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Abstract

In this paper we prove large and moderate deviations principles for the
kernel estimator of a distribution function introduced by Nadaraya [1964.
Some new estimates for distribution functions. Theory Probab. Appl. 9, 497-
500]. We provide results both for the pointwise and the uniform deviations.
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1 Introduction

Let X1, . . . , Xn be independent, identically distributed of random variables, and
let f and F denote respectively the probability density of X1 and the distribution
function of X1. Nadaraya (1964) introduce a kernel K (that is, a function satisfying∫
�
K(x)dx = 1), a function K (that is, a function defined by K (z) =

∫ z

−∞K (u) du),
and a bandwidth (hn) (that is, a sequence of positive real numbers that goes to zero).
The estimator proposed by Nadaraya (1964) to estimate the distribution function
F at the point x is given by

Fn (x) =
1

n

n∑
k=1

K
(
x−Xk

hn

)
. (1)
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Some theoretical properties of the estimator Fn have been investigated (see among
many others, Nadaraya (1964), Reiss (1981), and Hill (1985)). Reiss (1981) and
Falk (1983) showed that the kernel distribution estimator (1) have an asymptotically
better performance than empirical distribution function, which does not take into
account the smoothness of F .

Recently, large and moderate deviations results have been proved for the well-
known nonrecursive kernel density estimator introduced by Rosenblatt (1956) (see
also Parzen, 1962). The large deviations principle has been studied by Louani
(1998) and Worms (2001). Gao (2003) and Mokkadem et al. (2005) extend these
results and provide moderate deviations principles. The purpose of this paper is to
establish large and moderate deviations principles for the nonrecursive distribution
estimator (1).

Let us first recall that a R
m-valued sequence (Zn)n≥1 satisfies a large deviations

principle (LDP) with speed (νn) and good rate function I if :

1. (νn) is a positive sequence such that limn→∞ νn = ∞;

2. I : R
m → [0,∞] has compact level sets;

3. for every borel set B ⊂ R
m,

− inf
x∈

◦
B

I (x) ≤ lim inf
n→∞

ν−1
n log P [Zn ∈ B]

≤ lim sup
n→∞

ν−1
n log P [Zn ∈ B] ≤ − inf

x∈B
I (x) ,

where
◦
B and B denote the interior and the closure of B respectively. Moreover,

let (vn) be a nonrandom sequence that goes to infinity; if (vnZn) satisfies a
LDP, then (Zn) is said to satisfy a moderate deviations principle (MDP).

The first aim of this paper is to establish pointwise LDP for the kernel distribu-
tion estimator (1).

We show that using the bandwiths defined as hn = h (n) for all n, where h is a
regularly varing function with exponent (−a), a ∈ ]0, 1[. We prove that the sequence
(Fn (x) − F (x)) satisfies a LDP with speed (n) and the rate function defined as
follows:{

if F (x) �= 0, Ix : t→ F (x) I
(
1 + t

F (x)

)
if F (x) = 0, Ix (0) = 0 and Ix (t) = +∞ for t �= 0.

(2)

where

I (t) = sup
u∈�

{ut− ψ (u)}
ψ (u) = exp (u) − 1.
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Our second aim is to provide pointwise MDP for the distribution estimator de-
fined by (1). For any positive sequence (vn) satisfying

lim
n→∞

vn = ∞ and lim
n→∞

v2
n

n
= 0

and general bandwidths (hn), we prove that the sequence

vn (Fn (x) − F (x))

satisfies a LDP of speed (n/v2
n) and rate function Jx (.) defined by{

if f (x) �= 0, Jx : t→ t2

2F (x)

if f (x) = 0, Jx (0) = 0 and Jx (t) = +∞ for t �= 0.
(3)

Finally, we give a uniform version of the previous results. More precisely, let U be a
subset of R; we establish large and moderate deviations principles for the sequence
(supx∈U |Fn (x) − F (x)|).

2 Assumptions and main results

We define the following class of regularly varying sequences.

Definition 1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We say
that (vn) ∈ GS (γ) if

lim
n→+∞

n

[
1 − vn−1

vn

]
= γ. (4)

Condition (4) was introduced by Galambos and Seneta (1973) to define regularly
varying sequences (see also Bojanic and Seneta, 1973). Typical sequences in GS (γ)
are, for b ∈ R, nγ (logn)b, nγ (log log n)b, and so on.

2.1 Pointwise LDP for the Nadaraya’s distribution estima-
tor

To establish pointwise LDP for Fn, we need the following assumptions.

(L1) K : R → R is a bounded and integrable function satisfying
∫
�
K (z) dz = 1,

and
∫
�
zK (z) dz = 0.

(L2) (hn) ∈ GS (−a) with a ∈ ]0, 1[.
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The following Theorem gives the pointwise LDP for Fn in this case.

