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1 - Introduction and Motivations

• We are interested in detecting possible differences between the
distributions of real-valued random variables X1,X2, . . . ,Xn.

• For any i = 1, 2, . . . , n, let Fi be the cdf of Xi .
- We aim to checking possible differences between the Fi ’s.
- We restrict ourselves to checking if there exists only one index
i0 for which Fi0 and Fi0+1 are different.

• We study this problem by testing the hypothesis H0 against
the alternative H1, defined respectively by

H0 : F1(x) = F2(x) = . . . = Fn(x), x ∈ R

H1 : ∃ λ0 ∈ (0, 1) : F1(x) = F2(x) = . . . = F[nλ0](x) = F (x),

x ∈ R and F[nλ0]+1(x) = . . . = Fn(x) = G (x), x ∈ R, and

∃ x0 ∈ R such that F (x0) 6= G (x0) and θ(F ,F ) 6= θ(F ,G ).

• Examples: Figure 1 exhibits the chronograms of some time series
each of size 200, owning a change-point at t = 100.
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Figure 1. First row : change in the mean and change in the variance of a shifted white noise. Second row : change
in both the mean and the variance of a shifted white noise, and change in the correlation of an AR(1) model.



• For cdf Q and R, denote by θ(Q,R) the following real number

θ(Q,R) =

∫ ∫
h(x , y)dQ(x)dR(y).

• In order to evaluate the capacity of the tests to detect weak
changes, we also consider the local alternatives H1,n of the form

H1,n : ∃ λ0 ∈ (0, 1) : F1(x) = F2(x) = . . . = F[nλ0](x) = F (x),

and F[nλ0]+1(x) = . . . = Fn(x) = G (x), x ∈ R, ∃ x0 ∈ R

such that F (x0) 6= G (x0) and θ(F ,G ) = θ(F ,F ) + n−1/2A,

for some A ∈ R∗.

• Particular examples of local alternatives H1,n are those for which
there exists a constant B such that : G (x) = F (x + n−1/2B)
and the kernel function h is twice differentiable with finite
integral

∫ ∫
(∂h(x , y)/∂y)dF (x)dG (y).

and bounded second-order derivatives ∂2h(x , y)/∂2y .



• In the purpose of solving our testing problem, the tests we are
going to use are based on the following statistics

T1,n = max
1≤k≤n−1

∣∣∣∣∣∣n−3/2
k∑

i=1

n∑
j=k+1

{
h(Xi ,Xj)− θn(F ,F )

}∣∣∣∣∣∣ (1)

T2,n =
1

n

∑
1≤k≤n−1

n−3/2
k∑

i=1

n∑
j=k+1

{h(Xi ,Xj)− θn(F ,F )}


2

(2)

where θn(F ,F ) is a consistent estimator.

• Denote by [x ] the integer part of any real number x .
Noting that for any k ∈ {1, . . . , n − 1}, there exists λ∗ ∈ [0, 1]
such that k = [λ∗n], one can write, at least asymptotically,

T1,n = sup
λ∈[0,1]

|Zn(λ)|

T2,n =

∫
λ∈[0,1]

Zn
2(λ)dλ,

where Zn stands for the following stochastic process



Zn(λ) = n−3/2

[nλ]∑
i=1

n∑
j=[nλ]+1

{h(Xi ,Xj)− θn(F ,F )} , 0 ≤ λ ≤ 1.

(3)
• The asymptotic distribution of a related process has been studied

in the literature (Račkauskas and Wendler (2020), Csörgő and
Horváth (1988) and by Dehling et al. (2015))

• These conditions are alleviated here and our study is done in a
Skorohod space.

• Furthermore, besides the Kolmogorov-Smirnov type test usually
studied in the literature

• We study a Cramer-von Mises version which has the advantage
that its theoretical critical value can be approximated for any
kernel h.



• We restrict our study to the classical case of one change-point
detection.

• But our results can be generalized to multi-change-points
detection which we postpone to a future paper.

• In Section 2, we define useful quantities such as the
test statistics, and we list some assumptions.

- In Section 3 we study the asymptotic properties of our tests
statistics under the null hypothesis, under a sequence of local
alternatives and under fixed alternatives.

- Practical considerations are presented and discussed in Section 4.



2 - General definitions and assumptions
• Define the following U-statistic Un with kernel h, and

the following functions

Un =
2

n(n − 1)

∑
1≤i<j≤n

h(Xi ,Xj)

h
(1)
1 (x) =

∫
h(x , y)dF (y)− θ(F ,F )

h
(1)
2 (y) =

∫
h(x , y)dF (x)− θ(F ,F )

h
(2)
1 (x) =

∫
h(x , y)dG (y)− θ(F ,G )

h
(2)
2 (y) =

∫
h(x , y)dF (x)− θ(F ,G )

g (1)(x , y) = h(x , y)− h
(1)
1 (x)− h

(1)
2 (y) + θ(F ,F )

g (2)(x , y) = h(x , y)− h
(2)
1 (x)− h

(2)
2 (y) + θ(F ,G ).



