Identification of the derivative order in fractional differential equations

Abdallah El Hamidi
La Rochelle Université
Jointly with Ali Tfayli (PhD student)

Algorithmes Stochastiques et Applications - LMA Poitiers

Table of contents

(1) Introduction
(2) Identification of the derivative order in fractional differential equations
(3) Numerical results

Table of contents

(1) Introduction
(2) Identification of the derivative order in fractional differential equations
(3) Numerical results

Table of contents

(1) Introduction
(2) Identification of the derivative order in fractional differential equations
(3) Numerical results

- $\left(T_{n}\right)_{n \geq 1}$: positive iid random waiting times having a pdf $\psi(t), \quad t>0$. - $\left(X_{n}\right)_{n>1}$: iid random jumps having a pdf $w(x), x \in \mathbb{R}$.
- Setting $t_{0}:=0$,

- The wandering particle
- Hypothesis : $\left(T_{n}\right)_{n \geq 1}$ and $\left(X_{n}\right)_{n>1}$ are independent.
- $\left(T_{n}\right)_{n \geq 1}$: positive iid random waiting times having a pdf $\psi(t), t>0$.
- $\left(X_{n}\right)_{n \geq 1}$: iid random jumps having a pdf $w(x), \quad x \in \mathbb{R}$.
- Setting $t_{0}:=0$,

- The wandering particle
- Hypothesis: $\left(T_{n}\right)_{n \geq 1}$ and $\left(X_{n}\right)_{n \geq 1}$ are independent.
- $\left(T_{n}\right)_{n \geq 1}$: positive iid random waiting times having a pdf $\psi(t), \quad t>0$.
- $\left(X_{n}\right)_{n \geq 1}$: iid random jumps having a pdf $w(x), \quad x \in \mathbb{R}$.
- Setting $t_{0}:=0, \quad t_{n}:=\sum_{k=1}^{n} T_{k}$.
- The wandering particle
- Hypothesis: $\left(T_{n}\right)_{n \geq 1}$ and $\left(X_{n}\right)_{n \geq 1}$ are independent.
- $\left(T_{n}\right)_{n \geq 1}$: positive iid random waiting times having a pdf $\psi(t), t>0$.
- $\left(X_{n}\right)_{n \geq 1}$: iid random jumps having a pdf $w(x), \quad x \in \mathbb{R}$.
- Setting $t_{0}:=0, \quad t_{n}:=\sum_{k=1}^{n} T_{k}$.
- The wandering particle :

- Hypothesis: $\left(T_{n}\right)_{n \geq 1}$ and $\left(X_{n}\right)_{n \geq 1}$ are independent.
- $\left(T_{n}\right)_{n \geq 1}$: positive iid random waiting times having a pdf $\psi(t), t>0$.
- $\left(X_{n}\right)_{n \geq 1}$: iid random jumps having a pdf $w(x), \quad x \in \mathbb{R}$.
- Setting $t_{0}:=0, \quad t_{n}:=\sum_{k=1}^{n} T_{k}$.
- The wandering particle :
- Starts at point $x=0$ in instant $t=0$.

- $\left(T_{n}\right)_{n \geq 1}$: positive iid random waiting times having a pdf $\psi(t), t>0$.
- $\left(X_{n}\right)_{n \geq 1}$: iid random jumps having a pdf $w(x), \quad x \in \mathbb{R}$.
- Setting $t_{0}:=0, \quad t_{n}:=\sum_{k=1}^{n} T_{k}$.
- The wandering particle :
- Starts at point $x=0$ in instant $t=0$.
- Makes a jump X_{n} in instant t_{n}.
- Hypothesis: $\left(T_{n}\right)_{n \geq 1}$ and $\left(X_{n}\right)_{n \geq 1}$ are independent.
- $\left(T_{n}\right)_{n \geq 1}$: positive iid random waiting times having a pdf $\psi(t), \quad t>0$.
- $\left(X_{n}\right)_{n \geq 1}$: iid random jumps having a pdf $w(x), \quad x \in \mathbb{R}$.
- Setting $t_{0}:=0, \quad t_{n}:=\sum_{k=1}^{n} T_{k}$.
- The wandering particle :
- Starts at point $x=0$ in instant $t=0$.
- Makes a jump X_{n} in instant t_{n}.
- $x=0$ for $0 \leq t<T_{1}=t_{1}$.
- Hypothesis: $\left(T_{n}\right)_{n \geq 1}$ and $\left(X_{n}\right)_{n \geq 1}$ are independent.
- $\left(T_{n}\right)_{n \geq 1}$: positive iid random waiting times having a pdf $\psi(t), t>0$.
- $\left(X_{n}\right)_{n \geq 1}$: iid random jumps having a pdf $w(x), \quad x \in \mathbb{R}$.
- Setting $t_{0}:=0, \quad t_{n}:=\sum_{k=1}^{n} T_{k}$.
- The wandering particle :
- Starts at point $x=0$ in instant $t=0$.
- Makes a jump X_{n} in instant t_{n}.
- $x=0$ for $0 \leq t<T_{1}=t_{1}$.
- $x=\sum_{k=1}^{n} X_{k} \quad$ for $\quad t_{n} \leq t<t_{n+1}$.
- Hypothesis: $\left(T_{n}\right)_{n \geq 1}$ and $\left(X_{n}\right)_{n \geq 1}$ are independent.
- $\left(T_{n}\right)_{n \geq 1}$: positive iid random waiting times having a pdf $\psi(t), t>0$.
- $\left(X_{n}\right)_{n \geq 1}$: iid random jumps having a pdf $w(x), \quad x \in \mathbb{R}$.
- Setting $t_{0}:=0, \quad t_{n}:=\sum_{k=1}^{n} T_{k}$.
- The wandering particle:
- Starts at point $x=0$ in instant $t=0$.
- Makes a jump X_{n} in instant t_{n}.
- $x=0$ for $0 \leq t<T_{1}=t_{1}$.
- $x=\sum_{k=1}^{n} X_{k} \quad$ for $\quad t_{n} \leq t<t_{n+1}$.
- Hypothesis: $\left(T_{n}\right)_{n \geq 1}$ and $\left(X_{n}\right)_{n \geq 1}$ are independent.

Probabilistic arguments \Longrightarrow The master Equation (Montroll \& Weiss, 1965)


```
where
    ब \delta(x) is the Dirac measure.
    - \varphi(t):=1- \int}\mp@subsup{\int}{0}{t}\psi(\tau)d\tau\quad\mathrm{ (Survival probability at the origin)
    - \varphi(t) : the probability that at instant t, the particle is still sitting in x=0.
    - p(x, 0+})=\delta(x)
```

Probabilistic arguments \Longrightarrow The master Equation (Montroll \& Weiss, 1965)

$$
\begin{equation*}
p(x, t)=\delta(x) \varphi(t)+\int_{0}^{t} \psi(t-\tau)\left(\int_{-\infty}^{+\infty} w(x-\xi) p(\xi, \tau) d \xi\right) d \tau \tag{1}
\end{equation*}
$$

where

- $\delta(x)$ is the Dirac measure.
- $\varphi(t):=1-\int_{0}^{t} \psi(\tau) d \tau \quad$ (Survival probability at the origin)
- $\varphi(t)$: the probability that at instant t, the particle is still sitting in $x=0$. - $p\left(x, 0^{+}\right)=\delta(x)$.

Probabilistic arguments \Longrightarrow The master Equation (Montroll \& Weiss, 1965)

$$
\begin{equation*}
p(x, t)=\delta(x) \varphi(t)+\int_{0}^{t} \psi(t-\tau)\left(\int_{-\infty}^{+\infty} w(x-\xi) p(\xi, \tau) d \xi\right) d \tau \tag{1}
\end{equation*}
$$

where

- $\delta(x)$ is the Dirac measure.
- $\varphi(t):=1-\int_{0}^{t} \psi(\tau) d \tau \quad$ (Survival probability at the origin)
- $\varphi(t)$: the probability that at instant t, the particle is still sitting in $x=0$ - $p\left(x, 0^{+}\right)=\delta(x)$.

Probabilistic arguments \Longrightarrow The master Equation (Montroll \& Weiss, 1965)

$$
\begin{equation*}
p(x, t)=\delta(x) \varphi(t)+\int_{0}^{t} \psi(t-\tau)\left(\int_{-\infty}^{+\infty} w(x-\xi) p(\xi, \tau) d \xi\right) d \tau \tag{1}
\end{equation*}
$$

where

- $\delta(x)$ is the Dirac measure.
- $\varphi(t):=1-\int_{0}^{t} \psi(\tau) d \tau \quad$ (Survival probability at the origin).
- $\varphi(t)$: the probability that at instant t, the particle is still sitting in $x=0$. - $p\left(x, 0^{+}\right)=\delta(x)$.

The master equation of Montroll \& Weiss (1965)

Probabilistic arguments \Longrightarrow The master Equation (Montroll \& Weiss, 1965)

$$
\begin{equation*}
p(x, t)=\delta(x) \varphi(t)+\int_{0}^{t} \psi(t-\tau)\left(\int_{-\infty}^{+\infty} w(x-\xi) p(\xi, \tau) d \xi\right) d \tau \tag{1}
\end{equation*}
$$

where

- $\delta(x)$ is the Dirac measure.
- $\varphi(t):=1-\int_{0}^{t} \psi(\tau) d \tau \quad$ (Survival probability at the origin).
- $\varphi(t)$: the probability that at instant t, the particle is still sitting in $x=0$.
- $p\left(x, 0^{+}\right)=\delta(x)$.

