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NONPARAMETRIC RECURSIVE METHOD FOR
KERNEL-TYPE FUNCTION ESTIMATORS

FOR CENSORED DATA

SALIM BOUZEBDA* AND YOUSRI SLAOUI

Abstract. In the present paper, we study general kernel type estimators
for censored data defined by the stochastic approximation algorithm. We
establish a central limit theorem for the proposed estimators. We charac-
terize the strong pointwise convergence rate for the nonparametric recursive
general kernel-type estimators under some mild conditions.

1. Introduction
Kernel density estimation is a fundamental data smoothing problem where

inferences about the population are made, based on a finite data sample. Over
years ago, [37] studied some properties of kernel density estimators introduced
by [1] and [38]. Nonparametric density and regression function estimation has
been the subject of intense investigation by both statisticians and probabilists
for many years and this has led to the development of a large variety of methods.
Kernel nonparametric function estimation methods have long attracted a great
deal of attention, for good sources of references to research literature in this area
along with statistical applications consult [45], [49], [18], [17], [40], [36], [28], [39],
[47], [22], [19] and the references therein. There are basically no restrictions
on the choice of the kernel K(·) in our setup, apart from satisfying classical
conditions. The selection of the bandwidth, however, is more problematic. The
choice of the bandwidth is crucial to obtain a good rate of consistency for of
the kernel-type estimators. It has a big influence on the size of the bias. One
has to find an appropriate bandwidth that produces an estimator which has a
good balance between the bias and the variance of the kernel-type estimator, for
more discussion refer to [31]. It is worth noticing that the bandwidth selection
methods studied in the literature can be divided into three broad classes: the
cross-validation techniques, the plug-in ideas and the bootstrap. Recently, some
general methods based upon empirical process techniques are developed in order
to prove uniform in bandwidth consistency of a class of kernel-type function
estimators (density, regression, entropy and copula), we may refer to [23, 24],
[5, 6], [4], [7] and [8]. Further, recursive kernel density estimators defined by
stochastic approximation method have been proposed by [41], recursive kernel
distribution estimators have been done by [42], recursive regression estimators

Received 2020-3-7; Accepted 2020-7-6; Communicated by the editors.
2010 Mathematics Subject Classification. Primary 60F10; 62G07; 62G05; 62L12.
Key words and phrases. Density estimation, stochastic approximation algorithm, asymp-

totic normality, regression estimation, censored data, recursive estimation.
* Corresponding author.

1

digitalcommons.lsu.edu/josa

Journal of Stochastic Analysis 
Vol. 1, No. 3 (2020) Article 4 (19 pages) 
DOI: 10.31390/josa.1.3.04



2 SALIM BOUZEBDA AND YOUSRI SLAOUI

have been done by [43, 44] and recursive kernel-type estimators for spatial data
was proposed by [9, 10, 11, 12].

This work concerns a nonparametric estimation of the recursive general kernel-
type estimators for censored data defined by the stochastic approximation algo-
rithm. To the best of our knowledge, the results presented here, respond to a
problem that has not been studied systematically up to the present, which was
the basic motivation of the present paper.

The problem of censoring, is frequently encountered in certain area of statis-
tical applications. The didactique example of censoring is arguably the study of
the survival times of patients to a given chronic disease in a medical follow-up
study lasting up to a fixed time t. If a patient is diagnosed with the disease at
time s, then the survival time will be known if and only if the patient dies before
time t. If this is not the case, then the only information available is that the
survival time is not less than the censoring time t − s. In mathematical terms,
the information available to the practitioner is the triple (T, C, X) defined in
R × R × Rd. Here T is the variable of interest, C a censoring variable and X a
concomitant variable. Throughout, we work with a sample {(Ti, Ci, Xi)1≤i≤n}
of independent and identically distributed replicæ of (T, C, X), n ≥ 1. Actually,
in the right censorship model, the pairs (Ti, Ci), 1 ≤ i ≤ n, are not directly
observed and the corresponding information is given by

Zi := min{TI , CI} and δi := 1{Ti ≤ Ci}, 1 ≤ i ≤ n,

with 1{A} standing for the indicator function of A. Accordingly, the observed
sample is

Dn = {(Zi, δi, Xi), i = 1, . . . , n}.

Survival data in clinical trials or failure time data in reliability studies, for ex-
ample, are often subject to such censoring. To be more specific, many statistical
experiments result in incomplete samples, even under well-controlled conditions.
For example, clinical data for surviving most types of disease are usually cen-
sored by other competing risks to life which result in death. In the sequel, we
impose the following assumptions upon the distribution of (X, T ). Denote by I
a given compact set in Rd with nonempty interior and set, for any α > 0,

Iα = {x : inf
u∈I

|x − u|Rd ≤ α},

with | · |Rd standing for the usual Euclidean norm on Rd. We will assume that,
for a given α > 0, (X, T ) [resp. X] has a density function gX,T [resp. gX] with
respect to the Lebesgue measure on Iα × R [resp. Iα]. For −∞ < t < ∞, set

F (t) = P(T ≤ t), G(t) = P(C ≤ t), and H(t) = P(Z ≤ t),

the right-continuous distribution functions of T , C and Z respectively. For any
right-continuous distribution function L defined on R, denote by

