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LARGE AND MODERATE DEVIATION PRINCIPLES FOR
RECURSIVE KERNEL ESTIMATORS FOR SPATIAL DATA

SALIM BOUZEBDA* AND YOUSRI SLAOUI

Abstract. The main purpose of this paper is to establish large and moder-
ate deviations principles for the recursive kernel estimators of a probability
density function for spatial data defined by the stochastic approximation
algorithm proposed by [9]. We show that the estimator constructed us-
ing the stepsize which minimize the variance of the class of the recursive
estimators defined in [9] gives the same pointwise LDP and MDP as the
nonrecursive kernel density estimator considered by [42]. We will prove
moderate deviations and large deviations for statistic for testing symme-
try, of interest by and of itself.

1. Introduction

Kernel nonparametric function estimation methods have been the subject of
intense investigation by both statisticians and probabilists for many years and
this has led to the development of a large variety of techniques. Although they
are popular, they present only one of many approaches to the construction of
good function estimators. These include, for example, nearest-neighbor, spline,
neural network, and wavelet methods. In this article, we shall restrict attention
to the some results concerning the kernel-type estimators of density based on spa-
tial data. Spatial data, collected on measurement sites in a variety of fields and
the statistical treatment, typically arise in various fields of research, including
econometrics, epidemiology, environmental science, image analysis, oceanogra-
phy, meteorology, geostatistics and many others. For good sources of references
to research literature in this area along with statistical applications consult [22],
[34], [36] and [14] and the references therein. In the context of nonparametric
estimation for spacial data, the existing papier are mainly concerned with the
estimation of a probability density and regression functions, due to lack of space
we cite only some key references, among many others, [5], [13], [16], [42], [43]
and [15]. In the works of [2] and [8], recursive versions of non-parametric density
estimation for spatial data are investigated, we may refer also to [9, 10, 11] for
related problems.

We start by giving some notation and definitions that are needed for the
forthcoming sections. We consider a spatial process

(
Xi ∈ Rd, i ∈ NN

)
defined

on a probability space (Ω,A,P), where d ≥ 1 and N ≥ 1. We assume that the
Xi have the same distribution for i ∈ NN , with unknown probability density
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2 SALIM BOUZEBDA AND YOUSRI SLAOUI

function f(·). As it is classically assumed in the literature, the process under
study (Xi) is observable over a region D ⊂ RN . For convenience, we treat the
observations sites as an array that is In = {sj , j = 1, . . . , n}. In this paper we
propose to estimate the probability density function f(·) based on (Xi, i ∈ In).
In order to construct a stochastic algorithm for the estimation of the function
f(·) at a point x, we define an algorithm of search of the zero of the function
h : y → f(x) − y. Following Robbins-Monro’s procedure, this algorithm is
defined by setting f0(x) ∈ Rd, and, for all n ≥ 1,

fn (x) = fn−1 (x) + γsn
Wsn

(x) ,
where Wsn(x) is an observation of the function h at the point fn−1(x) and (γsn)
is a sequence of positive real numbers that goes to zero. To define Wsn(x),
they follow the approach of [32, 33], [44] and more recently [39] and introduced
a kernel K (which is a function satisfying

∫
Rd K(x)dx = 1) and a bandwidth

(hsn) (which is a sequence of positive real numbers that goes to zero), and they
set

Wsn(x) = h−d
sn
K(h−1

sn
[x −Xsn ]) − fn−1(x).

The stochastic approximation algorithm introduced in [8, 9] which estimate re-
cursively the density f(·) at the point x is defined by

fn(x) = (1 − γsn)fn−1(x) + γsnh
−d
sn
K

(
x −Xsn

hsn

)
. (1.1)

Recently, large and moderate deviations results have been proved for the recur-
sive density estimators defined by stochastic approximation method in [37] in the
non spatial case, for the averaged stochastic approximation method for the esti-
mation of a regression function in [40] (for the non spatial case) and moderate
deviations results for the stochastic approximation method for the estimation
of a regression function in [41] (for the non spatial case). The purpose of this
paper is to establish large and moderate deviations principles for the recursive
density estimator for spatial data defined by the stochastic approximation algo-
rithm (1.1).