Probabilistic arguments \Longrightarrow The master Equation (Montroll \& Weiss, 1965)

$$
\begin{equation*}
p(x, t)=\delta(x) \varphi(t)+\int_{0}^{t} \psi(t-\tau)\left(\int_{-\infty}^{+\infty} w(x-\xi) p(\xi, \tau) d \xi\right) d \tau \tag{1}
\end{equation*}
$$

where

- $\delta(x)$ is the Dirac measure.
- $\varphi(t):=1-\int_{0}^{t} \psi(\tau) d \tau \quad$ (Survival probability at the origin).
- $\varphi(t)$: the probability that at instant t, the particle is still sitting in $x=0$.

Probabilistic arguments \Longrightarrow The master Equation (Montroll \& Weiss, 1965)

$$
\begin{equation*}
p(x, t)=\delta(x) \varphi(t)+\int_{0}^{t} \psi(t-\tau)\left(\int_{-\infty}^{+\infty} w(x-\xi) p(\xi, \tau) d \xi\right) d \tau \tag{1}
\end{equation*}
$$

where

- $\delta(x)$ is the Dirac measure.
- $\varphi(t):=1-\int_{0}^{t} \psi(\tau) d \tau \quad$ (Survival probability at the origin).
- $\varphi(t)$: the probability that at instant t, the particle is still sitting in $x=0$.
- $p\left(x, 0^{+}\right)=\delta(x)$.

Theorem 1 (R. Gorenflo \& F. Mainardi)

Assume that :

- $\psi(t) \sim c_{2} t^{-(\beta+1)}$ as $\quad t \longrightarrow+\infty$, with $\beta \in] 0,1[$.

Then, up to scaling the variables
$t \longleftarrow(\Delta t) \times t$,with $(\Delta x) \alpha=c_{3}(\Delta t)^{\beta}$,
the master equation (1) goes over to the space-time fractional diffusion equation

where the fractional differential operators \mathscr{D}_{t}^{β} and ${ }_{0} D_{1}^{\alpha}$ will be specified.

Theorem 1 (R. Gorenflo \& F. Mainardi)

Assume that :

- $w(x) \sim c_{1}|x|^{-(\alpha+1)} \quad$ as $\quad|x| \longrightarrow+\infty$, with $\left.\quad \alpha \in\right] 0,2[$.
- $\psi(t) \sim c_{2} t^{-(\beta+1)} \quad$ as $\quad t \longrightarrow+\infty$, with $\left.\beta \in\right] 0,1[$.

Then, up to scaling the variables

- $t \longleftarrow(\Delta t) \times t$,
- with $(\Delta r)^{\alpha}=c_{0}(\Delta t)^{\beta}$,
the master equation (1) goes over to the space-time fractional diffusion equation

Theorem 1 (R. Gorenflo \& F. Mainardi)

Assume that :

- $w(x) \sim c_{1}|x|^{-(\alpha+1)} \quad$ as $\quad|x| \longrightarrow+\infty$, with $\left.\quad \alpha \in\right] 0,2[$.
- $\psi(t) \sim c_{2} t^{-(\beta+1)} \quad$ as $\quad t \longrightarrow+\infty$, with $\left.\beta \in\right] 0,1[$.

Then, up to scaling the variables:

- $x \longleftarrow(\Delta x) \times x$,with $(\Delta x)^{\alpha}=c_{3}(\Delta t)^{\beta}$
the master equation (1) goes over to the space-time fractional diffusion equation

Theorem 1 (R. Gorenflo \& F. Mainardi)

Assume that :

- $w(x) \sim c_{1}|x|^{-(\alpha+1)} \quad$ as $\quad|x| \longrightarrow+\infty$, with $\left.\quad \alpha \in\right] 0,2[$.
- $\psi(t) \sim c_{2} t^{-(\beta+1)} \quad$ as $\quad t \longrightarrow+\infty$, with $\left.\beta \in\right] 0,1[$.

Then, up to scaling the variables:

- $x \longleftarrow(\Delta x) \times x$,
- $t \longleftarrow(\Delta t) \times t$,
- with $(\Delta x)^{\alpha}=c_{3}(\Delta t)^{\beta}$,
the master equation (1) goes over to the space-time fractional diffusion equation

Theorem 1 (R. Gorenflo \& F. Mainardi)

Assume that :

- $w(x) \sim c_{1}|x|^{-(\alpha+1)} \quad$ as $\quad|x| \longrightarrow+\infty$, with $\left.\quad \alpha \in\right] 0,2[$.
- $\psi(t) \sim c_{2} t^{-(\beta+1)} \quad$ as $\quad t \longrightarrow+\infty$, with $\left.\beta \in\right] 0,1[$.

Then, up to scaling the variables:

- $x \longleftarrow(\Delta x) \times x$,
- $t \longleftarrow(\Delta t) \times t$,
- with $(\Delta x)^{\alpha}=c_{3}(\Delta t)^{\beta}$,

the master equation (1) goes over to the space-time fractional diffusion equation

Theorem 1 (R. Gorenflo \& F. Mainardi)

Assume that :

- $w(x) \sim c_{1}|x|^{-(\alpha+1)} \quad$ as $\quad|x| \longrightarrow+\infty$, with $\left.\alpha \in\right] 0,2[$.
- $\psi(t) \sim c_{2} t^{-(\beta+1)} \quad$ as $t \longrightarrow+\infty$, with $\left.\beta \in\right] 0,1[$.

Then, up to scaling the variables:

- $x \longleftarrow(\Delta x) \times x$,
- $t \longleftarrow(\Delta t) \times t$,
- with $(\Delta x)^{\alpha}=c_{3}(\Delta t)^{\beta}$,
the master equation (1) goes over to the space-time fractional diffusion equation :

From Master Equation to Fractional Differential Equations

Theorem 1 (R. Gorenflo \& F. Mainardi)

Assume that :

- $w(x) \sim c_{1}|x|^{-(\alpha+1)} \quad$ as $\quad|x| \longrightarrow+\infty$, with $\left.\alpha \in\right] 0,2[$.
- $\psi(t) \sim c_{2} t^{-(\beta+1)} \quad$ as $t \longrightarrow+\infty$, with $\left.\beta \in\right] 0,1[$.

Then, up to scaling the variables:

- $x \longleftarrow(\Delta x) \times x$,
- $t \longleftarrow(\Delta t) \times t$,
- with $(\Delta x)^{\alpha}=c_{3}(\Delta t)^{\beta}$,
the master equation (1) goes over to the space-time fractional diffusion equation :

$$
\left\{\begin{array}{l}
\mathscr{D}_{t}^{\beta} p(x, t)-{ }_{0} D_{1}^{\alpha} p(x, t)=0, \quad 0<\alpha<2, \quad 0<\beta<1, \\
u\left(x, 0^{+}\right)=\delta(x), \quad x \in \mathbb{R}, \quad t>0,
\end{array}\right.
$$

where the fractional differential operators \mathscr{D}_{t}^{β} and ${ }_{0} D_{1}^{\alpha}$ will be specified.

Definitions and notations

Let $u:[a, b] \rightarrow \mathbb{R}$, an integrable function, $\alpha>0$.
Definition 2 (Riemann-Liouville's fractional integral and derivative)
(1) The left and right sided Riemann-Liouville fractional integrals of order α

(2) The left and right sided Riemann-Liouville fractional derivatives of order α

where Γ is the Euler's Gamma function and $n=[\alpha]+1$.

Definitions and notations

Let $u:[a, b] \rightarrow \mathbb{R}$, an integrable function, $\alpha>0$.
Definition 2 (Riemann-Liouville's fractional integral and derivative)
(1) The left and right sided Riemann-Liouville fractional integrals of order α :

$$
\left\{\begin{aligned}
{ }_{a} I^{\alpha} u(x) & =\frac{1}{\Gamma(\alpha)} \int_{a}^{x} \frac{u(t)}{(x-t)^{1-\alpha}} d t \\
I_{b}^{\alpha} u(x) & =\frac{1}{\Gamma(\alpha)} \int_{x}^{b} \frac{u(t)}{(t-x)^{1-\alpha}} d t
\end{aligned}\right.
$$

2) The left and right sided Riemann-Liouville fractional derivatives of order α

[^0]
DEFINITIONS AND NOTATIONS

Let $u:[a, b] \rightarrow \mathbb{R}$, an integrable function, $\alpha>0$.

Definition 2 (Riemann-Liouville's fractional integral and derivative)

(1) The left and right sided Riemann-Liouville fractional integrals of order α :

$$
\left\{\begin{aligned}
{ }_{a} I^{\alpha} u(x) & =\frac{1}{\Gamma(\alpha)} \int_{a}^{x} \frac{u(t)}{(x-t)^{1-\alpha}} d t \\
I_{b}^{\alpha} u(x) & =\frac{1}{\Gamma(\alpha)} \int_{x}^{b} \frac{u(t)}{(t-x)^{1-\alpha}} d t
\end{aligned}\right.
$$

(2) The left and right sided Riemann-Liouville fractional derivatives of order α :

$$
\left\{\begin{aligned}
{ }_{a} D^{\alpha} u(x) & =\frac{d^{n}}{d x^{n}}\left[{ }_{a} I^{n-\alpha} u(x)\right] \\
D_{b}^{\alpha} u(x) & =(-1)^{n} \frac{d^{n}}{d x^{n}}\left[I_{b}^{n-\alpha} u(x)\right]
\end{aligned}\right.
$$

DEFINITIONS AND NOTATIONS

Let $u:[a, b] \rightarrow \mathbb{R}$, an integrable function, $\alpha>0$.