TL = sup{t ∈ R : L(t) < 1}

the upper point of the corresponding distribution. In this paper, we will mostly
focus on the regression function of ψ(Z) evaluated at X = x, for x ∈ Iα, given
by

mψ(x) = E(ψ(Z) | X = x),
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whenever it exists, is an unknown function, with real values. We will deal with
the following family of estimators

Ψn,hn(x, f, K)
= (1 − γn) Ψn−1,hn−1(x, f, K)

+γnh−d
n δnG(Zn)−1 {(cf (x)f(Zn) + df (x))K

(
h−1

n (x − Xn))
)}

,(1.1)
where (γn) is a nonrandom positive sequence tending to zero as n → ∞, (hn)
is a nonrandom positive sequence tending to zero as n → ∞, called bandwidth,
f(·), cf (·) and df (·) are some specific functions. For more explanation about
the motivation of considering the proposed family of estimators (1.1), first, by
considering, cf (x) = 1/gX(x) and df (x) = −E(f(Y ) | X = x)/gX(x) this
corresponds to regression setting, see equation (3.1) in [23]. An other choice
cf (x) = 0 and df (x) = 1, which correspond to the kernel density estimator.
Moreover, the introduction of the function f(·) in (1.1), is motivated by the
following choices. Further, the choice f(y) = y (or f(y) = yk, where k is a
strictly positive integer) into (1.1) let to the recursive Nadaraya-Watson kernel
regression function estimator of

m(x) := E(Y | X = x).
Finally, the choice f(y) = ft(y) = 1{y ≤ t} can be used to study the recursive
kernel estimator of the conditional distribution function

F (t|x) := P(Y ≤ t|X = x).
More motivation on the use of the function f(·) in (1.1), can be found in [15].
The function G(·) is generally unknown and has to be estimated. We will denote
by Gn(·) the Kaplan-Meier estimator of the function G(·), see [30]. Namely,
adopting the conventions

∏
∅ = 1 and 00 = 1 and setting

Nn(u) =
n∑

i=1
1{Zi ≥ u},

we have

Gn(u) = 1 −
∏

i:Zi≤u

{
Nn(Zi) − 1

Nn(Zi)

}(1−δi)
, for u ∈ R.

Then, we have
Ψ̂n,hn(x, f, K)

= (1 − γn) Ψ̂n−1,hn−1(x, f, K)
+γnh−d

n δnGn(Zn)−1 {(cf (x)f(Zn) + df (x))K
(
h−1

n (x − Xn))
)}

.(1.2)
Moreover, we set Ψ0,h0(x, f, K) = 0 and

Πn =
n∏

j=1
(1 − γj) ,

then, we will investigate the following family of estimators
Ψ̂n,hn(x, f, K)

= Πn

n∑

i=1

γi

Πihd
i

δiGn(Zi)−1 {(cf (x)f(Zi) + df (x))K(h−1
i (x − Xi))

}
.(1.3)
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In particular, when P(C = ∞) = 1, we have G(t) = 0, for all t < ∞, and obtain
the uncensored case, Gn(·) then being equal to the usual empirical distribution
function based upon Y1, . . . , Yn. The recursive property in (1.2) is particularly
useful when the number of the observed data increase since Ψ̂n,hn(x, f, K) can
be easily updated with each additional observation. In fact, if (Tn, Cn, Xn) is
a new observation, the estimators Ψ̂n,hn(x, f, K) can be updated recursively by
the relation (1.2). From a practical point of view, this arrangement provides
important savings in computational time and storage memory which a conse-
quence of the fact that the estimate updating is independent of the history of
the data. The main drawback of the classical kernel kernel estimator is the use of
all data at each step of estimation. From a theoretical point of view, the main
advantage of the investigation of such general family of estimators is that we can
prove almost sure consistency with exact rate for several kernel-type estimators
simultaneously. It is worth noting that the quantity Ψ̂n,hn(x, f, K) includes as
particular cases : the kernel type density estimator, the Nadaraya-Watson ([35]
and [48]) estimator and the kernel type estimator of the conditional distribution,
we may refer to [23, 24] for more details. In this sense, the present paper extends,
in non trivial, way some previous results by considering a general kernel-type
estimators given in (1.3).

The remainder of this paper is organized as follows. In the forthcoming sec-
tion we give the assumption and the main results. More precisely, we provide
the bias and the asymptotic variance. We establish the asymptotic normality
of Ψ̂n,hn(x, f, K) in Theorem 2.3. The Strong pointwise convergence rate is
characterized in Theorem 2.5. We calculate the Mean Squared Error (MSE) and
provide the optimal bandwidth in Proposition 2.6. Some concluding remarks and
possible future developments are mentioned in Section 3. To avoid interrupting
the flow of the presentation, all mathematical developments are relegated to the
Section 4.

