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1 - Introduction and Motivations

e We are interested in detecting possible differences between the
distributions of real-valued random variables X1, X, ..., Xj,.

e Forany i=1,2,...,n, let F; be the cdf of X;.
- We aim to checking possible differences between the F;'s.
- We restrict ourselves to checking if there exists only one index
io for which Fj; and Fj ;1 are different.

e We study this problem by testing the hypothesis Hg against
the alternative H1, defined respectively by

Ho: Fi(x) = Fa(x) = ... = Fp(x), x € R
Hi: 3 X €(0,1): Fi(x) = Fa(x) = ... = Fppyg)(x) = F(x),
x € Rand Fipyp41(x) = ... = Fa(x) = G(x), x € R, and

3 xp € R such that F(xp) # G(x0) and 6(F, F) # 6(F, G).

e Examples: Figure 1 exhibits the chronograms of some time series
each of size 200, owning a change-point at t = 100.
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Figure 1. First row : change in the mean and change in the variance of a shifted white noise. Second row : change
in both the mean and the variance of a shifted white noise, and change in the correlation of an AR(1) model.



e For cdf Q and R, denote by 6(Q, R) the following real number

0(Q.R) = / / h(x,y)dQ(x)dR(y).

e In order to evaluate the capacity of the tests to detect weak
changes, we also consider the local alternatives H; , of the form
Hin: 3 X €(0,1): Fi(x) = R2(x) = ... = Fua(x) = F(x),

and Fipyg)41(x) = ... = Fa(x) = G(x), x e R, I € R

such that F(xp) # G(xo) and O(F, G) = O(F, F) + n~1/2A,
for some A € R*,

e Particular examples of local alternatives H; , are those for which
there exists a constant B such that : G(x) = F(x + n~'/2B)
and the kernel function h is twice differentiable with finite
integral [ [(9h(x,y)/dy)dF(x)dG(y).
and bounded second-order derivatives 92h(x, y)/9%y.



e In the purpose of solving our testing problem, the tests we are
going to use are based on the following statistics

k n
Tin = _max 723" N Lh(X, X)) = 0,(F.F)} (1)

1<k<n—1 — .
i=1 j=k+1
1 k n 2
Ton = > n_3/ZZ.Z {h(X;, X;) — 0,(F,F)} ¥2)
1<k<n—-1 i=1 j=k+1

where 6,(F, F) is a consistent estimator.

e Denote by [x] the integer part of any real number x.
Noting that for any k € {1,...,n— 1}, there exists \, € [0,1]
such that k = [\.n], one can write, at least asymptotically,

Tin = sup [Zy(N)|
X€(0,1]

Ton = / Z.2(\)dA,
A€f0,1]

where Z, stands for the following stochastic process



[HA] n
Z,(A\) =02y N {h(X;, Xj) = 0,(F,F)}, 0< A< L.
i=1 j=[nA]+1
(3)

e The asymptotic distribution of a related process has been studied
in the literature (Ratkauskas and Wendler (2020), Csorg6 and
Horvath (1988) and by Dehling et al. (2015))

e These conditions are alleviated here and our study is done in a
Skorohod space.

e Furthermore, besides the Kolmogorov-Smirnov type test usually
studied in the literature

e We study a Cramer-von Mises version which has the advantage
that its theoretical critical value can be approximated for any
kernel h.



e We restrict our study to the classical case of one change-point
detection.

e But our results can be generalized to multi-change-points
detection which we postpone to a future paper.

e In Section 2, we define useful quantities such as the
test statistics, and we list some assumptions.

- In Section 3 we study the asymptotic properties of our tests
statistics under the null hypothesis, under a sequence of local
alternatives and under fixed alternatives.

- Practical considerations are presented and discussed in Section 4.