Definition 2 (Riemann-Liouville's fractional integral and derivative)

(1) The left and right sided Riemann-Liouville fractional integrals of order α :

$$
\left\{\begin{aligned}
{ }_{a} I^{\alpha} u(x) & =\frac{1}{\Gamma(\alpha)} \int_{a}^{x} \frac{u(t)}{(x-t)^{1-\alpha}} d t \\
I_{b}^{\alpha} u(x) & =\frac{1}{\Gamma(\alpha)} \int_{x}^{b} \frac{u(t)}{(t-x)^{1-\alpha}} d t
\end{aligned}\right.
$$

(2) The left and right sided Riemann-Liouville fractional derivatives of order α :

$$
\left\{\begin{aligned}
{ }_{a} D^{\alpha} u(x) & =\frac{d^{n}}{d x^{n}}\left[{ }_{a} I^{n-\alpha} u(x)\right] \\
D_{b}^{\alpha} u(x) & =(-1)^{n} \frac{d^{n}}{d x^{n}}\left[I_{b}^{n-\alpha} u(x)\right]
\end{aligned}\right.
$$

where Γ is the Euler's Gamma function and $n=[\alpha]+1$.

For $0<\alpha<1$, we get :

- ${ }_{a} D^{\alpha} u(x)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{a}^{x} \frac{u(t)}{(x-t)^{\alpha}} d t\right)$.
- $D_{b}^{\alpha} u(x)=\frac{-1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{x}^{b} \frac{u(t)}{(t-x)^{\alpha}} d t\right)$.

By permuting the operators $\frac{d^{n}}{d x^{n}}$ and I^{n-a}, we obtain

Definition 3 (Caputo's fractional derivative)

- Left-sided Canuto fractional derivative : $a^{Q^{\alpha}} u(x)=a I^{n-a} u^{(n)}(x)$,
- Right-sided Caputo fractional derivative : $\mathscr{D}_{b}^{\alpha} u(x)=(-1)^{n} I_{b}^{n-\alpha} u^{(n)}(x)$.

For $0<\alpha<1$, we get :

- ${ }_{a} D^{\alpha} u(x)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{a}^{x} \frac{u(t)}{(x-t)^{\alpha}} d t\right)$.
- $D_{b}^{\alpha} u(x)=\frac{-1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{x}^{b} \frac{u(t)}{(t-x)^{\alpha}} d t\right)$

By permuting the operators $\frac{d^{n}}{d x^{n}}$ and $I^{n-\alpha}$, we obtain

Definition 3 (Caputo's fractional derivative)

- Left-sided Caputo fractional derivative : $a_{\mathscr{D}^{\alpha}} u(x)={ }_{a} I^{n-\alpha} u^{(n)}(x)$,
- Right-sided Caputo fractional derivative : $\mathscr{D}_{b}^{\alpha} u(x)=(-1)^{n} I_{b}^{n-\alpha} u^{(n)}(x)$.

For $0<\alpha<1$, we get :

- ${ }_{a} D^{\alpha} u(x)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{a}^{x} \frac{u(t)}{(x-t)^{\alpha}} d t\right)$.
- $D_{b}^{\alpha} u(x)=\frac{-1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{x}^{b} \frac{u(t)}{(t-x)^{\alpha}} d t\right)$.

By permuting the operators $\frac{d^{n}}{d x^{n}}$ and $I^{n-\alpha}$, we obtain

Definition 3 (Caputo's fractional derivative)

- Left-sided Canuto fractional derivative
- Right-sided Caputo fractional derivative : $\mathscr{D}_{b}^{\alpha} u(x)=(-1)^{n} I_{b}^{n-\alpha} u^{(n)}(x)$.

For $0<\alpha<1$, we get :

- ${ }_{a} D^{\alpha} u(x)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{a}^{x} \frac{u(t)}{(x-t)^{\alpha}} d t\right)$.
- $D_{b}^{\alpha} u(x)=\frac{-1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{x}^{b} \frac{u(t)}{(t-x)^{\alpha}} d t\right)$.

By permuting the operators $\frac{d^{n}}{d x^{n}}$ and $I^{n-\alpha}$, we obtain :

Definition 3 (Caputo's fractional derivative)

- Left-sided Caputo fractional derivative
- Right-sided Caputo fractional derivative : $\mathscr{D}_{b}^{\alpha} u(x)=(-1)^{n} I_{b}^{n-\alpha} u^{(n)}(x)$.

For $0<\alpha<1$, we get :

- ${ }_{a} D^{\alpha} u(x)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{a}^{x} \frac{u(t)}{(x-t)^{\alpha}} d t\right)$.
- $D_{b}^{\alpha} u(x)=\frac{-1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{x}^{b} \frac{u(t)}{(t-x)^{\alpha}} d t\right)$.

By permuting the operators $\frac{d^{n}}{d x^{n}}$ and $I^{n-\alpha}$, we obtain:
Definition 3 (Caputo's fractional derivative)

- Left-sided Caputo fractional derivative : ${ }_{a} \mathscr{D}^{\alpha} u(x)={ }_{a} I^{n-\alpha} u^{(n)}(x)$,
- Right-sided Caputo fractional derivative

For $0<\alpha<1$, we get :

- ${ }_{a} D^{\alpha} u(x)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{a}^{x} \frac{u(t)}{(x-t)^{\alpha}} d t\right)$.
- $D_{b}^{\alpha} u(x)=\frac{-1}{\Gamma(1-\alpha)} \frac{d}{d x}\left(\int_{x}^{b} \frac{u(t)}{(t-x)^{\alpha}} d t\right)$.

By permuting the operators $\frac{d^{n}}{d x^{n}}$ and $I^{n-\alpha}$, we obtain:

Definition 3 (Caputo's fractional derivative)

- Left-sided Caputo fractional derivative : ${ }_{a} \mathscr{D}^{\alpha} u(x)={ }_{a} I^{n-\alpha} u^{(n)}(x)$,
- Right-sided Caputo fractional derivative : $\mathscr{D}_{b}^{\alpha} u(x)=(-1)^{n} I_{b}^{n-\alpha} u^{(n)}(x)$.

Identification of the derivative order in fractional differential equations

Consider the boundary value problem

$$
\left\{\begin{array}{l}
\left.-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} u(x)\right]=f(x), x \in \Omega=\right] a, b[\tag{2}\\
u(a)=u(b)=0
\end{array}\right.
$$

- $0<\alpha<1,0 \leq \theta \leq 1$.
- The source term $f \in L^{2}(\Omega)$.
- The diffusivity function $k \in C^{1}(\bar{\Omega})$ is positive.
- $D_{x}^{\alpha, \theta} u=\theta{ }_{a} D_{x}^{\alpha} u+(1-\theta){ }_{x} D_{b}^{\alpha} u$.

Question : Can we find α if we have a measure of the solution of (2) ?

Consider the boundary value problem :

$$
\left\{\begin{array}{l}
\left.-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} u(x)\right]=f(x), x \in \Omega=\right] a, b[\tag{2}\\
u(a)=u(b)=0
\end{array}\right.
$$

- $0<\alpha<1,0 \leq \theta \leq 1$
- The source term $f \in I^{2}(\Omega)$
- The diffusivity function $k \in C^{1}(\Omega)$ is positive
- $D_{x}^{\alpha, \theta} u=\theta{ }_{a} D_{x}^{\alpha} u+(1-\theta){ }_{x} D_{b}^{\alpha} u$.

Question : Can we find α if we have a measure of the solution of (2) ?

Consider the boundary value problem :

$$
\left\{\begin{array}{l}
\left.-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} u(x)\right]=f(x), x \in \Omega=\right] a, b[\tag{2}\\
u(a)=u(b)=0
\end{array}\right.
$$

- The source term $f \in L^{2}(\Omega)$.
- The diffusivity function $k \in C^{1}(\bar{\Omega})$ is positive
\qquad

Question : Can we find α if we have a measure of the solution of (2) ?

Identification of the derivative order in fractional differential equations

Consider the boundary value problem :

$$
\left\{\begin{array}{l}
\left.-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} u(x)\right]=f(x), x \in \Omega=\right] a, b[\tag{2}\\
u(a)=u(b)=0
\end{array}\right.
$$

- The source term
- The diffusivity function $k \in C^{1}(\Omega)$ is positive

Question : Can we find α if we have a measure of the solution of (2) ?

Consider the boundary value problem :

$$
\left\{\begin{array}{l}
\left.-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} u(x)\right]=f(x), x \in \Omega=\right] a, b[\tag{2}\\
u(a)=u(b)=0
\end{array}\right.
$$

- $0<\alpha<1,0 \leq \theta \leq 1$.
- The source term
- The diffusivity function $k \in C^{1}(\bar{\Omega})$ is positive.
- $D^{\alpha, \theta} u=A \quad D^{\alpha} u+(1-\theta) \quad D^{\alpha_{u}}$.

Question : Can we find α if we have a measure of the solution of (2)?

