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Abstract The objective function of the linear regression, using the least absolute deviations (LAD), is convex and
more complex than the minimization of the sum of squares. It has only one global minimum but many minimizers. The
weighted median plays a central role in this optimization. We propose a nonlinear regression using (LAD). Our objective
function f(a, l, s) is non-convex with respect to the parameters a, l, s, and is such that for each fixed l, s the minimizer
of a → f(a, l, s) is the weighted median med(x(l, s), w(l, s)) of a sequence x(l, s) endowed with the weights w(l, s) (all
depend on l, s). We analyse and compare theoretically the minimizers of the function (a, l, s) → f(a, l, s) and the surface
(l, s) → f(med(x(l, s), w(l, s)), l, s). As a numerical application we propose to fit the daily infections of COVID 19 in China
using Gaussian model. The parameters (a, l, s) are respectively the pick, the location of the pick and the width of the first
wave of COVID 19 in China. We derive confident interval for the daily infections from each local minimum.
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1. Introduction

We follow the introduction proposed in [Bloomfield and Steiger(1980)]. The least absolute deviations (LAD)
method of curve-fitting consists of fitting the data (xi, yi) to a function f(xi, θ), with i = 1, . . . , n. The parameter
θ ∈ Rp minimizes the sum of absolute deviations

n∑
i=1

|yi − f(xi, θ)|.

According to [Eisenhart(1961)], in the linear regression case f(xi, θ) =
∑p

j=1 xijθj , the minimization of the
quantity

n∑
i=1

|yi −
p∑

j=1

xijθj |

was suggested by Boscovitch (1757) (some asymptotic results are given in [Koenker and Bassett(1985)]). The latter
objective function is convex with respect to the parameter θ. Hence it has only one minimum, but may have many
minimizers.
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When there is only one degree of freedom in the fit, i.e.,
n∑

i=1

|yi − θxi| =
n∑

i=1

|xi||
yi
xi

− θ|,

the minimizing value of θ is the weighted median of the ratios yi

xi
with respect to the weights |xi|, and xi ̸=

0, for all i. A minimizing θ may always be chosen such that some residual yi − θxi vanishes (This idea is developed
in Section 4). This observation motivates the minimization of the two parameter minimization of

n∑
i=1

|yi − θ1 − θ2xi|.

The method, described by [Rhodes(1930)] and [Karst(1958)], is the basis of a computer algorithm published
by [Sadovski(1974)]. First we minimize f1(n, θ2) =

∑n
i=1 |yi − θ2xi|. Pick a minimizer θ2(1) (as a first candidat

for θ2) and the index i1 such that the residual yi1 − θ2(1)xi1 = 0. Now we minimize

f2(n, θ1, θ2) =

n∑
i=1

|yi − θ1 − θ2xi|, under the constraint yi1 − θ1 − θ2xi1 = 0.

We derive that θ1 = yi1 − θ2xi1 , and then we minimize f2(n, yi1 − θ2xi1 , θ2) =
∑n

i=1 |yi − yi1 − θ2(xi − xi1)|.
We obtain the minimizer (θ1(2), θ2(2)) and an index i2 such that yi2 − θ1(2)− θ2(2)xi2 = 0. Observe that
f2(n, θ1(2), θ2(2)) < f1(n, θ2(1). Having a minimizer (θ1(k), θ2(k) and the index ik, we consider the minimization
of

fk+1(n, θ1, θ2) =

n∑
i=1

|yi − θ1 − θ2xi|, under the constraint yik − θ1 − θ2xik = 0.

We repeat this algorithm until the minimizer (θ1(k), θ2(k)) does not change, or equivalently until the decreasing
sum of absolute deviations fk(n, θ1(k), θ2(k)) converges.

This algorithm may degenerate in the sense that more than two residuals are zero. In this case
the algorithm may cycle endlessly or may terminate prematurely (see [Bloomfield and Steiger(1980)]).
[Narula(1977)] and [Bloomfield and Steiger(1980)] described an efficient method based on linear programming.
This method generalizes [Rhodes(1930)] and [Karst(1958)] technique and lends itself for multiple regression (1.1).

As we have just seen even in the linear regression case of LAD optimization is inherently more complex than
the minimization of the sum of squares. The interest in LAD method is associated with the development of robust
methods. LAD method is more resistant to the outliers in the data (see [Dielman(2005)] and [Li and Arce(2004)]).

