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FATMA BEN KHADHER AND YOUSRI SLAOUI

STRONG CONSISTENCY OF THE MODE OF MULTIVARIATE

RECURSIVE KERNEL DENSITY ESTIMATOR UNDER STRONG

MIXING HYPOTHESIS

In this research paper, we define a kernel estimator of the mode based on the recursive

kernel density estimator developed by [23]. In addition, we establish its almost

sure convergence under strong mixing hypothesis. Finally, we corroborate these
theoretical results through numerical simulations.

1. Introduction

The estimation of mode function stands for a classical problem in statistics which has
whetted considerable interest in various fields of applications. Indeed, it is widely used
in machine learning applications and, in particular, in clustering methods (see [5]; [36];
[17]), computer vision (see [46]; [41]), power systems (see [45]; [35]), control (see [15]) and
bioinformatics (see [13]). Multiple research works related to this topic within the frame
work of nonparametric estimation have been elaborated. Among the most prominent
ones, we mention [27], [34] and [42]. Recently, there has been a spate of interest in
recursive estimation which has drawn the attention of multiple researchers. The basic
merit of the recursive estimator lies in the fact that it can not only be updated with each
additional new observation especially in large sample sizes but it can also be much better
in terms of computational costs. In this work, our central focus is upon a recursive kernel
estimator of the mode function defined by stochastic approximation method.
Let X1, · · · , Xn be identically distributed Rd-valued random vectors and let f denote the
probability density of Xi, i = 1, · · · , n. We consider a compact set Ω such that Ω ⊂ Rd,
and we define the mode as follows

θ := arg max
y∈Ω

f(y).

We assume that θ is unique.
In order to define our estimator of the mode, we first begin by constructing a stochastic
algorithm for the estimation of the function f at a point x. We present an algorithm
to search for the zero of the function g : y 7−→ f(x) − y. Following Robbins-Monro’s
procedure, this algorithm is defined below as

(i) f0(x) is an arbitrary choice belonging to R,
(ii) ∀n > 1, we set fn(x) = fn−1(x)+γnWn(x), where the stepsize (γn) is a sequence

of positive real numbers that goes to zero and Wn(x) is an observation of the
function g at the point fn−1(x).

To construct Wn(x), we follow the approach of [28, 29] and [42] which are based on
the classical property of stochastic algorithms (which is E

[
Wn(x)|Fn−1

1

]
= 0, where

Fn−1
1 stands for the σ-field of events generated by {X1, . . . , Xn−1}). In addition, we

introduce a kernel K (which is a function satisfying
∫
Rd K(z)dz = 1), and a bandwidth

(hn) (which is a sequence of positive real numbers that goes to zero when n −→∞), and
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we set Wn(x) = Khn
(x−Xn) − fn−1(x), with Kh (x) := h−dK

(
h−1x

)
. Therefore, the

recursive estimator of the density function f at the point x can be written as

fn(x) = πnf0 + πn

n∑
k=1

π−1
k γkh

−d
k K

(
x−Xk

hk

)
with πn =

∏n
k=1(1− γk). Our estimator of mode θ is defined as the random variable θn

maximizing the recursive estimator fn of f , which is expressed as

θn := arg max
t∈Ω

fn(t).(1)

In the following, we assume that X1, · · · , Xn satisfy the α-mixing dependency prop-
erty, as defined below.

Definition 1.1. Let X = (Xi)i>1 be a sequence of random variables. Given a positive
integer n, set

α (n) = sup
k

sup
{
| P (A ∩B)− P (A)P (B) |, A ∈ Fk1 (x) and B ∈ F∞k+n(x)

}
,

where Fki (x) is the σ-field of events generated by {Xi, . . . , Xk}.
The sequence is α-mixing if the mixing coefficient α (n) −→ 0 as n −→∞.