Consider the boundary value problem :

$$
\left\{\begin{array}{l}
\left.-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} u(x)\right]=f(x), x \in \Omega=\right] a, b[\tag{2}\\
u(a)=u(b)=0
\end{array}\right.
$$

- $0<\alpha<1,0 \leq \theta \leq 1$.
- The source term $f \in L^{2}(\Omega)$.
- The diffusivity function $k \in C^{1}(\Omega)$ is positive.
- $D_{x}^{\alpha, \theta} u=\theta{ }_{a} D_{x}^{\alpha} u+(1-\theta){ }_{x} D_{b}^{\alpha} u$.

Question : Can we find α if we have a measure of the solution of (2)?

Consider the boundary value problem :

$$
\left\{\begin{array}{l}
\left.-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} u(x)\right]=f(x), x \in \Omega=\right] a, b[\tag{2}\\
u(a)=u(b)=0
\end{array}\right.
$$

- $0<\alpha<1,0 \leq \theta \leq 1$.
- The source term $f \in L^{2}(\Omega)$.
- The diffusivity function $k \in C^{1}(\bar{\Omega})$ is positive.
- $D_{x}^{\alpha, \theta} u=\theta{ }_{a} D_{x}^{\alpha} u+(1-\theta){ }_{x} D_{b}^{\alpha} u$.

Question : Can we find α if we have a measure of the solution of (2) ?

Consider the boundary value problem :

$$
\left\{\begin{array}{l}
\left.-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} u(x)\right]=f(x), x \in \Omega=\right] a, b[\tag{2}\\
u(a)=u(b)=0
\end{array}\right.
$$

- $0<\alpha<1,0 \leq \theta \leq 1$.
- The source term $f \in L^{2}(\Omega)$.
- The diffusivity function $k \in C^{1}(\bar{\Omega})$ is positive.
- $D_{x}^{\alpha, \theta} u=\theta{ }_{a} D_{x}^{\alpha} u+(1-\theta){ }_{x} D_{b}^{\alpha} u$.

Question : Can we find α if we have a measure of the solution of (2) ?

Identification of the derivative order in fractional differential equations

Consider the boundary value problem :

$$
\left\{\begin{array}{l}
\left.-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} u(x)\right]=f(x), x \in \Omega=\right] a, b[\tag{2}\\
u(a)=u(b)=0
\end{array}\right.
$$

- $0<\alpha<1,0 \leq \theta \leq 1$.
- The source term $f \in L^{2}(\Omega)$.
- The diffusivity function $k \in C^{1}(\bar{\Omega})$ is positive.
- $D_{x}^{\alpha, \theta} u=\theta{ }_{a} D_{x}^{\alpha} u+(1-\theta){ }_{x} D_{b}^{\alpha} u$.

Question : Can we find α if we have a measure of the solution of (2) ?

To this end, we introduce the quadratic cost function :

$$
J(\alpha):=\frac{1}{2} \int_{\Omega}\left[u_{\alpha}(x)-z(x)\right]^{2} d x
$$

```
where
    - ua : the solution of the BVP ((2)).
    - z : an experimental measure of the the exact solution.
To perform a descent method, we have to compute
```


- $J^{\prime}(\alpha)$

The cost function

To this end, we introduce the quadratic cost function :

$$
\begin{equation*}
J(\alpha):=\frac{1}{2} \int_{\Omega}\left[u_{\alpha}(x)-z(x)\right]^{2} d x, \tag{3}
\end{equation*}
$$

where

- \because : the solution of the BVP ((2)).
- z : an experimental measure of the the exact solution.

To perform a descent method, we have to compute

- $J^{\prime}(\alpha)$

The cost function

To this end, we introduce the quadratic cost function :

$$
\begin{equation*}
J(\alpha):=\frac{1}{2} \int_{\Omega}\left[u_{\alpha}(x)-z(x)\right]^{2} d x \tag{3}
\end{equation*}
$$

where:

- u_{α} : the solution of the BVP ((2)).
- z : an experimental measure of the the exact solution.

To perform a descent method, we have to compute

- $J^{\prime}(\alpha)$

The cost function

To this end, we introduce the quadratic cost function :

$$
\begin{equation*}
J(\alpha):=\frac{1}{2} \int_{\Omega}\left[u_{\alpha}(x)-z(x)\right]^{2} d x, \tag{3}
\end{equation*}
$$

where :

- u_{α} : the solution of the BVP ((2)).
- z : an experimental measure of the the exact solution.

To perform a descent method, we have to compute

- $J^{\prime}(\alpha)$

The cost function

To this end, we introduce the quadratic cost function :

$$
\begin{equation*}
J(\alpha):=\frac{1}{2} \int_{\Omega}\left[u_{\alpha}(x)-z(x)\right]^{2} d x \tag{3}
\end{equation*}
$$

where:

- u_{α} : the solution of the BVP ((2)).
- z : an experimental measure of the the exact solution.

To perform a descent method, we have to compute

- $J^{\prime}(\alpha)$

The cost function

To this end, we introduce the quadratic cost function :

$$
\begin{equation*}
J(\alpha):=\frac{1}{2} \int_{\Omega}\left[u_{\alpha}(x)-z(x)\right]^{2} d x \tag{3}
\end{equation*}
$$

where:

- u_{α} : the solution of the BVP ((2)).
- z : an experimental measure of the the exact solution.

To perform a descent method, we have to compute

The cost function

To this end, we introduce the quadratic cost function :

$$
\begin{equation*}
J(\alpha):=\frac{1}{2} \int_{\Omega}\left[u_{\alpha}(x)-z(x)\right]^{2} d x \tag{3}
\end{equation*}
$$

where:

- u_{α} : the solution of the BVP ((2)).
- z : an experimental measure of the the exact solution.

To perform a descent method, we have to compute

- $\frac{d u_{\alpha}}{d \alpha}$

The cost function

To this end, we introduce the quadratic cost function :

$$
\begin{equation*}
J(\alpha):=\frac{1}{2} \int_{\Omega}\left[u_{\alpha}(x)-z(x)\right]^{2} d x \tag{3}
\end{equation*}
$$

where:

- u_{α} : the solution of the BVP ((2)).
- z : an experimental measure of the the exact solution.

To perform a descent method, we have to compute

- $\frac{d u_{\alpha}}{d \alpha}$
- $J^{\prime}(\alpha)$

Main Result

Theorem 4

Let u_{α} be the solution of (2). Then is the solution to the following BVP

$$
\left\{\begin{array}{l}
-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} w\right]=\frac{d}{d x}\left[k(x) \widehat{D}_{x}^{\alpha, \theta} u_{\alpha}\right], x \in \Omega=(a, b), \\
w(a)=w(b)=0,
\end{array}\right.
$$

with
$\widehat{D}_{x}^{\alpha, \theta} u_{\alpha}=\theta_{a} \widehat{D}^{\alpha} u_{\alpha}+(1-\theta) \widehat{D}_{b}^{\alpha} u_{\alpha,} \quad$ where

$$
\widehat{D}_{b}^{\alpha} u_{\alpha}=\frac{d}{d x}\left[\int_{x}^{b} \frac{(t-x)^{-\alpha}}{\Gamma(1-\alpha)} \ln \left(\frac{1}{t-x}\right) u_{\alpha}(t) d t\right]+\frac{\Gamma^{\prime}(1-\alpha)}{\Gamma(1-\alpha)} D_{b}^{\alpha} u_{\alpha} .
$$

Moreover,

Main Result

Theorem 4

Let u_{α} be the solution of (2). Then $\frac{d u_{\alpha}}{d \alpha}$ is the solution to the following BVP

Moreover,

Main Result

Theorem 4

Let u_{α} be the solution of (2). Then $\frac{d u_{\alpha}}{d \alpha}$ is the solution to the following BVP

$$
\left\{\begin{array}{l}
-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} w\right]=\frac{d}{d x}\left[k(x) \widehat{D}_{x}^{\alpha, \theta} u_{\alpha}\right], x \in \Omega=(a, b) \tag{4}\\
w(a)=w(b)=0
\end{array}\right.
$$

Moreover,

Main Result

Theorem 4

Let u_{α} be the solution of (2). Then $\frac{d u_{\alpha}}{d \alpha}$ is the solution to the following BVP

$$
\left\{\begin{array}{l}
-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} w\right]=\frac{d}{d x}\left[k(x) \widehat{D}_{x}^{\alpha, \theta} u_{\alpha}\right], x \in \Omega=(a, b) \tag{4}\\
w(a)=w(b)=0
\end{array}\right.
$$

with $\widehat{D}_{x}^{\alpha, \theta} u_{\alpha}=\theta{ }_{a} \widehat{D}^{\alpha} u_{\alpha}+(1-\theta) \widehat{D}_{b}^{\alpha} u_{\alpha}, \quad$ where:

