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Abstract: In this paper, we propose the problem of estimating a regression function recursively based on the
minimization of the Mean Squared Relative Error (MSRE), where outlier data are present and the response
variable of the model is positive. We construct an alternative estimation of the regression function using a
stochastic approximation method. The Bias, variance, and Mean Integrated Squared Error (MISE) are com-
puted explicitly. The asymptotic normality of the proposed estimator is also proved. Moreover, we conduct
a simulation to compare the performance of our proposed estimators with that of the two classical kernel
regression estimators and then through a real Malaria dataset.
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1 Introduction
Nonparametric regression provides a useful diagnostic tool for data analysis. A useful mathematical model
is to estimate the link between a Borelian function m(T) and X, by means of a function r(x) which achieves
the minimum of the mean squared error (MSE)

E
(
r(X) − m(T)

)2
= min

η
E
(
η(X) − m(T)

)2
, (1)

based on a random sample of data (X1, Y1) , . . . , (Xn , Yn) from a unknown joint density f (·, ·), when the
covariates (Xi) for i ∈ {1, . . . , n} take values in �nite dimensional Rd. Nonparametric regression methods
have attracted much attention among statisticians in the last several decades, and a large literature now ex-
ists.When it comes to the situationwithmultiple covariates, multivariate nonparametric regression has been
proved to be very useful in practice. [45, 46] have shown that the local regression estimators having optimal
rates of convergence, andClevelandandDevlin [6] haveproved that they are very useful inmodelingdata. [34]
derived the asymptotic properties of the multivariate local linear and local quadratic estimators. [49] studied
multivariate plug-in bandwidth selection and Herman et al. [14] proposed plug-in approaches for bivariate
convolution kernel estimator. Eubank [10], [48], and [12] described thin plate smoothing splines.
Often, in nonparametric estimation, we use the least squares and the least absolute deviation as criteria to
construct the predictors. However, for many practical situations the MSRE is more appropriate as measure of
performance than the two previous criteria, see, [18] for some models in software engineering, [4] for some
examples in medicine or [5] for some �nancial applications. Let us underline that, the classical procedure es-
timation (MSE) is based on some restrictive condition that is the homoscedasticity. This consideration gives
the same weight for all observations, which is inadequate when the data contains some outliers.
Although relative error is not widely studied in the statistical literature there are methods designed with rel-
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ative error performance. We can list the work of [28], which consist on the study of an estimation method
for minimizing the sum of absolute relative residuals. However, [11] developed an estimation method de-
signed to reduce absolute relative-error. Moreover, [18] studied the asymptotic properties of the estimators
by minimizing the sum of the squared relative errors. [15] introduced and studied local constant and local
linear nonparametric regression estimators when it is appropriate to assess performance in terms of mean
squared relative error of prediction. [51] established the connection between relative error estimators and
the M-estimation in the linear model. [2] considered the case of spatial data. [7] considered the case where
the explanatory variable are of functional type of data, [1] investigate the functional nonparametric regres-
sion estimation in the case when the response is subject to left-truncation by an other random variable, [43]
considered the case of recursive estimation of the regression estimation in the case of the functional data,
while [8] study the M-estimation of the functional nonparametric regression when the response variable is
subject to left-truncation by an other random variable. Relative error is sometimes a more meaningful mea-
sure of performance of a predictor than the absolute error. Generally, this occurs when the range of predicted
values is large.
In this paper, we construct an alternative kernel estimate regression function using a recursive methods by
considering the problem of estimating the regression function based on the minimization of the MSRE.

We address recursive kernel estimators for which recursive means that the estimator calculated from the
�rst n observations, say fn, is a function of only fn−1 and the (n)−th observation.
The Robbins-Monro algorithmwas originally proposed by [32] and further developed and investigated as well
as applied in many di�erent situations (see, among many others, [9, 19–21, 25, 26, 30, 31, 33, 37, 39–42, 47]).

As is well known, such a recursive property works well within the framework a data streams. Streaming
data are massive data arriving in streams, and if they are not processed immediately or stored, then they are
lost forever. The sample data are obtained by means of an observational mechanism that allows for a rapid
increase in the sample size over time. In recent years, data streams have become an increasingly important
area of research. Common data streams include Twitter activity, the Facebook news stream, Internet packet
data, stock market activity, credit card transactions and Internet and phone usage. In those situations, the
data arrive so rapidly that it is impossible for the user to store them all in disk (as a traditional database), and
then interact with them at the time of our choosing. Consequently, to deal with such big data, the traditional
nonparametric techniques rapidly require a lot of time to be computed and therefore become useless in prac-
tice. Therefore, the development of methods of processing and analyzing these data streams e�ectively and
e�ciently has become a challenging problem in statistics and computational science. This is why we con-
sider the regression estimation problem in the context of data streams in this paper. This recursive estimator
shows good theoretical properties, from the point of view of relative mean square error.

The general idea of theproposed recursivemethods is described inSection 2.AsymptoticMSREproperties
of the recursive regression estimator are given and discussed in Section 3. A simulation study is presented in
Section 4. In Section 5, we consider a real Malaria dataset. We conclude the paper in Section 6, whereas the
technical details are deferred to Section 7.

2 Presentation of estimates
Given identically distributed (i.i.d.) observations (X1, Y1), . . . (Xn , Yn)with joint density function f (x, y), and
f denote the probability density of X. In regression analysis, our interest is the estimation of Y given X, which
consist on �nding a function η(X) which satis�es the problem (1).

In order to construct a stochastic algorithm for the estimation of the regression function r (x) at a point
x, we de�ne an algorithm that calculates the zero of the function h : y → r (x) − y. Because x is a �xed point,
then the value r (x) is the unique solution of the equation h (y) = 0 with unknown y.