Theorem 1 (Pointwise LDP for Nadaraya’s distribution estimator).
Let Assumptions (L1) and (L2) hold and assume that F is continuous at x. Then,
the sequence (Fn (x) − F (x)) satisfies a LDP with speed (n) and rate function de-
fined by (2).

2.2 Pointwise MDP for the Nadaraya’s distribution estima-
tor

Let (vn) be a positive sequence; we assume that

(M1) K : R → R is a continuous, bounded function satisfying
∫
�
K (z) dz = 1,

and,
∫
�
zK (z) dz = 0 and

∫
�
z2|K (z) |dz <∞.

(M2) (hn) ∈ GS (−a) with a ∈ ]0, 1[.

(M3) F is bounded, twice differentiable, and F (2) (x) is bounded.

(M4) limn→∞ vn = ∞ and limn→∞
v2

n

n
= 0.

The following Theorem gives the pointwise MDP for Fn.

Theorem 2 (Pointwise MDP for the kernel distribution estimator (1)).
Let Assumptions (M1) − (M4) hold and assume that F is continuous at x. Then,
the sequence (Fn (x) − F (x)) satisfies a MDP with speed (n/v2

n) and rate function
Jx defined in (3).

2.3 Uniform LDP and MDP for the Nadaraya’s distribution
estimator

To establish uniform large deviations principles for the distribution estimator defined
by (1) on a bounded set, we need the following assumptions:

(U1) i)
∫
�
zK (z) dz = 0 and

∫
�
z2|K (z) |dz <∞.

ii) K is Hölder continuous.

(U2) F is bounded, twice differentiable, and, supx∈� |F (2) (x) | <∞.

(U3) limn→∞
v2

n log vn

n
= 0.

Set U ⊆ R; in order to state in a compact form the uniform large and moderate
deviations principles for the distribution estimator defined by (1) on U , we set:

gU (δ) =

{
‖F‖U,∞I

(
1 + δ

‖F‖U,∞

)
when vn ≡ 1 , (L1) and (L2) hold

δ2

2‖F‖U,∞
when vn → ∞ , (M1) − (M4) hold

g̃U (δ) = min {gU (δ) , gU (−δ)}
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where ‖F‖U,∞ = supx∈U |F (x)|.
Remark 1. The functions gU (.) and g̃U (.) are non-negative, continuous, increasing
on ]0,+∞[ and decreasing on ]−∞, 0[, with a unique global minimum in 0 (g̃U (0) =
gU (0) = 0). They are thus good rate functions (and gU(.) is strictly convex).

Theorem 3 below states uniform LDP on U in the case U is bounded, and
Theorem 4 in the case U is unbounded.

Theorem 3 (Uniform deviations on a bounded set for the kernel distribution estimator (1)).
Let (U1) − (U3) hold. Then for any bounded subset U of R and for all δ > 0,

lim
n→∞

n−1v2
n log P

[
sup
x∈U

vn |Fn (x) − F (x)| ≥ δ

]
= −g̃U (δ) (5)

To establish uniform large deviations principles for the distribution estimator (1)
on an unbounded set, we need the following additionnal assumptions:

(U4) i) There exists β > 0 such that
∫
�
‖x‖βf (x) dx <∞.

ii) F is uniformly continuous.

(U5) There exists τ > 0 such that z 
→ ‖z‖τK (z) is a bounded function.

(U6) i) There exists ζ > 0 such that
∫
�
‖z‖ζ |K (z)| dz <∞

ii) There exists η > 0 such that z 
→ ‖z‖ηF (z) is a bounded function.

Theorem 4 (Uniform deviations on an unbounded set for the estimator defined by (1)).
Let (U1) − (U6) hold. Then for any subset U of R and for all δ > 0,

−g̃U (δ) ≤ lim inf
n→∞

n−1v2
n log P

[
sup
x∈U

vn |Fn (x) − F (x)| ≥ δ

]

≤ lim sup
n→∞

n−1v2
n log P

[
sup
x∈U

vn |Fn (x) − F (x)| ≥ δ

]
≤ − β

β + 1
g̃U (δ)

The following corollary is a straightforward consequence of Theorem 4.