Moreover,

Main Result

Theorem 4

Let u_{α} be the solution of (2). Then $\frac{d u_{\alpha}}{d \alpha}$ is the solution to the following BVP

$$
\left\{\begin{array}{l}
-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} w\right]=\frac{d}{d x}\left[k(x) \widehat{D}_{x}^{\alpha, \theta} u_{\alpha}\right], x \in \Omega=(a, b) \tag{4}\\
w(a)=w(b)=0
\end{array}\right.
$$

with $\widehat{D}_{x}^{\alpha, \theta} u_{\alpha}=\theta{ }_{a} \widehat{D}^{\alpha} u_{\alpha}+(1-\theta) \widehat{D}_{b}^{\alpha} u_{\alpha}$, where:

$$
\left\{\begin{array}{l}
a \widehat{D}^{\alpha} u_{\alpha}=\frac{d}{d x}\left[\int_{a}^{x} \frac{(x-t)^{-\alpha}}{\Gamma(1-\alpha)} \ln \left(\frac{1}{x-t}\right) u_{\alpha}(t) d t\right]+\frac{\Gamma^{\prime}(1-\alpha)}{\Gamma(1-\alpha)}{ }_{a} D^{\alpha} u_{\alpha}, \\
\widehat{D}_{b}^{\alpha} u_{\alpha}=\frac{d}{d x}\left[\int_{x}^{b} \frac{(t-x)^{-\alpha}}{\Gamma(1-\alpha)} \ln \left(\frac{1}{t-x}\right) u_{\alpha}(t) d t\right]+\frac{\Gamma^{\prime}(1-\alpha)}{\Gamma(1-\alpha)} D_{b}^{\alpha} u_{\alpha} .
\end{array}\right.
$$

Moreover,

Main Result

Theorem 4

Let u_{α} be the solution of (2). Then $\frac{d u_{\alpha}}{d \alpha}$ is the solution to the following BVP

$$
\left\{\begin{array}{l}
-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} w\right]=\frac{d}{d x}\left[k(x) \widehat{D}_{x}^{\alpha, \theta} u_{\alpha}\right], x \in \Omega=(a, b) \\
w(a)=w(b)=0
\end{array}\right.
$$

with $\widehat{D}_{x}^{\alpha, \theta} u_{\alpha}=\theta_{a} \widehat{D}^{\alpha} u_{\alpha}+(1-\theta) \widehat{D}_{b}^{\alpha} u_{\alpha}$, where :

$$
\left\{\begin{array}{l}
{ }_{a} \widehat{D}^{\alpha} u_{\alpha}=\frac{d}{d x}\left[\int_{a}^{x} \frac{(x-t)^{-\alpha}}{\Gamma(1-\alpha)} \ln \left(\frac{1}{x-t}\right) u_{\alpha}(t) d t\right]+\frac{\Gamma^{\prime}(1-\alpha)}{\Gamma(1-\alpha)}{ }_{a} D^{\alpha} u_{\alpha} \\
\widehat{D}_{b}^{\alpha} u_{\alpha}=\frac{d}{d x}\left[\int_{x}^{b} \frac{(t-x)^{-\alpha}}{\Gamma(1-\alpha)} \ln \left(\frac{1}{t-x}\right) u_{\alpha}(t) d t\right]+\frac{\Gamma^{\prime}(1-\alpha)}{\Gamma(1-\alpha)} D_{b}^{\alpha} u_{\alpha} .
\end{array}\right.
$$

Moreover,

Main Result

Theorem 4

Let u_{α} be the solution of (2). Then $\frac{d u_{\alpha}}{d \alpha}$ is the solution to the following BVP

$$
\left\{\begin{array}{l}
-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} w\right]=\frac{d}{d x}\left[k(x) \widehat{D}_{x}^{\alpha, \theta} u_{\alpha}\right], x \in \Omega=(a, b) \tag{4}\\
w(a)=w(b)=0
\end{array}\right.
$$

with $\widehat{D}_{x}^{\alpha, \theta} u_{\alpha}=\theta{ }_{a} \widehat{D}^{\alpha} u_{\alpha}+(1-\theta) \widehat{D}_{b}^{\alpha} u_{\alpha}$, where:

$$
\left\{\begin{array}{l}
{ }_{a} \widehat{D}^{\alpha} u_{\alpha}=\frac{d}{d x}\left[\int_{a}^{x} \frac{(x-t)^{-\alpha}}{\Gamma(1-\alpha)} \ln \left(\frac{1}{x-t}\right) u_{\alpha}(t) d t\right]+\frac{\Gamma^{\prime}(1-\alpha)}{\Gamma(1-\alpha)}{ }_{a} D^{\alpha} u_{\alpha} \\
\widehat{D}_{b}^{\alpha} u_{\alpha}=\frac{d}{d x}\left[\int_{x}^{b} \frac{(t-x)^{-\alpha}}{\Gamma(1-\alpha)} \ln \left(\frac{1}{t-x}\right) u_{\alpha}(t) d t\right]+\frac{\Gamma^{\prime}(1-\alpha)}{\Gamma(1-\alpha)} D_{b}^{\alpha} u_{\alpha} .
\end{array}\right.
$$

Moreover,

$$
J^{\prime}(\alpha)=\int_{\Omega} w_{\alpha}(x)\left[u_{\alpha}(x)-z(x)\right] d x
$$

Proof

Let u_{α} be the solution of (2), then

$$
\begin{equation*}
-\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} u_{\alpha}(x)\right]=f(x), x \in \Omega=(a, b) \tag{5}
\end{equation*}
$$

We will detail the derivative of the equation (5) with respect to α :

$$
\begin{equation*}
-\frac{d}{d \alpha}\left(\frac{d}{d x}\left[k(x) D_{x}^{\alpha, \theta} u_{\alpha}(x)\right]\right)=-\frac{d}{d x}\left(k(x) \frac{d}{d \alpha}\left[D_{x}^{\alpha, \theta} u_{\alpha}(x)\right]\right)=0, x \in \Omega=(a, b) . \tag{6}
\end{equation*}
$$

It is clear that

$$
\frac{d}{d \alpha}\left[D_{x}^{\alpha, \theta} u_{\alpha}(x)\right]=\theta \frac{d}{d \alpha}\left[{ }_{a} D_{x}^{\alpha} u_{\alpha}(x)\right]+(1-\theta) \frac{d}{d \alpha}\left[{ }_{x} D_{b}^{\alpha} u_{\alpha}(x)\right] .
$$

Let us start by the first derivative $\frac{d}{d \alpha}\left[{ }_{a} D_{x}^{\alpha} u_{\alpha}(x)\right]$. A direct computation gives

$$
\begin{aligned}
\frac{d}{d \alpha}\left[{ }_{a} D_{x}^{\alpha} u_{\alpha}(x)\right] & =\frac{d}{d \alpha}\left[\frac{d}{d x}\left(\int_{a}^{x} \frac{(x-t)^{-\alpha}}{\Gamma(1-\alpha)} u_{\alpha}(t) d t\right)\right] \\
& =\frac{d}{d x}\left(\int_{a}^{x} \frac{(x-t)^{-\alpha}}{\Gamma(1-\alpha)} \ln \left(\frac{1}{x-t}\right) u_{\alpha}(t) d t\right)+ \\
& +\frac{\Gamma^{\prime}(1-\alpha)}{\Gamma(1-\alpha)}{ }_{a} D_{x}^{\alpha} u_{\alpha}(x)+{ }_{a} D_{a_{x}}^{\alpha} \frac{d u_{\alpha}}{d \alpha^{2}}(x)
\end{aligned}
$$

Proof

We mention here that the first integral

$$
\int_{a}^{x}(x-t)^{-\alpha} \ln \left(\frac{1}{x-t}\right) u(t) d t
$$

is of Bertrand type and is consequently convergent if u is continuous on $[a, b]$. That is,

$$
\begin{equation*}
\frac{d}{d \alpha}\left[{ }_{a} D_{x}^{\alpha} u_{\alpha}(x)\right]={ }_{a} \widehat{D}_{x}^{\alpha} u_{\alpha}(x)+{ }_{a} D_{x}^{\alpha} \frac{d u_{\alpha}}{d \alpha}(x), \tag{7}
\end{equation*}
$$

The same computations with ${ }_{x} D_{b}^{\alpha}$ lead to

$$
\begin{equation*}
\frac{d}{d \alpha}\left[D_{x}^{\alpha, \theta} u_{\alpha}(x)\right]=\widehat{D}_{x}^{\alpha, \theta} u_{\alpha}(x)+{ }_{a} D_{x}^{\alpha, \theta} \frac{d u_{\alpha}}{d \alpha}(x) \tag{8}
\end{equation*}
$$

Using the fact that

$$
\frac{d}{d \alpha}\left[D_{x}^{\alpha, \theta} u_{\alpha}(x)\right]=\frac{d}{d \alpha} f(x)=0 \text { and } \frac{d}{d \alpha} u_{\alpha}(a)=\frac{d}{d \alpha} u_{\alpha}(b)=0
$$

we obtain the result.