• Consider the Hoeffding’s decomposition of Un under H0

Un = θ(F ,F ) + U
(1)
n,1 + U

(1)
n,2 + U

(2)
n , (4)

where

U
(1)
n,1 = n−1

n∑
i=1

h
(1)
1 (Xi )

U
(1)
n,2 = n−1

n∑
i=1

h
(1)
2 (Xi )

U
(2)
n =

2

n(n − 1)

∑
1≤i<j≤n

[
h(Xi ,Xj)− h

(1)
1 (Xi )− h

(1)
2 (Xj)

]
+θ(F ,F ).

• Also, define the following real numbers

σkl = E
[
h

(1)
k (X1)h

(1)
l (X1)

]
+ 2

∞∑
j=1

Cov
(
h

(1)
k (X1), h

(1)
l (X1+j)

)
with k , l = 1, 2.



• We will assume that the sequence {Xi}i∈N is absolutely regular
with the rate

β(n) = O(τn), 0 < τ < 1, (5)

where

β(k) = sup
n∈N

max
1≤j≤n−k

E

[
sup

A∈A∞j+k

∣∣∣P(A | Aj
0)− P(A)

∣∣∣],
with Aj

i standing for the σ-algebra generated by
Xi , . . . ,Xj , i , j ∈ N ∪ {∞}.

- We recall that {Xi}i∈N is absolutely regular or β-mixing if
β(k) −→ 0 as n→∞.

• We also assume that {Xi}i∈N is stationary and ergodic.



• We consider (Yi )1≤i≤n a sequence of stationary ergodic and
absolute regular random variables with the same rate as the
sequence (Xi )1≤i≤n

, that is with rate (5).
We assume the cdf of the Yi ’s is G . For any i , j ∈ N,
the absolute regular dependence between Yi and Yj is the same
as the dependence between Xi and Xj .

• We assume a geometrical mixing rate by convenience.
We believe our results can be established as well for arithmetical
mixing rates to be found.



3 - Asymptotics

Theorem 1

Under H0, if
max{E

[
|h(Xi ,Xj)|2+δ

]
,
∫ ∫

R2 |h(x , y)|2+δdF (x)dF (y)} <∞ for
some δ > 0 and the absolute regularity condition (5) is satisfied,
then for any k , l = 1, 2, σkl <∞.

If in addition σkl > 0, 1 ≤ k , l ≤ 2, then the sequence of processes
of {Zn(λ); 0 ≤ λ ≤ 1}n∈N converges in distribution towards a
zero-mean Gaussian process with representation

Z (λ) = (1− λ)W1(λ) + λ(W2(1)−W2(λ)), 0 ≤ λ ≤ 1,

where {W1(λ),W2(λ)}0≤λ≤1 is a two-dimensional zero-mean
Brownian motion with covariance kernel matrix with entries
Cov(Wk(s),Wl(t)) = min(s, t)σkl , k, l = 1, 2.



Remark 1 The covariance kernel of the Gaussian process Z defined
in Theorem 1 is given for all s, t ∈ [0, 1] by

∆(s, t) = Cov(Z (s),Z (t))

= σ11[(1− s)(1− t) min s, t] + σ22[st(1− s − t + min s, t)]

+ σ12[t(1− s)(s −min s, t) + s(1− t)(t −min s, t)]. (6)



Theorem 2

Under H1,n, if
E
[
|h(Xi ,Xj)|2+δ

]
, E

[
|h(Yi ,Yj)|2+δ

]
, E

[
|h(Xi ,Yj)|2+δ

]
,∫ ∫

R2 |h(x , y)|2+δdF (x)dF (y),
∫ ∫

R2 |h(x , y)|2+δdG (x)dG (y), and∫ ∫
R2 |h(x , y)|2+δdF (x)dG (y) are finite for some δ > 0, if condition

(5) holds and for any k , l = 1, 2, σkl > 0, then the sequence of
processes {Zn(λ); 0 ≤ λ ≤ 1}n∈N converges in distribution towards
a Gaussian process Z̃ with mean (1− λ)λA and representation

Z̃ (λ) = (1− λ)λA + Z (λ), 0 ≤ λ ≤ 1,

where {Z (λ)}0≤λ≤1 is the zero-mean Gaussian process defined in
Theorem 1.



