distribution estimator Fn can dominate the non

recursive estimator Fn,m and the recursive estimators Fn,K and Fn,B in terms of MSE.

Remark 6.3.1 (Comparison with estimators (6.1.1) and (6.1.2)). We note that the

MSE of the recursive kernel estimator (6.1.1) (see Nadaraya (1964)) and the MSE of

the recursive estimator using the Bernstein polynomial (6.1.2) (see Jmaei et al. (2017))

are established respectively by

MSE(Fn,K(x)) =

[
σ2(x)

2− αξ
γn −

f(x)φ(K)

2− (a + α)ξ
γnhn +

µ2
2(K)f ′2(x)

4(1− 2aξ)2
h4n + o(h4n)

]
,

and

MSE(Fn,B(x)) =

[
c2(x)

(1− aξ)2
m−2

n +
σ2(x)

2− αξ
γn −

2V (x)

4− (2α + a)ξ
γnm

−1/2
n

+o
(
m−2

n + γnm
−1/2
n

)]
,

where µ2(K) =
∫
R
z2K(z)dz, φ(K) = 2

∫
R
zK(z)K(z)dz, c(x) = x(1−x)f ′(x)

2
and V (x) =

f(x)
[
2x(1−x)

π

]2
. Following Slaoui (2014), we recall that to minimize the MSE of Fn,K(x),

we need to choose (γn) ∈ GS(−1) and (hn) ∈ GS(−1/3). Departing from Corollary 3.1

in Jmaei et al. (2017), we note that to minimize the MSE of Fn,B(x), we need to choose

(γn) ∈ GS(−1) and (mn) ∈ GS(2/3). In conclusion, if we consider that hn = m−1
n as

the "bandwidth" of the estimator (6.1.1), and regarding the performance of the proposed

estimator, we point out that the three considered estimators (6.1.1), (6.1.2) and (6.1.4)

are asymptotically equivalent in terms of MSE. Besides, with an optimal choice of γ0,

the proposed estimator can be a competitor of the estimators (6.1.2) and (6.1.1).

Remark 6.3.2 (Comparison with the non recursive estimator). The non recursive

estimator using Lagrange polynomial is defined by

Fn,m(x) =

m∑

i=1

F n(xi)Li(x). (6.3.7)
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Helali and Slaoui (2020) showed that the MSE of (6.3.7) is provided by

MSE(Fn,m(x)) = π2m−4T 2
m(x)b

2(x) + n−1σ2(x) +O(n−1m−1/2) + o(m−4
n ).

Noteworthy that when n goes to infinity, MSE(Fn(x)) ∼ m−4
n + n−1 + n−1m−1

n and

MSE(Fn,m(x)) ∼ m−4
n + n−1 + n−1m

−1/2
n . It follows that, the proposed estimator asymp-

totically dominates the non recursive estimator in terms of MSE. On the other setting,

the main merit of the proposed estimator, is that its update, when new sample points are

available, requires less computational cost than the non recursive estimator.

Finally, the following proposition shows the asymptotic normality of the proposed

recursive estimator (6.1.4).

Proposition 6.3 (Asymptotic normality of Fn). Let Assumptions (A1)–(A5) hold.

If lim
n→+∞

γ−1
n m−4

n = 0, then

γ−1/2
n (Fn(x)− F (x))

D→ N
(
0,

1

2− αξ
σ2(x)

)
.

Here
D→ denotes the convergence in distribution and N corresponds to the Gaussian dis-

tribution.

Note that, under an appropriate choice of bandwidth, a result similar to Theorem 1

was shown by Slaoui (2014) for recursive kernel estimators, and by Jmaei et al. (2017) for

results from recursive Bernstein estimator of distribution functions. The following corol-

lary is a consequence of the previous proposition which provides an asymptotic confidence

interval of the distribution F , for a confidence level 0 < α < 1.