2. Assumptions and Main Results
We define the following class of regularly varying sequences.

Definition 2.1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We
say that (vn) ∈ GS (γ) if

lim
n→+∞

n

[
1 − vn−1

vn

]
= γ. (2.1)

Condition (2.1) was introduced by [26] to define regularly varying sequences (see
also [3]). Noting that the acronym GS stand for (Galambos and Seneta). Typi-
cal sequences in GS (γ) are, for b ∈ R, nγ (log n)b, nγ (log log n)b, and so on.
In this section, we investigate asymptotic properties of the proposed estima-
tors (1.3). The assumptions to which we shall refer are the following:

(A1): K : Rd → R is a continuous, bounded function satisfying
∫

Rd

K (z) dz = 1,

and, for all j ∈ {1, . . . , d},
∫
Rd zjK (z) dz = 0 and

∫

Rd

z2
j |K (z)| dz < ∞.
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(A2): (i)
(γn) ∈ GS (−α) with α ∈ (1/2, 1] .

(ii)
(hn) ∈ GS (−a) with a ∈ (0,α/d) .

(iii)
lim

n→∞
(nγn) ∈ (min {2a, (α− ad) /2} , ∞] .

(A3): (i) gX,T (s, t) is twice continuously differentiable with respect to s.
(ii) s (→

∫
R f (t) gX,T (s, t) dt is a bounded function continuous at s = x.

s (→
∫
R |f (t)| gX,T (s, t) dt is a bounded function.

(iii) ∫

R
|f (t)|

∣∣∣∣
∂gX,T

∂xi
(x, t)

∣∣∣∣ dt < ∞, i = 1, . . . , d,

and
s (→

∫

R
f (t) ∂

2gX,T

∂si∂sj
(s, t) dt,

for i, j = 1, . . . , d, is a bounded function continuous at s = x.
It is interesting to underline that the intuition behind the use of such bandwidth
(hn) belonging to GS (−a) is that the ratio hn−1/hn is equal to 1+a/n+o (1/n),
then using such bandwidth and using the assumption (A2) on the bandwidth and
on the stepsize, Lemma 4.1 ensures that the bias and the variance will depend
only on hn and not on h1, . . . , hn, then the MISE will depend also only on hn,
which will be helpful to deduce an optimal bandwidth. Assumption (A2)(iii) on
the limit of (nγn) as n goes to infinity is standard in the framework of stochastic
approximation algorithms. It implies in particular that the limit of

(
[nγn]−1

)

is finite. To unburden our notation a bit and for simplicity, we introduce the
following quantities

ξ = lim
n→∞

(nγn)−1 , (2.2)

L (x, f) = E [f (Z) | X = x] gX (x) ,

Ψ(x, f) = cf (x) L (x, f) + df (x)gX (x) ,

g̃X (x) = E
[
G (Z)−1 | X = x

]
gX (x) ,

LG (x, f) = E
[

f (T )
G (T ) | X = x

]
gX (x) ,

V (x, f) = c2
f (x) LG

(
x, f2)+ d2

f g̃x (x) + 2cf (x) df (x) LG (x, f) ,

g(2)
ij (x) = ∂2gX

∂xi∂xj
(x) , (2.3)

L(2)
ij (x, f) = ∂2L

∂xi∂xj
(x, f) ,

B (x, f) =
d∑

i1,i2=1

∫

Rd

zi1zi2K (z) dz
(

cf (x) L(2)
i1i2

(x, f) + df (x) g(2)
i1i2

(x)
)

,

R (K) =
∫

Rd

K (z)2 dz.

Some explanation about this notation can be found in [9, 10, 12].
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2.1. Bias and variance. Our first result is the following proposition, which
gives the bias and variance of Ψ̂n,hn(x, f, K).

Proposition 2.2 (Bias and variance of Ψ̂n,hn(x, f, K)). Let Assumptions (A1)-
(A3) hold, and assume that, for all i, j ∈ {1, . . . , d} g(2)

ij (·), L(2)
ij (·, f), g̃X (·) and

LG (·, f) are continuous at x.
(1) If a ∈ (0,α/(d + 4)], then

E
[
Ψ̂n,hn(x, f, K)

]
− Ψ(x, f) = 1

2(1 − 2aξ)B (x, f) h2
n + o

(
h2

n

)
. (2.4)

If a ∈ (α/(d + 4), 1), then

E
[
Ψ̂n,hn(x, f, K)

]
− Ψ(x, f) = o

(√
γnh−d

n

)
. (2.5)

(2) If a ∈ [α/(d + 4), 1), then

Var
[
Ψ̂n,hn(x, f, K)

]
= R (K)

2 − (α− ad) ξV (x, f) γn

hd
n

+o

(
γn

hd
n

)
. (2.6)

If a ∈ (0,α/ (d + 4)), then

Var
[
Ψ̂n,hn(x, f, K)

]
= o

(
h4

n

)
. (2.7)

(3) If limn→∞ (nγn) > max {2a, (α− ad) /2}, then (2.4) and (2.6) hold si-
multaneously.

2.2. Central limit theorem and strong convergence. Let us now state
the following theorem, which gives the weak convergence rate of the family of
estimators Ψn,hn defined in (1.1). Below, we write Z

D= N (µ,σ2) whenever the
random variable Z follows a normal law with expectation µ and variance σ2, D→
denotes the convergence in distribution and P→ the convergence in probability.

