On change-points tests based on two-samples U-Statistics for weakly dependent observations

Michel Harel

INSPE (Université de Limoges, France)
IMT (Université de Toulouse, France)
E-mail: michel.harel@unilim.fr

Joint work with Joseph Ngatchou-Wandji (Université de Lorraine, France),
Echarif Elharfaoui (Université Chouaib Doukkali, Maroc)
Quatrième Rencontre Poitiers - Bordeaux - ASMA 2020
Vendredi 11 décembre 2020

Outline

1. Introduction and Motivations
2. General definitions and assumptions
3. Asymptotics
4. Practical considerations
5. Restricted bibliography

1 - Introduction and Motivations

- We are interested in detecting possible differences between the distributions of real-valued random variables $X_{1}, X_{2}, \ldots, X_{n}$.
- For any $i=1,2, \ldots, n$, let F_{i} be the cdf of X_{i}.
- We aim to checking possible differences between the F_{i} 's.
- We restrict ourselves to checking if there exists only one index i_{0} for which $F_{i_{0}}$ and $F_{i_{0}+1}$ are different.
- We study this problem by testing the hypothesis \mathcal{H}_{0} against the alternative \mathcal{H}_{1}, defined respectively by

$$
\begin{aligned}
\mathcal{H}_{0} & : F_{1}(x)=F_{2}(x)=\ldots=F_{n}(x), x \in \mathbb{R} \\
\mathcal{H}_{1}: & \exists \lambda_{0} \in(0,1): F_{1}(x)=F_{2}(x)=\ldots=F_{\left[n \lambda_{0}\right]}(x)=F(x), \\
& x \in \mathbb{R} \text { and } F_{\left[n \lambda_{0}\right]+1}(x)=\ldots=F_{n}(x)=G(x), x \in \mathbb{R}, \text { and } \\
& \exists x_{0} \in \mathbb{R} \text { such that } F\left(x_{0}\right) \neq G\left(x_{0}\right) \text { and } \theta(F, F) \neq \theta(F, G) .
\end{aligned}
$$

- Examples: Figure 1 exhibits the chronograms of some time series each of size 200 , owning a change-point at $t=100$.

Figure 1. First row : change in the mean and change in the variance of a shifted white noise. Second row : change in both the mean and the variance of a shifted white noise, and change in the correlation of an $\operatorname{AR}(1)$ model.

- For cdf Q and R, denote by $\theta(Q, R)$ the following real number

$$
\theta(Q, R)=\iint h(x, y) d Q(x) d R(y)
$$

- In order to evaluate the capacity of the tests to detect weak changes, we also consider the local alternatives $\mathcal{H}_{1, n}$ of the form

$$
\begin{gathered}
\mathcal{H}_{1, n}: \exists \lambda_{0} \in(0,1): F_{1}(x)=F_{2}(x)=\ldots=F_{\left[n \lambda_{0}\right]}(x)=F(x), \\
\quad \text { and } F_{\left[n \lambda_{0}\right]+1}(x)=\ldots=F_{n}(x)=G(x), x \in \mathbb{R}, \exists x_{0} \in \mathbb{R}
\end{gathered}
$$

such that $F\left(x_{0}\right) \neq G\left(x_{0}\right)$ and $\theta(F, G)=\theta(F, F)+n^{-1 / 2} A$, for some $A \in \mathbb{R}^{*}$.

- Particular examples of local alternatives $\mathcal{H}_{1, n}$ are those for which there exists a constant B such that: $G(x)=F\left(x+n^{-1 / 2} B\right)$ and the kernel function h is twice differentiable with finite integral $\iint(\partial h(x, y) / \partial y) d F(x) d G(y)$.
and bounded second-order derivatives $\partial^{2} h(x, y) / \partial^{2} y$.
- In the purpose of solving our testing problem, the tests we are going to use are based on the following statistics

$$
\begin{aligned}
& T_{1, n}=\max _{1 \leq k \leq n-1}\left|n^{-3 / 2} \sum_{i=1}^{k} \sum_{j=k+1}^{n}\left\{h\left(X_{i}, X_{j}\right)-\theta_{n}(F, F)\right\}\right| \\
& T_{2, n}=\frac{1}{n} \sum_{1 \leq k \leq n-1}\left\{n^{-3 / 2} \sum_{i=1}^{k} \sum_{j=k+1}^{n}\left\{h\left(X_{i}, X_{j}\right)-\theta_{n}(F, F)\right\}\right\}^{2}(2)
\end{aligned}
$$

where $\theta_{n}(F, F)$ is a consistent estimator.