The aim of our work is to analyse LAD minimization using a nonlinear regression motivated by the daily
infections of COVID 19 in China during the first wave. The parameter θ = (a, l, s), with a, l, s denote respectively
the pick, the location of the pick and the width of the first wave of COVID 19. The variable t = 1, . . . , T
represents day 1, . . . , T . We denote I(t) the observed number of infected persons at time t ∈ [1, T ] with
T ≤ 60 (see Figure 1). Justified by the sigmoidal nature of a pandemic, we propose the Gaussian model
(see [Barmparis and Tsironis(2020)])

Im(t) = a exp(− (t− l)2

s2
)

as a prediction of I(t). The subscript m is used to distinguish data I(t) from the model Im(t). The parameters of
the model are respectively the pick a, the location of the pick l and the width s2.

To estimate the three parameters a, l, s based on the T observations, we consider LAD nonlinear regression

f(T, a, l, s) =

∑T
t=1 |I(t)− Im(t)|

T
.

We expect that the minimization of LAD in the nonlinear case to be more complex than the linear case.
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800 CONFIDENCE INTERVALS FROM LOCAL MINIMUMS

2. Probabilistic interpretation of LAD regression

Let us assume that

I(t) = Im(t) + e(t),

where the errors (e(t)) are i.i.d. with the common probability distribution

1

2λ
exp(−|e|

λ
), with the scale λ > 0.

Based on the data (I(1), . . . , I(T )) the likelihood is equal to

T∏
t=1

1

2λ
exp(−|I(t)− Im(t)|

λ
).

It comes that the maximum likelihood estimator of the parameters a, l, s and λ are{
(â, l̂, ŝ) = argmin{f(T, a, l, s) : a, l, s}
λ̂ = f(T, â, l̂, ŝ).

In practice (â, l̂, ŝ) are given by an algorithm of optimization, and usually they are only local minimizer. Having
(â, l̂, ŝ) and the scale λ̂ we derive a confidence interval for I(t) with t > T as

solution of the equation ∫ q

−q

1

2λ̂
exp(−|e|

λ̂
)de = 0.95

is given by q = −λ̂ ln(0.05) = 2.995732λ̂. We derive the confidence interval

IC0.95 [I(t)] =

[
â exp(− (t− l̂)2

(ŝ)2
)− 2.995732λ̂; â exp(− (t− l̂)2

(ŝ)2
) + 2.995732λ̂

]
of I(t) with the confidence level 0.95.

3. Solving the proposed LAD regression using Nelder-Mead algorithm

The Nelder-Mead algorithm ([Dielman(2005)], [Lagarias et al.(1998)] and [Gao et al.(2010)]) is able to optimize
functions without derivatives. It is a simplex method for finding a local minimum of a function, and is the most
widely used direct search method for solving optimization problem and is considered as one of the most popular
derivative free nonlinear optimization algorithm.

We are going to solve our proposed LAD regression using the simplex algorithm Nelder-Mead implemented by
optim function in R software. It’s known that the output of the optim function depends on the initialization and
is in general not a minimizer of the objective function. Restarting the Nelder-Mead algorithm from the last solution
obtained (and continuing to restart it until there is no further improvement) can only improve the final solution and
the latter is in general a local minimizer.

Based on the optim() function, we define the opt(T, θ0,K) function developed in Algorithm 1 which allows
to produce the output of Nelder-Mead algorithm of f(T, ·) after K restarts with the initialization θ0.

The source code of the opt() function is given in Appendix B.1.

4. LAD regression analysis using weighted median

Before going forward we recall the weighted median definition.
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Algorithm 1 The ouput of optim function after K restarts.
Input: T , and K.

initialization θ0,
for k = 1, . . . ,K do
θ(k, θ0) =optim(θ(k − 1, θ0), f(T, ·)) // optim function applied to f(T, ·) with the initialization θ(k −
1, θ0).

end for
output: (θ(K, θ0), f(T, θ(K, θ0)) = opt(T, θ0,K).

4.1. Weighted median

We recall in the following proposition the definition and the calculation of the weighted median. For more details,
we advise the reader to see the work of [Novoselac(2020)].