Theorem 2.3 (Weak pointwise convergence rate). Let Assumptions (A1)-(A3)
hold, and assume that, for all i, j ∈ {1, . . . , d} g(2)

ij (·), L(2)
ij (·, f), g̃X (·) and

LG (·, f) are continuous at x.
(1) If there exists c ≥ 0 such that γ−1

n hd+4
n → c, then

√
γ−1

n hd
n

(
Ψ̂n,hn(x, f, K) − Ψ(x, f)

)

D→ N
( √

c

2 (1 − 2aξ)B (x, f) ,
R (K)

(2 − (α− ad) ξ)V (x, f)
)

.

(2) If γ−1
n hd+4

n → ∞, then
1

h2
n

(
Ψ̂n,hn(x, f, K) − Ψ(x, f)

) P→ 1
2 (1 − 2aξ)B (x, f) .

Remark 2.4. When the bandwidth (hn) is chosen such that

lim
n→∞

γ−1
n hd+4

n = 0,
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(which corresponds to under smoothing), it follows from Theorem 2.3 that
√
γ−1

n hd
n

(
Ψ̂n,hn(x, f, K) − Ψ(x, f)

)

D→ N
(

0,
R (K)

(2 − (α− ad) ξ)V (x, f)
)

,

and then, in order to minimize the asymptotic variance the stepsize (γn) should
be equal to

(
[1 − ad] n−1).

In the following theorem, we give the strong pointwise convergence rate of
Ψ̂n,hn(x, f, K).
Theorem 2.5 (Strong pointwise convergence rate). Let Assumptions (A1)-
(A3) hold, and assume that, for all i, j ∈ {1, . . . , d} g(2)

ij (·), L(2)
ij (·, f), g̃X (·)

and LG (·, f) are continuous at x.
(1) If there exists c1 ≥ 0 such that

γ−1
n hd+4

n /

(
ln
[

n∑

i=1
γi

])
→ c1,

then, with probability one, the sequence
(√

γ−1
n hd

n

2 ln [
∑n

i=1 γi]
(

Ψ̂n,hn(x, f, K) − Ψ(x, f)
))

is relatively compact1 and its limit set is the interval
[

1
2 (1 − 2aξ)

√
c1
2 B (x, f) −

√
V (x, f) R (K)
2 − (α− ad) ξ ,

1
2 (1 − 2aξ)

√
c1
2 B (x, f) +

√
V (x, f) R (K)
2 − (α− ad) ξ ,

]
.

(2) If

γ−1
n hd+4

n /

(
ln
[

n∑

i=1
γi

])
→ ∞,

then, with probability one,

lim
n→∞

1
h2

n

(
Ψ̂n,hn(x, f, K) − Ψ(x, f)

)
= 1

2 (1 − 2aξ)B (x, f) .

2.3. MSE and choice of the optimal bandwidth. In the following propo-
sition we give the MSE of the family of estimators Ψ̂n,hn(x, f, K).

Proposition 2.6 (MSE of Ψ̂n,hn(x, f, K)). Let Assumptions (A1)-(A3) hold,
and assume that, for all i, j ∈ {1, . . . , d} g(2)

ij (·), L(2)
ij (·, f), g̃X (·) and LG (·, f)

are continuous at x.
(1) If a ∈ (0,α/ (d + 4)), then

MSE
[
Ψ̂n,hn(x, f, K)

]
= 1

4 (1 − 2aξ)2 h4
nB (x, f) + o

(
h4

n

)
.

1Recall that a relatively compact subset is a subset whose closure is compact
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(2) If a = α/ (d + 4), then

MSE
[
Ψ̂n,hn(x, f, K)

]
= 1

2 − (α− ad) ξ
γn

hd
n

R (K) V (x, f)

+ 1
4 (1 − 2aξ)2 h4

nB (x, f) + o
(
h4

n

)
.

(3) If a ∈ (α/ (d + 4) , 1), then

MSE
[
Ψ̂n,hn(x, f, K)

]
= 1

2 − (α− ad) ξ
γn

hd
n

R (K) V (x, f) + o

(
γn

hd
n

)
.

The following corollary ensures that the bandwidth which minimize the MSE
depend on the stepsize (γn) and then the corresponding MSE depend also on
the stepsize (γn).

Corollary 2.7. Let Assumptions (A1)-(A3) hold. To minimize the MSE of
Ψ̂n,hn(x, f, K), the stepsize (γn) must be chosen in GS (−1), the bandwidth (hn)
must equal
(

d1/(d+4) (1 − 2aξ)2/(d+4)

(2 − (α− ad) ξ)1/(d+4)

{
R (K) V (x, f)

B (x, f)

}1/(d+4)
γ1/(d+4)

n

)
.

Then, we have

MSE
[
Ψ̂n,hn(x, f, K)

]

=
(

1 + d4/(d+4)

4

)
(1 − 2aξ)−2d/(d+4) (2 − (α− ad) ξ)−4/(d+4)

×R (K)4/(d+4) V (x, f)4/(d+4) B (x, f)d/(d+4) γ4/(d+4)
n

+o
(
γ4/(d+4)

n

)
.

The following corollary shows that, for a special choice of the stepsize

(γn) =
(
γ0n−1) ,

which fulfilled that

lim
n→∞

nγn = γ0

and that (γn) ∈ GS (−1), the optimal value for hn depend on γ0 and then the
corresponding MSE depend on γ0.