Let us first recall that a Rm-valued sequence (Zn)n≥1 satisfies a large devia-
tions principle (LDP) with speed (νn) and good rate function I if :

(1) (νn) is a positive sequence such that limn→∞ νn = ∞;
(2) I : Rm → [0,∞] has compact level sets;
(3) for every borel set B ⊂ Rm,

− inf
x∈

◦
B

I(x) ≤ lim inf
n→∞

ν−1
n logP [Zn ∈ B]

≤ lim sup
n→∞

ν−1
n logP [Zn ∈ B] ≤ − inf

x∈B
I(x),

where
◦
B and B denote the interior and the closure of B respectively.

Moreover, let (vn) be a nonrandom sequence that goes to infinity; if
(vnZn) satisfies a LDP, then (Zn) is said to satisfy a moderate deviations
principle (MDP). For a background on the theory of large deviations,
see [18] and references therein.

The first purpose of this paper is to establish pointwise LDP for the recursive
kernel density estimators fn(·) defined by the stochastic approximation algo-
rithm (1.1). It turns out that the rate function depend on the choice of the
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stepsize (γsn). We focus in the first part of this paper on the following two
special cases:

(1) (γsn
) =

(
n−1) ,

(2) (γsn) =

hd
sn

(
n∑

k=1

hd
sk

)−1
,

remark that the first stepsize belongs to the subclass of recursive kernel esti-
mators which have a minimum MISE and the second stepsize belongs to the
subclass of recursive kernel estimators which have a minimum variance (see [9]).

We show that using the stepsize (γsn) =
(
n−1) and the bandwidth

(hsn) ≡
(
cn−a

)
with c > 0 and a ∈ ]0, 1/d[, the sequence (fn(x) − f(x)) satisfies a LDP with
speed

(
nhd

sn

)
and the rate function defined as follows: if f(x) ̸= 0, Ia,x : t → f(x)Ia

(
1 + t

f(x)

)
,

if f(x) = 0, Ia,x (0) = 0 and Ia,x (t) = +∞ for t ̸= 0,
(1.2)

where

Ia (t) = sup
u∈R

{ut− ψa (u)} ,

ψa (u) =
∫

[0,1]×Rd

s−ad
(
euK(z) − 1

)
dsdz,

which is the same rate function for the LDP of the [45] kernel estimator (see
[27]) in the non spatial case. Moreover, we show that using the stepsize

(γsn) =

hd
sn

(
n∑

k=1

hd
sk

)−1


and more general bandwidths defined as hsn = h (sn) for all n, where h is a
regularly varing function with exponent (−a), a ∈ ]0, 1/d[. We prove that the
sequence (fsn(x) − f(x)) satisfies a LDP with speed

(
nhd

sn

)
and the following

rate function: if f(x) ̸= 0, Ix : t → f(x)I
(

1 + t
f(x)

)
,

if f(x) = 0, Ix (0) = 0 and Ix (t) = +∞ for t ̸= 0,
(1.3)

where

I (t) = sup
u∈Rd

{ut− ψ (u)} ,

ψ (u) =
∫
Rd

(
euK(z) − 1

)
dz,

which is the same rate function for the LDP of the nonrecursive kernel density
estimator considered by [42], see [27] in the non spatial case (Akaike-Parzen-
Rosenblatt kernel density, [1], [35] and [30]).

Our second purpose in this paper is to provide pointwise MDP for the pro-
posed density estimator for spatial data defined by the stochastic approximation
algorithm (1.1). In this case, we consider more general stepsizes defined as
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γsn = γ (sn) for all n, where γ is a regularly function with exponent (−α),
α ∈ ]1/2, 1]. Throughout this paper we will use the following notation:

ξ = lim
n→+∞

(nγsn)−1
. (1.4)

For any positive sequence (vsn) satisfying

lim
n→∞

vsn
= ∞ and lim

n→∞

γsnv
2
sn

hd
sn

= 0

and general bandwidths (hsn), we prove that the sequence

vsn (fn(x) − f(x))

satisfies a LDP of speed
(
hd

sn
/
(
γsnv

2
sn

))
and rate function Ja,α,x defined by

if f(x) ̸= 0, Ja,α,x : t → t2 (2 − (α− ad) ξ)

2f(x)
∫
Rd

K2 (z) dz

if f(x) = 0, Ja,α,x (0) = 0 and Ja,α,x (t) = +∞ for t ̸= 0.