A typical kernel based estimator of the Robbins-Monro’s procedure (see [32]) is

r̂ (x) =
∑n

i=1 YiK
(
h−1i (x − Xi)

)∑n
i=1 K

(
h−1i (x − Xi)

) .
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However, the use of previous loss function as a measure of prediction performance may be not suitable in
some situation. In particular, in the case when the presence of outliers can lead to unreasonable results since
all variables have the same weight. Now, to overcome this limitation we propose to estimate the function r by
an alternative loss function.

In the relative regression analysis r (x) is obtained byminimizing themean squared relative error (MSRE)
ie: r (x) is the solution of the optimisation problem:

r (x) = argmin
θ

(
E

[(
Y − θ (x)

Y

)2
|X = x

])
, for Y > 0.

It is clear that this criterion is a more meaningful measure of prediction performance than the least squares
error, in particular, when the range of predicted values is large.
Moreover, the solution of this problem can be expressed by the ratio of �rst two conditional inverse moments
of Y given X. As proposed by [29], r (x) = E[Y−1|X=x]

E[Y−2|X=x] is the best MSRE predictor of Y given X. Thus, we can
estimate r (x) by

r̃n (x) =
ϕn (x)
ψn (x)

,

where ϕn (x) is an estimator of E
[
Y−1|X = x

]
f (x) and ψn (x) is an estimator of E

[
Y−2|X = x

]
f (x). In order to

construct a stochastic algorithm for the estimation of the regression function ϕ : x → E
[
Y−1|X = x

]
f (x) at

a point x, we de�ne an algorithm of search of the zero of the function h : y → ϕ (x) − y. Following Robbins-
Monro’s procedure (see [32]), this algorithm de�ned by setting ϕ0(x) ∈ R , and, for all n > 1,

ϕn (x) = ϕn−1(x) + γnWn (x) ,

where Wn (x) is an observation of the function h at the point ϕn−1(x), and the stepsize (γn) is a sequence of
positive real numbers that goes to zero. TakingWn(x) = h−dn Y−1n K

(
x−Xk
hk

)
− ϕn−1(x), then, the estimator ϕn to

recursively estimate the function ϕ at the point x can be written as

ϕn(x) = (1 − γn)ϕn−1(x) + γnh−dn Y−1n K
(
x − Xk
hk

)
. (2)

We let ϕn(0) = 0, then, we can estimate ϕ recursively at the point x by

ϕn (x) = Πn
n∑
k=1

Π−1k γkh−dk Y
−1
k K

(
x − Xk
hk

)
,

where Πn =
∏n
i=1 (1 − γi), following similar steps, we can estimate recursively the function ψ at the point x

by

ψn(x) = (1 − γn)ψn−1(x) + γnh−dn Y−2n K
(
x − Xk
hk

)
, (3)

moreover, we let ψn(0) = 0, then, we can estimate ψ recursively at the point x by

ψn(x) = Πn
n∑
k=1

Π−1k γkh−dk Y
−2
k K

(
x − Xk
hk

)
.

Then, our proposal in this paper is the following estimator:

rn (x) =

∑n
k=1 Π

−1
k γkh−dk Y

−1
k K

(
x−Xk
hk

)
∑n

j=1 Π−1j γjh−dj Y−2j K
(
x−Xj
hj

) . (4)

The purpose of this paper is the study of the properties of the proposed relative recursive regression es-
timators (4), and its comparison with the direct analogue of the well-known Nadaraya-Watson estimator in-
troduced separately by [27] and [50], and de�ned as

r̃n (x) =

∑n
k=1 Y

−1
k K

(
x−Xk
hn

)
∑n

j=1 Y−2j K
(
x−Xj
hn

) . (5)
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This estimator was proposed in[15]. However, the strong consistency and the asymptotic normality of this
estimator under weak dependence conditions is given in [22], while the case of censored data was considered
in [16].

3 Assumptions and main results
We de�ne the following class of regularly varying sequences.

De�nition 1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We say that (vn) ∈ GS (γ) if

lim
n→+∞

n
[
1 − vn−1vn

]
= γ. (6)

Condition (6) was introduced by [13] to de�ne regularly varying sequences (see also [3]) and by [24] in the
context of stochastic approximation algorithms.Noting that the acronymGS stand for (Galambos andSeneta).
Typical sequences in GS (γ) are, for b ∈ R, nγ (log n)b, nγ (log log n)b, and so on.
In this section, we investigate the asymptotic properties of our proposed estimators (4). The assumptions to
which we shall refer are the following
(A1) K : Rd → R is a continuous, bounded function satisfying

∫
Rd K (z) dz = 1, and, for all j ∈ {1, . . . , d},∫

R zjK (z) dzj = 0 and
∫
Rd z

2
j ‖K (z) ‖dz < ∞.

(A2) i) (γn) ∈ GS (−α) with α ∈
(
1/2, 1

]
.

ii) (hn) ∈ GS (−a) with a ∈
(
0, α/d

)
.

iii) limn→∞ (nγn) ∈
(
min {2a, (α − ad) /2} ,∞

]
.

(A3) i) f (s, t) is twice continuously di�erentiable with respect to s.
ii) For q ∈ {−4, −3, −2, −1, 0}, s 7→

∫
R t

q f (s, t) dt is a bounded function continuous at s = x.
For q ∈ [−3, −2], s 7→

∫
R |t|

q f (s, t) dt is a bounded function and for q′ ∈ [−5, −4], s 7→
∫
R |t|

q′ f (s, t) dt
is a bounded function..
iii) For q ∈ {−2, −1, 0},

∫
R |t|

q
∣∣∣ ∂f∂x (x, t)∣∣∣ dt < ∞, and s 7→

∫
R t

q ∂2 f
∂s2 (s, t) dt is a bounded function contin-

uous at s = x.
iv) The function ψ (x) > 0 and the inverse moments of the response variable ∀m ≥ 1, E

[
Y−m|X = x

]
< C <

∞.

