Preconditioned iterative solvers for large-scale saddle point systems arising in constrained optimization problems

A. El Maliki Hassan II University, ENCG-Morocco

Rencontre scientifique: Algorithmes Stochastiques et Applications

Université de Poitiers, Laboratoire de Mathématiques et Applications,

26 Novembre 2020

Introduction & motivation

Preconditioning of Karush-Kuhn-Tucker (KKT) systems

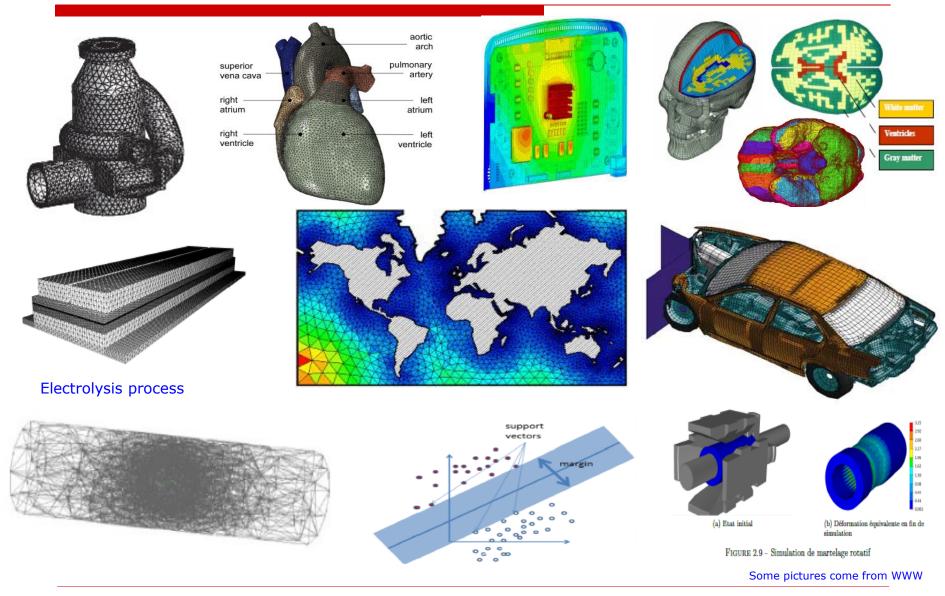
Primal-Dual Active-Set (PDAS) Method (~ Semismooth Newton's method)

My Proposed Enhancements

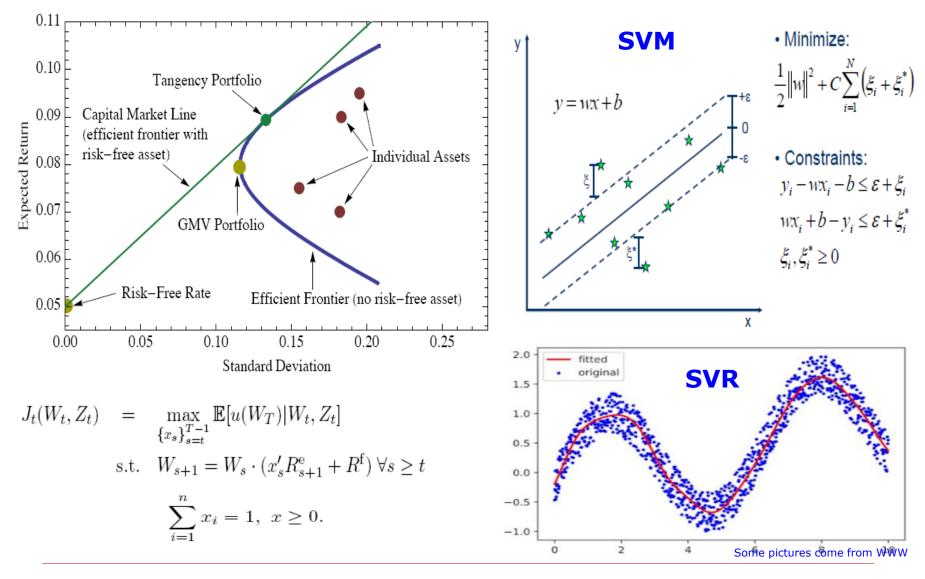
Examples: Finite Element approximation of nearly incompressible elasticity with contact constraints.