(1.5)

Let us point out that using the stepsize

(γsn) =

hd
sn

(
d∑

k=1

hd
sk

)−1
which minimize the variance of fn(·), we obtain the same rate function for the
pointwise LDP and MDP as the one obtained for the non recursive kernel density
estimator. To our best knowledge, these problems were open up to present, and
it gives the main motivation to our paper.

The layout of the article is as follows. In the forthcoming section, we will
introduce our framework and give the main assumptions. Section 2.1 is devoted
to the pointwise LDP for the density estimator defined in (1.1) and Section will
be concerned with MDP results. In section 3, we investigate large and moderate
deviations for the problem of symmetry of the density function f(·). To prevent
from interrupting the flow of the presentation, all proofs are gathered in Section
5.

2. Assumptions and Main Results

We define the following class of regularly varying sequences.

Definition 2.1. Let γ ∈ R and (vsn)n≥1 be a nonrandom positive sequence.
We say that (vsn) ∈ GS (γ) if

lim
n→+∞

n

[
1 −

vsn−1

vsn

]
= γ. (2.1)

Condition (2.1) was introduced (in the case when sn = n) by [21] to define
regularly varying sequences (see also [6]), and by [24] in the context of sto-
chastic approximation algorithms. Typical sequences in GS (γ) are, for b ∈ R,
nγ (logn)b, nγ (log log n)b, and so on.

2.1. Pointwise LDP for the density estimator defined by the stochastic
approximation algorithm (1.1).
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2.1.1. Choices of (γsn) minimizing the MISE of fn(·). It is clear that in order
to minimize the MISE of fn(·), the stepsize (γsn) must be chosen in GS (−1)
and should ensures that

lim
n→∞

nγsn = 1.

A straightforward example of stepsize belonging to GS (−1) and satisfies
lim

n→∞
nγsn = 1 is (γsn) =

(
n−1) .

For this choice of stepsize, the estimator fn(·) defined by (1.1) equals to the
recursive kernel estimator introduced by [45] in the spatial case.

To establish pointwise LDP for fn(·) in this special case, we need the following
assumptions.

(L1) K : Rd → R is a continuous, bounded function satisfying∫
Rd

K (z1, . . . , zd) dz1 . . . dzd :=
∫
Rd

K (z) dz = 1,∫
Rd zK (z) dz = 0 and

∫
Rd ∥z∥2

K (z) dz < ∞.
(L2) (i) (hsn) = (cn−a) with a ∈ ]0, 1/d[ and c > 0.

(i) (γsn) =
(
n−1).

(L3) (i) f(·) is bounded, twice differentiable, and, for all i, j ∈ {1, . . . , d},
∂2f(·)/∂xi∂xj is bounded.

(ii) For any i, j ∈ {1, . . . , n} such that si ̸= sj , the random vector(
Xsi , Xsj

)
has a density fsi,sj (·) such that supsi ̸=sj

∥∥gsi,sj

∥∥ < ∞,
where

gsi,sj (·) = fsi,sj (·) − f(·) ⊗ f(·).
(L4) (i) The field (Xsi)1≤i≤n is α-mixing: there exists a function ϕ : R+ → R+

with ϕ (t) goes to zero as t goes to infinity, such that for E, F ⊂ R2 with
finite cardinals Card (E), Card (F )
α (σ (E) , σ (F )) := sup

A∈σ(E),B∈σ(F )
|P (A ∩B) − P (A)P (B)|

≤ ϕ (dist (E,F ))ψ (Card (E) , Card (F )) ,
where σ (E) = {Xi : i ∈ E} and σ (F ) = {Xi : i ∈ F}, dist (E,F ) is the
Euclidean distance between E and F and ψ (·) is a positive symmetric
function nondecreasing in each variable. The functions ϕ(·) and ψ(·) are
such that ϕ (i) ≤ Ci−θ and

ψ (n,m) ≤ C min (m,n) .

(ii)
∑∞

k=0 (k + 1)2
α

δ
4+δ
n (k) < c for some c, δ > 0 and all n, where

αn (k) = αn (X, k) = sup
A∈Fn

−∞,B∈F∞
n+k

|P (A ∩B) − P (A)P (B)| ,

with X = {Xsi}
n
i=1, Fn

m denote the σ-algebra generated by {Xsi}
n
i=m.