Discussion of the assumptions
It is interesting to underline that the intuition behind the use of such bandwidth (hn) belonging to GS (−a) is
that the ratio hn−1/hn is equal to 1 + a/n + o

(
1/n

)
, then using such bandwidth and using the assumption

(A2) on the bandwidth and on the stepsize, Lemma 2 ensures that the bias and the variance will depend only
on hn and not on h1, . . . , hn, then theMISE will depend also only on hn, which will be helpful to deduce an
optimal bandwidth. Moreover, in order to help the readers to follow the main results obtained in this paper,
we underline that under the assumption (A2), we haveΠn

∑n
k=1 Π

−1
k γk = 1+o (1),Πn

∑n
k=1 Π

−1
k γkh2k = O

(
h2n
)

and Π2
n
∑n

k=1 Π
−2
k γ2k h

−d
k = O

(
γnh−dh

)
. Assumptions (A1) and (A3) are regularity conditions which permit us

to evaluate the bias term, the variance term of the estimator (4). Moreover, (A3) include some technical con-
dition to attain brevity of proofs and to obtain a convergence rate. Somme work in progress plain to consider
less restrictive conditions. Assumption (A2) (iii) is usual in the framework of stochastic approximation algo-
rithms. It implies in particular that the limit of

(
[nγn]−1

)
is �nite. For simplicity, we introduce the following

notations:

ξ = lim
n→∞

(nγn)−1 , (7)

R (K) =
∫
Rd

K2 (z) dz, µj (K) =
∫
R

zjK (z) dz,
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ϕ(2)
j,j (x) = ∂2ϕ

∂xi∂xj
(x) , ψ(2)

j,j (x) =
∂2ψ
∂xi∂xj

(x) ,

B (x) = 1
ψ (x)

d∑
j=1

(
µ2j
[
ϕ(2)
j,j (x) − r (x)ψ

(2)
j,j (x)

])
,

V (x) =
{
E
[
Y−2|X = x

]
+ r2 (x)E

[
Y−4|X = x

]
− 2r (x)E

[
Y−3|X = x

]}
f (x)

ψ2 (x)
.

3.1 Results on the relative recursive regression estimators 4

In this section, we explicit the choice of the bandwidth (hn) through a plug-in method, which consist on
considering an asymptotic unbiased estimator of the unknown quantities which can be appeared in the ex-
pression of the theoretical bandwidth and then in the expression the corresponding MISE. Our �rst result is
the following proposition, which gives the bias and the variance of rn.

Theorem 1. [Bias and variance of rn]. Let Assumptions (A1)–(A3) hold, and assume that, for all i, j ∈
{1, . . . , d} ϕ(2)

ij and ψ(2)
ij are continuous at x.

If a ∈ [0, α/(d + 4)], then

E [rn (x)] − r(x) =
h2n

2 (α − 2aξ )
B (x) + o

(
h2n
)
. (8)

If a ∈ (α/(d + 4), 1), then
E [rn (x)] − r (x) = o

(√
γnh−dn

)
. (9)

If a ∈ [α/(d + 4), 1), then

Var [rn (x)] = γnh−dn(
2 − (α − ad)ξ

)V (x) R (K) γn
hdn

+ o
(
γnh−dn

)
. (10)

If a ∈ [0, α/(d + 4)), then
Var [rn (x)] = o

(
h4n
)
. (11)

The bias and the variance of the estimator rn de�ned by the stochastic approximation algorithm (4) then
heavily depend on the choice of the stepsize (γn).
We propose now to state the following theorem, which gives the weak convergence rate of the estimator rn
de�ned in (4).

Theorem 2 (Weak pointwise convergence rate). Let Assumptions (A1) − (A3) hold, and assume that, for all
i, j ∈ {1, . . . , d} ϕ(2)

ij and ψ(2)
ij are continuous at x.

1. If there exists c ≥ 0 such that γ−1n hd+4n → c, then√
γ−1n hdn (rn (x) − r (x))

D→ N
( √

c
2(α−2aξ )B (x) , 1

(2−(α−ad)ξ)V (x) R (K)
)
,

2. If nhd+4n →∞, then

1
h2n

(rn (x) − r (x)) P→ 1
2ψ (x) (α − 2aξ )

B (x) ,

where D→ denotes the convergence in distribution, N the Gaussian-distribution and P→ the convergence in
probability.

Let us now consider the case where the bandwidth hn is chosen so that limn→∞γ−1n hd+4n = 0 (which corre-
sponds to under-smoothing). Thus, the proposed estimator satis�es the following central limit theorem:√

γ−1n hdn (rn (x) − r (x))
D→ N

(
0, 1

(2−(α−ad)ξ)V (x) R (K)
)
.
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Let ϕ denote the distribution function N (0, 1), and tα/2 be such that ϕ
(
tα/2

)
= 1 − tα/2 (where α ∈ (0, 1)).

Then the approximate asymptotic con�dence interval of r (x), with level 1 − α, is given byrn (x) − ϕ (tα/2)
√

1(
2 − (α − ad)ξ

)√ V̂ (x)
γ−1n hdn

, rn (x) + ϕ
(
tα/2

)√ 1(
2 − (α − ad)ξ

)√ V̂ (x)
γ−1n hdn

 , (12)

where V̂ (x) is the empirical estimator ofV (x), we estimate r by rn and f by fn, where fn in the recursive kernel
density estimator:

fn (x) = Πn
n∑
k=1

Π−1k γkh−dk K
(
x − Xk
hk

)
.