The α-mixing condition was introduced by [32]. It is also called the strong mixing
property. There exist various examples of stochastic processes satisfying the α-mixing
condition, such as ARMA models, GARCH models, the EXPAR models and the bilinear
Markovian models. There are several types of α-mixing condition with different forms.
If α(n) = O

(
n−k

)
for some k > 0, the process is polynomially strong mixing. The

process is exponentially strong mixing if α(n) = O (exp−an) for some mixing rate a > 0.
Then, if there exists ρ ∈ ]0, 1[ such that α(n) = O (ρn), the process is geometrically
strong mixing. Many practical applications of the α-mixing are illustrated in literature
(see [9], [2], [4] and [8] for more details). There exist different mixing conditions, such as
β-mixing condition (see [18]), ρ-mixing condition (see [14]), φ-mixing condition (see [16])
and ψ-mixing condition (see [1]).

The mode estimator has been investigated by several authors. Based on independent
and identically distributed (iid) random data, the weak consistency and the asymptotic
normality of the kernel sample mode was addressed by [27]. This result was extended in
several directions by [6], [10, 11] and [44]. Strong consistency was explored by [24] and
[43]. Asymptotic normality of kernel estimate of the mode was elaborated by [31]. The
multidimensional study of the mode was carried out by [34] and [19].
Based on dependent random data, some studies have been performed for mode esti-
mation. In φ-mixing condition as well as the conditional case, the strong consistency
was enacted by [7]. In alpha mixing case, the strong consistency was established by
[25] and the asymptotic normality was set forward by [21]. Numerous works were con-
ducted, under censored and truncated data, to explore the property of nonparametric
mode estimators (see [20], [26] and [12]).

The majority of properties of mode estimators are related to those of density estima-
tors. We need always to handle the density case before that of the mode. This paper
investigates the estimation of the mode, which is based on nonparametric recursive ker-
nel density estimator developed by [23], under strong mixing conditions. The rest of
the paper is organized as follows. In Section 2, the assumptions and main results are
displayed. Section 3 is devoted to simulation study. Finally, a conclusion is presented
in Section 4. The details of proofs are exhibited in Section 5 along with some auxiliary
results.
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2. Assumptions and main results

We consider stepsizes and bandwidths, which belong to the following class of regularly
varying sequences.

Definition 2.1. Let γ ∈ R and (γn)n>1 be a nonrandom positive sequence. We state
that γn ∈ GS(γ) if lim

n→∞
n[1− γn−1

γn
] = γ.

The assumptions to which we shall refer are the following:
(A1) The kernel function K:Rd −→ R is a bounded probability density, lipschitz and
satisfies for all j ∈ {1, . . . , d},

∫
R zjK(z)dzj = 0 and

∫
Rd z

2
jK(z)dz <∞.

(A2)

(i) γn ∈ GS(−α) with α ∈ ]1/2, 1].
(ii) hn ∈ GS(−a) with a ∈ ]0, α/d[.
(iii) lim

n→∞
nγn ∈] min {2a, (1− ad)/2} ,∞].

(A3) f is bounded, twice differentiable on Ω, and, for all i, j ∈ {1, · · · , d}, ∂2f/∂xi∂xj
is bounded.
(A4) The joint density f(i,j) of (Xi, Xj) exists for all (i, j), and there exists a constant
M > 0 such that

sup
|i−j|>1

sup
t1,t2∈Ω

∣∣f(i,j)(t1, t2)− f(t1)f(t2)
∣∣ < M.

(A5) The mixing coefficient of the Xi’s satisfies α(n) = O(n−ν) for some ν > 3.
(A6) The mode θ satisfies the following property: for any ε > 0 and x, there exists η 6= 0
such that |θ − x| > ε implies that |f(θ)− f(x)| > η.
(A7)

(i) n1/νγ
1−1/ν
n −→

n−→∞
0.

(ii) {
a(dν − 2)− α(d+ 2) > 6 if a ≥ α/(d+ 4)

a(d− 2ν − 6)− α > 6 if a < α/(d+ 4).