- Denote by $[x]$ the integer part of any real number x.

Noting that for any $k \in\{1, \ldots, n-1\}$, there exists $\lambda_{*} \in[0,1]$ such that $k=\left[\lambda_{*} n\right]$, one can write, at least asymptotically,

$$
\begin{aligned}
T_{1, n} & =\sup _{\lambda \in[0,1]}\left|Z_{n}(\lambda)\right| \\
T_{2, n} & =\int_{\lambda \in[0,1]} Z_{n}^{2}(\lambda) d \lambda
\end{aligned}
$$

where Z_{n} stands for the following stochastic process

$$
\begin{equation*}
Z_{n}(\lambda)=n^{-3 / 2} \sum_{i=1}^{[n \lambda]} \sum_{j=[n \lambda]+1}^{n}\left\{h\left(X_{i}, X_{j}\right)-\theta_{n}(F, F)\right\}, 0 \leq \lambda \leq 1 . \tag{3}
\end{equation*}
$$

- The asymptotic distribution of a related process has been studied in the literature (Račkauskas and Wendler (2020), Csörgő and Horváth (1988) and by Dehling et al. (2015))
- These conditions are alleviated here and our study is done in a Skorohod space.
- Furthermore, besides the Kolmogorov-Smirnov type test usually studied in the literature
- We study a Cramer-von Mises version which has the advantage that its theoretical critical value can be approximated for any kernel h.
- We restrict our study to the classical case of one change-point detection.
- But our results can be generalized to multi-change-points detection which we postpone to a future paper.
- In Section 2, we define useful quantities such as the test statistics, and we list some assumptions.
- In Section 3 we study the asymptotic properties of our tests statistics under the null hypothesis, under a sequence of local alternatives and under fixed alternatives.
- Practical considerations are presented and discussed in Section 4.

2 - General definitions and assumptions

- Define the following U-statistic U_{n} with kernel h, and the following functions

$$
\begin{gathered}
U_{n}=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} h\left(X_{i}, X_{j}\right) \\
h_{1}^{(1)}(x)=\int h(x, y) d F(y)-\theta(F, F) \\
h_{2}^{(1)}(y)=\int h(x, y) d F(x)-\theta(F, F) \\
h_{1}^{(2)}(x)=\int h(x, y) d G(y)-\theta(F, G) \\
h_{2}^{(2)}(y)=\int h(x, y) d F(x)-\theta(F, G) \\
g^{(1)}(x, y)=h(x, y)-h_{1}^{(1)}(x)-h_{2}^{(1)}(y)+\theta(F, F) \\
g^{(2)}(x, y)=h(x, y)-h_{1}^{(2)}(x)-h_{2}^{(2)}(y)+\theta(F, G) .
\end{gathered}
$$

- Consider the Hoeffding's decomposition of U_{n} under \mathcal{H}_{0}

$$
\begin{equation*}
U_{n}=\theta(F, F)+U_{n, 1}^{(1)}+U_{n, 2}^{(1)}+U_{n}^{(2)}, \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& U_{n, 1}^{(1)}=n^{-1} \sum_{i=1}^{n} h_{1}^{(1)}\left(X_{i}\right) \\
& U_{n, 2}^{(1)}=n^{-1} \sum_{i=1}^{n} h_{2}^{(1)}\left(X_{i}\right)
\end{aligned}
$$

$$
U_{n}^{(2)}=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n}\left[h\left(X_{i}, X_{j}\right)-h_{1}^{(1)}\left(X_{i}\right)-h_{2}^{(1)}\left(X_{j}\right)\right]+\theta(F, F)
$$

- Also, define the following real numbers

$$
\sigma_{k l}=\mathbb{E}\left[h_{k}^{(1)}\left(X_{1}\right) h_{l}^{(1)}\left(X_{1}\right)\right]+2 \sum_{j=1}^{\infty} \operatorname{Cov}\left(h_{k}^{(1)}\left(X_{1}\right), h_{l}^{(1)}\left(X_{1+j}\right)\right)
$$

with $k, I=1,2$.