Proposition 1
Let us consider a sequence (x(t), w(t)) of real numbers with positive weighted w(t) > 0 and t = 1, . . . , T . The
minimizer of the function a →

∑T
t=1 w(t)|a− x(t)| (called the weighted median) is given as follows. We calculate

the permutation p(1), . . . , p(T ) which rearranges the sequence (x(t) : t = 1, . . . , T ) into ascending order. We form
the sequence (w(p(t)) : t = 1, . . . , T ), then we find the largest integer k which satisfies

k∑
t=1

w(p(t)) ≤
∑T

t=1 w(t)

2
.

If

k∑
t=1

w(p(t)) <

∑T
t=1 w(t)

2
,

then weighted median a = x(p(k + 1)).
If

∑k
t=1 w(p(t)) =

∑n
t=1 w(t)

2 , then the weighted median [x(p(k), x(p(k + 1))] is equal to the interval
[x(p(k), x(p(k + 1))].

4.1.1. Back to our proposed LAD regression
The following equality

f(T, a, l, s) =
1

T

T∑
t=1

exp(− (t− l)2

s2
)|a− I(t) exp(

(t− l)2

s2
)|

leads us to consider the following corollary.

Corollary 1
For each (l, s) fixed the minimum of the function a → f(T, a, l, s) is attained at the weighted median
a(T, l, s) of the sequence (x(t) = I(t) exp( (t−l)2

s2 ) : t = 1, . . . , T ) endowed with the weights (w(t) =

exp(− (t−l)2

s2 ) : t = 1, . . . , T ). Moreover if (a∗, l∗, s∗) is a local minimizer of the function (a, l, s) → f(T, a, l, s)

then a∗ is the weighted median of
(
x∗(t) = I(t) exp( (t−l∗)2

(s∗)2 ) : t = 1, . . . , T
)

endowed with the weights(
w∗(t) = exp(− (t−l∗)2

(s∗)2 ) : t = 1, . . . , T
)

.

Proof
We observe that for l, s fixed, the map a → f(T, a, l, s) is a convex function. Now, let us assume that (a∗, l∗, s∗) is
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802 CONFIDENCE INTERVALS FROM LOCAL MINIMUMS

a local minimizer of the function (a, l, s) → f(T, a, l, s). Then a∗ is the global minimizer of the convex function
a → f(T, a, l∗, s∗). Hence a∗ is the weighted median of (x∗(t) = I(t) exp( (t−l∗)2

(s∗)2 ) : t = 1, . . . , T ) endowed with

the weights (w∗(t) = exp(− (t−l∗)2

(s∗)2 ) : t = 1, . . . , T ).

4.1.2. Comparison of the minimizers of the surface (l, s) → f(T, a(T, l, s), l, s) and the minimizers of the map
(a, l, s) → f(T, a, l, s)
The following proposition is obvious.

Proposition 2
1) For each fixed a, the surface (l, s) → f(T, a, l, s) is above the surface (l, s) → f(T, a(T, l, s), l, s) and they
intersect at the curve a = a(T, l, s).

2) If (l∗, s∗) is a local minimizer of the surface (l, s) → f(T, a(T, l, s), l, s), then (a(T, l∗, s∗), l∗, s∗) is also a
local minimizer of the map (a, l, s) → f(T, a, l, s).

3) The local minimizers of the map (a, l, s) → f(T, a, l, s) belong to the set {(a(T, l, s), l, s) : l, s}. If
(a(T, l∗, s∗), l∗, s∗) is a local minimizer of the map (a, l, s) → f(T, a, l, s), then in general (l∗, s∗) is not a local
minimizer of the surface (l, s) → f(T, a(T, l, s), l, s). However if (a(T, l∗, s∗), l∗, s∗) is a global minimizer of
(a, l, s) → f(T, a, l, s), then (l∗, s∗) is also a global minimizer of (l, s) → f(T, a(T, l, s), l, s).

Proof
1), 3) are obvious. The proof of 2) works as follows. There exists a neighborhood V of (l∗, s∗) such that

f(T, a(T, l, s), l, s) ≥ f(T, a(T, l∗, s∗), l∗, s∗)

for each (l, s) ∈ V . By definition of a(T, l, s), we have f(T, a, l, s) ≥ f(T, a(T, l, s), l, s) for each couple (l, s). It
follows that (a(T, l∗, s∗), l∗, s∗) is a local minimizer of (a, l, s) → f(T, a, l, s).