Corollary 6.3.2. If lim
n→+∞

γ−1
n m−4

n = 0, then the 100(1 − α)% asymptotic confidence

interval of F (x) is given by

(
Fn(x)±

z1−α
2
σ(x)γ

1/2
n√

2− αξ

)
,

where z1−α
2

is the normal
(
1− α

2

)
quantile.

In the next section, we shall explore the performance of the proposed recursive

estimator in estimating different distributions by comparing it to the performances of

the recursive Bernstein estimator (6.1.2), as well as that of the recursive Gaussian kernel

estimator (6.1.1) and of the non recursive estimator using Lagrange polynomials (6.3.7).
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6.4 Numerical studies

6.4.1 Simulations

In this section, we demonstrate the performance of the proposed estimator (6.1.4) in

estimating different distributions by comparing it to the performances of the recursive

(Gaussian) kernel estimator (6.1.1), of the recursive estimator using Bernstein polynomial

(6.1.2) as well as that of the non recursive estimator using Lagrange polynomial (6.3.7).

We can apply the Bernstein estimator (6.1.2) and the Lagrange estimators (6.3.7)

and (6.1.4) when the sample is concentrated on the intervals [0, 1] and [−1, 1], respectively.

Then, in order to enact the comparison between the Bernstein estimator (6.1.2), the

Lagrange estimators (6.1.4)-(6.3.7) and the kernel approach (6.1.1), which are applicable

in general, we elaborate below suggested transformations in different cases:

(1) Suppose that X is concentrated on a finite support [a, b], then we work with the

sample values Y1, . . . , Yn where Yi = (Xi − a)/(b− a).

(2) For the distributions functions concentrated on R, we can use the transformed sam-

ple Yi = 1/2 + π−1 arctan(Xi) which transforms the range to the interval [0, 1].

(3) For the support R+, we can use the transformed sample Yi = Xi/(1 +Xi) which

transforms the range to the interval [0, 1].

In our simulation study, three sample sizes are considered, n = 50, 100, 200 according to

the following distribution functions F :

1− The beta distribution B(3, 2),

2− The gamma distribution G(1, 6),

3− The mixture beta distribution 0.5B(2.5, 6) + 0.5B(9, 1).

For each distribution function F and sample size n, we compute the Integrated Squared

Error (ISE) of the estimator over N = 500 trials,

ISE[F̂ ] =

∫ 1

0

(
F̂ (x)− F (x)

)2
dx, (6.4.1)

where F̂ is an estimator of the true distribution F . To select the smoothing parameters

m and h, we consider the Monte Carlo procedure for each point x ∈ [0, 1]. We determine
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the parameters m (for 1 ≤ m ≤ 300), ν and h (for h = i/1000 with 1 ≤ i ≤ 300), which

minimizes ISE, that is approximated by

1

N

N∑

i=1

ISEi(F̂ ),

where ISEi(F̂ ) is the value of ISE computed from the ith sample of size n and obtained

from (6.4.1).
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Table 6.1: ISE for N = 500 trials of Recursive 1, Recursive 2 and Recursive 3