- We will assume that the sequence $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ is absolutely regular with the rate

$$
\begin{equation*}
\beta(n)=\mathcal{O}\left(\tau^{n}\right), \quad 0<\tau<1, \tag{5}
\end{equation*}
$$

where

$$
\beta(k)=\sup _{n \in \mathbb{N}^{1} \leq j \leq n-k} \max _{1 \leq} \mathbb{E}\left[\sup _{A \in \mathcal{A}_{j+k}^{\infty}}\left|P\left(A \mid \mathcal{A}_{0}^{j}\right)-P(A)\right|\right],
$$

with \mathcal{A}_{i}^{j} standing for the σ-algebra generated by $X_{i}, \ldots, X_{j}, i, j \in \mathbb{N} \cup\{\infty\}$.

- We recall that $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ is absolutely regular or β-mixing if $\beta(k) \longrightarrow 0$ as $n \rightarrow \infty$.
- We also assume that $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ is stationary and ergodic.
- We consider $\left(Y_{i}\right)_{1 \leq i \leq n}$ a sequence of stationary ergodic and absolute regular random variables with the same rate as the sequence $\left(X_{i}\right)_{1 \leq i \leq n}$, that is with rate (5).
We assume the cdf of the Y_{i} 's is G. For any $i, j \in \mathbb{N}$, the absolute regular dependence between Y_{i} and Y_{j} is the same as the dependence between X_{i} and X_{j}.
- We assume a geometrical mixing rate by convenience. We believe our results can be established as well for arithmetical mixing rates to be found.

3 - Asymptotics

Theorem 1

Under \mathcal{H}_{0}, if
$\max \left\{E\left[\left|h\left(X_{i}, X_{j}\right)\right|^{2+\delta}\right], \iint_{\mathbb{R}^{2}}|h(x, y)|^{2+\delta} d F(x) d F(y)\right\}<\infty$ for some $\delta>0$ and the absolute regularity condition (5) is satisfied, then for any $k, l=1,2, \sigma_{k l}<\infty$.
If in addition $\sigma_{k l}>0,1 \leq k, I \leq 2$, then the sequence of processes of $\left\{Z_{n}(\lambda) ; 0 \leq \lambda \leq 1\right\}_{n \in \mathbb{N}}$ converges in distribution towards a zero-mean Gaussian process with representation

$$
Z(\lambda)=(1-\lambda) W_{1}(\lambda)+\lambda\left(W_{2}(1)-W_{2}(\lambda)\right), 0 \leq \lambda \leq 1
$$

where $\left\{W_{1}(\lambda), W_{2}(\lambda)\right\}_{0 \leq \lambda \leq 1}$ is a two-dimensional zero-mean Brownian motion with covariance kernel matrix with entries $\operatorname{Cov}\left(W_{k}(s), W_{l}(t)\right)=\min (s, t) \sigma_{k l}, \quad k, l=1,2$.

Remark 1 The covariance kernel of the Gaussian process Z defined in Theorem 1 is given for all $s, t \in[0,1]$ by

$$
\begin{align*}
\Delta(s, t) & =\operatorname{Cov}(Z(s), Z(t)) \\
& =\sigma_{11}[(1-s)(1-t) \min s, t]+\sigma_{22}[s t(1-s-t+\min s, t)] \\
& +\sigma_{12}[t(1-s)(s-\min s, t)+s(1-t)(t-\min s, t)] \tag{6}
\end{align*}
$$

Theorem 2

Under $\mathcal{H}_{1, n}$, if
$\mathbb{E}\left[\left|h\left(X_{i}, X_{j}\right)\right|^{2+\delta}\right], \mathbb{E}\left[\left|h\left(Y_{i}, Y_{j}\right)\right|^{2+\delta}\right], \mathbb{E}\left[\left|h\left(X_{i}, Y_{j}\right)\right|^{2+\delta}\right]$,
$\iint_{\mathbb{R}^{2}}|h(x, y)|^{2+\delta} d F(x) d F(y), \iint_{\mathbb{R}^{2}}|h(x, y)|^{2+\delta} d G(x) d G(y)$, and $\iint_{\mathbb{R}^{2}}|h(x, y)|^{2+\delta} d F(x) d G(y)$ are finite for some $\delta>0$, if condition (5) holds and for any $k, l=1,2, \sigma_{k l}>0$, then the sequence of processes $\left\{Z_{n}(\lambda) ; 0 \leqq \lambda \leq 1\right\}_{n \in \mathbb{N}}$ converges in distribution towards a Gaussian process \tilde{Z} with mean $(1-\lambda) \lambda A$ and representation

$$
\tilde{Z}(\lambda)=(1-\lambda) \lambda A+Z(\lambda), \quad 0 \leq \lambda \leq 1
$$

where $\{Z(\lambda)\}_{0 \leq \lambda \leq 1}$ is the zero-mean Gaussian process defined in Theorem 1.