Steepest Descent Method

Steepest Descent algorithm

(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$Descent direction $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$Update: $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

A finite difference numerical method

Steepest Descent Method

Steepest Descent algorithm
(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.
(2) Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$.
(3) Descent direction : $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$
(4) Update : $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

A finite difference numerical method

Steepest Descent Method

Steepest Descent algorithm
(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.
(2) Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$.
(3) Descent direction : $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$.
(4) Update : $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

> A finite difference numerical method

Steepest Descent Method

Steepest Descent algorithm
(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.
(2) Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$.
(3) Descent direction : $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$.
(4) Update: $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

> A finite difference numerical method

Steepest Descent Method

Steepest Descent algorithm
(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.
(2) Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$.
(3) Descent direction : $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$.
(4) Update: $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

> A finite difference numerical method

Steepest Descent Method

Steepest Descent algorithm
(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.
(2) Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$.
(3) Descent direction : $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$.
4) Update: $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

A finite difference numerical method

Steepest Descent Method

Steepest Descent algorithm

(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.
(2) Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$.
(3) Descent direction : $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$.
(4) Update: $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

A finite difference numerical method

- Uniform discretization $\left(x_{n}\right)_{0 \leq n \leq N}$ of (a, b), with $x_{0}=a$ and $x_{N}=b$.
- The step size $h=x_{n}-x_{n-1}=(b-a) / N$.
- $x_{n+\frac{1}{2}}=\left(x_{n}+x_{n+1}\right) / 2$ is the center of I_{n+1}
- Notation
- Given v defined on $[a, b]$, for every $n \in\{1,2, \cdots, N\}$ and $x \in I_{n}$, we define the backward difference at x by:
$\delta v(x)=\delta v^{n}:=v^{n}-v^{n-1}$

Steepest Descent Method

Steepest Descent algorithm

(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.
(2) Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$.
(3) Descent direction : $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$.
4. Update: $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

A finite difference numerical method

- Uniform discretization $\left(x_{n}\right)_{0 \leq n \leq N}$ of (a, b), with $x_{0}=a$ and $x_{N}=b$.
- $I_{n}:=\left[x_{n-1}, x_{n}\right]$, for every $n \in\{1,2, \cdots, N\}$.

The step size $h=x_{n}-x_{n-1}=(b-a) / N$.
$x_{n+1}=\left(x_{n}+x_{n+1}\right) / 2$ is the center of I_{n+1}.

- Notation
- Given v defined on $[a, b]$, for every $n \in\{1,2, \cdots, N\}$ and $x \in I_{n}$, we define the backward difference at x by:
$\delta v(x)=\delta v^{n}:=v^{n}-v^{n-1}$

Steepest Descent Method

Steepest Descent algorithm

(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.
(2) Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$.
(3) Descent direction : $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$.
4. Update: $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

A finite difference numerical method

- Uniform discretization $\left(x_{n}\right)_{0 \leq n \leq N}$ of (a, b), with $x_{0}=a$ and $x_{N}=b$.
- $I_{n}:=\left[x_{n-1}, x_{n}\right]$, for every $n \in\{1,2, \cdots, N\}$.
- The step size $h=x_{n}-x_{n-1}=(b-a) / N$.
- Notation
- Given v defined on $[a, b]$, for every $n \in\{1,2, \cdots, N\}$ and $x \in I_{n}$, we define the backward difference at x by:
$\delta v(x)=\delta v^{n}:=v^{n}-v^{n-1}$

Steepest Descent Method

Steepest Descent algorithm

(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.
(2) Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$.
(3) Descent direction : $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$.
4. Update: $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

A finite difference numerical method

- Uniform discretization $\left(x_{n}\right)_{0 \leq n \leq N}$ of (a, b), with $x_{0}=a$ and $x_{N}=b$.
- $I_{n}:=\left[x_{n-1}, x_{n}\right]$, for every $n \in\{1,2, \cdots, N\}$.
- The step size $h=x_{n}-x_{n-1}=(b-a) / N$.
- $x_{n+\frac{1}{2}}=\left(x_{n}+x_{n+1}\right) / 2$ is the center of I_{n+1}.
- Notation
- Given v defined on $[a, b]$, for every $n \in\{1,2, \cdots, N\}$ and $x \in I_{n}$, we define the backward difference at x by:
$\delta v(x)=\delta v^{n}:=v^{n}-v^{n-1}$

Steepest Descent Method

Steepest Descent algorithm

(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.
(2) Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$.
(3) Descent direction : $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$.
4. Update: $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

A finite difference numerical method

- Uniform discretization $\left(x_{n}\right)_{0 \leq n \leq N}$ of (a, b), with $x_{0}=a$ and $x_{N}=b$.
- $I_{n}:=\left[x_{n-1}, x_{n}\right]$, for every $n \in\{1,2, \cdots, N\}$.
- The step size $h=x_{n}-x_{n-1}=(b-a) / N$.
- $x_{n+\frac{1}{2}}=\left(x_{n}+x_{n+1}\right) / 2$ is the center of I_{n+1}.
- Notation : $v^{n}=v\left(x_{n}\right)$.
- Given v defined on $[a, b]$, for every $n \in\{1,2, \cdots, N\}$ and $x \in I_{n}$, we define the backward difference at x by:
$\delta v^{\prime}(x)=\delta v^{n}:=v^{n}-v^{n-1}$.

Steepest Descent Method

Steepest Descent algorithm

(1) Initialization: Choose $\left.\alpha_{0} \in\right] 0,1[$.
(2) Solve Problems (2) and (4) with α_{n} to obtain $u_{\alpha_{n}}$ and $w_{\alpha_{n}}$.
(3) Descent direction : $-J^{\prime}\left(\alpha_{n}\right)=-\int_{\Omega} w_{\alpha_{n}}(x)\left[u_{\alpha_{n}}(x)-z(x)\right] d x$.
4. Update : $\alpha_{n+1}=\alpha_{n}-\rho J^{\prime}\left(\alpha_{n}\right)$, with $\rho>0$ sufficiently small.

A finite difference numerical method

- Uniform discretization $\left(x_{n}\right)_{0 \leq n \leq N}$ of (a, b), with $x_{0}=a$ and $x_{N}=b$.
- $I_{n}:=\left[x_{n-1}, x_{n}\right]$, for every $n \in\{1,2, \cdots, N\}$.
- The step size $h=x_{n}-x_{n-1}=(b-a) / N$.
- $x_{n+\frac{1}{2}}=\left(x_{n}+x_{n+1}\right) / 2$ is the center of I_{n+1}.
- Notation: $v^{n}=v\left(x_{n}\right)$.
- Given v defined on $[a, b]$, for every $n \in\{1,2, \cdots, N\}$ and $x \in I_{n}$, we define the backward difference at x by:

$$
\delta v(x)=\delta v^{n}:=v^{n}-v^{n-1}
$$

Left-sided fractional derivative

We set $\theta=1$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x)_{a} D_{x}^{\alpha} u\right](x)=f(x)
$$

The finite difference scheme is expressed as

where

Left-sided fractional derivative

We set $\theta=1$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x)_{a} D_{x}^{\alpha} u\right](x)=f(x)
$$

The finite difference scheme is expressed as

[^1]
Left-sided fractional derivative

We set $\theta=1$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x)_{a} D_{x}^{\alpha} u\right](x)=f(x)
$$

The finite difference scheme is expressed as :

[^2]
Left-sided fractional derivative

We set $\theta=1$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x)_{a} D_{x}^{\alpha} u\right](x)=f(x)
$$

The finite difference scheme is expressed as :

$$
\begin{aligned}
& \frac{\omega(h)}{h^{2}}\left(\sum_{j=1}^{n-1}\left(k^{n-\frac{1}{2}}\left[w_{n, j}-w_{n, j+1}\right]-k^{n+\frac{1}{2}}\left[w_{n+1, j}-w_{n+1, j+1}\right]\right) U^{j}\right. \\
& \left.+\left(k^{n-\frac{1}{2}}-k^{n+\frac{1}{2}}\left(2^{1-\alpha}-2\right)\right) U^{n}-k^{n+1} U^{n+1}\right)=f^{n}
\end{aligned}
$$

where

Left-sided fractional derivative

We set $\theta=1$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x)_{a} D_{x}^{\alpha} u\right](x)=f(x)
$$

The finite difference scheme is expressed as :

$$
\begin{aligned}
& \frac{\omega(h)}{h^{2}}\left(\sum_{j=1}^{n-1}\left(k^{n-\frac{1}{2}}\left[w_{n, j}-w_{n, j+1}\right]-k^{n+\frac{1}{2}}\left[w_{n+1, j}-w_{n+1, j+1}\right]\right) U^{j}\right. \\
& \left.+\left(k^{n-\frac{1}{2}}-k^{n+\frac{1}{2}}\left(2^{1-\alpha}-2\right)\right) U^{n}-k^{n+1} U^{n+1}\right)=f^{n}
\end{aligned}
$$

where

- $k^{n+\frac{1}{2}}=k\left(x_{n+\frac{1}{2}}\right)$.

Left-sided fractional derivative

We set $\theta=1$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x)_{a} D_{x}^{\alpha} u\right](x)=f(x)
$$

The finite difference scheme is expressed as :

$$
\begin{aligned}
& \frac{\omega(h)}{h^{2}}\left(\sum_{j=1}^{n-1}\left(k^{n-\frac{1}{2}}\left[w_{n, j}-w_{n, j+1}\right]-k^{n+\frac{1}{2}}\left[w_{n+1, j}-w_{n+1, j+1}\right]\right) U^{j}\right. \\
& \left.+\left(k^{n-\frac{1}{2}}-k^{n+\frac{1}{2}}\left(2^{1-\alpha}-2\right)\right) U^{n}-k^{n+1} U^{n+1}\right)=f^{n}
\end{aligned}
$$

where

- $k^{n+\frac{1}{2}}=k\left(x_{n+\frac{1}{2}}\right)$.
- $w_{n, j}=(n+1-j)^{1-\alpha}-(n-j)^{1-\alpha}$ for $n \geq j \geq 1$.