Density n Recursive 1 Recursive 2 Recursive 3

c = 0.05

50 0.003660 0.004273 0.046308

B(3, 2) 100 0.002188 0.002306 0.018131

200 0.000706 0.001306 0.011315

50 0.006846 0.009218 0.131480

G(1, 6) 100 0.002186 0.002285 0.072287

200 0.000272 0.000310 0.019873

50 0.001168 0.000995 0.023376

0.5B(2.5, 6) + 0.5B(9, 1) 100 0.000531 0.000506 0.010810

200 0.000354 0.000345 0.002522

c = 0.1

50 0.003833 0.004285 0.041341

B(3, 2) 100 0.002193 0.002458 0.018925

200 0.000681 0.001232 0.010338

50 0.006211 0.008690 0.047800

G(1, 6) 100 0.001622 0.002355 0.034586

200 0.000160 0.000205 0.015976

50 0.001110 0.000953 0.030482

0.5B(2.5, 6) + 0.5B(9, 1) 100 0.000546 0.000662 0.010861

200 0.000458 0.000513 0.005940

c = 0.2

50 0.004148 0.004549 0.072466

B(3, 2) 100 0.002306 0.002538 0.022216

200 0.001368 0.001633 0.012922

50 0.005435 0.007110 0.092982

G(1, 6) 100 0.001820 0.001773 0.050594

200 8.042e−5 0.000155 0.018933

50 0.001081 0.001122 0.027487

0.5B(2.5, 6) + 0.5B(9, 1) 100 0.000636 0.000657 0.011531

200 0.000435 0.000323 0.006048

Here, Recursive 1 correspond to the proposed estimator (6.1.4), Recursive 2 corre-
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spond to the recursive kernel estimator (6.1.1) and Recursive 3 correspond to the recursive

Bernstein estimator (6.1.2), for n = 50, n = 100 and n = 200, for (γn) = ([2/3 + c]n−1),

for c = 0.05, c = 0.1 and c = 0.2. The bold values indicate the smallest values of ISE.

Table 6.2: ISE for N = 500 trials of Fn,m and Fn, for n = 50, 100, 200.

[ISE for N = 500 trials of the non recursive estimator (6.3.7) and the proposed

estimator (6.1.4), for n = 50, n = 100 and n = 200, for the case (γn) = ([2/3 + ǫ]n−1)

with ǫ = 0.05, 0.1, 0.2 and (γn) = (n−1). The bold values indicate the smallest values of

ISE. ]
Recursive estimator

(γn) = ([2/3 + ǫ]n−1)

n Non recursive ǫ = 0.05 ǫ = 0.1 ǫ = 0.2

50 0.003798 0.003660 0.003714 0.004148

B(3, 2) 100 0.002471 0.002188 0.002193 0.002306

200 0.001459 0.000706 0.000681 0.001368

50 0.004998 0.006846 0.006211 0.005435

G(1, 6) 100 0.001477 0.002186 0.001622 0.001820

200 0.001264 0.000272 0.000160 8.042e−5

50 0.001203 0.001110 0.001119 0.001081

0.5B(2.5, 6) + 0.5B(9, 1) 100 0.000718 0.000531 0.000546 0.000636

200 0.000412 0.000354 0.000458 0.000435
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Departing from Tables 6.1 and 6.2, we infer that:

(i) In all the cases, the ISE of the proposed distribution estimator (6.1.4) with an

appropriate choice of the stepsize (γn) is smaller than that of the other recursive

estimators (6.1.1)-(6.1.2) and the non recursive distribution estimator (6.3.7).

(ii) The ISE decreases as the sample size increases.

(iii) Relying upon Table (6.1), we deduce that 1− for small and moderate samples size

(n = 50 and n = 100), the proposed recursive estimator displays better results

compared to the two other recursive methods in terms of ISE, except for the mixture

beta distribution in the cases c = 0.05, c = 0.1 for n = 50. 2− for large samples

size n = 200, the proposed recursive estimators have a smaller ISE compared to

the other recursive estimators, except for the mixture beta distribution in the cases

c = 0.05 and c = 0.2.

(iv) Referring to Table (6.2), we notice that the proposed recursive estimator presents

better results compared to the non-recursive distribution estimator in all the cases

using an appropriate choice of the stepsize (γn).
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6.4.2 Real dataset

The basic target of this subsection is to compare the performance of the proposed es-

timator defined in (6.1.4) to that of the non recursive estimator defined in (6.3.7). We

consider two examples that highlight the features of the proposed estimator Fn:

1. We analyze the suicide data portrayed in Table 2.1 of Silverman (1986). This data

set consists of duration (in days) of psychiatric treatment for 86 patients used as

experiments in a study of suicide risks. The maximum treatment duration is 800

days (the data are such that min(xi) = 1 and max(xi) = 737). Finally, we used the

Monte Carlo method to obtain m = 86 for the proposed estimator where c = 0.05,

and m = 86 for the non recursive estimator.