Theorem 3

We assume that under \mathcal{H}_{1}, the integrability conditions in Theorem 2 and condition (5) are satisfied, then
$\frac{1}{\sqrt{n}} Z_{n}^{*}(t) \underset{n \rightarrow \infty}{\text { a.s. }} \begin{cases}\theta(F, F) t\left(\lambda_{0}-t\right)+\theta(F, G) t\left(1-\lambda_{0}\right), & 0 \leq t \leq \lambda_{0} \\ \theta(G, G)\left(t-\lambda_{0}\right)(1-t)+\theta(F, G) \lambda_{0}(1-t), & \lambda_{0} \leq t<1 .\end{cases}$
where

$$
Z_{n}^{*}(t)=n^{-3 / 2} \sum_{i=1}^{[n t]} \sum_{j=[n t]+1}^{n} h\left(X_{i}, X_{j}\right), 0 \leq t \leq 1
$$

Theorem 4

Assume that the assumptions of Theorem 2 hold. Let $(Z(\lambda): 0 \leq \lambda \leq 1)$ be the limiting process defined in Theorems 1 and 2 , and Δ its covariance kernel. Then
i- Under \mathcal{H}_{0}, as n tends to infinity, one has the following convergence in distribution,

$$
\begin{gathered}
T_{1, n} \longrightarrow \sup _{\lambda \in[0,1]}|Z(\lambda)| \\
T_{2, n} \longrightarrow \sum_{j \geq 1} \zeta_{j} \chi_{j}^{2}
\end{gathered}
$$

where the χ_{j}^{2} 's are iid chi-square random variables with one degree of freedom and the ζ_{j} 's are standing for the eigen-values of the linear integral operator ∇ defined for any square integrable function τ on $[0,1]$ by

$$
\begin{equation*}
\nabla[\tau(\cdot)]=\int_{[0,1]} \Delta(\cdot, s) \tau(s) d s \tag{8}
\end{equation*}
$$

ii- Under $\mathcal{H}_{1, n}$, as n tends to infinity, one has the following convergence in distribution,

$$
\begin{gathered}
T_{1, n} \longrightarrow \sup _{\lambda \in[0,1]}|(1-\lambda) \lambda A+Z(\lambda)| \\
T_{2, n} \longrightarrow \sum_{j \geq 1} \zeta_{j} \chi_{j}^{* 2}
\end{gathered}
$$

where the $\chi_{j}^{* 2}$'s are iid non-central chi-square random variables with one degree of freedom and non-centrality parameters $\rho_{j}^{2} \zeta_{j}^{-1}$ with the e_{j} 's standing for the eigen-vectors of the integral operator ∇, associated with the eigen-value ζ_{j}, and

$$
\rho_{j}=A \int_{[0,1]} \lambda(1-\lambda) e_{j}(\lambda) d \lambda
$$

iii- Under \mathcal{H}_{1}, as n tends to infinity, one has the following convergence in probability, $\quad T_{1, n} \longrightarrow \infty, \quad T_{2, n} \longrightarrow \infty$.

Define σ by

$$
\sigma=\operatorname{Var}\left(h_{1}^{(1)}\left(X_{1}\right)\right)+2 \sum_{j=1} \operatorname{Cov}\left(h_{1}^{(1)}\left(X_{1}\right), h_{1}^{(1)}\left(X_{1+j}\right)\right)
$$