In order to obtain a theoretical expression of the bandwidth (hn), we state the following proposition, which
gives the MISE of the estimator rn.

Proposition 1. Let Assumptions (A1) − (A3) hold, and assume that, for all i, j ∈ {1, . . . , d} ϕ(2)
ij and ψ(2)

ij are
continuous at x.
1. If a < α/ (d + 4), then

MISE [rn] =
h4n

4 (α − 2aξ )2

∫
Rd

B2 (x) dx + o
(
h4n
)
.

2. If a = α/ (d + 4), then

MISE [rn] =
h4n

4 (α − 2aξ )2

∫
Rd

B2 (x) dx + γnh−dn(
2 − (α − ad)ξ

)R (K)∫
Rd

V (x) dx + o
(
h4n +

γn

hdn

)
.

3. If a > α/ (d + 4), then

MISE [rn] =
γnh−dn(

2 − (α − ad)ξ
)R (K)∫

Rd

V (x) dx + o
(
γnh−dn

)
.

The following corollary is a direct consequence of the previous proposition,

Corollary 1. Let Assumptions (A1) − (A3) hold, and assume that, for all i, j ∈ {1, . . . , d} ϕ(2)
ij and ψ(2)

ij are
continuous at x and B (x) = ̸ 0. To minimize the MSE of rn at the point x, the stepsize (γn)must be chosen in
GS (−1) and such that (γn) =

(
γ0n−1

)
, the bandwidth (hn)must equal[ d (α − 2aξ )2

(2 − (α − ad) ξ )
R (K)

∫
Rd V (x) dx∫

Rd B
2 (x) dx

]1/(d+4)
γ
1/(d+4)
n

 ,

and then the corresponding MISE

MISE [rn] = d + 4
4 d−d/(d+4)γ20

(
γ0 − 2/ (d + 4)

)−(2d+4)/(d+4)
×

∫
Rd

B2 (x) dx

d/(d+4) R (K)∫
Rd

V (x) dx

4/(d+4) n−4/(d+4) [1 + o (1)] .
We can observe that the proposed optimal bandwidth depends on the following unknown quantities: V and
B, in order to overcome this problem, we followed the plug-in method proposed in [36] , which leads to con-
sider the following kernel estimators

V̂ = Πn
n

n∑
i,k=1
i= ̸k

Π−1i γib−di

Y−1k −

∑n
i,j=1
i= ̸j

Π−1j γjb−dj Y
−1
j Kb

(
Xi−Xj
bj

)
∑n

i,j=1
i= ̸j

Π−1j γjb−dj Y−2j Kb
(
Xi−Xj
bj

)Y−2k


2

Kb
(
Xi − Xk
bk

)
,
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and

B̂ = Π2
n
n

n∑
i,j,k=1
j= ̸k

Π−1j Π−1k γjγkb′−d−2j b′−d−2k

Y−1k −

∑n
i,j=1
i= ̸j

Π−1j γjb′−dj Y−1j Kb′
(
Xi−Xj
b′j

)
∑n

i,j=1
i= ̸j

Π−1j γjb′−dj Y−2j Kb′
(
Xi−Xj
b′j

)Y−2k


K(2)b′

(
Xi − Xj
b′j

)
K(2)b′

(
Xi − Xk
b′k

)
,

where K(j)b is the j-th derivative of a kernel Kb and bn the associated bandwidth. We followed the approach
proposed in [36, 37] and we showed that bn and b′n should belong to GS

(
−2/(d + 4)

)
and GS

(
−3/(2(d + 4))

)
,

respectively. In practice, we use (13) with β = 2/(d + 4) and β = 3/(2(d + 4)), respectively. Where

bn = n−βmin
{
ŝ, Q3 − Q1

1.349

}
, β ∈ ]0, 1[ (13)

(see [35] with ŝ the sample standard deviation, and Q1, Q3 denoting the �rst and third quartiles, respectively.
Then, we have the following corollary.

Corollary 2. Let Assumptions (A1) − (A3) hold, and assume that, for all i, j ∈ {1, . . . , d} ϕ(2)
ij and ψ(2)

ij are
continuous at x and B (x) ≠ 0. To minimize the MSE of rn at the point x, the stepsize (γn)must be chosen in
GS (−1) and such that (γn) =

(
γ0n−1

)
, the bandwidth (hn)must equal[ d (α − 2aξ )2

(2 − (α − ad) ξ )
V̂

B̂

]1/(d+4)
γ
1/(d+4)
n

 , (14)

and then the corresponding MISE

MISE [rn] = d + 4
4 d−d/(d+4)γ20

(
γ0 − 2/ (d + 4)

)−(2d+4)/(d+4)
B̂d/(d+4)V̂4/(d+4)n−4/(d+4) [1 + o (1)] .

3.2 Results on the relative non-recursive regression estimator

Let us claimed the following Lemmawhich gives the bias and variance of the relative non-recursive regression
estimator (5), the proof follows easily from the one of the Theorem 1.

Lemma 1 (Bias and variance of r̃n). Let Assumptions (A1), (A2) ii) and (A3) hold, and assume that f (2) is con-
tinuous at x.

E
[̃
rn (x)

]
− r (x) = 1

2h
2
nB (x) + o

(
h2n
)
,

and

Var
[̃
rn (x)

]
= 1

nhn
V (x) R (K) + o

(
1
nhn

)
.

Then, it follows from Lemma 1, that

MISE
[̃
rn
]

= 1
nhdn

R (K)
∫
Rd

V (x) dx + 1
4h

4
n

∫
Rd

B2
2 (x) dx + o

(
h4n +

1
nhdn

)
.