Summary

Introduction & motivation: Some applications



Introduction & motivation: Some applications

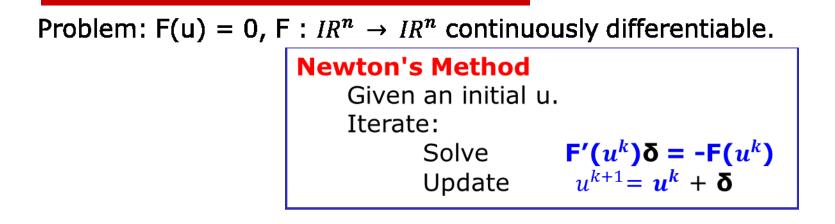


Introduction & motivation: Some applications

Many application areas in science, engineering, and finance give rise to 1X1, 2X2 or 3X3 sparse systems with equality and/or inequality constraints, including

- chemical engineering
- fuid flow
- oceanography
- multiphysics
- acoustics
- economic modelling
- Large-Scale Portfolio Optimization
- magnetohydrodynamic
- structural engineering ...
- PDE-constrained optimization
- Least Square approximations and estimation
- Sequential quadratic programming (SQP) methods for NLP
- Signal and image processing, computer
- Machine Learning (SVM, SVR, ...)
- Nonlinear optimisations(NLO) and nonlinear PDE models capture the complex nature of many real-world problems

Newton's Method



Include the constraints: In many circumstances some unknowns are **linked** by **additional** equations or inequalities:

- linear constraints occur when one or more regions behave as rigid bodies, B and b are obtained by prescribing constant distances between all nodes belonging to that region
- prescribed normal displacement
- Cu<=g
 - linear constraints represent non penetration conditions
- Mixture of the both equations

o Bu=b

Inexact Newton methods (Dembo-Eisenstat-Steihaug, 1982) provide a framework for analysis and implementation.

```
Inexact Newton Method<br/>Given an initial u.Iterate:Find some \eta \in [0; 1) and s that satisfy<br/>\|F(u) + F'(u) s\| \le \eta \|F(u)\|Update u: u + s.
```

Newton-Krylov methods:

```
Choose \eta \in [0; 1)
Apply the Krylov solver to F'(u) = -F(u) until
\|F(u) + F'(u) = \|F(u)\|
A small value of \eta may make computing a step that satisfies very
expensive.
```

The issue of when to stop the linear iterations becomes the issue of choosing the « forcing term » η .

$$\begin{cases} We \ apply \ relative \\ and \ absolute \\ criteria \ tests \end{cases} \begin{cases} \frac{\left\|F'(u^k) + F(u^k)\delta\right\|}{\left\|F(u^0)\right\|} \le 10^{-6} \ OR \\ \left\|F'(u^k) + F(u^k)\delta\right\| \le 10^{-8} \end{cases}$$

Problem: Resolution of large-scale linear system

Direct Solvers

- Factorization (LU, MultFront, MUMPS, PARDISO, ...).
- Exact solution, robust.
- Direct method can be prohibitively resource intensive as far as memory and CPU are concerned. (systems with high connectivity (3D problems)).

o Krylov Method:

- Use a Krylov subspace method to approximately solve $F'(u) \delta = -F(u) (Ax=b)$
- Construction of the sequence (xk) which converge to the solution.
- Need only the application of A on the vector (free matrix).

Krylov Subspace Method Given x0, determine . . . $x_k = x_0 + z_k,$ $z_k \in K_k \equiv \text{span} \{r_0, Ar_0, \dots, A^{k-1}r_0\}$

Examples:

CG/CR, GMRES, TFQMR, BICGSTAB, FGMRES, GMRESR, GCR, MINRES, ...

o Preconditioners are a key to successful of these iterative methods

Preconditioning techniques

Preconditioning techniques: Ax = b . \iff $M^{-1}Ax = M^{-1}b$

• The matrix $M^{-1}A$ need not to be formed explicitly. However, Mw = v need to be solved whenever needed.