Proposition 3
Assume that (l, s) → f(T, a(T, l, s), l, s) has only a global minimizer (one mode surface). Then the map (a, l, s) →
f(T, a, l, s) does not necessarily have one mode, and (l, s) → a(T, l, s) is discontinuous at any couple (l∗, s∗) such
that (a(T, l∗, s∗), l∗, s∗) is a local minimizer of the map (a, l, s) → f(T, a, l, s).

Proof
By definition of local minimizer, there exists a neigbordhood V of (a(T, l∗, s∗), l∗, s∗) such that f(T, a, l, s) ≥
f(T, a(T, l∗, s∗), l∗, s∗) for each point (a, l, s) ∈ V . Necessarily (a(T, l, s), l, s) is not in V for at least one
point (l, s) near (l∗, s∗), if not f(T, a(T, l, s), l, s) ≥ f(T, a(T, l∗, s∗), l∗, s∗) for all point (l, s) near (l∗, s∗),
and then (l∗, s∗) is a local minimizer of the map (l, s) → f(T, a(T, l, s), l, s). This is absurd because (l, s) →
f(T, a(T, l, s), l, s) has only a global minimizer.

4.2. Exploration of the minimizers of (a, l, s) → f(T, a, l, s)

We propose three methods. In the first and the second method, we grope to find the global minimum and some
local minima. In the third method we propose an algorithm which explores all the local minima starting from the
global minimum.

4.2.1. Method 1
Let us consider T = 10. The pick is not yet attained, and then we expect that the pick is higher that max(I(t) :
t = 1, . . . , T ). Then, it is natural to start from the initializations a0 = jmax(I(t) : t = 1, . . . , T ), l0 = T + 1,
s0 = 1, . . . , 10, j = 1, 2, ....

4.2.2. Method 2
We start from θ1, then calculate θ2 = opt(θ1, f(2, ·), k), . . ., θT = opt(θT−1, f(T, ·),K). The initialization at
time T equals θT−1 = opt(θT−2, f(T − 1, ·), k). It depends on the previous observations I(1), . . . , I(T − 1) and
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a fixed number of restarts k. By varying θ1 and the number of restarts k we obtain a large number of initializations
of the algorithm opt(init, f(T, ·),K). We choose K very large in order to assure the convergence of optim
function at time T . However, the number of restarts k is arbitrary. We found that imposing the convergence of the
optim function before T provides fewer local minima than not imposing it.

4.2.3. Method 3
The general idea of this method is described in the following three steps:

Step 1: we start from any initialization a0, l0, s0 then we execute the optim function with several restarts until
convergence to a local minimum a1, l1, s1.

Step 2: We draw a sample of points around a1, l1, s1 according to the truncated Gaussian law of average a1, l1, s1
with the constraint l > l1, by keeping the same variance and using the function rtnorm of the package msm.
For each of the points we repeat step 1. We thus collect a new list of local minimum.

Step 3: We repeat Step 2 around each local minimum.

Now we give more details about our algorithm:

Algorithm 2 Method 3

Starters: T , N , K are integer values and a, l and s are real values.

Initialization: Assign to each (a, l, s) an initial value (a0, l0, s0) calculate (aopt0 , lopt0 , sopt0 ,minopt
0 ) =

opt(T, c(a0, l0, s0),K), using the opt() function with K restarts proposed in Algorithm 1. The source code
is given in Appendix B.1.

Step1: Generate a sample of points (sm, lm) according to a Truncated normal distribution of average (lopt0 , sopt0 )
such that lm ≥ lopt0 and sm ≥ 1 for m = 1, ..., N , by keeping the same variance and using the function rtnorm
in the msm library (see Appendix A).

Step2: Compute the opt() function (see Algorithm 1) with K restarts and the initialization (a(T, lm, sm), lm, sm)
to obtain the list S = {(aoptm , loptm , soptm ,minopt

m ) : m = 1, ..., N}. For each element P ∈ S we calculate the opt()
function with one restart, then we obtain P ∗

1 .
while P ̸= P ∗

1 do
we calculate opt() with one restart and the initialization P ∗

1 . We obtain the point P ∗
2 . We repeat this process

until P ∗
n = P ∗

n+1. Then P ∗ = P ∗
n is a true minimizer.

end while

Step3: Select from Step2 the set S∗ of the true minimizers P ∗, and repeat Step1 and Step2 for the element
(l∗, s∗) which corresponds to the max(minopt

n ) of the set of the true minimizers.