2. We use Salvister data which appear in the R package kerdiest

(Quintela-del-Río and Estévez-Pérez (2012)). This data involve 85 observations of

the annual peak instantaneous flow levels of the Salt River near Roosevelt, AZ,

USA, for the period 1924 − 2009, reported from the National Water Information

System. Finally, we used the Monte Carlo method to obtainm = 80 for the proposed

estimator where c = 0.3, and m = 85 for the non recursive estimator.

In the real examples, the two estimators (6.3.7) and (6.1.4) are compared with the em-

pirical distribution F n. Then, for any considered estimator F̂ of the distribution function

F , we propose to compute the ISE defined as:

ISE(F̂ ) =

∫ 1

0

(
F̂ (x)− F̂n(x)

)2
dx.
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Figure 6.1: Qualitative comparison between Fn,m and Fn for Suicide data.

[Qualitative comparison between the non recursive estimator Fn,m and the proposed

recursive estimator Fn for Suicide data.]
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Figure 6.2: Qualitative comparison between Fn,m and Fn for Salvister data.

[Qualitative comparison between the non recursive estimator Fn,m and the proposed

recursive estimator Fn for Salvister data.]
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Table 6.3: ISE of Fn,m and Fn, for Saltriver data and Suicide data.

[ISE of the non recursive estimator F̃n,m and the proposed estimator Fn, for Saltriver

data and Suicide data. The bold values indicate the smallest values of ISE.]
Data set Proposed estimator Non recursive estimator

Saltriver 4.5519e−8 6.1417e−8

Suicide 4.1893e−6 4.4607e−6

Visually, from Figures 6.1-6.2, we conclude that the non-recursive estimator (6.3.7)

and the proposed recursive estimator (6.1.4) seem to be close to the true empirical dis-

tribution functions. Resting on Table 6.3, we infer that that the ISE of the proposed

estimator is smaller than that of the non recursive estimator with optimal parameters

(γn) and (mn), thus demonstrating the effectiveness of the considered estimator.
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6.5 Conclusion

This work elaborates a recursive distribution estimator using Lagrange polynomial with

Tchebytchev-Gauss points. The proposed estimator asymptotically follows normal distri-

bution. The ISE of the proposed estimator (6.1.4), with an appropriate choice of the

stepsize (γn) and the order (mn), is smaller than that of the non recursive estimator

(6.3.7) as well as the recursive estimators (6.1.1)-(6.1.2). In addition, a major advantage

of the proposed estimator, lies in the fact that its up date, when new sample points are

available, requires less computational cost than the non recursive estimator. To sum up,

using the proposed recursive estimator Fn, we can get better results than those obtained

by estimators (6.3.7), (6.1.1) and (6.1.2). A future research direction would be to extend

our findings to the recursive regression estimation using Lagrange polynomial. We plan

also to work on the choice of the order (mn) through a plug-in method (see Slaoui (2016)).

6.6 Proofs

Let us first state the following technical lemma.

Lemma 6.1 (Mokkadem et al (2009)). Let (wn) ∈ GS(w⋆), (γn) ∈ GS(−α), and let

l > 0 such that l − w⋆ξ > 0 where ξ = lim
n→∞

(nγn)
−1. We have

lim
n→∞

wnΠ
l
n

n∑

k=1

Π−l
k

γk
wk

=
1

l − w⋆ξ
.

Furthermore, for all positive sequence (αn) such that lim
n→∞

αn = 0, and all ρ ∈ R;

lim
n→∞

wnΠ
l
n

[
n∑

k=1

Π−l
k

γk
wk

αk + ρ

]
= 0.

Lemma 6.1 is widely applied throughout the proofs and it is proved in Mokkadem et al

(2009). Its application requires assumption (A5) on the limit of nγn as n goes to infinity.