- The preconditioned system should converge faster
- Linear systems with coefficient matrix M are easy to solve.
- \circ Note that if M = A any iterative method converges in one iteration.
- Standard preconditioners: ILU, Jacobi, SOR ,.....
- > Advanced preconditioners:
 - Multigrid, Multilevel
 - Domain decomposition
- Preconditioning of Karush-Kuhn-Tucker (KKT) systems or saddle point systems

The robust and efficient preconditioner, depends completely on the problem

Discretized nonlinear PDEs.

• The linearized system must be solved on the domain discretization

 FEM: this technique is more widely used in many applications for its several favourable characteristics such as capability of dealing with complex boundary conditions

 AIM: Computing the solution with high-precision and low costs in the CPU Execution time and memory storage

Systems with equality constraints

- Convection-diffusion
- Linear elasticity

Au = b

- Navier-Stokes problem - Nearly incompressible elasticity - Elasticity with equality Contact constraints $A \begin{pmatrix} u \\ p \end{pmatrix} = \begin{vmatrix} F & B^{t} \\ B & 0 \end{vmatrix} \begin{vmatrix} u \\ p \end{vmatrix} = \begin{vmatrix} f \\ g \end{vmatrix}.$

- Incompressible elasticity with equality contact constraints

$$\mathbf{A} \begin{bmatrix} \mathbf{u} \\ p \\ \eta \end{bmatrix} = \begin{bmatrix} K & B^T & C^T \\ B & -\varepsilon M_p & 0 \\ C & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ p \\ \eta \end{bmatrix} = \begin{bmatrix} f \\ 0 \\ g \end{bmatrix}$$

Nearly incompressible elasticity

problem with contact equality constraints

• Using the finite element discretization gives the **3x3 sparse system below:**

$$\mathcal{F}\begin{bmatrix}\mathbf{u}\\p\\\eta\end{bmatrix} = \begin{bmatrix}K & B^T & C^T\\B & -\varepsilon M_p & 0\\C & 0 & 0\end{bmatrix} \begin{bmatrix}\mathbf{u}\\p\\\eta\end{bmatrix} = \begin{bmatrix}f\\0\\g\end{bmatrix}$$

We can approximate this matrix by a block factorization:

$$\mathcal{F} = \begin{bmatrix} K & B^T & C^T \\ B & -\varepsilon M_p & 0 \\ C & 0 & 0 \end{bmatrix} = \begin{bmatrix} K & 0 & 0 \\ B & -S_p & 0 \\ C & -CK^{-1}B^T & -S_\eta \end{bmatrix} \begin{bmatrix} I & K^{-1}B^T & K^{-1}C^T \\ 0 & I & -S_p^{-1}BK^{-1}C^T \\ 0 & 0 & I \end{bmatrix} = \mathcal{LU}$$

MIGCR(m): GCR + Approximate Block Factorization

We use the block matrix $\mathcal{L} = \begin{bmatrix} \tilde{K} & 0 & 0 \\ B & -\tilde{S}_p & 0 \\ C & 0 & -\tilde{S}_\eta \end{bmatrix}$

as preconditioner for Generalised Conjugate Residual (GCR) algorithm and then we obtain the following algorithm :

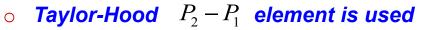
MIGCR(m): GCR(m) + \mathcal{L}

There are several ways to solve the submatrices($ilde{K}$, $ilde{S}_p$, $ilde{S}_\eta$) :

- Exact solves. This is in general (too) expensive.
- Inexact solves using an incomplete decomposition ILUP.
- Inexact solves using an algebraic multigrid: AMG, ML HEPRE.
- Inexact solves using an iterative method to solve the subproblems.

Since in this case the **preconditioner is variable**, the outer iteration **should be flexible**, for example GCR.