Remark 2.1. Assumption (A1) on the kernel is widely used in the recursive and non-
recursive framework for the functional estimation. Assumptions (A2) on the stepsize
and the bandwidth are used in the recursive framework for the estimation of the density
function ([23]; [37, 38, 39]). Hypothesis (A2)(i) and (A2)(ii) ensure that the bandwidth
(hn) and the stepsize (γn) go to zero as n goes to infinity. Moreover, the stepsize (γn) goes
to zero more rapidly than the bandwidth (hn). Assumption (A2)(iii) on the limit as n
goes to infinity of (nγn) is usual in the framework of stochastic approximation algorithms.
It implies that the limit of (nγn)−1 is finite. Assumption (A3) on the function f allows
us to calculate the properties of our estimator. Condition (A4) is needed to calculate
the covariance. (A5) states a condition on the mixing coefficient. Assumption (A6)
is classical in mode estimation. Finally, hypothesis (A7) provides a condition for the
bandwidth allowing the estimation of the covariance term.

Throughout this paper, we shall use the following notation:

ε = lim
n→∞

(nγn)−1,(2)

µ2
j =

∫
Rd

z2
jK(z)dz, ∀j ∈ {1, · · · , d} ,(3)

f
(2)
ij (x) =

∂2f(x)

∂xi∂xj
,

Zn(x) =
1

hdn
K

(
x−Xn

hn

)
.
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The almost sure convergence is denoted by a.s..
Now, we shall prove the consistency of our estimator (1) and give the rate of conver-

gence.

Proposition 2.1. Let Assumptions (A1)-(A7) hold.

sup
t∈Ω
|fn(t)− f(t)| =


O
(√

γnh
−d
n log n

)
if a > α/(d+ 4)

O
(

max
(√

γnh
−d
n log n, h2

n

))
if a = α/(d+ 4)

O
(
h2
n

√
log n

)
if a < α/(d+ 4)

a.s. as n→∞.

Proposition 2.2. Under the assumption of Proposition 2.1, we have

θn − θ =


O
((
γnh

−d
n log n

)1/4)
if a > α/(d+ 4)

O
(

max
((
γnh

−d
n log n

)1/4
, hn

))
if a = α/(d+ 4)

O
(
hn (log n)

1/4
)

if a < α/(d+ 4)

a.s. as n→∞.

3. Simulation study

In this section, we aim to compare our proposed recursive kernel estimator of mode,
defined by (1), with the mode estimator based on the well-known non recursive kernel
density estimator introduced by [33],

θ̃n := arg max
t∈Ω

f̃n(t),(4)

where f̃n(t) = 1
nhd

n

∑n
k=1K

(
x−Xk

hn

)
.

3.1. The study design. Let us consider the following simulation design, we simulate
N = 500 samples of sizes, n = 50, n = 100, n = 150 and a sequence of m-dependent
variables

Xi =

i+m∑
i

√
|Yi|,

where (Yi)i are generated from the following mixture distributions:

• Y ∼ 1
2N (2.5, 6) + 1

2N (9, 1) .

• Y ∼ 1
2N (2, 6) + 1

2N (8, 1) .

Next, we calculate the ISE (Integrated Squared Error) and the IAE (Integrated Abso-
lute Error) of the two estimators;

ISE =
1

N

N∑
i=1

∫
R

(
θ̂[i](x)− θ(x)

)2

dx and IAE =
1

N

N∑
i=1

∫
R

∣∣∣θ̂[i](x)− θ(x)
∣∣∣ dx,

where θ̂[i] corresponds to the estimator computed from the ith sample. In order to
calculate the ISE and the IAE of the two mode estimators, we need to use the following
quantities:

• The normal kernel function K.
• The stepsize γn = n−1.
• The bandwidth (hn) is chosen with plug-in method, given in [38].
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Y ∼ 1
2N (2.5, 6) + 1

2N (9, 1)
n = 50 n = 100 n = 150
ISE ISE ISE

m = 2
Non recursive 0.315226 0.148972 0.103131

Recursive 0.158550 0.029883 0.021263
m = 4

Non recursive 0.194686 0.133191 0.100986
Recursive 0.113563 0.125054 0.020975

Table 1. ISE for N = 500 trials of the non recursive estimator (4) and
the recursive estimator (1), for n = 50, n = 100 and n = 150. The bold
values indicates the smallest values of ISE.