Corollary 2.8. Let Assumptions (A1)-(A3) hold. To minimize the MSE of
Ψ̂n,hn(x, f, K), the stepsize (γn) must be chosen in GS (−1), limn→∞ nγn = γ0,
the bandwidth (hn) must equal
(

(γ0 − 2/ (d + 4))2/(d+4)
(

d

4

)1/(d+4){
R (K) V (x, f)

B (x, f)

}1/(d+4)
n−1/(d+4)

)
,(2.8)
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from which we obtain

MSE
[
Ψ̂n,hn(x, f, K)

]

=
(

1 + d4/(d+4)/4
)
γ2

0 (γ0 − 2/ (d + 4))−2(d+2)/(d+4)

×R (K)4/(d+4) V (x, f)4/(d+4) B (x, f)d/(d+4) n−4/(d+4)

+o
(

n−4/(d+4)
)

.

Moreover, the minimum of

γ2
0 (γ0 − 2/ (d + 4))−2(d+2)/(d+4)

is reached at γ0 = 1, then the bandwidth (hn) must be equal to
((

d + 2
d + 4

)2/(d+4)(d

4

)1/(d+4){
R (K) V (x, f)

B (x, f)

}1/(d+4)
n−1/(d+4)

)
, (2.9)

from which we obtain

MSE
[
Ψ̂n,hn(x, f, K)

]

=
(

1 + d4/(d+4)/4
)

((d + 2) / (d + 4))−2(d+2)/(d+4)

×R (K)4/(d+4) V (x, f)4/(d+4) B (x, f)d/(d+4) n−4/(d+4)

+o
(

n−4/(d+4)
)

.

Remark 2.9. For notational convenience, we have chosen the same bandwidth
sequence for each margins. This assumption can be dropped easily. If one wants
to make use of the vector bandwidths (see, in particular, Chapter 12 of [19]).
With obvious changes of notation, our results and their proofs remain true when
hn is replaced by a vector bandwidth hn = (h(1)

n , . . . , h(d)
n ), where min h(i)

n > 0.
In this situation we set

hn =
d∏

i=1
h(i)

n ,

and for any vector v = (v1, . . . , vd) we replace v/hn by (v1/h(1)
n , . . . , v1/h(d)

n ).
For ease of presentation we chose to use real-valued bandwidths throughout.

3. Concluding Remarks
This paper proposes a general recursive kernel type estimators for spatial data

defined by the stochastic approximation algorithm (1.3). The asymptotic laws of
the proposed estimators are established under general conditions. In particular,
we have obtained the central limit theorem and the strong pointwise convergence
rate. We have discussed the MSE that is used the specify the optimal bandwidth
in some sense. It would be of interest to extend the present work the case of
functional data, that is the covariate X is X -valued function, where X is an
abstract space. A future research direction would be to extend our findings to
the setting of serially dependent observations.



10 SALIM BOUZEBDA AND YOUSRI SLAOUI

4. Mathematical Developments
This section is devoted to the proofs of our results. The previously presented

notation continues to be used in the following.
For any distribution function (df) L(·) recall that

τL = sup{t : L(t) < 1}

be its support’s right endpoint. Further, we will denote by τF (resp. τG) the
upper endpoints of F (·) (resp. of G(·)). In the following we assume that τF < ∞,
G(τF ) > 0, τH < min(τF , τG) and C is independent to (X, T ).
Now, we define the sequence (mn) by setting

(mn) =






log log n√
γ−1

n hd+1
n

if log log n√
γ−1

n hd+5
n

= ∞,

h2
n otherwise.

(4.1)

Further, we consider the following notation throughout this section
Tn (x, f) = h−d

n δnG(Zn)−1 {cf (x) f (Zn) + df (x)} K
(
h−1

n (x − Xn)
)

.

and we use the fact that,
1{T1≤C1}ϕ (Z1) = 1{T1≤C1}ϕ (T1)

for all measurable function ϕ(·). Then, we readily obtain that
Tn (x, f)

= h−d
n 1{Tn<Cn}G(Tn)−1 {cf (x) f (Tn) + df (x)} K

(
h−1

n (x − Xn)
)

.(4.2)
Moreover, we have
∣∣∣Ψ̂n,hn(x, f, K) − Ψn,hn(x, f, K)

∣∣∣

= Πn

∣∣∣∣∣

n∑

i=1
Π−1

i γih
−d
i δi

[ 1
Gn(Zi)

− 1
G(Zi)

]
{cf (x) f (Zi) + df (x)}

× K

(x − Xi

hi

)∣∣∣∣

= Πn

∣∣∣∣∣

n∑

i=1
Π−1

i γih
−d
i 1{Ti<Ci}

[ 1
Gn(Ti)

− 1
G(Ti)

]
{cf (x) f (Ti) + df (x)}

× K

(x − Xi

hi

)∣∣∣∣

≤ Πn

∣∣∣∣∣

n∑

i=1
Π−1

i γih
−d
i

[
Gn(Ti) − G(Ti)

Gn(Ti)G(Ti)

]
{cf (x) f (Ti) + df (x)}

× K

(x − Xi

hi

)∣∣∣∣

≤
supt≤τH

(|Gn(t) − G(t)|)
Gn(τH)G(τH) Πn

∣∣∣∣∣

n∑

i=1
Π−1

i γih
−d
i {cf (x) f (Ti) + df (x)}

× K

(x − Xi

hi

)∣∣∣∣ .
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Then by using the strong law of large numbers (SLLN) and the law of iterated
logarithm (LIL) on the censoring law (see formula (4.28) in [16], see also [25]),
we have

sup
x∈S

∣∣∣Ψ̂n,hn(x, f, K) − Ψn,hn(x, f, K)
∣∣∣ = O

(√
log log n

nhd+1
n

)

= o (mn) . (4.3)

The following simple lemma will play an instrumental role in the sequel.