Let us now consider the casewhere the bandwidth hn is chosen so that limn→∞nhd+4n = 0 (which corresponds
to under-smoothing). Thus, the non-recursive estimator r̃n satis�es the following central limit theorem:√

nhdn
(̃
rn (x) − r (x)

) D→ N (0,V (x) R (K)) .
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Let ϕ denote the distribution function N (0, 1), and tα/2 be such that ϕ
(
tα/2

)
= 1 − tα/2 (where α ∈ (0, 1)).

Then the approximate asymptotic con�dence interval of r (x), with level 1 − α, is given byr̃n (x) − ϕ (tα/2)
√

Ṽ (x)
nhdn

, r̃n (x) + ϕ
(
tα/2

)√ Ṽ (x)
nhdn

 , (15)

where Ṽ (x) is the empirical estimator of V (x), we estimate r by r̃n and f by f̃n, where f̃n in the non-recursive
kernel density estimator:

f̃n (x) =
1
nhdn

n∑
k=1

K
(
x − Xk
hk

)
.

Then, to minimize the asymptotic MISE of r̃n, the bandwidth (hn)must equal to(
d1/(d+4)

{R (K) ∫Rd V (x) dx∫
Rd B

2 (x) dx

}1/(d+4)

n−1/(d+4)
)
, (16)

and then the corresponding MISE

MISE
[̃
rn
]

= d + 4
4 d−d/(d+4)

∫
Rd

B2 (x) dx

d/(d+4) R (K)∫
Rd

V (x) dx

4/(d+4) n−4/(d+4) [1 + o (1)] .
Since (16) depends on the unknown quantities: V (x) R (K) and B2 (x), we consider the following kernel

estimators

Ṽ = 1
nbdn

n∑
i,k=1
i= ̸k

Y−1k −

∑n
i,j=1
i= ̸j

Y−1j Kb
(
Xi−Xj
bn

)
∑n

i,j=1
i= ̸j

Y−2j Kb
(
Xi−Xj
bn

)Y−2k


2

Kb
(
Xi − Xk
bn

)
,

and

B̃ = Π2
n

nb′2(−d−2)n

n∑
i,j,k=1
j= ̸k

Y−1k −

∑n
i,j=1
i= ̸j

Y−1j Kb′
(
Xi−Xj
b′n

)
∑n

i,j=1
i= ̸j

Y−2j Kb′
(
Xi−Xj
b′n

)Y−2k


K(2)b′
(Xi − Xj

b′n

)
K(2)b′

(
Xi − Xk
b′n

)
.

Following similar steps as [36, 37], we showed that bn and b′n should belong to GS
(
−2/(d + 4)

)
and

GS
(
−3/(2(d + 4))

)
, respectively. Then, in practice, we use (13) with β = 2/(d + 4) and β = 3/(2(d + 4)),

respectively. Then, we have

Corollary 3. Let Assumptions (A1) − (A3) hold, and assume that, for all i, j ∈ {1, . . . , d} ϕ(2)
ij and ψ(2)

ij are
continuous at x andB (x) ≠ 0. To minimize the MSE of r̃n at the point x, the bandwidth (hn)must equald1/(d+4){ Ṽ

B̃

}1/(d+4)

n−1/(d+4)
 , (17)

and then the corresponding MISE

MISE
[̃
rn
]

= d + 4
4 d−d/(d+4)B̃d/(d+4)Ṽ4/(d+4)n−4/(d+4) [1 + o (1)] .



Nonparametric relative recursive regression | 229

4 Simulations
In order to investigate the comparison between the three estimators, we consider three sample sizes:
100, 200, and 350 and we use the following model Z = µ (X) + ε and Y = exp (Z), which ensures
that the response variable is strictly positive. We consider the standard normal kernel K (z1, . . . , zd) =
(2π)−d/2 exp

(
−12
∑d

i=1 z
2
i

)
, and the following three models proposed in Jones et al. (2008) in the uni-

dimensional case:
a) Model 1: µ (X) = 0.5 + 2x, X ∼ U (0, Id) and ε ∼ N

(
0, σ2Id

)
,

b) Model 2: µ (X) = log
(
0.5 + 40 (x − 0.5)2

)
, X ∼ U (0, Id) and ε ∼ N

(
0, σ2Id

)
,

c) Model 3: µ (X) = 5√
2π

{
exp

(
−6 (x − 0.35)2

)
1(x<0.5) + exp

(
−6 (x − 0.65)2

)
1(x≥0.5)

}
, X ∼ U (0, Id) and

ε ∼ N
(
0, σ2Id

)
,

σ2 take the values 0.2, 0.5 and 1 and d ∈ {1, 2}. For each considered model and sample size n, we approx-
imate the Median ISE (Integrated Squared Error) of the

∫
R ψ (x)

{
ĝ (x) − g (x)

}2 dx using N = 500 trials of
sample size n, where ĝ is one the three considered estimators.

Computational cost
In order to give some comparative elements with the direct analogue of the well-known Nadaraya-Watson
estimator (5), including computational costs.We consider a 500 samples of size n1 = bn/2c (the lower integer
part of n/2), moreover, we suppose that we receive an additional 500 samples of size n − n1.