Corollary 1. Under the assumptions of Theorem 4, if
∫
�
‖x‖ξF (x) dx <∞ for all ξ

in R, then for any subset U of R,

lim
n→∞

n−1v2
n log P

[
sup
x∈U

vn |Fn (x) − F (x)| ≥ δ

]
= −g̃U (δ) (6)

Comment. Since the sequence (supx∈U |Fn (x) − F (x)|) is positive and since g̃U

is continuous on [0,+∞[, increasing and goes to infinity as δ → ∞, the application of
Lemma 5 in Worms (2001) allows to deduce from (5) or (6) that supx∈U |Fn (x) − F (x)|
satisfies a LDP with speed (n) and good rate function g̃U on R+.
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3 Proofs

Throught this section we use the following notation:

Yk,n = K
(
x−Xk

hn

)
(7)

Noting that, in view of (1), we have

Fn (x) − E [Fn (x)] =
1

n

n∑
k=1

(Yk,n − E [Yk,n])

Let (Ψn) and (Bn) be the sequences defined as

Ψn (x) =
1

n

n∑
k=1

(Yk,n − E [Yk,n])

Bn (x) = E [Fn (x)] − F (x)

We have:

Fn (x) − F (x) = Ψn (x) + Bn (x) (8)

Theorems 1, 2, 3 and 4 are consequences of (8) and the following propositions.

Proposition 1 (Pointwise LDP and MDP for (Ψn)).

1. Under the assumptions (L1) and (L2), the sequence (Fn (x) − E (Fn (x))) sat-
isfies a LDP with speed (n) and rate function Ix.

2. Under the assumptions (M1)− (M4), the sequence (vnΨn (x)) satisfies a LDP
with speed (n/v2

n) and rate function Jx.

Proposition 2 (Uniform LDP and MDP for (Ψn)).

1. Let (U1)− (U3) hold. Then for any bounded subset U of R and for all δ > 0,

lim
n→∞

n−1v2
n log P

[
sup
x∈U

vn |Ψn (x)| ≥ δ

]
= −g̃U (δ)

2. Let (U1) − (U6) hold. Then for any subset U of R and for all δ > 0,

−g̃U (δ) ≤ lim inf
n→∞

n−1v2
n log P

[
sup
x∈U

vn |Ψn (x)| ≥ δ

]

≤ lim sup
n→∞

n−1v2
n log P

[
sup
x∈U

vn |Ψn (x)| ≥ δ

]
≤ − ξ

ξ + d
g̃U (δ)
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Proposition 3 (Pointwise and uniform convergence rate of (Bn)).
Let Assumptions (M1) − (M3) hold.

1. If f ′ is continuous at x. We have

If a ≤ 1/3, then

Bn (x) = O
(
h2

n

)
.

If a > 1/3, then

Bn (x) = o
(√

n−1hn

)
.

2. If (U2) holds, then:

If a ≤ 1/3, then

sup
x∈�

|Bn (x)| = O
(
h2

n

)
.

If a > 1/3, then

sup
x∈�

|Bn (x)| = o
(√

n−1hn

)
.

Set x ∈ R; since the assumptions of Theorems 1 guarantee that limn→∞Bn (x) =
0, Theorem 1 is a straightforward consequence of the application of Part 1 (respec-
tively of Part 2) of Proposition 1. Moreover, under the assumptions of Theorem 2,
we have by application of Propostion 3, limn→∞ vnBn (x) = 0; Theorem 2 thus
straightfully follows from the application of Part 3 of Proposition 1. Finaly, Theo-
rem 3 and 4 follows from Proposition 2 and the second part of Proposition 3.
We now state a preliminary lemma, which will be used in the proof of Proposition 1.
For any u ∈ R, Set

Λn,x (u) = n−1v2
n log E

[
exp

(
u
n

vn
Ψn (x)

)]
ΛL

x (u) = F (x) (ψ (u) − u) ,

ΛM
x (u) =

u2

2
F (x)

Lemma 1. [Convergence of Λn,x]

1. (Pointwise convergence)
If F is continuous at x, then for all u ∈ R

lim
n→∞

Λn,x (u) = Λx (u) (9)

where

Λx (u) =

{
ΛL

x (u) when vn ≡ 1
ΛM

x (u) when vn → ∞
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2. (Uniform convergence)
If F is uniformly continuous, then the convergence (9) holds uniformly in
x ∈ U .

Our proofs are now organized as follows: Lemma 1 is proved in Section 3.1,
Proposition 1 in Section 3.4 and Proposition 2 in Section 3.3.

3.1 Proof of Lemma 1.

Set u ∈ R, un = u/vn and an = n. We have:

Λn,x (u) =
v2

n

an

log E [exp (unanΨn (x))]

=
v2

n

an

log E

[
exp

(
un

n∑
k=1

(Yk,n − E [Yk,n])

)]

=
v2

n

an

n∑
k=1

log E [exp (unYk,n)] − uvnE [Y1,n]

By Taylor expansion, there exists ck,n between 1 and E [exp (unYk,n)] such that

log E [exp (unYk,n)] = E [exp (unYk,n) − 1] − 1

2c2k,n

(E [exp (unYk,n) − 1])2

and Λn,x can be rewriten as

Λn,x (u) =
v2

n

an

n∑
k=1

E [exp (unYk,n) − 1] − v2
n

2an

n∑
k=1

1

c2k,n

(E [exp (unYk,n) − 1])2

−uvnE [Y1,n] (10)