Lemma 4.1. Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α), and m > 0 such that m −
v∗ξ > 0 where ξ is defined in (2.2). We have

lim
n→+∞

vnΠm
n

n∑

i=1
Π−m

i

γi

vi
= 1

m − v∗ξ
. (4.4)

Moreover, for all positive sequence (αn) such that limn→+∞ αn = 0, and all
δ ∈ R,

lim
n→+∞

vnΠm
n

[
n∑

i=1
Π−m

i

γi

vi
αi + δ

]
= 0. (4.5)

The proof is given in [33]. Lemma 4.1 is widely applied throughout the proofs.
Let us underline that it is its application, which requires Assumption (A2)(iii)
on the limit of (nγn) as n goes to infinity.

Proof of Proposition 2.2. We first note that we have

Ψ̂n,hn(x, f, K) − Ψ(x, f)
= Ψ̂n,hn(x, f, K) − Ψn,hn(x, f, K) + Ψn,hn(x, f, K) − Ψ(x, f).

Then, it follows from (4.3), that the asymptotic behavior of Ψ̂n,hn(x, f, K) −
Ψ(x, f) can be deduced from the one of Ψn,hn(x, f, K) − Ψ(x, f). Moreover, in
view of (1.1) and (4.2), we can write that

E [Ψn,hn(x, f, K)] − Ψ(x, f) = Πn

n∑

i=1
Π−1

i γi {E [Ti (x, f)] − Ψ(x, f)} .

Since, we have

E [Ti (x, f)]
= E

[
h−d

i E
[
1{Ti<Ci}|Ti, Xi

]
G(Ti)−1 {cf (x) f (Ti) + df (x)}

× K
(
h−1

i (x − Xi)
)]

= E
[
h−d

i {cf (x) f (Ti) + df (x)} K
(
h−1

i (x − Xi)
)]

.



12 SALIM BOUZEBDA AND YOUSRI SLAOUI

Taylor’s expansion with integral remainder ensures that
E [Ti (x, f)] − Ψ(x, f)

= cf (x)
∫

Rd

K (z) [L(x − zhi, f) − L(x, f)] dz

+df (x)
∫

Rd

K (z) [gx(x − zhi) − gx(x)] dz

= h2
i

2






∫

Rd

K (z)
d∑

i1,i2=1
zi1zi2dz

(
cf (x) L(2)

i1i2
(x, f) + df (x) g(2)

i1i2
(x)
)





+h2
i

(
cf (x) δi (x) + df (x) δ̃i (x)

)
,

where
δi (x, f)

=
d∑

i1,i2=1

∫

Rd

∫ 1

0
(1 − η) zi1zi2K (z)

[
L(2)

i1i2
(x − zhiη, f) − L(2)

i1i2
(x, f)

]
dηdz,

δ̃i (x, f)

=
d∑

i1,i2

∫

Rd

∫ 1

0
(1 − η) zi1zi2K (z)

[
g(2)

i1i2
(x − zhiη, f) − g(2)

i1i2
(x, f)

]
dηdz.

By the fact that L(2)
i1i2

(·) and g(2)
i1i2

(·) are bounded and continuous at x for all
i1, i2 ∈ {1, . . . , d}, we readily infer that

lim
i→∞

δi (x, f) = 0 and lim
i→∞

δ̃i (x, f) = 0.

In the case a ≤ α/(d + 4), we have
lim

n→∞
(nγn) > 2a,

an application of Lemma 4.1 then yields to
E [Ψn,hn (x, f, K)] − Ψ (x, f)

= 1
2

∫

Rd

K (z)
d∑

i1,i2=1
zi1zi2dz

(
cf (x) L(2)

i1i2
(x, f) + df (x) g(2)

i1i2
(x)
)

×Πn

n∑

i=1
Π−1

i γih
2
i [1 + o (1)]

= h2
n

2(1 − 2aξ)

∫

Rd

K (z)
d∑

i1,i2=1
zi1zi2dz

(
cf (x) L(2)

i1i2
(x, f) + df (x) g(2)

i1i2
(x)
)

× [1 + o (1)] .

We so obtain (2.4), as sought. In the case a > α/(d + 4), we have

h2
n = o

(√
γnh−d

n

)
,

since
lim

n→∞
(nγn) > (α− ad) /2,
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we will make use of Lemma 4.1 to infer that

E [Ψn,hn(x, f, K)] − Ψ(x, f) = Πn

n∑

i=1
Π−1

i γio

(√
γih

−d
i

)

= o

(√
γnh−d

n

)
.

This when combined with (4.3) implies that (2.5) holds. Further, for computing
the variance, we have

Var [Ψn,hn(x, f, K)] = Π2
n

n∑

i=1
Π−2

i γ2
i Var [Ti (x, f)] .