Stiffness matrix K approximation



- Quadratic finite element (P_2) for **u**
- Linear finite element (P_1) for
- Linear finite element (P_1) for λ

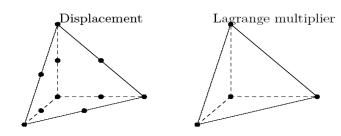


Figure 1. Taylor-Hood $P_2 - P_1$ element $(O(h^2))$

• To approximate the matrix K, we exploit its structure

• Using quadratic hierarchical basis, the matrix K takes the form

$$K\delta = \begin{pmatrix} K_{ll} & K_{lq} \\ K_{ql} & K_{qq} \end{pmatrix} \begin{pmatrix} \delta_l \\ \delta_q \end{pmatrix} = \begin{pmatrix} r_l \\ r_q \end{pmatrix} \begin{cases} K_{ll} \\ K_{qq} \end{cases}$$

associated with vertices, linear part associated with midside nodes, quadratic part. $cond(K_{qq})=O(1)$ K_{aa}

For P_2 tetrahedral finite element $size(K) \approx 7 \times size(K_{II})$

Algorithm 7. Symmetric Hierarchical Preconditioner (SHP)

Make a few iterations of SSOR on the system (pre-smooth-

ing)
$$K\delta = \begin{pmatrix} K_{ll} & K_{lq} \\ K_{ql} & K_{qq} \end{pmatrix} \begin{pmatrix} \delta_l \\ \delta_q \end{pmatrix} = \begin{pmatrix} r_l \\ r_q \end{pmatrix}$$

- Calculate the residual $d_l = r_l K_{ll}\delta_l K_{lg}\delta_g$.
- Solve $K_{ll}\delta_l^* = d_l$.
- Update: $\delta^f = (\delta_l + \delta_l^*, \delta_q)^T$.
- Update residual $r = r K\delta^{f}$.
- Make a few iterations of SSOR on the global system $K\delta^b = r$ (post-smoothing).
- Update $\delta = \delta^b + \delta^f$.

The preconditioner HP developed is efficient and robust. Schur complement is too expensive to compute and has to be approximated:

$$\tilde{S}_p = \varepsilon M_p + BK^{-1}B^T \approx \theta M_p \qquad \qquad \tilde{S}_\mu = CK^{-1}C^T \approx M_\mu$$

For equality contraints :

- M_p the mass matrix on pressure space or its diagonal diag(M_p)

For inequality contraints :

 $-M_{\mu}$ the mass matrix on pressure contact space or its diagonal diag(M_{μ})

Systems with inqualities constraints

- Elasticity with inequality Contact constraints

$$\begin{cases} Ku+C^T\lambda=f\\ Cu\leq g, \ \lambda\geq 0, \ (Cu-g).\lambda=0 \end{cases}$$

$$\begin{cases} Ku + B^T p + C^T \eta = f \\ Bu - \varepsilon M_p = 0 \\ Cu - g \le 0, \quad \eta \ge 0 \quad \eta \cdot (Cu - g) = 0 \end{cases}$$

- Incompressible elasticity with Inequality contact constraints

In this study, we are interested in 3x3 sparse systems with equality and/or inequality constraints

There are two classes of algorithms

Primal-Dual Active-Set method (PDAS)

- Nonlinear optimization algorithms: (Inequality constraints)
 - Active-Set Methods (ASM)
 - ✓ Penalty method,
 - ✓ Augmented Lagrangian methods
 - ✓ Interior Point Method (IPM)
 - ✓ Projected gradient type. (May(1986), Dilintas et al. (1988), Renouf & Alart (2005),...)
 - Strengths of active-set methods:
 - can be run concurrently with the Newton iteration
 - warm-start easily
 - accurate solutions despite degeneracy and ill-conditioning
 - Our goals:

Active-set methods for large-scale sequential quadratic optimization problems

To do this, we combine some advanced preconditioning techniques, Krylov Subspace method and primal-dual active set strategy.

Based on work by:

- Hintermüller, Ito, Kunisch (2002)
- A. El Maliki, M. Fortin, J. Deteix & A. Fortin (2013)

PMI-GCR algorithm for nearly incompressible material problems with inequality constraints contact

 Using the finite element discretization gives the saddle-point problems with Kuhn-Tucker conditions:

$$Ku + B^T p + C^T \eta = f$$
$$Bu - \varepsilon M_p = 0$$
$$Cu - g \le 0, \quad \eta \ge 0 \quad \eta \cdot (Cu - g) = 0$$

represents the non-penetration condition on the contact zones

The KKT condition: Can be written as

$$\begin{aligned} Cu - g &\leq 0, \quad \eta \geq 0 \quad \eta \cdot (Cu - g) &= 0\\ P(\eta, Cu - g) &= \eta - \max(0, \eta + c(Cu - g)) = 0 \end{aligned}$$