This property can be generalized, one can check that it follows from (2) that for all n1 ∈ [0, n − 1],

ϕn (x) =
n∏

j=n1+1

(
1 − γj

)
ϕn1 (x)

+
n−1∑
k=n1

 n∏
j=k+1

(
1 − γj

) γk
hk
Y−1k K

(
x − Xk
hk

)
+ γn
hn
Y−1n K

(
x − Xn
hn

)

= α1ϕn1 (x) +
n−1∑
k=n1

βk
γk
hk
Y−1k K

(
x − Xk
hk

)
+ γn
hn
Y−1n K

(
x − Xn
hn

)
,

where α1 =
∏n
j=n1+1

(
1 − γj

)
and βk =

∏n
j=k+1

(
1 − γj

)
. Similarly, it follows from (3) that for all n1 ∈

[0, n − 1],

ψn (x) =
n∏

j=n1+1

(
1 − γj

)
ψn1 (x)

+
n−1∑
k=n1

 n∏
j=k+1

(
1 − γj

) γk
hk
Y−2k K

(
x − Xk
hk

)
+ γn
hn
Y−2n K

(
x − Xn
hn

)

= α1ψn1 (x) +
n−1∑
k=n1

βk
γk
hk
Y−2k K

(
x − Xk
hk

)
+ γn
hn
Y−2n K

(
x − Xn
hn

)
.

It is clear, that the use of the proposed estimator (4) can improve considerably the computational cost.
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Figure 1: Qualitative comparison between three kernel relative regression estimators; non-recursive correspond to the es-
timator (5) using the proposed plug-in bandwidth selection (17), Recursive 1 correspond to the estimator (4) using the pro-
posed plug-in bandwidth selection (14) and the stepsize (γn) =

(
n−1
)
, Recursive 2 correspond to the estimator (4) using

the proposed plug-in bandwidth selection (14) and the stepsize (γn) =
(
hn/

[∑n
k=1 hk

])
using model 1; µ (X) = 0.5 + 2x,

X ∼ U (0, 1) and ε ∼ N (0, 1).

From Figures 1, 2 and Table 1, we conclude that: 1- The proposed relative recursive regression estima-
tors (4) and (5) are close to the true regression function. 2- The three estimators included our two relative
recursive regression estimators (4) with respectively (γn) =

(
n−1
)
and (γn) =

(
(hn)

[∑n
k=1 hk

]−1) and (5) per-
formed very well, and that none of the three can be claimed to be best in all cases. 3- The estimators get closer
to the true density function as sample size increases.

4.1 Feasibility in term of con�dence interval

The aim of this subsection is to compare the performance of the non-recursive relative recursive regression (5)
with that of the recursive estimator (4), from con�dence interval point of view. We set

Ii,n =
[
ψn (x) − 1.96C (ψn)

√
Vi,n (x)
nhdn

, ψn (x) + 1.96C (ψn)

√
Vi,n (x)
nhdn

]
,

where, when i = 1, ψn = r̃n is the non-recursive estimator (5), and C (ψn) = 1, V1,n (x) = Ṽ (x) and when
i = 2, ψn = rn is the recursive estimator (4) with the choice (γn) =

(
γ0n−1

)
, C (ψn) =

√
γ2
0

(2γ0−(α−ad)) and
V2,n (x) = V̂ (x). It comes from (15) and (12) that both con�dence intervals I1,n and I2,n have the same asymp-
totic level (equal to 95%), whereas I2,n has a smaller length than I1,n. Table 2 give the empirical levels
(#
{
r (x) ∈ Ii,n

}
/N) for di�erent values of d, σ2, the sample size n, by considering x = 0 (resp. x = (0, 0)).

Table 2 shows that the recursive estimator with the choice (γn) =
(
hn/

[∑n
k=1 hk

])
outperforms the non-

recursive estimator and the recursive one with the choice (γn) =
(
n−1
)
: the empirical levels of the intervals

I2,n are greater than those of I1,n.
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Figure 2: Qualitative comparison between three kernel relative regression estimators; non-recursive correspond to the
estimator (5) using the proposed plug-in bandwidth selection (17), Recursive 1 correspond to the estimator (4) using the
proposed plug-in bandwidth selection (14) and the stepsize (γn) =

(
n−1
)
, Recursive 2 correspond to the estimator (4)

using the proposed plug-in bandwidth selection (14) and the stepsize (γn) =
(
hn/

[∑n
k=1 hk

])
using model 2; µ (X) =

log
(
0.5 + 40 (x − 0.5)2

)
, X ∼ U (0, 1) and ε ∼ N (0, 1).

5 Real dataset
We considered a dataset of 176 families in Senegal, totalizing 505 children between 2 and 19 years old,
living in two villages of Niakhar (Diohine and Toucar). The number of observations was 6986. We measured
Plasmodium falciparum Parasite Load (PL) from thick blood smears obtained by �nger-prick during two dif-
ferent seasons and regularly over a three-year observation period (2001-2003), the number of measurements
per child ranged from 1 to 15, formore details see ([23]), this datawas used also in [38] in a parametric context.

We had the following variables: 1- Family identification : A factor with 176 levels; 2- Child
identification : A factor with 505 levels; 3- PL : Parasite Load (is strictly positive since the 505 children
have a positive PL); 4- infection : A factor with two levels (infected: 1 or not infected: 0); 5- year : A factor
with three levels (0 for 2001, 1 for 2002 and 2 for 2003); 6- number of measurements per child : A fac-
tor with 15 levels; 7- age : Age of the child in years between 2 and 19; 8- season : A factor with two levels
(July-October and October-March); 9- village : A factor with two levels (Diohine and Toucar).

Figure 3 show that the parasite load density can be higher in some speci�c age classes. Moreover, one
can observe that the three considered estimators can give quite similar classes of age, the di�erent between
the estimators aren’t signi�cative.