2 - General definitions and assumptions
e Define the following U-statistic U, with kernel h, and
the following functions

U, = Z h(X:, X;)
1</<J<n

:/ x,y)dF(y) —0(F,F)

:/ x,y)dF(x) —60(F, F)

:/ (x,)dG(y) — O(F, G)

:/ x,y)dF(x) — 0(F, G)
gM(x,y) = h(x,y) - h“’(x)—hé)(y)w(ﬁ F)
g@(x,y) = h(x,y) — K (x) — K (y) + 0(F, G).



e Consider the Hoeffding's decomposition of U, under Hg

Un = 6(F,F)+ U} + UL + U, (4)
where
U = S
Uty =nt Z V(X))
i=1
2
U = > [hx X)) = KD 06) = KD 0G) | +0(F, F).

n(n —1) 1<i<j<n
e Also, define the following real numbers
o =E [h(k”(xl)h( )(X1) } 42 Z Cov ( D(xy), h(l)(x1+j))
j=1

with k, 1 =1,2.



e We will assume that the sequence {X;};cy is absolutely regular
with the rate

B(n)=0(r"), 0<71<1, (5)

where

B(k) =sup max E

neN 1<j<n—k ’

sup ‘P(A | L) — P(A)(

AEA,

with .AJ,: standing for the o-algebra generated by
Xiy..., Xj, i,j € NU{oo}.

- We recall that {X;},cn is absolutely regular or S-mixing if
B(k) — 0 as n — 0.

e We also assume that {X;};c is stationary and ergodic.



e We consider (Y;)i<i<n a sequence of stationary ergodic and
absolute regular random variables with the same rate as the
sequence (Xj),.,.,, that is with rate (5).

We assume the cdf of the Y;'sis G. For any i,j € N,
the absolute regular dependence between Y; and Y/ is the same
as the dependence between X; and X;.

e We assume a geometrical mixing rate by convenience.
We believe our results can be established as well for arithmetical
mixing rates to be found.



3 - Asymptotics

Theorem 1

Under Ho, if

max{E [|h(X;, X)) 2], [ fya |(x,y) PHdF (x)dF (y)} < oo for
some § > 0 and the absolute regularity condition (5) is satisfied,
then for any k,/ =1,2, o4y < oc.

If in addition o > 0, 1 < k,/ < 2, then the sequence of processes
of {Z,());0 < A < 1},en converges in distribution towards a
zero-mean Gaussian process with representation

Z(A) = (1 = MWA(N) + A(Wa(1) — Wh(N), 0 < A< 1,

where { Wi (), Wa(A\)}o<a<1 is a two-dimensional zero-mean
Brownian motion with covariance kernel matrix with entries
Cov(Wi(s), Wi(t)) = min(s, t)ow, k,1=1,2.




Remark 1 The covariance kernel of the Gaussian process Z defined
in Theorem 1 is given for all s, t € [0, 1] by

A(s,t) = Cov(Z(s),Z(t))
= o011[(1 — s)(1 — t) mins, t] + op[st(l1 — s — t + mins, t)]
+ op2[t(l —s)(s —mins, t) +s(1 —t)(t —mins, t)]. (6)



Theorem 2
Under Hy p, if

B ([, X4 B [|(Y;, )R], E 1A, )P,
[ Juz h(x, ) PRI (x)dF (7). ffRz Ih(x,y) 2 dG(x)dG(y), and
[ Jgz |h(x, y)[?T0dF (x)dG(y) are finite for some § > 0, if condition
(5) holds and for any k,/ = 1,2, o4 > 0, then the sequence of
processes {Z,()); 0 < A < 1}, converges in distribution towards
a Gaussian process Z with mean (1 — A)AA and representation

Z\) =1 =MAM+Z(N), 0<A<1,

where {Z(\)}o<a<1 is the zero-mean Gaussian process defined in
Theorem 1.