Theorem 3

We assume that under H1, the integrability conditions in Theorem
2 and condition (5) are satisfied, then

1√
n
Z∗n (t)

a.s.−→
n→∞

{
θ(F ,F )t(λ0 − t) + θ(F ,G)t(1− λ0), 0 ≤ t ≤ λ0

θ(G ,G)(t − λ0)(1− t) + θ(F ,G)λ0(1− t), λ0 ≤ t < 1.
(7)

where

Z∗n (t) = n−3/2

[nt]∑
i=1

n∑
j=[nt]+1

h(Xi ,Xj), 0 ≤ t ≤ 1,



Theorem 4

Assume that the assumptions of Theorem 2 hold. Let
(Z (λ) : 0 ≤ λ ≤ 1) be the limiting process defined in Theorems 1
and 2, and ∆ its covariance kernel. Then

i- Under H0, as n tends to infinity, one has the following
convergence in distribution,

T1,n −→ sup
λ∈[0,1]

|Z (λ)|

T2,n −→
∑
j≥1

ζjχ
2
j ,

where the χ2
j ’s are iid chi-square random variables with one

degree of freedom and the ζj ’s are standing for the
eigen-values of the linear integral operator ∇ defined for any
square integrable function τ on [0, 1] by

∇[τ(·)] =

∫
[0,1]

∆(·, s)τ(s)ds. (8)



ii- Under H1,n, as n tends to infinity, one has the following
convergence in distribution,

T1,n −→ sup
λ∈[0,1]

|(1− λ)λA + Z (λ)|

T2,n −→
∑
j≥1

ζjχ
∗2
j ,

where the χ∗2j ’s are iid non-central chi-square random variables
with one degree of freedom and non-centrality parameters
ρ2
j ζ
−1
j with the ej ’s standing for the eigen-vectors of the

integral operator ∇, associated with the eigen-value ζj , and

ρj = A

∫
[0,1]

λ(1− λ)ej(λ)dλ.

iii- Under H1, as n tends to infinity, one has the following
convergence in probability, T1,n −→∞, T2,n −→∞.



Define σ by

σ = Var(h
(1)
1 (X1)) + 2

∑
j=1

Cov(h
(1)
1 (X1), h

(1)
1 (X1+j)).

Corollary 1

Assume that the assumptions of Theorem 2 hold, and that h is

such that its associated h
(1)
1 and h

(1)
2 satisfy h

(1)
1 (x) = −h(1)

2 (x).
Then

i- Under H0, as n tends to infinity, one has the following
convergence in distribution

T1,n −→ σ sup
λ∈[0,1]

∣∣W 0(λ)
∣∣

T2,n −→ σ2
∑
j≥1

1

j2π2
χ2
j



ii- Under H1,n, as n tends to infinity, one has the following
convergence in distribution

T1,n −→ sup
λ∈[0,1]

∣∣(1− λ)λA + σW 0(λ)
∣∣

T2,n −→
∑
j≥1

1

j2π2
χ∗2j ,

where W 0 is the Brownian bridge on [0, 1], the χ2
j ’s and χ∗2j ’s are

as in Theorem 4 but the non-centrality parameters are

2A2
{

2[1− (−1)j ]/jπ
}2
σ−2.

Remark 2 It is easy to check that anti-symmetric kernels h are

such that their associated h
(1)
1 and h

(1)
2 (x) satisfy the property

h
(1)
1 (x) = −h(1)

2 (x).



4 - Practical considerations

• Here, we apply our results to detecting a change in the mean
and/or in the variance and/or in the correlation of data from
some simple models.

• We sampled 1000 sets of n = 200 data X1,X2, . . . ,Xn from the
model

Xi =

{
εi i = 1, . . . , 100

µ+ ρXi−1 + ωεi i = 101, . . . , 200
(9)

where µ is a real number, ω is a positive number, the εi ’s are iid
and for all i = 1, . . . , 200, εi ∼ N (0, 1), or εi ∼ T (3) (Student
distribution with 3 degrees of freedom), or εi = Ei − 1 with
Ei ∼ E(1) (E(1) exponential distribution with parameter 1).



• We first apply our Kolmogorov-Smirnov and Cramér-von Mises
type tests to testing µ = 0 against µ 6= 0 for ω = 1 and ρ = 0
(testing a change in the mean of a shifted white noise). Next,
we apply the two tests to testing ω = 1 against ω 6= 1 for µ = 0
and ρ = 0 (testing change in the variance of a white noise).
Finally, we consider testing ρ = 0 against ρ 6= 0 for µ = 0 and
ω = 1 (testing a change in the correlation of an AR(1) model).
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Figure 2. Empirical power of CM test (red color). Empirical power of KS test blue color. First row : change in the
mean of a shifted Gaussian white noise respectively with the ”indicator” and ”difference” kernels. Second row :
change in the mean of a shifted Student white noise with the ”indicator” kernel, and change in the mean of a
shifted centered exponential white noise with the ”difference” kernel.
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Figure 3. Empirical power of CM test (red color). Empirical power of KS test blue color. First row : change in the
variance of a shifted Gaussian white noise respectively with the ”indicator” and the ”difference” kernels. Second
row : change in the correlation of an AR(1) model respectively with the ”indicator” and the ”difference” kernels.
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Thanks for your attention


