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Introduction & motivation: 
Some applications  

Electrolysis process 

Some pictures come from WWW 
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Introduction & motivation: 
Some applications  

SVM 

SVR 

Some pictures come from WWW 



5 

Many application areas in science, engineering, and finance give rise to 1X1, 2X2 or 
3X3 sparse systems  with equality and/or inequality constraints, including 

 
 

• chemical engineering 
• fuid flow 
• oceanography 
• multiphysics 
• acoustics 
• economic modelling  
• Large-Scale Portfolio Optimization, etc. 
• magnetohydrodynamics 
• structural engineering ... 
• PDE-constrained optimization 
• Least Square approximations and estimation 
• Sequential quadratic programming (SQP) methods for NLP 
• Signal and image processing, computer vision 
• Machine Learning (SVM, SVR, …)  

Introduction & motivation: 
Some applications  

o Nonlinear optimisations(NLO) and nonlinear PDE models capture 
the complex nature of many real-world problems 
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Newton's Method 

Include the constraints: In many circumstances some unknowns are linked by additional 
equations or inequalities: 
 

o   Bu=b 
         - linear constraints occur when one or more regions behave as rigid  
          bodies, B and b are obtained by prescribing constant distances  
          between all nodes belonging to that region 
         - prescribed normal displacement  
o  Cu<=g  
                - linear constraints represent non penetration conditions  
 
o Mixture of the both equations 
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Inexact Newton 

Inexact Newton methods (Dembo-Eisenstat-Steihaug, 1982) 
provide a framework for analysis and implementation. 

The issue of when to stop the linear 
iterations becomes the issue of 
choosing the « forcing term » η . 

We apply relative 
and absolute 
criteria tests 
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- Use a Krylov subspace method to approximately solve F’(u) δ=-F(u) (Ax=b)  
- Construction of the sequence (xk) which  converge to the solution. 
- Need only the application of A on the vector (free matrix). 

Problem: Resolution of large-scale linear system 
 

o Direct Solvers 
    - Factorization  (LU, MultFront, MUMPS, PARDISO, ...).  
    - Exact solution, robust. 
      - Direct method can be prohibitively resource intensive as far  as memory and 

         CPU are concerned. (systems  with high connectivity (3D problems)). 

o Preconditioners  are a key to successful of these iterative methods 

o Krylov Method:  

Examples: 
 CG/CR, GMRES,TFQMR, BiCGSTAB, FGMRES, GMRESR, GCR, MINRES, . . . 
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Preconditioning techniques 

 Standard preconditioners:  ILU, Jacobi, SOR ,……  

 Advanced preconditioners: 
                                        • Multigrid,  Multilevel  
                                      • Domain decomposition 

 Preconditioning of Karush-Kuhn-Tucker (KKT) systems or 
                                                                            saddle point systems 

The robust and efficient preconditioner,  depends completely on the 
problem 
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Discretized nonlinear PDEs.  

o The linearized  system must be solved  
     on the domain discretization 

o FEM:  this technique is more widely used in many applications 
for its several favourable characteristics such as capability of 
dealing with complex boundary conditions 

o AIM: Computing the solution with high-precision and  
      low costs in the CPU Execution time and memory  storage 
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Systems with equality constraints 

- Convection-diffusion   

- Linear elasticity 

Au = b 

- Navier-Stokes problem  
- Nearly incompressible elasticity 
- Elasticity with equality Contact constraints  

- Incompressible elasticity with equality  
contact constraints 

A 

𝐴
𝑢

𝑝
= 
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o Using the finite element discretization gives the 3x3 sparse system below:  

 

Nearly incompressible elasticity 

problem  with contact  equality constraints 

 We can approximate this matrix by a block factorization: 
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We use the block matrix 

  

as preconditioner for Generalised Conjugate Residual (GCR) algorithm 

and then we obtain the following algorithm : 

 

MIGCR(m):      GCR(m) +   

 MIGCR(m):  GCR + Approximate Block Factorization  

= 



14 

There are several ways to solve the submatrices(    ,,       ,       ) : 
 
• Exact solves. This is in general (too) expensive. 
 
• Inexact solves using an incomplete decomposition ILUP. 
 
• Inexact solves using an algebraic multigrid: AMG, ML HEPRE. 
 
• Inexact solves using an iterative method to solve the subproblems.  