First case: vn → ∞. A Taylor’s expansion implies the existence of c′k,n between
0 and unYk,n such that

E [exp (unYk,n) − 1] = unE [Yk,n] +
1

2
u2

nE
[
Y 2

k,n

]
+

1

6
u3

nE

[
Y 3

k,ne
c′k,n

]
Therefore,

Λn,x (u) =
1

2
u2an

n∑
k=1

E
[
Y 2

k,n

]
+

1

6
u2un

an

n∑
k=1

E

[
Y 3

k,ne
c′k,n

]

− v2
n

2an

n∑
k=1

1

c2k,n

(E [exp (unYk,n) − 1])2

=
1

2
u2F (x) +R(1)

n,x (u) +R(2)
n,x (u) (11)
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with

R(1)
n,x (u) = u2

∫
�

K (z)K (−z) [F (x+ zhn) − F (x)] dz

R(2)
n,x (u) =

1

6

u3

vn

1

an

n∑
k=1

E

[
Y 3

k e
c′k,n

]
− v2

n

2an

n∑
k=1

1

c2k,n

(E [exp (unYk,n) − 1])2

Since F is continuous, we have limn→∞ |F (x+ zhn) − F (x)| = 0, and thus, by the
dominated convergence theorem, (M1) implies that

lim
n→∞

∫
�

K (z)K (−z) |F (x+ zhn) − F (x)| dz = 0,

it follows that limn→∞
∣∣∣R(1)

n,x (u)
∣∣∣ = 0.

Moreover, in view of (7), we have |Yk,n| ≤ ‖K‖∞, then

c′k,n ≤ |unYk,n|
≤ |un| ‖K‖∞ (12)

Noting that E |Yk,n|3 ≤ 3 ‖F‖∞
∫
�
|K (z)| |K2 (z)| dz. Hence, it follows from (12),

there exists a positive constant c1 such that, for n large enough,

∣∣∣∣∣u
3

vn

1

an

n∑
k=1

E

[
Y 3

k e
c′k,n

]∣∣∣∣∣ ≤ c1e
|un|‖K‖∞ u

3

vn
‖F‖∞

∫
�

|K (z)| ∣∣K2 (z)
∣∣ dz (13)

which goes to 0 as n→ ∞ since vn → ∞.
In the same way, there exists a positive constant c2 such that, for n large enough,

∣∣∣∣∣ v
2
n

2an

n∑
k=1

1

c2k,n

(E [exp (unYk,n) − 1])2

∣∣∣∣∣
≤ v2

n

2an

n∑
k=1

(E [exp (unYk,n) − 1])2

≤ c2
u2

2
hn ‖f‖2

∞ exp (|un| ‖K‖∞)

(∫
�

|K (−z)| dz
)2

(14)

The combination of (13) and (14) ensures that limn→∞
∣∣∣R(2)

n,x (u)
∣∣∣ = 0. Then, we

obtain from (11), limn→∞ Λn,x (u) = ΛM
x (u).
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Second case: (vn) ≡ 1. It follows from (10), that

Λn,x (u) =
1

an

n∑
k=1

E [exp (uYk,n) − 1] − 1

2an

n∑
k=1

1

c2k,n

(E [exp (uYk,n) − 1])2

−uE [Y1,n]

Moreover, using integration by parts, we get

Λn,x (u) = uF (x)

∫
�

K (z) (exp (uK (−z)) − 1) dz − R(3)
n,x (u) +R(4)

n,x (u) (15)

with

R(3)
n,x (u) =

1

2an

n∑
k=1

1

c2k,n

(E [exp (uYk,n) − 1])2

R(4)
n,x (u) = u

∫
�

K (z) (exp (uK (−z)) − 1) [F (x+ zhn) − F (x)] dz.

It follows from (14), that limn→∞
∣∣∣R(3)

n,x (u)
∣∣∣ = 0.

Since |et − 1| ≤ |t| e|t|, we have

∣∣R(4)
n,x (u)

∣∣ ≤ u2e|u|‖K‖∞
∫
�

|K (z)| |K (−z)| |F (x+ zhn) − F (x)| dz.

Then, the dominated convergence theorem ensures that limn→∞R
(4)
n,x (u) = 0.

In the case F is uniformly continuous, set ε > 0 and let M > 0 such that
2 ‖F‖∞

∫
‖z‖≤M

|K (z)| |K (−z)| dz ≤ ε/2. We need to prove that for n sufficiently

large

sup
x∈�

∫
‖z‖≤M

|K (z)| |K (−z)| |F (x+ zhn) − F (x)| dz ≤ ε/2

which is a straightforward consequence of the uniform continuity of F .