6.6.1 Proof of Proposition 6.1

Based on equation (6.1.3), for x ∈ [−1, 1], we have

Fn(x)− F (x) = Πn

n∑

k=1

Π−1
k γk(Zk(x)− F (x)) + Πn(F0(x)− F (x)).
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It follows that

E(Fn(x))− F (x) = Πn

n∑

k=1

Π−1
k γk[E(Zk(x))− F (x)] + Πn(F0(x)− F (x)). (6.6.1)

In addition, we have,

E(Zn(x)) = E

(
m∑

k=1

1{Xn≤xk}Lk(x)

)
=

m∑

k=1

F (xk)Lk(x) = Am(x).

Using Proposition 3.1 in Helali and Slaoui (2020) (and its proof), we obtain

E(Zn(x))− F (x) = πb(x)Tm(x)m
−2
n + o(m−2

n ).

Substituting this result into (6.6.1), leads to

E(Fn(x))− F (x) = Πn

n∑

k=1

Π−1
k γk(πb(x)Tmk

(x)m−2
k [1 + o(1)] + Πn(F0(x)− F (x))

For the case 0 < a ≤ α
3
, we have ξ < 1/2a. The application of lemma 6.1 entails

E(Fn(x))− F (x) = O(m−2
n ).

which follows (6.3.1). In the case α
3
< a < 1, we have ξ < 2/(α + a) and m−2

n =

o
(√

γnm−1
n

)
. The application of lemma 6.1 provides

E(Fn(x))− F (x) = o
(√

γnm−1
n

)
, which gives (6.3.2).

Next, we have for x ∈ [−1, 1] and n ≥ 1,

V ar(Fn(x)) = Π2
n

n∑

k=1

Π−2
k γ2kV ar(Zk(x)), (6.6.2)

and

V ar(Fn,m(x)) =
1

n2
V ar

(
n∑

i=1

m∑

k=1

1{Xi≤xk}Lk(x)

)

=
1

n
V ar(Zn(x)).

Grounded on Proposition 3.1 in Helali and Slaoui (2020), we obtain

V ar(Zn(x)) = σ2(x) +O(m−1
n ). (6.6.3)
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Substituting this result into (6.6.2), leads to

V ar(Fn(x)) = σ2(x)Π2
n

n∑

k=1

Π−2
k γ2k +Π2

n

n∑

k=1

Π−2
k γ2kO(m

−1
k ).

In the case α
3
≤ a < 1, we have lim

n→∞
nγn > (a+α)/2. The application of Lemma 6.1 gives

V ar(Fn(x)) = σ2(x)
1

2− αξ
γn +O(γnm

−1
n ),

which proves (6.3.3). In the case α
4
≤ a ≤ α

3
, we have lim

n→∞
nγn > 2a > α

2
and γnm

−1
n =

o(m−4
n ). The application of Lemma 6.1 gives

V ar(Fn(x)) = σ2(x)
1

2− αξ
γn +Π2

n

n∑

k=1

Π−2
k γ2ko(m

−4
k )

= σ2(x)
1

2− αξ
γn + o(γn).

which gives (6.3.4). In the case 0 < a < α
4
, we have lim

n→∞
nγn > 2a and γn = o(m−4

n ). The

application of Lemma 6.1 gives (6.3.5).

6.6.2 Proof of Corollary 6.3.1

Let

G(ξ) =
σ2(x)

2− αξ
.

It follows from Proposition 6.2 that

MSE(Fn(x)) =





O(m−4
n ) if a ∈]0, α/4[

G(ξ)γn + o(γn) +O(m−4
n ) if a ∈ [α/4, α/3[

G(ξ)γn +O(γnm
−1
n ) +O(m−4

n ) if a = α/3

G(ξ)γn +O(γnm
−1
n ) if a ∈]α/3, 1[.