We define the active set $\mathcal{A}_c = \{j \mid \lambda_j + c(Cu - g)_j > 0\}$

Let \tilde{C} be the restriction of C to A_c

$$\begin{cases} Au + B^t p + \tilde{C}^t \lambda = f \\ B^t u - \varepsilon M_p p = 0 \\ \tilde{C}u - \tilde{g} = 0 \end{cases}$$

Primal-Dual Active-Set (PDAS) Method

The authors Hintermüller, Ito, Kunisch show the **PDAS** algorithms is equivalent to a semi-smooth Newton's method

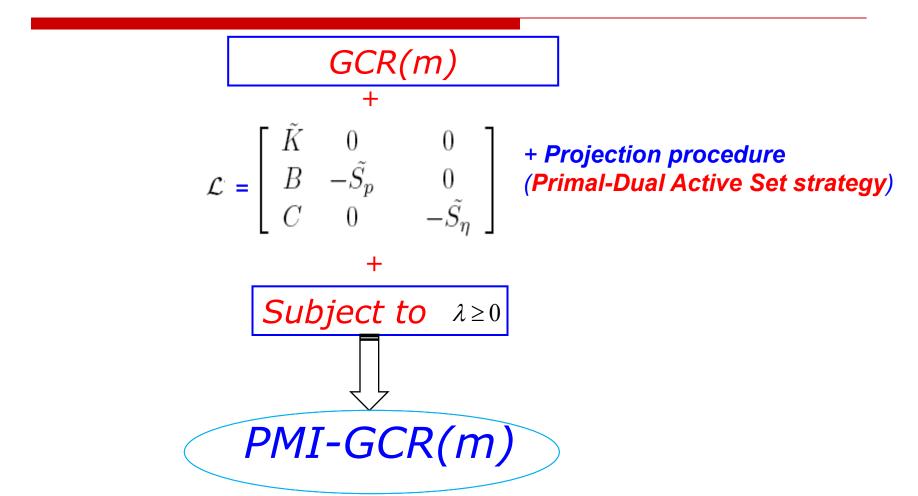
Algorithm 3 The general active set strategy

- Initialize u_0, λ_0 . Set k = 0.
- Set $\mathcal{A}_c = \{j \mid \lambda_j + c(Cu g)_j > 0\}$ and $\mathcal{I}_c = \{j \mid \lambda_j + c(Cu g)_j \le 0)\}$
- Let \tilde{C} be the restriction of C to \mathcal{A}_k . We then solve

$$\begin{cases}
Au + B^t p + \tilde{C}^t \lambda = f \\
B^t u - \varepsilon M_p p = 0 \\
\tilde{C}u - \tilde{g} = 0
\end{cases}$$
(21)

- We project λ on the admissible set $\Lambda_+ = \{\lambda \geq 0\}$ and recompute the active and inactive sets \mathcal{A}_c and \mathcal{I}_c
- We iterate till those sets are stabilized.

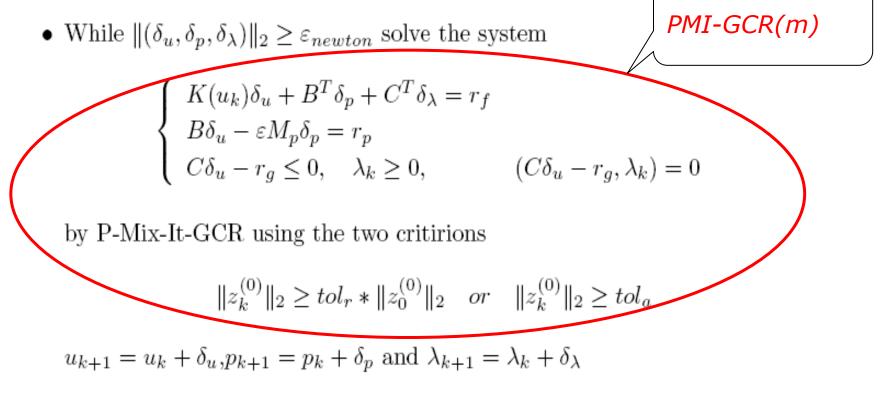
Projected Mixed Iteration Generalized Conjugate Residual Algorithm (PMI-GCR)



Remark: in the case of equality contraints, we use the above algorithm without the prejection procedure: we obtain the algorithm MI-GCR(m).