Then, it follows from (15), that

lim
n→∞

Λn,x (u) = uF (x)

∫
�

K (z) (exp (uK (−z)) − 1) dz

= F (x) (exp (u) − 1 − u)

= ΛL
x (u)

and thus Lemma 1 is proved.
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3.2 Proof of Proposition 1

To prove Proposition 1, we apply Lemma 1 and the following result (see Puhalskii,
1994).

Lemma 2. Let (Zn) be a sequence of real random variables, (νn) a positive sequence
satisfying limn→∞ νn = +∞, and suppose that there exists some convex non-negative
function Γ defined on R such that

∀u ∈ R, lim
n→∞

1

νn
log E [exp (uνnZn)] = Γ (u) .

If the Legendre function Γ∗ of Γ is a strictly convex function, then the sequence (Zn)
satisfies a LDP of speed (νn) and good rate fonction Γ∗.

In our framework, when vn ≡ 1, we take Zn = Fn (x) − E (Fn (x)), νn = n
and Γ = ΛL

x . In this case, the Legendre transform of Γ = ΛL
x is the rate function

Ix : t → F (x) I
(
1 + t

F (x)

)
, since ψ is strictly convex, then its Cramer transform

I is a good rate function on R (see Dembo and Zeitouni, 1998). Otherwise, when,
vn → ∞, we take Zn = vn (Fn (x) − E (Fn (x))), νn = n/v2

n and Γ = ΛM
x ; Γ∗ is then

the quadratic rate function Jx defined in (3) and thus Proposition 1 follows.

3.3 Proof of Proposition 2

In order to prove Proposition 2, we first establish some lemmas.

Lemma 3. Let φ : R
+ → R be the function defined for δ > 0 as

φ (δ) =

{
(ψ′)−1

(
1 + δ

‖F‖U,∞

)
when vn ≡ 1 , (L1) and (L2) hold

δ
‖F‖U,∞

when vn → ∞ , (M1) − (M4) hold

1. supu∈� {uδ − supx∈U Λx (u)} equals gU (δ) and is achieved for u = φ (δ) > 0.

2. supu∈� {−uδ − supx∈U Λx (u)} equals gU (δ) and is achieved for u = φ (−δ) <
0.

Proof of Lemma 3 . We just prove the first part, the proof of the second part
one being similar.

• First case vn → 1. Since et ≥ 1 + t, for all t, we have ψ (u) ≥ u and therefore,

uδ − sup
x∈U

Λx (u) = uδ − ‖F‖U,∞ (ψ (u) − u)

= ‖F‖U,∞

[
u

(
1 +

δ

‖F‖U,∞

)
− ψ (u)

]
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The function u 
→ uδ−supx∈U Λx (u) has second derivative −‖F‖U,∞ψ′′ (u) < 0
and thus it has a unique maximum achieved for

u0 = (ψ′)−1

(
1 +

δ

‖F‖U,∞

)
Now, since ψ′ is increasing and since ψ′ (0) = 1, we deduce that u0 > 0.

• Second case vn → ∞. In this case, we have

uδ − sup
x∈U

Λx (u) = uδ − u2

2
‖F‖U,∞.

The function u 
→ uδ− supx∈U Λx (u) has second derivative −‖F‖U,∞ < 0 and
thus it has a unique maximum achieved for

u0 =
δ

‖F‖U,∞
> 0

Lemma 4.

• In the case when (vn) ≡ 1, let (L1) and (L2) hold;

• In the case when vn → ∞, let (M1) − (M4) hold.
Then for any δ > 0,

lim
n→∞

v2
n

n
log sup

x∈U
P [vnΨn (x) ≥ δ] = −gU (δ)

lim
n→∞

v2
n

n
log sup

x∈U
P [vnΨn (x) ≤ −δ] = −gU (−δ)

lim
n→∞

v2
n

n
log sup

x∈U
P [vn |Ψn (x)| ≤ −δ] = −g̃U (−δ)

Proof of Lemma 4. The proof of Lemma 4 is similar to the proof of Lemma 4
in Mokkadem et al. (2006).

Lemma 5. Let Assumptions (U1) − (U3) hold and assume that either (vn) ≡ 1 or
(U4) holds.