Left-sided fractional derivative

We set $\theta=1$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x)_{a} D_{x}^{\alpha} u\right](x)=f(x)
$$

The finite difference scheme is expressed as :

$$
\begin{aligned}
& \frac{\omega(h)}{h^{2}}\left(\sum_{j=1}^{n-1}\left(k^{n-\frac{1}{2}}\left[w_{n, j}-w_{n, j+1}\right]-k^{n+\frac{1}{2}}\left[w_{n+1, j}-w_{n+1, j+1}\right]\right) U^{j}\right. \\
& \left.+\left(k^{n-\frac{1}{2}}-k^{n+\frac{1}{2}}\left(2^{1-\alpha}-2\right)\right) U^{n}-k^{n+1} U^{n+1}\right)=f^{n}
\end{aligned}
$$

where

- $k^{n+\frac{1}{2}}=k\left(x_{n+\frac{1}{2}}\right)$.
- $w_{n, j}=(n+1-j)^{1-\alpha}-(n-j)^{1-\alpha}$ for $n \geq j \geq 1$.
- $\omega(h)=\frac{h^{1-\alpha}}{\Gamma(2-\alpha)}$.

Matrix formulation

$$
\begin{aligned}
& B_{L}=\frac{\omega(h)}{h^{2}}\left(\begin{array}{cccccc}
c_{1,1} & -k^{3 / 2} & 0 & \cdots & \cdots & 0 \\
c_{2,1} & c_{2,2} & -k^{5 / 2} & 0 & \cdots & 0 \\
\vdots & \vdots & & & & \vdots \\
& & & & & 0 \\
c_{N-2,1} & c_{N-2,2} & \cdots & \cdots & c_{N-2, N-2} & -k^{N-3 / 2} \\
c_{N-1,1} & c_{N-1,2} & \cdots & \cdots & c_{N-1, N-2} & c_{N-1, N-1}
\end{array}\right) \\
& n, j= \begin{cases}k^{n-\frac{1}{2}}-k^{n+\frac{1}{2}}\left[2^{1-\alpha}-2\right] & j=n, \\
a_{n, j}-a_{n+1, j} & j<n,\end{cases} \\
& a_{n, j}= \begin{cases}k^{n-\frac{1}{2}} & j=n, \\
k^{n-\frac{1}{2}}\left[w_{n, j}-w_{n-1, j}\right] & j<n .\end{cases}
\end{aligned}
$$

Finite difference solution

Solve the linear system $B_{L} U=F$,

- $U=\left[U^{1}, U^{2}, \cdots, U^{N-1}\right]^{T}$
- $F=\left[f^{1}, f^{2}, \cdots, f^{N-1}\right]^{T}$.

Right-sided fractional derivative

We set $\theta=0$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x) D_{b}^{\alpha} u\right](x)=f(x) .
$$

The matrix of right-sided fractional derivative is

Right-sided fractional derivative

We set $\theta=0$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x) D_{b}^{\alpha} u\right](x)=f(x) .
$$

The matrix of right-sided fractional derivative is

Right-sided fractional derivative

We set $\theta=0$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x) D_{b}^{\alpha} u\right](x)=f(x) .
$$

The matrix of right-sided fractional derivative is

Right-sided fractional derivative

We set $\theta=0$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x) D_{b}^{\alpha} u\right](x)=f(x) .
$$

The matrix of right-sided fractional derivative is
$B_{R}=\frac{\omega(h)}{h^{2}}\left(\begin{array}{ccccccc}d_{1,1} & d_{1,2} & d_{1,3} & d_{1,4} & d_{1,5} & \cdots & d_{1, N-1} \\ -k^{3 / 2} & d_{2,2} & d_{2,3} & d_{2,4} & d_{2,5} & \cdots & d_{2, N-1} \\ 0 & -k^{5 / 2} & d_{3,3} & d_{3,4} & d_{3,5} & \cdots & d_{3, N-1} \\ 0 & 0 & -k^{7 / 2} & d_{4,4} & d_{4,5} & \cdots & d_{4, N-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & & \cdots \\ 0 & 0 & 0 & 0 & \cdots & -k^{N-3 / 2} & d_{N-1, N-1}\end{array}\right)$

Right-sided fractional derivative

We set $\theta=0$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x) D_{b}^{\alpha} u\right](x)=f(x) .
$$

The matrix of right-sided fractional derivative is
$B_{R}=\frac{\omega(h)}{h^{2}}\left(\begin{array}{ccccccc}d_{1,1} & d_{1,2} & d_{1,3} & d_{1,4} & d_{1,5} & \cdots & d_{1, N-1} \\ -k^{3 / 2} & d_{2,2} & d_{2,3} & d_{2,4} & d_{2,5} & \cdots & d_{2, N-1} \\ 0 & -k^{5 / 2} & d_{3,3} & d_{3,4} & d_{3,5} & \cdots & d_{3, N-1} \\ 0 & 0 & -k^{7 / 2} & d_{4,4} & d_{4,5} & \cdots & d_{4, N-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & & \ldots \\ 0 & 0 & 0 & 0 & \cdots & -k^{N-3 / 2} & \vdots \\ d_{N-1, N-1}\end{array}\right)$
$d_{n, j}= \begin{cases}k^{n-\frac{1}{2}}\left(w_{j, n}-w_{j, n-1}\right)-k^{n+\frac{1}{2}}\left(w_{j, n+1}-w_{j, n}\right) & j>n, \\ k^{n+\frac{1}{2}}-k^{n-\frac{1}{2}}\left[2^{1-\alpha}-2\right], & j=n .\end{cases}$

Right-sided fractional derivative

We set $\theta=0$, then (2) reduces to :

$$
-\frac{d}{d x}\left[k(x) D_{b}^{\alpha} u\right](x)=f(x) .
$$

The matrix of right-sided fractional derivative is
$B_{R}=\frac{\omega(h)}{h^{2}}\left(\begin{array}{ccccccc}d_{1,1} & d_{1,2} & d_{1,3} & d_{1,4} & d_{1,5} & \cdots & d_{1, N-1} \\ -k^{3 / 2} & d_{2,2} & d_{2,3} & d_{2,4} & d_{2,5} & \cdots & d_{2, N-1} \\ 0 & -k^{5 / 2} & d_{3,3} & d_{3,4} & d_{3,5} & \cdots & d_{3, N-1} \\ 0 & 0 & -k^{7 / 2} & d_{4,4} & d_{4,5} & \cdots & d_{4, N-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & & \cdots \\ 0 & 0 & 0 & 0 & \cdots & -k^{N-3 / 2} & d_{N-1, N-1}\end{array}\right)$
$d_{n, j}= \begin{cases}k^{n-\frac{1}{2}}\left(w_{j, n}-w_{j, n-1}\right)-k^{n+\frac{1}{2}}\left(w_{j, n+1}-w_{j, n}\right) & j>n, \\ k^{n+\frac{1}{2}}-k^{n-\frac{1}{2}}\left[2^{1-\alpha}-2\right], & j=n .\end{cases}$
Finite difference solution: Solving the linear system $B_{R} U_{S}=F$.

Two-sided fractional derivative

Return to problem (2). To get a finite difference approximation, we combine the difference schemes. The finite difference solution $\left(U^{n}\right)_{n} \simeq\left(u^{n}\right)_{n}$ of the fractional problem is given by

$$
\begin{aligned}
& k^{n-\frac{1}{2}}\left[\theta{ }_{a} I^{1-\alpha} \delta U\left(x_{n}\right)+(1-\theta) I_{b}^{1-\alpha} \delta U\left(x_{n-1}\right)\right] \\
& -k^{n+\frac{1}{2}}\left[\theta{ }_{a} I^{1-\alpha} \delta U\left(x_{n+1}\right)+(1-\theta) I_{b}^{1-\alpha} \delta U\left(x_{n}\right)\right]=h^{2} f^{n}
\end{aligned}
$$

for $n=1, \cdots, N-1$, and $U^{0}=U^{N}=0$.

Finite difference solution

The finite difference solution is obtained by solving the linear system $B U=F$, where $B=\theta B_{L}+(1-\theta) B_{R}$.

Finite difference scheme for (4)

The same arguments are performed for the the BVP (4).

Finite difference scheme for (4)

The same arguments are performed for the the BVP (4).

- The same matrices B_{L}, B_{R} and B.
- Preparation of the RHS, with slight modifications (to handle with the Logarithm terms).
- Solve the obtained lirear system.

Finite difference scheme for (4)

The same arguments are performed for the the BVP (4).

- The same matrices B_{L}, B_{R} and B.
- Preparation of the RHS, with slight modifications (to handle with the Logarithm terms).
- Solve the obtained linear system

Finite difference scheme for (4)

The same arguments are performed for the the BVP (4).

- The same matrices B_{L}, B_{R} and B.
- Preparation of the RHS, with slight modifications (to handle with the Logarithm terms).
- Solve the obtained linear system.

Numerical Results

We choose :

- $\theta=1 / 2$
- $\widehat{\alpha}=0.6$.
- The measure z of u_{a} in $\left.\Omega=\right] 0,1\left[\right.$ defined by $z(x)=10^{4} x^{3.8}(1-x)^{3.8}$
- The source term f defined by $f(x)=D_{x}^{\widehat{\alpha}, \theta} z(x)$,

Figure 1: Left: The cost function $J(\alpha)$, with initialization $\alpha_{0}=0.8$. Right: Relative error for α in the steepest descent scheme.

Numerical Results

We choose :

- $\theta=1 / 2$.
- $\widehat{\alpha}=0.6$.
- The measure z of $u_{\widehat{\alpha}}$ in $\left.\Omega=\right] 0,1$ [defined by $z(x)=10^{4} x^{3.8}(1-x)^{3.8}$,
- The source term f defined by $f(x)=D_{x}^{\widehat{\alpha}, \theta} z(x)$,

Figure 1: Left: The cost function $J(\alpha)$, with initialization $\alpha_{0}=0.8$. Right: Relative error for α in the steepest descent scheme.