Assumption (L1) on the kernel is widely used in the recursive and the nonrecur-
sive framework for the functional estimation. Assumption (L2) on the stepsize
and the bandwidth was used in the recursive framework for the estimation of the
density function (see [25] and [37, 38]) and for the estimation of the distribution
function (see [39]). Assumption (L3) on the density of X was used in the nonre-
cursive framework for the estimation of the density function (see [35] and [30])
and in the recursive framework (see [25] and [37, 38, 39]). Assumption (L4) i)
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are classical in nonparametric estimation in the spatial literature (see [2]). How-
ever, assumption (L4) ii) was considered in [20] to establish a general central
limit theorem for strong mixing sequences, see [35].

The following Theorem gives the pointwise LDP for fn(·) in this case.

Theorem 2.2 (Pointwise LDP for Wolverton and Wagner estimator). Let As-
sumptions (L1)-(L4) hold and assume that f(·) is continuous at x. Then, the
sequence (fn(x) − f(x)) satisfies a LDP with speed

(
nhd

sn

)
and rate function

defined by (1.2).

2.1.2. Choices of (γsn) minimizing the variance of fn(·). In order to minimize
the asymptotic variance of fn(·), the stepsize (γsn) must be chosen in GS (−1)
and must satisfy

lim
n→∞

nγsn = 1 − ad

A straightforward example of stepsize belonging to GS (−1) and such that

lim
n→∞

nγsn = 1 − ad is (γsn) =
(
(1 − ad)n−1) ,

a second example of stepsize satisfying these two conditions is

(γsn) =

hd
sn

(
n∑

k=1

hd
sk

)−1
 .

For this choice of stepsize, the estimator fn(·) defined by (1.1) gives in the non
spatial case the estimator considered by [17] and [19]. To establish pointwise
LDP for fn(·) in this case, we assume that.

(L2′) (i) (hsn) ∈ GS (−a) with a ∈ ]0, 1/d[.
(ii) (γsn) =

(
hd

sn

(∑n
k=1 h

d
sk

)−1
)

.

The following Theorem gives the pointwise LDP for fn(·) in this case.

Theorem 2.3 (Pointwise LDP for Deheuvels estimator). Let the assumptions
(L1), (L2′)-(L4) be fulfilled and assume that f(·) is continuous at x. Then,
the sequence (fn(x) − f(x)) satisfies a LDP with speed

(
nhd

sn

)
and rate function

defined by (1.3).

2.2. Pointwise MDP for the density estimator defined by the stochas-
tic approximation algorithm (1.1). Let (vn) be a positive sequence, we
assume that
(M1) K : Rd → R is a continuous, bounded function satisfying∫

Rd

K (z1, . . . , zd) dz1 . . . dzd :=
∫
Rd

K (z) dz = 1,

∫
Rd zK (z) dz = 0 and

∫
Rd ∥z∥2

K (z) dz < ∞.
(M2) (i) (γsn) ∈ GS (−α) with α ∈ ]1/2, 1].

(ii) (hsn) ∈ GS (−a) with a ∈ ]0, α/d[.
(iii) limn→∞ (nγsn) ∈] min{2a, (α− ad)/2},∞].

(M3) (i) f(·) is bounded, twice differentiable, and, for all i, j ∈ {1, . . . , d},
∂2f(·)/∂xi∂xj is bounded.
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(ii) For any i, j ∈ {1, . . . , n} such that si ̸= sj , the random vector(
Xsi , Xsj

)
has a density fsi,sj (·) such that

sup
si ̸=sj

∥∥gsi,sj

∥∥ < ∞.

(M4) (i) The field (Xsi)1≤i≤n is α-mixing.

(ii)
∑∞

k=0 (k + 1)2
α

δ
4+δ
n (k) < c for some c, δ > 0 and all n.

(M5) limn→∞ vsn = ∞ and limn→∞ γsnv
2
sn
/hd

sn
= 0.

The following Theorem gives the pointwise MDP for fn(·).

Theorem 2.4 (Pointwise MDP for the recursive estimator defined by (1.1)). Let
Assumptions (M1)-(M5) hold and assume that f(·) is continuous at x. Then,
the sequence (fn(x)−f(x)) satisfies a MDP with speed

(
hd

sn
/
(
γsnv

2
sn

))
and rate

function Ja,α,x defined in (1.5).