1. If U is a bounded set, then for any δ > 0, we have

lim
n→∞

v2
n

n
log P

[
sup
x∈U

vn |Ψn (x)|
]
≤ −g̃U (δ)

2. If U is an unbounded set, then, for any b > 0 and δ > 0,

lim sup
n→∞

v2
n

n
log P

[
sup

x∈U,‖x‖≤wn

vn |Ψn (x)|
]
≤ b− g̃U (δ)

where wn = exp
(
b n

v2
n

)
.
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Proof of Lemma 5. Set ρ ∈ ]0, δ[, let β denote the Hölder order of K, and ‖K‖H

its corresponding Hölder norm. Set wn = exp
(
b n

v2
n

)
and

Rn =

(
ρ

2‖K‖Hvnh
−β
n

) 1
β

We begin with the proof of the second part of Lemma 5. There exist N ′ (n) points

of R, y
(n)
1 , y

(n)
2 , . . . , y

(n)
N ′(n) such that the ball {x ∈ R; ‖x‖ ≤ wn} can covered by the

N ′ (n) balls B
(n)
i =

{
x ∈ R; ‖x− y

(n)
i ‖ ≤ Rn

}
and such that N ′ (n) ≤ 2

(
2wn

Rn

)
.

Considering only the N (n) balls that intersect {x ∈ U ; ‖x‖ ≤ wn}, we can write

{x ∈ U ; ‖x‖ ≤ wn} ⊂ ∪N(n)
i=1 B

(n)
i .

For each i ∈ {1, . . . , N (n)}, set x
(n)
i ∈ B

(n)
i ∩ U . We then have:

P

[
sup

x∈U,‖x‖≤wn

vn |Ψn (x)| ≥ δ

]
≤

N(n)∑
i=1

P

[
sup

x∈B
(n)
i

vn |Ψn (x)| ≥ δ

]

≤ N (n) max
1≤i≤N(n)

P

[
sup

x∈B
(n)
i

vn |Ψn (x)| ≥ δ

]
.

Now, for any i ∈ {1, . . . , N (n)} and any x ∈ B
(n)
i ,

vn |Ψn (x)| ≤ vn

∣∣∣Ψn

(
x

(n)
i

)∣∣∣
+
vn

n

n∑
k=1

∣∣∣∣∣K
(
x−Xk

hn

)
−K

(
x

(n)
i −Xk

hn

)∣∣∣∣∣
+
vn

n

n∑
k=1

E

∣∣∣∣∣K
(
x−Xk

hn

)
−K

(
x

(n)
i −Xk

hn

)∣∣∣∣∣
≤ vn

∣∣∣Ψn

(
x

(n)
i

)∣∣∣ + 2
vn

n
‖K‖H

n∑
k=1

(
‖x− x

(n)
i ‖

hn

)β

≤ vn

∣∣∣(x(n)
i

)∣∣∣+ 2vn‖K‖Hh
−β
n Rβ

n

≤ vn

∣∣∣Ψn

(
x

(n)
i

)∣∣∣ + ρ

Hence, we deduce that

P

[
sup

x∈U,‖x‖≤wn

vn |Ψn (x)| ≥ δ

]
≤ N (n) max

1≤i≤N(n)
P

[
vn

∣∣∣Ψn

(
x

(n)
i

)∣∣∣ ≥ δ − ρ
]

≤ N (n) sup
x∈U

P

[
vn

∣∣∣Ψn

(
x

(n)
i

)∣∣∣ ≥ δ − ρ
]
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Further, by definition of N (n) and wn, we have

logN (n) ≤ logN ′ (n) ≤ b
n

v2
n

+ 2 log 2 − logRn

and

v2
n

n
logRn =

1

β

v2
n

n
[log ρ− log (2‖K‖H) − log vn + β log hn] .

Then, in view of (U3), we have

lim sup
n→∞

v2
n

n
logN (n) ≤ b (16)

The application of Lemma 4 then yields

lim sup
n→∞

v2
n

n
log P

[
sup

x∈U,‖x‖≤wn

vn |Ψn (x)| ≥ δ

]
≤ lim sup

n→∞

v2
n

n
logN (n) − g̃U (δ − ρ)

≤ b− g̃U (δ − ρ) .

Since the inequality holds for any ρ ∈ ]0, δ[, part 2 of Lemma 5 thus follows from
the continuity of g̃U .

Let us now consider part 1 of Lemma 5. This part is proved by following the
same steps as for part 2, except that the number N (n) of balls covering U is at
most the integer part of (Δ/Rn), where Δ denotes the diameter of U . Relation (16)
then becomes

lim sup
n→∞

v2
n

n
logRn ≤ 0

and Lemma 5 is proved.