Recall the trivial relation

Var [Ti (x, f)] = E
[
T 2

i (x, f)
]

− (E [Ti (x, f)])2 .

First, we have

E
[
T 2

i (x, f)
]

= E
[
h−2d

i E
[
1{Ti<Ci}|Ti, Xi

]
G(Ti)−2 {cf (x) f (Ti) + df (x)}2

×K2 (h−1
i (x − Xi)

)]

= E
[
h−2d

i G(Ti)−1 {cf (x) f (Ti) + df (x)}2 K2 (h−1
i (x − Xi)

)]
.

Then, we obtain

Var [Ψn,hn(x, f, K)]

= Π2
n

n∑

i=1

Π−2
i γ2

i

hd
i

[
V (x, f)

∫

Rd

K2 (z) dz + νi (x, f) − hd
i ν̃i (x, f)

]
,

where

νi (x, f) = c2
f (x)

∫

R
K2 (z)

[
LG

(
x − zhi, f2)− LG

(
x, f2)] dz

+d2
f (x)

∫

R
K2 (z) [g̃x (x − zhi) − g̃x (x)] dz

+2cf (x) df (x)
∫

R
K2 (z) [LG (x − zhi, f) − LG (x, f)] dz,

ν̃i (x, f) =
(∫

Rd

K (z) (cf (x) L (x − zhi, f) + cf (x) gx (x − zhi)) dz

)2
.

In view of the condition (A3), we have

lim
i→∞

νi (x, f) = 0 and lim
i→∞

hd
i ν̃i (x, f) = 0.

In the case a ≥ α/ (d + 4), we have

lim
n→∞

(nγn) > (α− ad) /2,
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and by applying Lemma 4.1, we readily obtain

Var [Ψn,hn(x, f, K)] = Π2
n

n∑

i=1

Π−2
i γ2

i

hd
i

[
V (x, f)

∫

Rd

K2 (z) dz + o (1)
]

= 1
2 − (α− ad) ξ

γn

hd
n

[R (K) V (x, f) + o (1)] ,

then (2.6) follows from (4.3). In the case a < α/ (d + 4), we have
γnh−d

n = o
(
h4

n

)
.

Lemma 4.1 ensures that

Var [Ψn,hn(x, f, K)] = Π2
n

n∑

i=1
Π−2

i γio
(
h4

i

)

= o
(
h4

n

)
,

then (2.7) follows from (4.3). Hence the proof is complete. !

Proof of Theorem 2.3. Let us at first assume that, if a ≥ α/(d + 4), then
√
γ−1

n hd
n (Ψn,hn(x, f, K) − E [Ψn,hn(x, f, K)])

D→ N
(

0,
R (K)

(2 − (α− ad) ξ)V (x, f)
)

. (4.6)

In the case when a > α/ (d + 4), Part 1 of Theorem 2.3 follows from the com-
bination of (2.5) and (4.6). In the case when a = α/(d + 4), Parts 1 and 2 of
Theorem 2.3 follow from the combination of (2.4), (4.3) and (4.6). In the case
a < α/(d + 4), (2.7) implies that

h−2
n (Ψn,hn(x, f, K) − E (Ψn,hn(x, f, K))) P→ 0,

and a combination of (2.4) with (4.3) gives Part 2 of Theorem 2.3. Let us
prove (4.6). In view of (1.1), we have

Ψn,hn(x, f, K) − E [Ψn,hn(x, f, K)]

= Πn

n∑

i=1
Π−1

i γi (Ti (x, f) − E [Ti (x, f)]) .

Now, we set
Yi (x) = Π−1

i γi {Ti (x, f) − E [Ti (x, f)]} . (4.7)
An application of Lemma 4.1 ensures that

v2
n =

n∑

i=1
Var (Yi (x))

=
n∑

i=1
Π−2

i γ2
i Var (Ti (x, f))

=
n∑

i=1

Π−2
i γ2

i

hd
i

[R (K) V (x, f) + o (1)]

= 1
Π2

n

γn

hd
n

[
R (K)

2 − (α− ad) ξV (x, f) + o (1)
]

. (4.8)
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On the other hand, we have, for all p > 0,

E
[
|Ti (x, f)|2+p

]
= O

(
1

hd(1+p)
i

)
. (4.9)

By using the fact that
lim

n→∞
(nγn) > (α− ad) /2,

implies that there exists p > 0, such that

lim
n→∞

(nγn) >
1 + p

2 + p
(α− ad) .

Applying Lemma 4.1, it follows that
n∑

i=1
E
[
|Yi ((x)|2+p

]
= O

(
n∑

i=1
Π−2−p

i γ2+p
i E

[
|Ti (x, f)|2+p

])

= O

(
n∑

i=1

Π−2−p
i γ2+p

i

hd(1+p)
i

)

= O

(
γ1+p

n

Π2+p
n hd(1+p)

n

)
,

from which we conclude that
1

v2+p
n

n∑

i=1
E
[
|Yi ((x)|2+p

]
= O

([
γnh−d

n

]p/2)

= o (1) .

The convergence in (4.6) then follows from the application of Lyapounov’s The-
orem. !
Proof of Theorem 2.5. We start by setting that

Ln (x) =
n∑

i=1
Yi (x) ,

and

sn =
n∑

i=1
γi,

where Yi is defined in (4.7), and set γ0 = h0 = 1.
• Let us first consider the case a ≥ α/ (d + 4).