Stopping criterion: We set a threshold= 40000.

Using the algorithm of the third method for the surface (l, s) → f(T, a(T, l, s), l, s), we show that it has
only one minimizer. As shown in proposition 3, this minimum coincides with the global minimum of the map
(a, l, s) → f(T, a, l, s).

The numerical results of Method 2 are given in Table 3. We note that this last method allows us to obtain a large
number of local minimum.

5. Numerical results

In China the COVID 19 appeared on December 23, 2019 in the Wuhan region and after its fast-initial spreading,
strict rules of social distancing were imposed almost a month later. Three months after the initially reported cases,
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804 CONFIDENCE INTERVALS FROM LOCAL MINIMUMS

the spreading in China has subsided. Data of China Figure 1 are extracted from owid/covid-19-data available on
the web. The pick (pick = 15136), and its location (location = 22).

0 10 20 30 40 50 60

0
50

00
10

00
0

15
00

0

Index

infection COVID 19 in China

Figure 1. Prediction of pick and location by considering China data.

As an example of the function optim developed in Appendix B, we consider T = 10, K = 3, with the
initialization θ0 = (a0 = I(T ), l0 = 11, s0 = 10). Table 1 gives the outputs of three iterations in opt((T, θ0,K)).
We observe the convergence of optim function in 2 restarts to the local minimizer 319.5446.

Table 1. The outputs of the three iterations in opt((T, θ0,K))

a.opt l.opt s.opt min.loc
2108.690 10.60930 6.136000 319.7714
2091.262 10.22868 5.787523 319.5446
2088.911 10.11930 5.712179 319.5446

Figure 2 show the behavior of the weighted median around the local minimizer a∗ = 2088.911, l∗ =
10.11930, s∗ = 5.712179 at time T = 10. More precisely, we plot l ∈ [10, 22] → a(10, l, 5.712179) and s ∈ [4, 8] →
a(10, 10.11930, s).

The minimization of the function (l, s) → f(T, a(T, l, s), l, s) at time T = 10 using optim function with
the initialization l0 = 11, s0 = 10 converges only on 1 start to lopt = 10.119 and sopt = 5.712 with the values
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Figure 2. The behavior of the weighted median around the local minimizer a∗ = 2088.911, l∗ = 10.11930, s∗ = 5.712179 at
time T = 10.

f(T, a(T, lopt, sopt), lopt, sopt) = 319.545 and a(T, lopt, sopt) = 2088.920. We will see later that the surface
(l, s) → f(T, a(T, l, s), l, s) has only one mode.

The output of optim function with 40 restarts is given in Table 3. The largest minimum 714.2 corresponds to
the minimizer a∗ = 4370.113, l∗ = −2.916943e+ 08, s∗ = −2.125995e+ 08. It’s clear that this minimizer is not
realistic in our case. The other minimums are suitable. The minimum 330.6708 corresponds to the minimizer
a∗ = 5082.187, l∗ = 21.17187, s∗ = 11.845252. We recall that the observed location is l = 22. The minimum
337.0503 corresponds to the minimizer a∗ = 15377.106, l∗ = 32.11637, s = 15.651661. We recall that the observed
pick is a = 15136.

Remark 1
By minimizing the surface (l, s) → f(T, a(T, l, s), l, s) using optim function and starting from l0 = T + 1, s0 =
1, . . . , 10 we obtain the minimizer lopt = 10.119 and sopt = 5.712 with the values f(T, a(T, lopt, sopt), lopt, sopt) =
319.545 and a(T, lopt, sopt) = 2088.920. The convergence of optim function happens with only one start.