Corollary 1
Assume that the assumptions of Theorem 2 hold, and that h is such that its associated $h_{1}^{(1)}$ and $h_{2}^{(1)}$ satisfy $h_{1}^{(1)}(x)=-h_{2}^{(1)}(x)$. Then
i- Under \mathcal{H}_{0}, as n tends to infinity, one has the following convergence in distribution

$$
\begin{gathered}
T_{1, n} \longrightarrow \sigma \sup _{\lambda \in[0,1]}\left|W^{0}(\lambda)\right| \\
T_{2, n} \longrightarrow \sigma^{2} \sum_{j \geq 1} \frac{1}{j^{2} \pi^{2}} \chi_{j}^{2}
\end{gathered}
$$

ii- Under $\mathcal{H}_{1, n}$, as n tends to infinity, one has the following convergence in distribution

$$
\begin{gathered}
T_{1, n} \longrightarrow \sup _{\lambda \in[0,1]}\left|(1-\lambda) \lambda A+\sigma W^{0}(\lambda)\right| \\
T_{2, n} \longrightarrow \sum_{j \geq 1} \frac{1}{j^{2} \pi^{2}} \chi_{j}^{* 2}
\end{gathered}
$$

where W^{0} is the Brownian bridge on $[0,1]$, the χ_{j}^{2} 's and $\chi_{j}^{* 2}$'s are as in Theorem 4 but the non-centrality parameters are $2 A^{2}\left\{2\left[1-(-1)^{j}\right] / j \pi\right\}^{2} \sigma^{-2}$.

Remark 2 It is easy to check that anti-symmetric kernels h are such that their associated $h_{1}^{(1)}$ and $h_{2}^{(1)}(x)$ satisfy the property $h_{1}^{(1)}(x)=-h_{2}^{(1)}(x)$.

4 - Practical considerations

- Here, we apply our results to detecting a change in the mean and/or in the variance and/or in the correlation of data from some simple models.
- We sampled 1000 sets of $n=200$ data $X_{1}, X_{2}, \ldots, X_{n}$ from the model

$$
X_{i}=\left\{\begin{array}{cc}
\varepsilon_{i} & i=1, \ldots, 100 \tag{9}\\
\mu+\rho X_{i-1}+\omega \varepsilon_{i} & i=101, \ldots, 200
\end{array}\right.
$$

where μ is a real number, ω is a positive number, the ε_{i} 's are iid and for all $i=1, \ldots, 200, \varepsilon_{i} \sim \mathcal{N}(0,1)$, or $\varepsilon_{i} \sim \mathcal{T}(3)$ (Student distribution with 3 degrees of freedom), or $\varepsilon_{i}=\mathcal{E}_{i}-1$ with $\mathcal{E}_{i} \sim \mathcal{E}(1)(\mathcal{E}(1)$ exponential distribution with parameter 1$)$.

- We first apply our Kolmogorov-Smirnov and Cramér-von Mises type tests to testing $\mu=0$ against $\mu \neq 0$ for $\omega=1$ and $\rho=0$ (testing a change in the mean of a shifted white noise). Next, we apply the two tests to testing $\omega=1$ against $\omega \neq 1$ for $\mu=0$ and $\rho=0$ (testing change in the variance of a white noise). Finally, we consider testing $\rho=0$ against $\rho \neq 0$ for $\mu=0$ and $\omega=1$ (testing a change in the correlation of an $\operatorname{AR}(1)$ model).

Figure 2. Empirical power of CM test (red color). Empirical power of KS test blue color. First row : change in the mean of a shifted Gaussian white noise respectively with the "indicator" and "difference" kernels. Second row : change in the mean of a shifted Student white noise with the "indicator" kernel, and change in the mean of a shifted centered exponential white noise with the "difference" kernel.

Figure 3. Empirical power of CM test (red color). Empirical power of KS test blue color. First row : change in the variance of a shifted Gaussian white noise respectively with the "indicator" and the "difference" kernels. Second row : change in the correlation of an $\operatorname{AR}(1)$ model respectively with the "indicator" and the "difference" kernels.

5 - Restricted bibliography

R
Csörgő, M. and Horváth, L. (1988). Invariance principales for changepoint problems. J. Multivariate Anal. 27:151-168.
囯 Dehling H., Fried, R., Garcia, I., and Wendler, M. (2015). Change-Point Detection Under Dependence Based on Two-Sample U-Statistics. Asymptotic Laws and Methods in Stochastics. Fields Institute Communications, Springer, New York, NY, 76:195-220.
(Oodaira, H. and Yoshihara, K. (1972). Functional central limit theorems for strictly stationary processes satisfying the strong mixing condition, Kodai Mathematical Seminar Reports, 24:259-269.
(Račkauskas, A. and Wendler, M. (2020). Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment. Statist. Papers, 61:1409-1435.
目 Yoshihara, K. (1976). Limiting behavior of U-statistics for stationary absolutely regular processes, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 35:237-252.

Thanks for your attention