Y ∼ 1
2N (2.5, 6) + 1

2N (9, 1)
n = 50 n = 100 n = 150
IAE IAE IAE

m = 2
Non recursive 0.561450 0.385970 0.321140

Recursive 0.398184 0.172867 0.145820
m = 4

Non recursive 0.441232 0.275033 0.115408
Recursive 0.336991 0.155993 0.111827

Table 2. IAE for N = 500 trials of the non recursive estimator (4)
and the recursive estimator (1), for n = 50, n = 100 and n = 150. The
bold values indicates the smallest values of IAE.

Y ∼ 1
2N (2, 6) + 1

2N (8, 1)
n = 50 n = 100 n = 150
ISE ISE ISE

m = 3
Non recursive 0.337509 0.136912 0.079324

Recursive 0.305999 0.115895 0.058715
m = 5

Non recursive 0.154778 0.142782 0.071498
Recursive 0.303375 0.99815 0.045986

Table 3. ISE for N = 500 trials of the non recursive estimator (4) and
the recursive estimator (1), for n = 50, n = 100 and n = 150. The bold
values indicates the smallest values of ISE.

3.2. Results. For each configuration of the simulation design parameters, we calculate
the ISE and the IAE of the non recursive estimator (4) and the recursive estimator
(1). From Table 1, Table 2, Table 3 and Table 4, it is clear that, the proposed recursive
estimator (1) outperformed the non recursive estimator (4) in all the considered situ-
ations. We can observe that the ISE decreases as m increases. We can observe also
that the ISE decreases as the sample size n increases. This simulation study shows the
good performance of the recursive estimator with an appropriate choice of stepsize and
bandwidth parameters.
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Y ∼ 1
2N (2, 6) + 1

2N (8, 1)
n = 50 n = 100 n = 150
IAE IAE IAE

m = 3
Non recursive 0.580955 0.281645 0.192126

Recursive 0.553173 0.242312 0.126076
m = 5

Non recursive 0.393418 0.224771 0.99556
Recursive 0.550795 0.224771 0.106438

Table 4. IAE for N = 500 trials of the non recursive estimator (4)
and the recursive estimator (1), for n = 50, n = 100 and n = 150. The
bold values indicates the smallest values of IAE.

4. Conclusion

In this paper, we attempted to elaborate a recursive kernel mode estimator based
on stochastic approximation algorithm. We established the strong consistency of this
estimator under α-mixing condition. Investing the same selected parameters in [23],
which minimize the mean squared error of recursive density estimator, the proposed
recursive mode estimator maintains the same convergence rate with non-recursive mode
estimator defined by (4). The two previous estimators are asymptotically equivalent.
In addition, the main merit of our estimator resides in its update, when a new sample
information becomes available. Tackling this area is extremely interesting as it offers
new perspectives for future works to consider multiple directions within this framework.
This involves the elaboration of recursive mode estimation for dependent strong mixing
functional data like in [40]. Furthermore, our proposed recursive kernel mode estimator
is promising and can be extended in such a way as addressing recursive nonparametric
estimation in the Bayesian work (see [3]).

5. Proofs

Before setting the outlines of the proofs, we introduce the following technical lemma,
which is proved in [23], and which will be used throughout the demonstrations.

Lemma 5.1.
Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α) and m > 0 such that m− v∗ε > 0 where ε is defined
in (2). Then,

lim
n→∞

vnπ
m
n

n∑
k=1

π−mk
γk
vk

=
1

m− v∗ε
.

Moreover, for all positive sequence (αn) such that limn→∞ αn = 0, and all C ∈ R,

lim
n→∞

vnπ
m
n

[
n∑
k=1

π−mk
γk
vk
αk + C

]
= 0.

Proof of Proposition 2.1. The proof rests on the following decomposition

|fn (t)− f (t) | ≤ |fn (t)− E [fn(t)] |+ |E [fn (t)]− f (t) |
and is based on the proofs of the following three lemmas.

Lemma 5.2. Under Assumptions (A1)-(A3), we have

sup
t∈Ω
|E [fn(t)]− f (t) | =

{
O
(
h2
n

)
if a ≤ α/(d+ 4)

o
(√

γnh
−d
n

)
if a > α/(d+ 4)



STRONG CONSISTENCY . . . 67

as n→∞.

The proof of Lemma 5.2 is presented in [23].