6 Conclusion
In this paper we propose a recursive relative regression estimators given in (4). The proposed estimators
asymptotically follows normal distribution. Moreover, our proposed estimators attained the asymptotic con-
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Table 2: The empirical levels (# {r (x) ∈ Ii,n} /N, with N = 500) of three models using three estimators; non-recursive corre-
spond to the estimator (5) using the proposed plug-in bandwidth selection (17), Recursive 1 correspond to the estimator (4)
using the proposed plug-in bandwidth selection (14) and the stepsize (γn) =

(
n−1
)
, Recursive 2 correspond to the estima-

tor (4) using the proposed plug-in bandwidth selection (14) and the stepsize (γn) =
(
hn/

[∑n
k=1 hk

])
.

Model 1 (d = 1), x = 0
n = 100 n = 200 n = 350

σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1
non-recursive 96.26% 95.83% 95.67% 96.34% 95.96% 95.86% 96.14% 95.88% 95.84%
Recursive 1 97.56% 97.24% 97.12% 97.44% 97.12% 97.04% 97.26% 97.14% 97.08%
Recursive 2 98.14% 97.86% 97.82% 97.95% 97.86% 97.57% 97.82% 97.66% 97.36%

Model 1 (d = 2), x = (0, 0)
σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1

non-recursive 95.82% 95.53% 95.43% 95.84% 95.62% 95.46% 95.74% 95.68% 95.44%
Recursive 1 97.16% 97.04% 96.82% 97.04% 96.62% 96.44% 96.86% 96.54% 96.38%
Recursive 2 97.64% 97.46% 97.32% 97.55% 97.46% 97.27% 97.42% 97.26% 97.16%

Model 2 (d = 1), x = 0
σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1

non-recursive 95.87% 95.51% 95.32% 95.84% 95.56% 95.24% 95.37% 95.18% 95.02%
Recursive 1 96.23% 96.13% 96.42% 96.14% 96.52% 96.44% 96.76% 96.54% 96.48%
Recursive 2 97.77% 97.63% 97.59% 97.47% 97.38% 97.33% 97.22% 97.18% 97.06%

Model 2 (d = 2), x = (0, 0)
σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1

non-recursive 95.13% 95.07% 94.97% 95.04% 94.89% 94.83% 94.94% 94.88% 94.84%
Recursive 1 96.96% 96.82% 96.79% 96.84% 96.82% 96.64% 96.46% 96.34% 96.29%
Recursive 2 97.54% 97.39% 97.33% 97.35% 97.28% 97.19% 97.22% 97.17% 97.15%

Model 3 (d = 1), x = 0
σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1

non-recursive 96.12% 95.98% 95.77% 96.13% 95.29% 95.13% 95.84% 95.18% 95.14%
Recursive 1 97.15% 97.17% 97.22% 97.33% 97.21% 97.12% 97.06% 96.82% 96.68%
Recursive 2 97.88% 97.62% 97.53% 97.43% 97.32% 97.23% 97.11% 97.03% 96.96%

Model 3 (d = 2), x = (0, 0)
σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1 σ2 = 0.2 σ2 = 0.5 σ2 = 1

non-recursive 95.42% 95.32% 95.27% 95.14% 95.12% 95.02% 94.82% 94.78% 94.54%
Recursive 1 96.82% 96.54% 96.42% 96.24% 96.12% 96.04% 96.56% 96.34% 96.24%
Recursive 2 97.28% 97.15% 97.11% 97.23% 97.16% 97.05% 97.24% 97.19% 97.13%

vergence rate O
(
n−4/(d+4)

)
. The recursive estimators using the plug-in bandwidth selection developed in the

subsection 3.1 (see, (14)) are then compared with the non-recursive one proposed by [15] using the plug-in
bandwidth selection developed in the subsection 3.2 (see, (17)). We showed that, using some particularly
choice, the proposed estimators can give in some situation a better results compared to the non-recursive ap-
proach in terms of estimation error. The simulation study con�rms the nice feature of our proposed recursive
estimators.

In conclusion, the proposed estimators allowed us to obtain a good results. A future research direction
would be to extend our �ndings to the α-mixing framework see [17]. Another direction is to investigate the
relative regression estimation based on the transformation of the data, in the casewhen the response variable
are not positive see [44].
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Figure 3: The Plasmodium falciparum Parasite Load density with automatically bandwidth selection using the Non-recursive
correspond to the estimator (5) using the proposed plug-in bandwidth selection (17), Recursive 1 correspond to the estima-
tor (4) using the proposed plug-in bandwidth selection (14) and the stepsize (γn) =

(
n−1
)
, Recursive 2 correspond to the

estimator (4) using the proposed plug-in bandwidth selection (14) and the stepsize (γn) =
(
hn/

[∑n
k=1 hk

])
.

7 Proofs
Throughout this section we use the following notation:

Πn =
n∏
j=1

(
1 − γj

)
, Wn (x) = h−dn Y−1n K

(
x − Xn
hn

)
, Zn (x) = h−dn Y−2n K

(
x − Xn
hn

)
.

Let us �rst state the following technical lemma.

Lemma 2. Let (vn) ∈ GS
(
v*
)
, (γn) ∈ GS (−α), and m > 0 such that m − v*ξ > 0 where ξ is de�ned in (7). We

have

lim
n→+∞

vnΠmn
n∑
k=1

Π−mk
γk
vk

= 1
m − v*ξ .

Moreover, for all positive sequence (αn) such that limn→+∞ αn = 0, and all δ ∈ R,

lim
n→+∞

vnΠmn

[ n∑
k=1

Π−mk
γk
vk
αk + δ

]
= 0.