The reported R product (see results 3) shows the output of Method 1, by considering T = 10, N = 1000,
a0 = I[T ], l0 = T + 1, s0 = T , K0 = 40.
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Figure 3. The output of optim function with 40 restart by using the first Method

The numerical results of Method 2 are given in Table 2 below with k = 1, ..., 5, s = 1, ..., 10, T = 10, θ1 =
(I(1), 1, s):

Table 2. The numerical results of Method 2 with k = 1, ..., 5, s = 1, ..., 10, T = 10, θ1 = (I(1), 1, s)

a.opt l.opt s.opt min.opt
2088.911 10.119 5.712 319.545
2145.336 11.075 6.528 321.138
2301.818 12.186 7.000 322.358
2934.332 15.245 8.991 325.186
9351.858 27.248 14.086 335.047

13688.820 30.982 15.301 336.655
13791.980 31.055 15.324 336.682
13821.960 31.076 15.331 336.689
14493.080 31.539 15.474 336.854
14779.040 31.730 15.533 336.920
35718.400 40.292 17.977 339.114
36466.400 40.492 18.030 339.152
38891.310 41.114 18.194 339.267

We showed numerically by methods 1 and 2 that f(10, 2088.911, 10.119, 5.712) = 319.545 is the global
minimizer of (a, l, s) → f(10, a, l, s). As at time T = 10, we know that the location of the pick is not yet attained,
then it’s natural to look for local minimizers (aopt, lopt, sopt) such that lopt > 10.119.

The numerical results of Method 3 are given in Table 3 below with T = 10, N = 1000, a0 = I[T ], l0 = T + 1,
s0 = T , K0 = 40.

5.1. Confidence intervals from local minimizers from data before the pick for T = 10

We recall that the confidence interval for I(t) from the minimizer (â, l̂, ŝ) is given by

IC0.95 [I(t)] =

[
â exp(− (t− l̂)2

(ŝ)2
)− 2.995732λ̂; â exp(− (t− l̂)2

(ŝ)2
) + 2.995732λ̂

]
with t > 10.

In figure 4 we present the confidence intervals for four local minimum of the list T = 10. An R source code is
given in Appendix B, which can be used to determine the confidence intervals for the other values of T once the
list of minimum is determined by using one of the three considered methods.
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Table 3. The numerical results of Method 3 with T = 10, N = 1000, a0 = I[T ], l0 = T + 1, s0 = T , K0 = 40

iter a.opt l.opt s.opt min.opt
1 2088.910 10.120 5.710 319.540
2 2185.910 11.400 6.540 321.570
3 2201.050 11.520 6.610 321.700
4 2287.700 12.100 6.950 322.280
...

...
...

...
...

40 2949.790 15.310 9.030 325.230
41 3164.510 16.110 9.480 325.830
42 3187.810 16.200 9.530 325.890
...

...
...

...
...

80 6087.090 22.990 12.560 332.320
81 6123.980 23.050 12.580 332.370
82 6152.530 23.100 12.600 332.410
...

...
...

...
...

130 14,333.470 31.430 15.440 336.820
131 16,465.130 32.780 15.850 337.270
133 17,579.660 33.420 16.040 337.460
134 17,662.490 33.470 16.060 337.480

...
...

...
...

...
170 25146.960 36.900 17.050 338.390
171 25290.870 36.950 17.060 338.400
172 25318.860 36.960 17.070 338.410

...
...

...
...

...
218 37942.390 40.880 18.130 339.220
219 38522.670 41.020 18.170 339.250
220 38782.280 41.090 18.190 339.260

6. Conclusion

In this work we considered the map

f : (a, l, s) → f(T, a, l, s) =

T∑
t=1

|a exp(− (t− l)2

s2
)− I(t)|,

with T and I(1), . . . , I(T ) are the data. We have associated to f the surface

S : (l, s) → f(T,med(x(l, s), w(l, s)), l, s)

with the sequence x(l, s) = (I(t) exp( (t−l)2

s2 , t = 1, . . . , T ), and the weights w(l, s) = (exp(− (t−l)2

s2 , t = 1, . . . , T )
and med(x(l, s), w(l, s)) denotes the weighted median of x(l, s) endowed with the weights w(l, s). We showed that
if (l∗, s∗) is a local minimizer of S, then (med(x(l∗, s∗), l∗, s∗) is also a local minimizer of f . The converse is in
general false, i.e., if (a∗, l∗, s∗) is a local minimizer of f , then (l∗, s∗) is not in general a local minimizer of the
surface S. However if (a∗, l∗, s∗) is the global minimum of f , then (l∗, s∗) is also the global minimum of the surface
S. We showed that if S has only a global minimum, then (l, s) → f(T,med(x(l, s), w(l, s)), l, s) is discontinuous
at each local minimizer (a∗, l∗, s∗). Using the data of the daily infections of COVID 19 in China during the first
wave, we showed numerically that the map f has a huge number of local minimums, but the surface S has only a
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Figure 4. Confidence intervals for the mimnimum list of T = 10