(a) The exact observation (blue) and a noisy observation (red) with an additive white gaussian noise of SNR $=20$.

(b) Relative error for α in the steepest descent scheme.

(c) Relative error for α in the steepest descent scheme.

Application to the Taylor-Couette flow

We consider an application to coaxial annular flow in which a fluid is confined between two cylinders of radii $R_{\text {in }}$ and $R_{\text {out }}$. A fractional order model governing the fluid velocity $u_{\theta}(r, t)$:

with $\beta \in] 0,1[$. The constants ρ, \mathbb{V} and \mathbb{G} are given positive physical parameters.

Application to the Taylor-Couette flow

We consider an application to coaxial annular flow in which a fluid is confined between two cylinders of radii $R_{\text {in }}$ and $R_{\text {out }}$. A fractional order model governing the fluid velocity $u_{\theta}(r, t)$:

$$
\left\{\begin{array}{l}
\frac{\rho}{\mathbb{V}} \frac{\partial u_{\theta}}{\partial t}+\frac{\rho}{\mathbb{G}} \mathscr{D}_{t}^{2-\beta} u_{\theta}=\frac{\partial^{2} u_{\theta}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r^{2}}, \quad R_{\text {in }}<r<R_{\text {out }}, 0<t \leq T \\
u_{\theta}\left(R_{\text {in }}, t\right)=\phi_{i}(t), u_{\theta}\left(R_{o u t}, t\right)=\phi_{o}(t), \quad 0 \leq t \leq T, \\
u_{\theta}(r, 0)=\frac{\partial u_{\theta}(r, 0)}{\partial t}=0, \quad R_{\text {in }}<r<R_{\text {out }},
\end{array}\right.
$$

with $\beta \in] 0,1[$. The constants ρ, \mathbb{V} and \mathbb{G} are given positive physical
parameters.

Application to the Taylor-Couette flow

We consider an application to coaxial annular flow in which a fluid is confined between two cylinders of radii $R_{\text {in }}$ and $R_{\text {out }}$. A fractional order model governing the fluid velocity $u_{\theta}(r, t)$:

$$
\left\{\begin{array}{l}
\frac{\rho}{\mathbb{V}} \frac{\partial u_{\theta}}{\partial t}+\frac{\rho}{\mathbb{G}} \mathscr{D}_{t}^{2-\beta} u_{\theta}=\frac{\partial^{2} u_{\theta}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r^{2}}, \quad R_{\text {in }}<r<R_{\text {out }}, 0<t \leq T \\
u_{\theta}\left(R_{\text {in }}, t\right)=\phi_{i}(t), u_{\theta}\left(R_{o u t}, t\right)=\phi_{o}(t), \quad 0 \leq t \leq T, \\
u_{\theta}(r, 0)=\frac{\partial u_{\theta}(r, 0)}{\partial t}=0, \quad R_{\text {in }}<r<R_{\text {out }},
\end{array}\right.
$$

with $\beta \in] 0,1[$. The constants ρ, \mathbb{V} and \mathbb{G} are given positive physical parameters.

Application to the Taylor-Couette flow

We consider an application to coaxial annular flow in which a fluid is confined between two cylinders of radii $R_{\text {in }}$ and $R_{\text {out }}$. A fractional order model governing the fluid velocity $u_{\theta}(r, t)$:

$$
\left\{\begin{array}{l}
\frac{\rho}{\mathbb{V}} \frac{\partial u_{\theta}}{\partial t}+\frac{\rho}{\mathbb{G}} \mathscr{D}_{t}^{2-\beta} u_{\theta}=\frac{\partial^{2} u_{\theta}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r^{2}}, \quad R_{\text {in }}<r<R_{\text {out }}, 0<t \leq T \\
u_{\theta}\left(R_{\text {in }}, t\right)=\phi_{i}(t), u_{\theta}\left(R_{\text {out }}, t\right)=\phi_{o}(t), \quad 0 \leq t \leq T, \\
u_{\theta}(r, 0)=\frac{\partial u_{\theta}(r, 0)}{\partial t}=0, \quad R_{\text {in }}<r<R_{\text {out }},
\end{array}\right.
$$

with $\beta \in] 0,1[$. The constants ρ, \mathbb{V} and \mathbb{G} are given positive physical parameters.

$$
\begin{aligned}
\frac{\rho}{\mathbb{V}} \delta_{t} u_{i}^{s-1 / 2} & +\frac{\rho}{\Gamma(\beta)(G)} \frac{1}{\Delta t}\left[a_{0} \delta_{t} u_{i}^{s-1 / 2}-\sum_{j=1}^{s-1}\left(a_{n-j-1}-a_{n-j}\right) \delta_{t} u_{i}^{j-1 / 2}\right] \\
& =\delta_{r}^{2} u_{i}^{s-1 / 2}+\frac{1}{2 r_{i}}\left(\frac{\delta_{r} u_{i}^{s}+\delta_{r} u_{i}^{s-1}}{2}\right)-\frac{u_{i}^{s-1 / 2}}{r_{i}^{2}}
\end{aligned}
$$

Application to the Taylor-Couette flow

We consider an application to coaxial annular flow in which a fluid is confined between two cylinders of radii $R_{\text {in }}$ and $R_{\text {out }}$. A fractional order model governing the fluid velocity $u_{\theta}(r, t)$:

$$
\left\{\begin{array}{l}
\frac{\rho}{\mathbb{V}} \frac{\partial u_{\theta}}{\partial t}+\frac{\rho}{\mathbb{G}} \mathscr{D}_{t}^{2-\beta} u_{\theta}=\frac{\partial^{2} u_{\theta}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r^{2}}, \quad R_{\text {in }}<r<R_{\text {out }}, 0<t \leq T \\
u_{\theta}\left(R_{\text {in }}, t\right)=\phi_{i}(t), u_{\theta}\left(R_{\text {out }}, t\right)=\phi_{o}(t), \quad 0 \leq t \leq T, \\
u_{\theta}(r, 0)=\frac{\partial u_{\theta}(r, 0)}{\partial t}=0, \quad R_{\text {in }}<r<R_{\text {out }},
\end{array}\right.
$$

with $\beta \in] 0,1[$. The constants ρ, \mathbb{V} and \mathbb{G} are given positive physical parameters.

$$
\begin{align*}
\frac{\rho}{\mathbb{V}} \delta_{t} u_{i}^{s-1 / 2} & +\frac{\rho}{\Gamma(\beta)(G)} \frac{1}{\Delta t}\left[a_{0} \delta_{t} u_{i}^{s-1 / 2}-\sum_{j=1}^{s-1}\left(a_{n-j-1}-a_{n-j}\right) \delta_{t} u_{i}^{j-1 / 2}\right] \tag{9}\\
& =\delta_{r}^{2} u_{i}^{s-1 / 2}+\frac{1}{2 r_{i}}\left(\frac{\delta_{r} u_{i}^{s}+\delta_{r} u_{i}^{s-1}}{2}\right)-\frac{u_{i}^{s-1 / 2}}{r_{i}^{2}}
\end{align*}
$$

with u_{i}^{s} is an approximation of $\mu_{0}\left(r_{i}, t_{c}\right), i=1 \ldots N-1, s=1 \ldots$.

Matrix form:

$$
\begin{equation*}
A U=B \tag{10}
\end{equation*}
$$

where

$$
U=\left[\begin{array}{c}
u_{1}^{s} \tag{11}\\
u_{2}^{s} \\
\vdots \\
u_{N-1}^{s}
\end{array}\right]
$$

and

$$
A=\left(\begin{array}{ccc}
d_{1} & \frac{-1}{4 r_{1} \Delta r}-\frac{1}{2(\delta r)^{2}} & \\
\frac{1}{4 r_{2} \Delta r}-\frac{1}{2(\delta r)^{2}} & d_{2} & \frac{-1}{4 r_{2} \Delta r}-\frac{1}{2(\delta r)^{2}} \\
\ddots & \ddots & \ddots \\
& & \frac{1}{4 r_{N-1} \Delta r}-\frac{1}{2(\delta r)^{2}} d_{N-1}
\end{array}\right)
$$

with $d_{i}=\left(\frac{\rho}{\nabla} \frac{1}{\Delta t}+\frac{\rho}{\Gamma(\beta) G} \frac{a_{0}}{(\Delta t)^{2}}+\frac{1}{2\left(r_{i}\right)^{2}}+\frac{1}{(\Delta r)^{2}}\right)$ for $1 \leq i \leq N-1$ and B is the column vector containing all the terms coming from the previous time iteration.

Taylor-Couette numerical simulations

We choose $\widehat{\beta}=0.7$ which will be supposed to be unknown. We are interested to find $\widehat{\beta}$ by considering a measure z of the solution $u_{\theta}(\widehat{\beta})$ on $] R_{\text {in }}, R_{\text {out }}[\times] 0, T[$.

Figure 3: Left: The cost function $J(\beta)$, with initialization $\beta_{0}=0.8$. Right: Relative error for β in the steepest descent scheme.

Thank you for your attention!

[^0]: where Γ is the Euler's Gamma function and $n=[\alpha]+1$.

[^1]: where

[^2]: where