Lemma 6. Let (U1) i), (M2) and (U6) i) hold. Assume that either (vn) ≡ 1 or (U3)
and (U6) ii) hold. Moreover assume that F is continuous. For any b > 0 if we set

wn = exp
(
b n

v2
n

)
then, for any ρ > 0, we have, for n large enough,

sup
x∈U,‖x‖≥wn

vn

n

n∑
k=1

∣∣∣∣E
[
K
(
x−Xk

hn

)]∣∣∣∣ ≤ ρ

Proof of Lemma 6. We have

vn

n

n∑
k=1

E

[
K
(
x−Xk

hn

)]
= vn

∫
�

K (z)F (x+ zhn) dz. (17)
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Set ρ > 0. In the case (vn) ≡ 1, we set M such that ‖F‖∞
∫
‖z‖>M

|K (z)| dz ≤ ρ/2;

it follows that

vn

n

n∑
k=1

∣∣∣∣E
[
K
(
x−Xk

hn

)]∣∣∣∣
≤ ρ

2
+ F (x)

∫
‖z‖≤M

|K (z)| dz +

∫
‖z‖>M

|K (z)| |F (x+ zhn) − F (x)| dz.

Lemma 6 then follows from the fact that F fulfills (U6) ii). As matter of fact,
this conditions implies that lim‖x‖→∞,x∈U F (x) = 0 and that the third term in the
right-hand-side of the previous inequality goes to 0 as n → ∞ (by the dominated
convergence).
Let us now assume that limn→∞ vn = ∞; relation (17) can be rewritten as

vn

n

n∑
k=1

E

[
K
(
x−Xk

hn

)]
= vn

∫
‖z‖≤wn/2

K (z)F (x+ zhn) dz

+vn

∫
‖z‖≥wn/2

K (z)F (x+ zhn) dz.

First, since ‖x‖ ≥ wn and ‖z‖ ≤ wn/2, we have

‖x+ zhn‖ ≥ wn (1 − hn/2)

≥ wn/2 for n large enough.

Moreover, in view of assumptions (U3), for all ξ > 0,

lim
n→∞

vn

wξ
n

= lim
n→∞

exp

{
−bξ n

v2
n

(
1 − 1

bξ

v2
n log vn

n

)}
= 0. (18)

Set Mf = supx∈� ‖x‖ηF (x). Assumption (U6) ii) and equation (18) implie that, for
n sufficiently large,

sup
‖x‖≥wn

vn

∫
‖z‖≤wn/2

|K (z)F (x+ zhn)| dz

≤Mf sup
‖x‖≥wn

vn

∫
‖z‖≤wn/2

|K (z)| ‖x + zhn‖−ηdz

≤ 2ηMf
vn

wη
n

∫
�

|K (z)| dz

≤ ρ

2
.
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Moreover, in view of (U3), (U6) i) and (18), for n sufficiently large,

sup
‖x‖≥wn

vn

∫
‖z‖>wn/2

|K (z)F (x+ zhn)| dz

≤ 2ζMf
vn

wζ
n

∫
‖z‖>wn/2

‖z‖ζ |K (z)| dz

≤ ρ

2
.

This concludes the proof of Lemma 6. Since K is a bounded function that vanishes
at infinity, we have lim‖x‖→∞ |Ψn (x)| = 0 for every n ≥ 1. Moreover, since K is
assumed to be continuous, Ψn is continuous, and this ensures the existence of a
random variable sn such that

|Ψn (sn)| = sup
x∈U

|Ψn (x)| .

Lemma 7.
Let Assumptions (U1) − (U3), (U4) ii) and (U5) hold. Suppose either (vn) ≡ 1 or

(H6) hold. For any b > 0, set wn = exp
(
b n

v2
n

)
; for any δ > 0, we have

lim sup
n→∞

v2
n

n
log P [‖sn‖ ≥ wn and |Ψn (sn)| ≥ δ] ≤ −bβ (19)

Proof of Lemma 7. We first note that sn ∈ U and therefore

‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ

⇒ ‖sn‖ ≥ wn and
vn

n

∣∣∣∣∣
n∑

k=1

K
(
sn −Xk

hn

)∣∣∣∣∣ + vn

n
E

∣∣∣∣∣
n∑

k=1

K
(
sn −Xk

hn

)∣∣∣∣∣ ≥ δ

⇒ ‖sn‖ ≥ wn and
vn

n

n∑
k=1

∣∣∣∣K
(
sn −Xk

hn

)∣∣∣∣ ≥ δ

− sup
‖x‖≥wn,x∈U

vn

n

n∑
k=1

E

∣∣∣∣K
(
sn −Xk

hn

)∣∣∣∣
Set ρ ∈ ]0, δ[; the application of Lemma 6 ensures that, for n large enough,

‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ

⇒ ‖sn‖ ≥ wn and
vn

n

∣∣∣∣∣
n∑

k=1

K
(
sn −Xk

hn

)∣∣∣∣∣ ≥ δ − ρ.
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Set κ = supx∈� ‖x‖γ |K (x)| (see Assumption (U5)). We obtain, for n sufficiently
large,

‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ

⇒ ‖sn‖ ≥ wn and ∃k ∈ {1, . . . , n} such that vn

∣∣∣∣K
(
sn −Xk

hn

)∣∣∣∣ ≥ δ − ρ

⇒ ‖sn‖ ≥ wn and ∃k ∈ {1, . . . , n} such that κhγ
n ≥ v−1

n ‖sn −Xk‖γ (δ − ρ)