Lemma 2 is widely applied throughout the proofs. Let us underline that it is its application, which requires
Assumption (A2)(iii) on the limit of (nγn) as n goes to in�nity.
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7.1 Proof of Theorem 1

Let us �rst note that, for x such that ψn (x) ≠ 0, we have

rn (x) − r (x) = Bn (x)
ψ (x)
ψn (x)

, (18)

with

Bn (x) = 1
ψ (x) (

ϕn (x) − ϕ (x)) − r (x)
ψ (x) (

ψn (x) − ψ (x)) . (19)

It follows from (18), that the asymptotic behavior of rn (x)− r (x) can be deduced from the one of Bn (x). More-
over, the following Lemma follows from the Proposition 1 of [25].

Lemma 3. (Bias and variance of ϕn and ψn) Under Assumptions (A1)-(A3), and assume that, for all i, j ∈
{1, . . . , d} ϕ(2)

ij and ψ(2)
ij are continuous at x.

If a ∈ [0, α/(d + 4)], then

E [ϕn (x)] − ϕ(x) =
1

2(α − 2aξ )

d∑
j=1

(
µ2j ϕ(2)

j,j (x)
)
h2n + o

(
h2n
)
. (20)

E [ψn (x)] − ψ (x) = 1
2 (α − 2aξ )

d∑
j=1

(
µ2j ψ(2)

j,j (x)
)
h2n + o

(
h2n
)
. (21)

If a ∈ (α/(d + 4), 1), then

E [ϕn (x)] − ϕ (x) = o
(√

γnh−dn
)
, E [ψn (x)] − ψ (x) = o

(√
γnh−dn

)
. (22)

If a ∈ [α/(d + 4), 1), then

Var [ϕn (x)] =
E
[
Y−2|X = x

]
f (x)

(2 − (α − ad) ξ )
γn

hdn
R(K) + o

(
γn

hdn

)
. (23)

Var [ψn (x)] =
E
[
Y−4|X = x

]
f (x)

(2 − (α − ad)ξ )
γn

hdn
R(K) + o( γn

hdn
). (24)

If a ∈ [0, α/(d + 4)), then

Var [ϕn (x)] = o(h4n), Var [ψn (x)] = o(h4n). (25)

Then, (8) follows from (20), (21) and (18) and (9) follows from (22) and (18).
Now, it follows from (19) that

Var [Bn (x)] = 1
ψ2 (x)

{
Var [ϕn (x)] + r2 (x)Var [ψn (x)] − 2r (x) Cov (ϕn (x) , ψn (x))

}
. (26)

Using Lemma 2, and classical computations, we obtain that

Cov (ϕn (x) , ψn (x)) =
E
[
Y−3|X = x

]
f (x)

(2 − (α − ad) ξ )
γn

hdn
R(K) + o

(
γn

hdn

)
. (27)

Then, the combination of (18), (26), (23), (24) and (27), gives (10), and the combination of (18), (26), (25)
and (27), gives (11).
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7.2 Proof of Theorem 2

Let us at �rst assume that, if a ≥ α/ (d + 4), then√
γ−1n hdn (rn (x) − E [rn (x)]) D→ N (0,V (x) R (K)) . (28)

In the case when a > α/ (d + 4), Part 1 of Theorem 2 follows from the combination of (9) and (28). In the
case when a = α/ (d + 4), Parts 1 and 2 of Theorem 2 follow from the combination of (8) and (28). In the case
a < α/ (d + 4), (11) implies that

h−2n (rn (x) − E (rn (x))) P→ 0,

and the application of (8) gives Part 2 of Theorem 2.

We now prove (28). In view of (19), we have

Bn (x) − E [Bn (x)] = 1
ψ (x)

Πn
n∑
k=1

(Tk (x) − E [Tk (x)]) , with Tk (x) = Π−1k γk (Wk (x) − r (x) Zk (x)) .

Now, we let Yk (x) = Tk (x) − E (Tk (x)).
Moreover, we have

v2n =
n∑
k=1

Var (Yk (x))

=
n∑
k=1

Π−2k γ2k

{
Var (Wk (x)) + r2 (x)Var (Zk (x)) − 2r (x) Cov (Wk (x) , Zk (x))

}
.

Moreover, in view of (A3), classical computations give

Var (Wk (x)) = 1
hdk

[
E
[
Y−2|X = x

]
f (x) R (K) + o (1)

]
,

Var (Wk (x)) = 1
hdk

[
E
[
Y−4|X = x

]
f (x) R (K) + o (1)

]
,

Cov (Zk (x) ,Wk (x)) = 1
hdk

[
E
[
Y−3|X = x

]
f (x) R (K) + o (1)

]
.

The application of Lemma 2 ensures that

v2n = ψ2 (x)
n∑
k=1

Π−2k γ2k
hdk

[V (x) R (K) + o (1)] = ψ
2 (x)
Π2
n

γn

hdn
[V (x) R (K) + o (1)] .

On the other hand, we have, for all p > 0, E
[
|Tk (x)|2+p

]
= O

(
1
h1+pk

)
,

and, since limn→∞ (nγn) > (α − ad) /2, there exists p > 0 such that limn→∞ (nγn) > 1+p
2+p (α − ad). Applying

Lemma 2, we get

n∑
k=1

E
[
|Yk (x)|2+p

]
= O

( n∑
k=1

Π−2−pk γ2+pk E
[
|Tk (x)|2+p

])
= O

( n∑
k=1

Π−2−pk γ2+pk
h1+pk

)
= O

(
γ1+pn

Π2+p
n h1+pn

)
,

and we thus obtain

1
v2+pn

n∑
k=1

E
[
|Yk (x)|2+p

]
= O

([
γnh−dn

]p/2)
= o (1) .

The convergence in (28) then follows from the application of Lyapounov’s Theorem.
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7.3 Proof of Proposition 1

Following similar steps as the proof of the Proposition 2 of [25], we proof Propostion 1.
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