By (A3)-(A4), we have MSE(Fn(x)) ∈ GS(−4a) if a ∈]0, α/4[ and MSE(Fn(x)) ∈
GS(−α) if a ∈ [α/4, 1[. Then to minimize the MSE of Fn, the parameter a must be

chosen in the interval [α/4, 1[. Therefore, we shall focus the comparison on MSE, when

a ∈ [α/4, 1[. We have G(ξ)γn + o(γn) ∈ GS(−α). Moreover, if a ∈ [α/4, α/3[,

O(m−4
n ) ∈ GS(−4a). If a = α/3, G(ξ)γn + O(γnm

−1
n ) + O(m−4

n ) ∈ GS(−4/3α) and

if a ∈]α/3, 1[, O(γnm−1
n ) ∈ GS(−(a + α)). It follows that, for a given α ∈]1/2, 1], to

minimize the MSE(Fn(x)), the parameter a must be chosen equal to α/3 and α = 1. In

other words, to minimize the MSE of Fn, the stepsize (γn) must be chosen in GS(−1)

and the degree (mn) in GS(1/3).
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6.6.3 Proof of Proposition 6.3

To prove Proposition 6.3, we shall use the following lemma, which will be proved later.

Lemma 6.2. If a ≥ α
4
, then

γ−1/2
n [Fn(x)− E(Fn(x))]

L→ N
(
0,

σ2(x)

2− αξ

)
.

We have γ−1/2
n (Fn(x)−F (x)) = γ

−1/2
n [Fn(x)−E(Fn(x))]+γ

−1/2
n [E(Fn(x))−F (x)].

If lim
n→∞

γ−1
n m−4

n = 0, then a ≥ α/4. In the case α/4 ≤ a ≤ α/3, Proposition 6.3 follows

from lemma 6.3. In the case α/3 < a < 1, Proposition 6.3 follows from Equation (6.3.2)

and lemma 6.3.

Proof: [Proof of lemma 6.2] Let a ≥ α/4. Relying on equation (6.1.3), we have

Fn(x)− E(Fn(x)) = (1− γn)[Fn−1(x)− E(Fn−1(x))] + γn[Zn(x)− E(Zn(x))]

= Πn

n∑

k=1

Π−1
k γk[Zk(x)− E(Zk(x))].

Set Rk(x) = Π−1
k γk[Zk(x)− E(Zk(x))] and τ 2n =

n∑

k=1

V ar(Rk(x)). Then,

Fn(x)− E(Fn(x)) = Πn

n∑

k=1

Rk(x) and τ 2n =

n∑

k=1

Π−2
k γ2kV ar(Zk(x)).

Resting upon equation (6.6.3), we get τ 2n =
n∑

k=1

Π−2
k γ2k(σ

2(x) + o(1). As in the case a ≥

α/4, an application of Lemma 6.1 ensures that

τ 2n = Π−2
n Π2

n

n∑

k=1

Π−2
k γ2k [σ

2(x) + o(1)]

= Π−2
n γn

[
1

2− αξ
σ2(x) + o(1)

]
.

On the other side, we have for all p > 0, E(| Zk(x) |2+p) = O(1). It follows that

n∑

k=1

E
[
| Rk(x) |p+2

]
= O

(
n∑

k=1

Π−2−p
k γ2+p

k E
(
| Zk(x) |2+p

)
)

= O

(
n∑

k=1

Π−2−p
k γ2+p

k

)
.
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Since lim
n→∞

nγn > α/2, then there exists p > 0 such that lim
n→+∞

nγn >
1+p
2+p

α. An application

of Lemma 6.1 yields

n∑

k=1

E
[
| Rk(x) |p+2

]
= O

(
γp+1
n Π−(2+p)

n

)
.

We, thus, obtain

1

τ 2+p
n

n∑

k=1

E
[
| Rk(x) |2+p

]
=

1

γ
1+

p
2

n

Π2+p
n

(
1

2−αξ
σ2(x) + o(1)

)1+ p
2

O
(
γp+1
n Π−(2+p)

n

)

=
1

(
1

2−αξ
σ2(x) + o(1)

)1+ p
2

O(γ
p
2
n ) = O(γ

p
2
n ) = o(1).