⇒ ‖sn‖ ≥ wn and ∃k ∈ {1, . . . , n} such that |‖sn‖ − ‖Xk‖| ≤
[
κvnh

γ
n

δ − ρ

] 1
γ

⇒ ‖sn‖ ≥ wn and ∃k ∈ {1, . . . , n} such that ‖Xk‖ ≤ ‖sn‖ −
[
κvnh

γ
n

δ − ρ

] 1
γ

⇒ ‖sn‖ ≥ wn and ∃k ∈ {1, . . . , n} such that ‖Xk‖ ≤ wn (1 − un,k) with

un,k = w−1
n v

1
γ
n hn

(
κ

δ − ρ

) 1
γ

.

Moreover, we can write un,k as

un,k = exp

(
−b n

v2
n

[
1 − v2

n log vn

n

1

bγ
− v2

n log (hn)

n

1

b

])(
κ

δ − ρ

) 1
γ

and assumption (U3) ensure that limn→∞ un,k = 0, it then follows that 1− un,k > 0
for n sufficiently large; therefore we can deduce that (see Assumption (U4) i)):

P [‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ] ≤
n∑

i=1

P

[
‖Xk‖β ≥ wβ

n (1 − un,k)
β
]

≤
n∑

i=1

E
(‖Xk‖β

)
w−β

n (1 − un,k)
−β

≤ nE
(‖X1‖β

)
w−β

n max
1≤k≤n

(1 − un,k)
−β .

Consequently,

v2
n

n
log P [‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ]

≤ v2
n

n

[
log n+ log E

(‖X1‖β
)− bβnv2

n − β log max
1≤k≤n

(1 − un,k)

]
,

and, thanks to assumptions (U3), it follows that

lim sup
n→∞

v2
n

n
log P [‖sn‖ ≥ wn and vn |Ψn (sn)| ≥ δ] ≤ −bβ,

which concludes the proof of Lemma 7.
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3.4 Proof of Proposition 2

Let us at first note that the lower bound

lim inf
n→∞

v2
n

n
log P

[
sup
x∈U

vn |Ψn (x)| ≥ δ

]
≥ −g̃U (δ) (20)

follows from the application of Proposition 1 at a point x0 ∈ U such that F (x0) =
‖F‖U,∞.
In the case U is bounded, Proposition 2 is thus a straightforward consequence of (20)
and the first part of Lemma 5. Let us now consider the case U is unbounded.

Set δ > 0 and, for any b > 0 set wn = exp
(
b n

v2
n

)
. Since, by definition of sn,

P

[
sup
x∈U

vn |Ψn (x)| ≥ δ

]

≤ P

[
sup

x∈U,‖x‖≤wn

vn |Ψn (x)| ≥ δ

]
+ P [‖sn‖ ≥ wn and vn |Ψn (x)| ≥ δ] ,

it follows from Lemmas 5 and 7 that

lim sup
n→∞

v2
n

n
log P

[
sup
x∈U

vn |Ψn (x)| ≥ δ

]
≤ max {−bβ; b− g̃U (δ)}

and consequently

lim sup
n→∞

v2
n

n
log P

[
sup
x∈U

vn |Ψn (x)| ≥ δ

]
≤ inf

b>0
max {−bβ; b− g̃U (δ)} .

Since the infimum in the right-hand-side of the previous bound is achieved for b =
g̃U (δ) / (β + 1) and equals −βg̃U (δ) / (β + 1), we obtain the upper bound

lim sup
n→∞

v2
n

n
log P

[
sup
x∈U

vn |Ψn (x)| ≥ δ

]
≤ − β

β + 1
g̃U (δ)

which concludes the proof of Proposition 2.

3.5 Proof of Proposition 3

It follows from (1), that

E [Fn (x)] =

∫
�

K
(
x− y

hn

)
f (y) dy

=

∫
�

K (z)F (x+ zhn) dz

= F (x) +
1

2
h2

nF
(2) (x)

∫
�

z2K (z) dz + η (x) (21)
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with

η (x) =

∫
�

[
F (x+ zhn) − F (x) − zhnF

′ (x) − 1

2
z2h2

nF
(2) (x)

]
K (z) dz

Since F is continuous, we have limn→∞
∣∣F (x+ zhn) − F (x) − zhnF

′ (x) − 1
2
z2h2

nF
(2) (x)

∣∣ =
0, and thus by the dominated convergence theorem, we have limn→∞ η (x) = 0, and
thus Part 1 of Proposition 3 is completed. Since supx∈� ‖F (2) (x) ‖ < +∞, Part 2
follows.
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