We set H2
n = Π2

nγ
−1
n hd

n, we then have

ln
(
H−2

n

)
= −2 ln (Πn) + ln

(
n∏

i=1

γ−1
i−1hd

i−1
γ−1

i hd
i

)

= (2 − ξ (α− ad)) sn + o (sn) . (4.10)
Since 2 − ξ (α− ad) > 0, it follows, in particular, that

lim
n→+∞

H−2
n = ∞.

Moreover, since we have
lim

n→+∞

H2
n

H2
n−1

= 1,
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it follows from (4.8) that

lim
n→+∞

H2
n

n∑

i=1
Var [Yi (x)] = V (x, f) R (K)

2 − (α− ad) ξ .

Now, in view of (4.9), we readily infer that

E
[
|Yi (x)|3

]
= O

(
Π−3

i γ3
i h−2d

i

)
.

Keeping in mind equation (4.10), we have from Lemma 4.1 the following

n−3/2
n∑

i=1
E
(

|HnYi (x)|3
)

= O

(
n−3/2H3

n

n∑

i=1
Π−3

i γ3
i h−2d

i

)

= o
([

ln
(
H−2

n

)]−1)
.

Then, an application of Theorem 1 of [32] ensures, with probability one, that
the sequence


 HnLn (x)√
2 ln ln

(
H−2

n
)



 =





√
γ−1

n hd
n

(
Ψ̂n,hn(x, f, K) − E

[
Ψ̂n,hn(x, f, K)

])

√
2 ln ln

(
H−2

n
)





is relatively compact and its limit set is the interval
[

−

√
V (x, f) R (K)
2 − (α− ad) ξ ,

√
V (x, f) R (K)
2 − (α− ad) ξ

]
. (4.11)

Moreover, it follows from (4.10), that

lim
n→∞

ln ln
(
H−2

n

)

ln sn
= 1;

and then, with probablility one, the sequence
(√

γ−1
n hd

n

(
Ψ̂n,hn(x, f, K) − E

[
Ψ̂n,hn(x, f, K)

])
/
√

2 ln sn

)

is relatively compact, and its limit set is the interval given in (4.11). Then, by
combining (2.4) with (2.5) we conclude the proof of Theorem 2.5 in the case
a ≥ α/ (d + 4).

• Let us now consider the case a < α/ (d + 4).
We set

H−2
n = Π−2

n h4
n

(
ln ln

(
Π−2

n h4
n

))−1
.

We infer that

ln
(
H−2

n h4
n

)
= −2 ln (Πn) + ln

(
n∏

i=1

h−4
i−1

h−4
i

)

= (2 − 4aξ) sn + o (sn) . (4.12)
Since 2 − 4aξ > 0, we readily infer that

lim
n→+∞

H−2
n h4

n = ∞.

Moreover, since we have
lim

n→+∞

H2
n

H2
n−1

= 1,
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in view of (4.8) and applying Lemma 4.1, we conclude that

lim
n→+∞

H2
n

n∑

i=1
Var [Yi (x)] = o (1) .

Now, in view of (4.9), it follows from (4.12) and Lemma 4.1 that

n−3/2
n∑

i=1
E
(

|HnYi (x)|3
)

= O

(
n−3/2H3

nh−6
n

[
ln ln

(
Π−2

n h4
n

)]3/2
n∑

i=1
Π−3

i γ3
i h−2d

i

)

= o
([

ln
(
H−2

n

)]−1)
.

Then, an application of Theorem 1 of [32] ensures that, with probability one,

lim
n→∞

HnLn (x)√
2 ln ln

(
H−2

n
)

= lim
n→∞

h−2
n

√
ln ln

(
Π−2

n h4
n

)

2 ln ln
(
H−2

n
)
(

Ψ̂n,hn(x, f, K) − E
[
Ψ̂n,hn(x, f, K)

])

= 0.

Moreover, equation (4.12) ensures that

lim
n→∞

ln ln
(
H−2

n

)

ln ln
(
Π−2

n h4
n

) = 1.

From which we infer that
lim

n→∞
h−2

n

(
Ψ̂n,hn(x, f, K) − E

[
Ψ̂n,hn(x, f, K)

])
= 0 a.s.,

whence Theorem 2.5, in the case a < α/ (d + 4), follows from (2.4). !
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49. Wertz, W.: Statistical density estimation: a survey, volume 13 of Angewandte Statis-

tik und Ökonometrie [Applied Statistics and Econometrics]. Vandenhoeck & Ruprecht,
Göttingen. With German and French summaries. 1978.

Salim Bouzebda : Alliance Sorbonne Universités, Université de Technologie de
Compiègne,, L.M.A.C., Compiègne, France

E-mail address: salim.bouzebda@utc.fr

Yousri Slaoui : Univ. Poitiers, Lab. Math. et Appl., Futuroscope Chasseneuil,
France

E-mail address: Yousri.Slaoui@math.univ-poitiers.fr


	Nonparametric Recursive Method for Kernel-Type Function Estimators for Censored Data
	Recommended Citation

	tmp.1598449648.pdf.luOmI