Submatrices approximation 

Since in this case the preconditioner is variable, the outer iteration 
should be flexible, for example GCR. 



o Taylor-Hood                element is used 

o Quadratic finite element (   ) for u 

o Linear finite element (   ) for      p 

o Linear finite element (   ) for  

2P

1P

1P 

2 1P P
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Stiffness matrix K approximation  

   associated with vertices, linear part

associated with midside nodes, quadratic part.     ( ) (1) 

  

   qq q

ll

q co

K

OK nd K 

o For        tetrahedral finite element  
2P ( ) 7 ( )llsize K size K 

o The preconditioner  
HP  developed is  
efficient and robust. 

o To  approximate the matrix K,  we exploit its structure  

o Using quadratic hierarchical basis, the matrix  K takes the form 
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Schur complement approximation 

 Schur complement  is too  expensive to  compute and has to be approximated: 

𝑆 𝑝 = 𝜀𝑀𝑝 + 𝐵𝐾−1𝐵𝑇 ≈ 𝜃𝑀𝑝 𝑆 𝜇 = 𝐶𝐾−1𝐶𝑇 ≈ 𝑀𝜇 

For equality contraints : 

 

    - 𝑀𝑝  the mass matrix on pressure space or its diagonal diag(𝑀𝑝) 

 

For inequality contraints : 

 

 -𝑀𝜇the mass matrix on pressure contact space or its diagonal diag(𝑀𝜇) 
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Systems with inqualities constraints 

- Elasticity with  inequality Contact constraints  

- Incompressible elasticity with   
Inequality contact constraints 

In this study, we are interested in 3x3 sparse systems with 
equality and/or inequality constraints 
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o  Nonlinear optimization algorithms: (Inequality constraints) 

 Active-Set Methods (ASM) 

 Penalty method,  

 Augmented Lagrangian methods  

 Interior Point Method (IPM) 

 Projected gradient type.   (May(1986), Dilintas et al. (1988), Renouf & Alart (2005),…) 

To do this, we combine some advanced preconditioning techniques, Krylov 
Subspace method and primal-dual active set strategy.  

• Hintermüller, Ito, Kunisch (2002) 
• A. El Maliki, M. Fortin, J. Deteix & A. Fortin (2013)  

Based on work by: 

o Strengths of active-set methods: 
          - can be run concurrently with the Newton iteration 
          - warm-start easily 
          - accurate solutions despite degeneracy and ill-conditioning 

o Our goals: 
      Active-set methods for large-scale sequential quadratic optimization problems 

Primal-Dual Active-Set method (PDAS)  

There are two classes of algorithms: 
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o Using the finite element discretization gives the saddle-point problems 

with Kuhn-Tucker conditions: 

represents the non-penetration 
condition on the contact zones 

PMI-GCR  algorithm for nearly incompressible material 

problems with inequality constraints contact 

The KKT condition:                                                      
Can be written as 

We define the active set  

Let    be the restriction of C to  𝐶  𝐴𝑐 
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The authors Hintermüller, Ito, Kunisch show the PDAS algorithms is 
 equivalent to a semi-smooth Newton’s method  

Primal-Dual Active-Set (PDAS) Method  



Projected Mixed Iteration  Generalized Conjugate Residual Algorithm 

                                             (PMI-GCR)  
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GCR(m) 

Subject to 0 

+ 

+ 

PMI-GCR(m) 
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+ Projection procedure 

(Primal-Dual Active Set strategy) 

 

Remark: in the case of equality contraints, we use the above algorithm  

              without the prejection procedure: we obtain the algorithm MI-GCR(m).  

=  



22 

Inexact-Newton  

To avoid the oversolving of inner iteration in Newton algorithm, we use 

PMI-GCR(m) 



 

o The success of the combination   PMI-GCR    involves 

 an efficient and robust preconditioner for K 

 a good approximation of the Shur complement S 

 Primal-Dual Active Set method 

 

Preconditioning strategies for mixed system 
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o The PMI-GCR algorithm is equivalent to apply  MI-GCR(m) on the system with 

equality constraints  with a modified residual 

 

o Contrarily to standard projected gradient type methods,  PMI-GCR(m) consists 

in solving the saddle-point system  “all-at-once”. 

 

o The methods do not require the exact solution (direct method)  for the primal 

problem. 



Some numerical results 
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2 1P P
2( )O h

=0.4999
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Some numerical results: 
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Some numerical results: solution 
Case: Moony-Rivlin 
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Some numerical results 
Case: Moony-Rivlin and Néo-Hookéen 

Time Gain using Inexact-Newton:  more than 20%  



 The proposed methods do not require a direct solver 

 Numerical results on the examples show that the proposed methods  

o are scalable for equality constraints 

o show a little dependence on the mesh for inequality constraints 

o Cost per iteration typically only slightly more than linear system 
solve 

 

 Inexact-Newton has been successfully applied. 

 

 Large and realistic 3D simulations of elasticity  with constraints contacts 
problems are now possible at low computing costs 

 

 Still needed:   

             - extensions to multiphysics problems; 

             - MPGCR in the Blackbox Model (For machine Learning,…) 

  

                 

 

Summary 
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