Hence, Lemma 6.2 follows from the application of Lyapounov’s theorem.
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Chapter 7

Conclusion and perspectives

The manuscript proposed new nonparametric estimation techniques to deal with the prob-

lem of edge effect. The aim of first contribution was to build a new semi parametric

structure to estimate a density function. Indeed, we proposed a shrinkage estimator of a

density function based on the Bernstein polynomial and using a finite Mixture Gaussian

model. The asymptotic properties of this estimator were established. Afterwards, we

demonstrated the effectiveness of the proposed method using some simulated and real

data.

In the second contribution, we investigated a recursive nonparametric regression

estimator to overcome the edge estimation problem based on Bernstein polynomials and

stochastic algorithm with two-time-scale. The proposed estimator asymptotically follows

normal distribution. Moreover, our proposed estimators attained the asymptotic conver-

gence rate O(n−4/5) within the interval (0, 1) and O(n−2/3) near the edges {0, 1}.
In third contribution, we introduced an estimator of the distribution function us-

ing Lagrange polynomials and Tchebytchev-Gauss points. We argued that the proposed

estimator asymptotically dominates the Bernstein estimator in terms of bias. Through

a simulation study and a simple data set examples, we have demonstrated the proposed

estimator is quite promising and interesting as it behaves well when compared with both

the Bernstein estimator and the Gaussian kernel estimator.

In our last work, we elaborated a recursive distribution estimator using Lagrange

polynomial with Tchebytchev-Gauss points. Using the proposed recursive estimator, we

can get better results than those obtained by the previous non recursive estimator, the

recursive kernel approach and the recursive Bernstein estimator, with an appropriate

choice of the stepsize (γn) and the order (mn). In addition, a major advantage of the

proposed estimator, lies in the fact that its up date, when new sample points are available,
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requires less computational cost than the non recursive estimator.

Our current work revolves around these axes:

⋆ The first axis consists on studying the following estimation of density function base

on the the Lagrange polynomial and Tchebytchev-Gauss points, defined as follows:

f̃n,m(x) =
m∑

i=1

m∑

j=1,j 6=i

Fn(xi)

xi − xj

m∏

k=1,k 6=(i,j)

x− xk
xi − xk

,

where Fn is the empirical distribution function and for all i = 1 . . .m, xi are the

Tchebytchev-Gauss points.

⋆ The second axis consists on studying the following estimation of regression function

base on the the Lagrange polynomial and Tchebytchev-Gauss points, defined as

follows:

r̃n,m(x) =

m∑
i=1

Yi
m∑
k=1

1Xi≤xk




m∑
j=0
j 6=k

1
xk−xj

m∏
h=0

h 6=(j,k)

x−xh

xk−xh




m∑
i=1

m∑
k=1

1Xi≤xk




m∑
j=0
j 6=k

1
xk−xj

m∏
h=0

h 6=(j,k)

x−xh

xk−xh




.

⋆ An other direction in progress is to study a recursive conditional distribution esti-

mator using Bernstein polynomials and kernel method defined as follows:

Fx,n(y) =

{
an(x,y)
fn(x)

, if fn(x) 6= 0,

0, otherwise,

where for any x ∈ R and y ∈ [0, 1],

an(x, y) = (1− βn)an−1(x, y) + βnh
−1
n K

(
x−Xn

hn

) mn∑

k=0

1{Yn≤k/mn}bk,mn(y),

and for any x ∈ R,

fn(x) = (1− γn)fn−1(x) + γnh
−1
n K

(
x−Xn

hn

)
,

with (γn) and (βn) sequences of positive real numbers there go to zero. We let

Qn =
∏n

i=1(1− βi), Πn =
∏n

i=1(1− γi) and (a0(x, y), f0(x)) = (0, 0).
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At this stage of analysis, we would assert that our research work is a step that may

be extended, built upon and taken further as it lays the ground and paves the way for

constructive and fruitful applications. In future research, we may study the following

points:

- Applying Lagrange polynomials to estimate the pairwise comparison function.

- Explore the possibility to consider Lagrange polynomial and Tchebytchev-Gauss

points in the case of censored data, it is also possible to explore the case of functional

data.

- Extend our proposal in Bayesian non parametric estimation framework.
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