To avoid the oversolving of inner iteration in Newton algorithm, we use

Algorithm 3 Summary of Inexact-Newton and P-Mix-It-GCR Let $(\delta_u, \delta_p, \delta_\lambda)$ the correction on the u, p and λ . The Inexact-Newton method combined with P-Mix-It-GCR is summarized as follow:



Preconditioning strategies for mixed system

- The success of the combination **PMI-GCR** involves
 - ✓ an efficient and robust preconditioner for K
 - ✓ a good approximation of the Shur complement S
 - Primal-Dual Active Set method
 - The PMI-GCR algorithm is equivalent to apply MI-GCR(m) on the system with equality constraints with a modified residual
 - Contrarily to standard projected gradient type methods, PMI-GCR(m) consists in solving the saddle-point system "all-at-once".
 - The methods do not require the exact solution (direct method)

Some numerical results

- Taylor-Hood $P_2 P_1$ element is used. This element satisfies the inf-sup condition and is second order $O(h^2)$
- The elastic body is represented by the Brick ${}^{[0,3] \times [0,1] \times [0,1]}$ with material proprieties: E=200MPa (Young's Modulus), Poisson's ratio v=0.4999
- For **nearly incompressible material** we take the bulk modulus $\kappa = 10^6$
- The candidate contact surface $\Gamma_C = (0,3) \times (0,1) \times \{0\}$
- The Dirichlet condition is imposed on the border $\Gamma_D = (0,3) \times (0,1) \times \{1\}$
- Problem sizes: 6,460 to 2,555,142 unknowns.
- Newton algorithm tolerance = 10^{-6} and for inner solver 10^{-6} and 10^{-12}
- Inexact-Newton algorithm tolerance = 10^{-6} and for inner solver 10^{-4} and 10^{-6}

$S_\eta \setminus \text{Meshes}$	M1	M2	M3	M4
M_{η}	41/ 0.22s	40/~1.44s	$36/ \ 10s$	34/~92s
$diag(M_{\eta})$	53/ 0.28s	$49/\ 1.76 {\rm s}$	43/~13s	35/ 95s
$S\widetilde{S}$	$43/ \ 0.28 s$	$38/\ 1.44 s$	41/~12s	$49/~135 \mathrm{s}$

Table 3: Contact of a Brick on the rigid flat surface with equality constraints and ($\nu = 0.499999$). MI – GCR(30): Iterations count / CPU time(seconde)

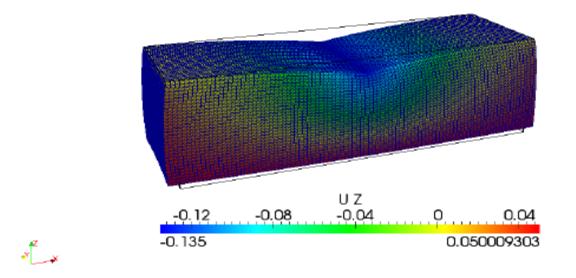
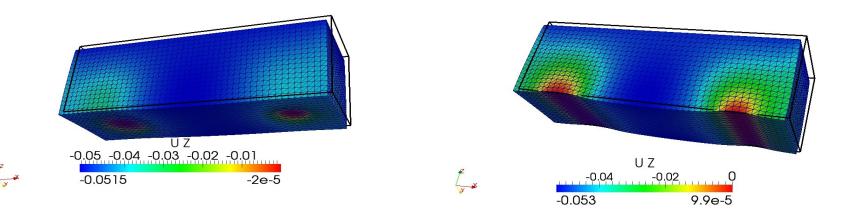


Figure 1: (a) Contact on the rigid flat surface: Case of equality contraints

Some numerical results:

Table 4: Contact on the two rigid cylinders surface (CS) and two ridid spheres surface (SS): case of inequality constraints and ($\nu = 0.499999$). Nonlinear iterations / Average inner iteration count / CPU time(s) for PMI-GCR(30). t=10

Problem	$\tilde{S} \setminus \text{meshes}$	M_1	M_2	M_3	M_4
\mathbf{CS}	$diag(M_{\eta})$	6/ 38/ 0.99 s	$6/~47/~9~{ m s}$	$6/~63/112~{ m s}$	6/ 87/ 1362 s
	M_{η}	6/ 37/ 0.99 s	$6/~40/~8~{ m s}$	6/ $48/83 s$	6/ $68/$ 1099 s
\mathbf{SS}	$diag(M_{\eta})$	6/ 35/ 0.92 s	$6/~41/~8~{ m s}$	$6/~62/109~{ m s}$	6/ 91/ 1434 s
	M_η	6/ 36/ 0.95 s	$6/ \ 39/ \ 8s$	6/ 48/ 83 s	6/ $68/$ $1070s$



Some numerical results: solution Case: Moony-Rivlin

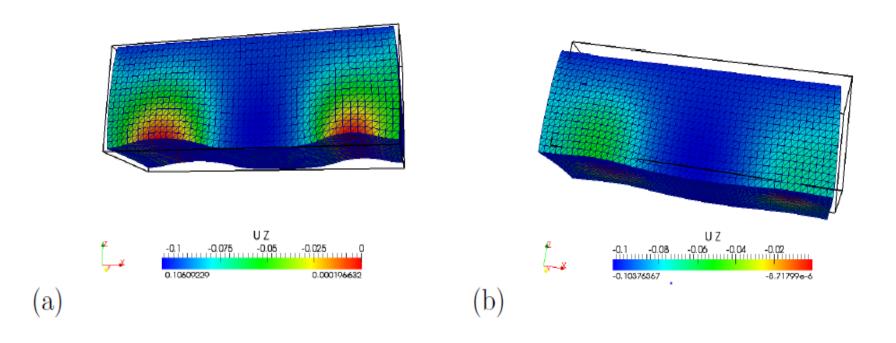


Figure 3: Moony-Rivlin with bulk modulus $\kappa = 10^6$ (a)Contact on the two rigid cylinders surface, (b) Contact on the two rigid spheres surface

Some numerical results Case: Moony-Rivlin and Néo-Hookéen

Table 5: Contact of Brick body on a two spheres and two cylinders. Cases of a Mooney-Rivlin and néo-hookéen material ($\kappa = 10^6$) with Newton and Inexact-Newton combined with PMI-GCR(30). Nonlinear iterations / Average inner iteration count / CPU time(s).

	/	/ 0	/	(/ /	
	Meshes	M_3		M_4	
Problem	material	$c_{01} = 1.0$	$c_{01} = 1.0$	$c_{01} = 1.0$.	$c_{01} = 1.0$
	parameters	$c_{10} = 0.1$	$c_{10} = 0.0$	$c_{10} = 0.1$	$c_{10} = 0.0$
CS	Newton	99/ <u>42</u> / 1284s	99/ <u>41</u> / 1165s	$105/\overline{55}/15390s$	105/53) 14719s
	Inexact-Newton	99/35/1008s	99/34/1010s	105/47/13198s	105/ 48/ 12712s
SS	Newton	98/40/1464s	99/ <u>41</u> / 1222s	105/52/14874s	105/69 19152s
	Inexact-Newton	98/33/1008s	99/34/1028s	105/44/12198s	$105/$ 58/ $16072 {\rm s}$

Time Gain using Inexact-Newton: more than 20%

Summary

- > The proposed methods do not require a direct solver
- > Numerical results on the examples show that the proposed methods
 - are scalable for equality constraints
 - show a little dependence on the mesh for inequality constraints
 - Cost per iteration typically only slightly more than linear system solve
- Inexact-Newton has been successfully applied.
- Large and realistic 3D simulations of elasticity with constraints contacts problems are now possible at low computing costs
- Still needed:
 - extensions to multiphysics problems;
 - MPGCR in the Blackbox Model (For machine Learning,...)

Thank you

For your attention