Lemma 5.3. (Fuk-Nagaev) Let (Wi)i∈N be a sequence of centered real random variables,
with a strong mixing coefficient α(n) = O (n−ν), ν > 1, such that ∀n ∈ N, 1 6 i 6 n,
|Wi| < +∞. Hence, for all ε > 0 and r > 1, there exists a constant c such that

P

{
|
n∑
k=1

Wi |> ε

}
6 c

(
1 +

ε2

16rS2
n

)−r/2
+ ncr−1

(
2r

ε

)ν+1

where S2
n =

∑n
i,j=1 | Cov (Wi,Wj) | .

For more details about previous Lemma 5.3, we refer to [30], p. 87, 6.19b.

Lemma 5.4. Under Assumptions (A1)-(A7), we have

sup
t∈Ω
|fn(t)− E[fn(t)]| =


O

(√
γnh

−d
n log n

)
if a ≥ α/(d+ 4)(5)

O
(
h2
n

√
log n

)
if a < α/(d+ 4)(6)

a.s. as n →∞.

Proof of Lemma 5.4. The proof relies upon the following assertion: the compact set
Ω can be covered by a finite number λn of balls Bk(t∗k, bn) centered at t∗k, 1 6 k 6 λn
where bn satisfies

bn = γ1/2
n h1+d/2

n .(7)

Since Ω is bounded, one can find l > 0 such that λn ≤ lb−1
n . For any t ∈ Ω, there exists

k such that

|t− t∗k| 6 bn.(8)

Now, we set for t ∈ Ω

Ti(t) = π−1
i γih

−d
i

{
K

(
t−Xi

hi

)
− E

(
K

(
t−Xi

hi

))}
.(9)

Evidently, we get

πn

n∑
i=1

Ti(t) = fn(t)− E (fn(t))

= {(fn(t)− fn(t∗k))− (E(fn(t)− E(fn(t∗k))}+ {fn(t∗k)− E(fn(t∗k)}

:= πn

n∑
i=1

T̃i(t) + πn

n∑
i=1

Ti(t
∗
k)

with

T̃i(t) = π−1
i γih

−d
i

{
K

(
t−Xi

hi

)
−K

(
t∗k −Xi

hi

)}
− π−1

i γih
−d
i

{
E
(
K

(
t−Xi

hi

))
− E

(
K

(
t∗k −Xi

hi

))}
.

As a matter of fact, we have

sup
t∈Ω

∣∣∣∣∣πn
n∑
i=1

Ti(t)

∣∣∣∣∣ 6 max
k6λn

sup
t∈Bk

∣∣∣∣∣πn
n∑
i=1

T̃i(t)

∣∣∣∣∣+ max
k6λn

∣∣∣∣∣πn
n∑
i=1

Ti(t
∗
k)

∣∣∣∣∣
:= U1 + U2.
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In order to investigate U1, we observe that∣∣∣∣∣πn
n∑
i=1

T̃i(t)

∣∣∣∣∣ 6 πn

n∑
i=1

π−1
i γih

−d
i

∣∣∣∣K ( t−Xi

hi

)
−K

(
t∗k −Xi

hi

)∣∣∣∣
+πn

n∑
i=1

π−1
i γih

−d
i E

[∣∣∣∣K ( t−Xi

hi

)
−K

(
t∗k −Xi

hi

)∣∣∣∣]
:= V1(t) + V2(t).

Assumptions (A1), (7) and (8) and the application of Lemma 5.1 provide

V1(t) 6 cπn

n∑
i=1

π−1
i γih

−d
i

∣∣∣∣ t− t∗khi

∣∣∣∣
6 cπn

n∑
i=1

π−1
i γih

−(d+1)
i |t− t∗k|

6 cbnh
−(d+1)
n

1

1 + a(d+ 1)ε

6 cγ1/2
n h−d/2n

1

1 + a(d+ 1)ε

= O

(√
γnh

−d
n

)
,

and

V2(t) 6 cπn

n∑
i=1

π−1
i γih

−(d+1)
i E [|t− t∗k|]

= O

(√
γnh

−d
n

)
.

Thus, we get

U1 = O

(√
γnh

−d
n

)
a.s as n→∞.