Theorem 3

We assume that under i, the integrability conditions in Theorem
2 and condition (5) are satisfied, then

72 (1) 25 { O(F, F)t(Xo — t) + 0(F, G)t(1 — Xo), 0<t< Ao
vn n—oo | O(G,G)(t—Xo)(1—t)+6(F,G)ho(1—1), o <t<1.

where
[nt] n

()=n"2>" > h(X,X), 0<t<1,

i=1 j=[nt]+1

X




Theorem 4

Assume that the assumptions of Theorem 2 hold. Let

(Z(X) : 0 < XA <1) be the limiting process defined in Theorems 1
and 2, and A its covariance kernel. Then

i- Under Hg, as n tends to infinity, one has the following
convergence in distribution,

Tin —> sup |[Z(N)
A€[0,1]

T2,n — Z CjX_/?v
Jj=>1

where the ng's are iid chi-square random variables with one
degree of freedom and the (;'s are standing for the
eigen-values of the linear integral operator V defined for any
square integrable function 7 on [0, 1] by

VIr() = [ A(,s)7(s)ds. (8)
(0.1]




Under H1 ,, as n tends to infinity, one has the following
convergence in distribution,

Tin— sup [(1—=X)ANA+Z(N)]
A€[0,1]

*2
T2,n ? ZCJX_/ ’
jz1

where the ij's are iid non-central chi-square random variables
with one degree of freedom and non-centrality parameters
pJ?Cj_l with the e;'s standing for the eigen-vectors of the
integral operator V, associated with the eigen-value (j, and

pi— A/ AL = \ej(A\)dA.
0.1

Under H1, as n tends to infinity, one has the following
convergence in probability, Ty, — oo, Ty, — oo.




Define o by

o = Var(h{"(X1)) + 23" Cov(n{V (X1), h{Y (X14))-
j=1

Corollary 1
Assume that the assumptions of Theorem 2 hold, and that h is
such that its associated hgl) and hgl) satisfy hgl)(x) = —hgl)(x).
Then
i- Under Hg, as n tends to infinity, one has the following
convergence in distribution

Tin— 0 sup ‘WO(/\)‘
A€[0,1]

1
2 2
Ton—r0 Zj27r2Xj
Jj>1




ii- Under Hy ,, as n tends to infinity, one has the following
convergence in distribution

Tin— sup |[(1—A)AA+ UWO()\)}
A€l0,1]

T2n—> E 2 2XJ ;
J>1

where W0 is the Brownian bridge on [0, 1], the XJ?'S and X}*Q's are
as in Theorem 4 but the non-centrality parameters are

2A2 {21 — (1) /jm}* o2

Remark 2 It is easy to check that anti-symmetric kernels h are
such that their associated hgl) and hgl)(x) satisfy the property
hY(x) = —hP(x).



4 - Practical considerations

e Here, we apply our results to detecting a change in the mean
and/or in the variance and/or in the correlation of data from
some simple models.

e We sampled 1000 sets of n = 200 data X1, X3, ..., X, from the
model

- £; P=1,....100 o)
"l p+pXiiy+we; i=101,...,200

where p is a real number, w is a positive number, the ¢;'s are iid
and for all i =1,...,200, &; ~ N(0,1), or ; ~ T(3) (Student
distribution with 3 degrees of freedom), or ¢; = & — 1 with

Ei ~ E(1) (£(1) exponential distribution with parameter 1).



e We first apply our Kolmogorov-Smirnov and Cramér-von Mises
type tests to testing u = 0 against u # 0 forw=1and p=20
(testing a change in the mean of a shifted white noise). Next,
we apply the two tests to testing w = 1 against w # 1 for u =0
and p = 0 (testing change in the variance of a white noise).
Finally, we consider testing p = 0 against p # 0 for 4 =0 and
w =1 (testing a change in the correlation of an AR(1) model).
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Figure 2. Empirical power of CM test (red color). Empirical power of KS test blue color. First row : change in the
mean of a shifted Gaussian white noise respectively with the "indicator” and "difference” kernels. Second row :
change in the mean of a shifted Student white noise with the "indicator” kernel, and change in the mean of a
shifted centered exponential white noise with the "difference” kernel.
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Figure 3. Empirical power of CM test (red color). Empirical power of KS test blue color. First row : change in the
variance of a shifted Gaussian white noise respectively with the "indicator” and the "difference” kernels. Second
row : change in the correlation of an AR(1) model respectively with the "indicator” and the "difference” kernels.
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