global minimum which is also the global minimum of the map f . We can extend this problem to any continuous
map (a, l, s) → f(a, l, s) such that the curve a → f(a, l, s) is convex. It follows that the graph of f is the union of
the convex curves a → f(a, l, s). By Denoting by a(l, s) a minimizer of the convex curve a → f(a, l, s), the set of
the local minimizers (a∗, l∗, s∗, f(a∗, l∗, s∗)) of f is included in the surface S = (a(l, s), l, s, f(a(l, s), l, s)). The
global minimum of f coincides with the global minimum of the surface S. If the minimums of S is reduced to its
global minimum, then the surface S is discontinuous on any local minimum of f . Today we have no theoretical
proof of the unicity of the minimum of the surface S. We will deal with this problem in a future work. We will also
try to understand the graph in R4 of the map (a, l, s) → f(a, l, s) near a minimizer (a∗, l∗, s∗) using the graph in
R3 of the maps (a, l) → f(a, l, s∗), (a, s) → f(a, l∗, s), and (l, s) → f(a∗, l, s).
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A. Truncated normal distribution

The truncated normal distribution is defined for all x, such that −∞ ⩽ a ⩽ x ⩽ b ⩽ +∞, by:

f (x;µ, σ, lower = a, upper = b) =
exp

(
− 1

2

(
x−µ
σ

)2)
∫ b

a
exp

(
− 1

2

(
u−µ
σ

)2)
du

,

where µ is the mean, σ is the standard deviations, a and b are respectively the lower and the upper truncation points.
The random generation for the truncated Normal distribution was obtained by the function rtnorm in the msm

library, (see [Robert(1995)]).

B. R source code

Here we give a source code for a better understanding of the proposed method.

B.1. opt() function

library(optim)
opt<-function(T,init,K){

y<-function(theta) f(T,theta)
matopt=NULL
iter<-0
while (iter<K) {
init=optim(init,y)$par
val.opt=optim(init,y)$value
matopt=rbind(matopt,c("init"=init,"Min.loc"=val.opt))
iter=iter+1

}
return(matopt)

}

B.2. Confidence intervals plot

library(ggplot2)
library(openxlsx)
conf.int.min=function(T,Min.list,T.inf,T.sup){

# given T
# Min.list is the list of minimum obtained for T
## T.inf = T+1 and T.sup=upper limit of days

j=1:(60-T)
Tj=T+j

born_sup=NULL
born_inf=NULL
confid.int=NULL
int_T=NULL
for(i0 in 1:nrow(Min.list)){

for(i00 in 1:length(Tj)){
born_sup=Min.list[i0,1]*exp(-(Tj[i00]-Min.list[i0,2])ˆ2/(Min.list[i0,3]ˆ2))

+2.995732*Min.list[i0,4]
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born_inf=Min.list[i0,1]*exp(-(Tj[i00]-Min.list[i0,2])ˆ2/(Min.list[i0,3]ˆ2))
-2.995732*Min.list[i0,4]

int_T=rbind(int_T,c(born_inf,i[Tj[i00]],born_sup))
}
colnames(int_T)=c("lower","i","upper")
confid.int=cbind(confid.int,int_T)
int_T=NULL

}
confid.int=data.frame(confid.int)
row.names(confid.int)=as.character(Tj)
#export all confidence intervals
write.xlsx(confid.int,file=paste0("confid_int_",T,".xlsx"))
#creation of a matrix which is equal to the matrix of
#confidence intervals for use with ggplot below
ggplot.confid=confid.int
iter.plot=1
while(ncol(ggplot.confid)>=3){

ggsave(ggplot(ggplot.confid[,1:3], aes(x=T.inf:T.sup, y=ggplot.confid[,2])) +
xlab(paste0("T>",T))+ylab(paste0("confid.int_",sep=Min.list[iter.plot,4]))+
geom_errorbar(aes(ymin=ggplot.confid[,1], ymax=ggplot.confid[,3]), width=.1)+
geom_point(),
file=paste0("int_conf_min_",T,"_", iter.plot,".png"))
iter.plot=iter.plot+1
ggplot.confid=ggplot.confid[,-c(1:3)]

}

}
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