Now, in order to study U2, we use Lemma 5.3. For that, let

Wi = πnTi(t
∗
k) = πnπ

−1
i γih

−d
i

{
K

(
t∗k −Xi

hn

)
− E

(
K

(
t∗k −Xi

hn

))}
.(10)

Then, we have to calculate

S2
n =

n∑
i,j=1

| Cov (Wi,Wj) |

=
∑
i 6=j

|Cov (Wi,Wj)|+
n∑
i=1

Var (Wi)

:= S2∗
n +

n∑
i=1

Var (Wi) .

On the one hand, under (A1)-(A3), we obtain
n∑
i=1

Var (Wi) = π2
n

n∑
i=1

π−2
i γ2

i Var (Zi(t
∗
k))

=

{
O
(
γnh

−d
n

)
if a ≥ α/(d+ 4)

o
(
h4
n

)
if a < α/(d+ 4),
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see Proposition 1 in [23] for more details about computation of the variance. Now, from
(10) as well as under assumptions (A1) and (A4), we have

|Cov (Wi,Wj)| =

∣∣∣∣E [π2
nπ
−1
i π−1

j γiγjh
−d
i h−dj K

(
t∗k −Xi

hn

)
K

(
t∗k −Xj

hn

)]
− E

[
πnπ

−1
i γih

−d
i K

(
t∗k −Xi

hn

)]
E
[
πnπ

−1
j γjh

−d
j K

(
t∗k −Xj

hn

)]∣∣∣∣
=

∣∣∣∣π2
nπ
−1
i π−1

j γiγjh
−d
i h−dj

(
E
[
K

(
t∗k −Xi

hn

)
K

(
t∗k −Xj

hn

)]
− E

[
K

(
t∗k −Xi

hn

)]
E
[
K

(
t∗k −Xj

hn

)])∣∣∣∣
= π2

nπ
−1
i π−1

j γiγj

∫
R2d

K(t1)K(t2)
∣∣f(i,j)(t

∗
k − t1hi, t∗k − t2hj )

− f(t∗k − t1hi)f(t∗k − t2hj)| dt1dt2
6 Mπ2

nπ
−1
i γiπ1

jγj

= O(π2
nπ
−1
i γiπ1

jγj).(11)

Next, to asses the term S2∗
n , we use a technique developed by [22]. We define the sets

F1 = {(i, j) such that 1 6 |i− j| 6 βn}

and

F2 = {(i, j) such that βn + 1 6 |i− j| 6 n− 1}

where βn = o(n). Let

F1,n =
∑
i,j∈F1

|Cov (Wi,Wj)| and F2,n =
∑
i,j∈F2

|Cov (Wi,Wj)| .

Applying the upper bound in (11), we have

F1,n 6 Mπ2
n

∑
i,j∈F1

π−1
i γiπ

−1
j γj

6 Mπ2
n

n∑
j=1

βn∑
k=1

π−1
k+jγk+jπ

−1
j γj

6 Mπ2
n

n∑
j=1

βn∑
k=1

π−2
j γ2

j

1

(1− γj+1) · · · (1− γj+k)

6 Mβnπ
2
n

n∑
j=1

π−2
j γ2

j ,

and applying Lemma 5.1, we get

F1,n 6 Mβnγn
1

2− αε
= O (βnγn) .

For F2, we use the Davydov inequality for mixing processes (see Rio 2000, p. 10, Formula
1.12a). This leads us to get, for all i 6= j

|Cov (Wi,Wj)| 6 cα (|i− j|) .
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Therefore, using (A5), we obtain

F2,n 6 c

n∑
j=1

∑
βn+16k6n−1

α (k)

< cn

∫ n−1

βn+1

k−vdk

= O
(
nβ1−v

n

)
.

Choosing βn =
(
nγ−1

n

)1/ν
and under (A7)(i), we obtain

S2∗
n = F1,n + F2,n = O

(
n1/νγ1−1/ν

n

)
= o (1) .

Finally, we get

S2
n =

{
O
(
γnh

−d
n

)
if a ≥ α/(d+ 4)(12)

o
(
h4
n

)
if a < α/(d+ 4).(13)

As a matter of fact, we apply Lemma 5.3 in the case a ≥ α/(d+ 4). We obtain, for any k

P

{∣∣∣∣∣πn
n∑
k=1

Ti(t
∗
k)

∣∣∣∣∣ > ε

}
6 c

(
1 +

ε2

16rS2
n

)−r/2
+ ncr−1

(
2r

ε

)ν+1

:= c (Γ1,n + Γ2,n) .

By taking

ε = ε0

(√
γnh

−d
n log n

)
and r = c log n(log2 n)1/ν(14)

and using Taylor series expansion of log(1 + x) as well as (12)-(14), we infer

Γ1,n 6 cn−ε
2
0/2

and
Γ2,n 6 cε

−(ν+1)
0 nγ−(ν+1)/2

n hd(ν+1)/2
n (log n)(ν−1)/2 log2 n

where log2 n = log(log n) for n > 2. Consequently,

P

{
max

k=1,··· ,λn

∣∣∣∣∣πn
n∑
k=1

Ti(t
∗
k)

∣∣∣∣∣ > ε0

(√
γnh

−d
n log n

)}

6
λn∑
i=1

P

{∣∣∣∣∣πn
n∑
k=1

Ti(t
∗
k)

∣∣∣∣∣ > ε0

(√
γnh

−d
n log n

)}
6 λnc {Γ1,n + Γ2,n}
6 lb−1

n c {Γ1,n + Γ2,n}

6 lc
{
n(α−ε20)/2h−(2+d)/2

n + ε
−(ν+1)
0 nα(ν+2)/2+1h(dν−2)/2

n (log n)(ν−1)/2 log2 n
}

:= lc
{

Γ̃1,n + Γ̃2,n

}
,

with
Γ̃1,n := b−1

n Γ1,n and Γ̃2,n := b−1
n Γ2,n.

Now, referring to (A7)(ii), we have

h(dν−2)/2
n = o

(
n−α(ν+2)/2−2(log n)−(ν+1)/2(log2 n)−3

)
,

which yields

Γ̃2,n = o

(
1

n log n(log2 n)2

)
,
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corresponding to the general term of the convergent Bertrand series. For Γ̃1,n, an ap-

propriate choice of ε0 can be made O
(
n−3/2

)
, which corresponds to the general term

of convergent series. Hence,
∑
n>1

{
Γ̃1,n + Γ̃2,n

}
< ∞, and therefore (5) follows by

applying Borel Cantelli Lemma. The same steps shall be used in the second case if
a < α/(d + 4). The result (6) is a consequence of Borel Cantelli Lemma after applying
Lemma 5.3 and choosing

ε = ε0h
2
n

√
log n and r = c log n(log2 n)1/ν .

Proof of Proposition 2.2. Standard argument yields

|f(θn)− f(θ)| 6 |f(θn)− fn(θn)|+ |fn(θn)− f(θ)|
6 sup

t∈Ω
|fn(t)− f(t)|+ |fn(θn)− f(θ)| .(15)

Since

|fn(θn)− f(θ)| =
∣∣∣∣sup
t∈Ω

fn(t)− sup
t∈Ω

f(t)

∣∣∣∣ 6 sup
t∈Ω
|fn(t)− f(t)| ,

then we have

|f(θn)− f(θ)| 6 2 sup
t∈Ω
|fn(t)− f(t)| .(16)

The a.s. consistency of θn follows then immediately from (2.1) and (A6). Now a Taylor
expansion provides

f(θn)− f(θ) = (θn − θ)f ′(θ) +
1

2
(θn − θ)2f (2)(θ∗n)

=
1

2
(θn − θ)2f (2)(θ∗n),

where θ∗n is between θ and θn. Therefore, based on (16) and (A3), we get

|θn − θ| 6

√
2 |f(θn)− f(θ)|∣∣f (2)(θ∗n)

∣∣
6 2

√√√√ sup
t∈Ω
|fn(t)− f(t)|

| f (2)(θ∗n) |
.

Thus, by (2.1) the proof holds.
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28. P. Révész, Robbins-Monro procedure in a Hilbert space and its application in the theory of

learning processes I, Studia Sci. Math. Hung. 8 (1973), 391–398.
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