3. Application to Testing Symmetry

In this section, we study large and moderate deviations for an important
problem of symmetry testing for statistics for spatial data based on the kernel
density estimator fn(·) given in (1.1). More precisely, we investigate the test
of symmetry of the density f(·) at a given x (i.e., to test if f (−x) = f (x)) by
using the statistic |fn(x) − fn(−x)|. We may refer for more details on testing
symmetry to [29], [23], [4], [7] and more recently [12]. Testing symmetry has not
been studied in a systematical way until present and the results obtained here
are believed to be novel in the spatial data framework. Let us define

fn(x) − fn(−x) = (1 − γsn) [fn−1(x) − fn−1(−x)]

+γsnh
−d
sn

[
K

(
x −Xsn

hsn

)
−K

(
−x −Xsn

hsn

)]
. (3.1)

Let Ja,α,x be the rate function defined by
if f(x) ̸= 0, Ja,α,x : t → t2 (2 − (α− ad) ξ)

4f(x)
∫
Rd

K2 (z) dz

if f(x) = 0, Ja,α,x (0) = 0 and Ja,α,x (t) = +∞ for t ̸= 0.

(3.2)

The following Theorem gives the pointwise LDP for fn(·) in this case.

Theorem 3.1 (Pointwise LDP for Wolverton and Wagner estimator). Let As-
sumptions (L1)-(L4) hold and assume that f(·) is continuous at x. Then, the
sequence (fn(x) − fn(−x)) satisfies a LDP with speed

(
nhd

sn

)
and rate function

defined by (1.2).

The following Theorem gives the pointwise LDP for fn(·) in this case.

Theorem 3.2 (Pointwise LDP for Deheuvels estimator). Let the assumptions
(L1), (L2′)-(L4) be fulfilled and assume that f(·) is continuous at x. Then, the
sequence (fn(x) − fn(−x)) satisfies a LDP with speed

(
nhd

sn

)
and rate function

defined by (1.3).

The following Theorem gives the pointwise MDP for fn(·).
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Theorem 3.3 (Pointwise MDP for a test of symmetry based on recursive kernel
estimators of a probability density function for spatial data defined by (3.1)). Let
Assumptions (M1)-(M5) hold and assume that f(·) is continuous at x. Then,
the sequence (fn(x) − fn(−x)) satisfies a MDP with speed

(
hd

sn
/
(
γsnv

2
sn

))
and

rate function Ja,α,x defined in (3.2).

Large deviations results are useful and efficient tools to study the asymptotic
efficiency of tests, in particular to obtain the Bahadur exact slope for comparison
of statistics. This problem has been deeply investigated; we refer to [3] and the
book of [28] for an accessible introduction to this topic. We will not investigate
the efficiency problem in the present paper. We plan to make an extension of
the current paper by considering other symmetries context.

4. Discussions

The advantage of recursive estimators on their nonrecursive version is that
their update, from a sample of size n to one of size n+ 1, require less computa-
tions. This property can be generalized, one can check that it follows from (1.1)
that for all n1 ∈ [0, n− 1],

fn(x) =
n∏

j=n1+1

(
1 − γsj

)
fn1 (x)

+
n−1∑

k=n1

 n∏
j=k+1

(
1 − γsj

) γsk

hd
sk

K

(
x −Xsk

hsk

)
+ γsn

hd
sn

K

(
x −Xsn

hsn

)

= α1fn1 (x) +
n−1∑

k=n1

βk
γsk

hd
sk

K

(
x −Xsk

hk

)
+ γsn

hd
sn

K

(
x −Xsn

hsn

)
,

where

α1 =
n∏

j=n1+1

(
1 − γsj

)
and βk =

n∏
j=k+1

(
1 − γsj

)
.

We suppose that we receive a first sample of size n1 = ⌊n/2⌋ (the lower integer
part of n/2) an then, we suppose that we receive an additional sample of size
n − n1. It is clear, that we can use a data-driven bandwidth to construct an
optimal bandwidth based on the first sample of size n1 and separately an optimal
bandwidth based on the second sample of size n − n1, and then the proposed
estimator can be viewed as a linear combination of two estimators, which improve
considerably the computational cost.

5. Proofs

This section is devoted to the detailed proofs of our results. The previously
displayed notation continue to be used in the sequel. Through this section we
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use the following notation:

Πn =
n∏

j=1

(
1 − γsj

)
,

Zsn
(x) = h−d

sn
Ysn

,

Ysn = K

(
x −Xsn

hsn

)
, (5.1)

Tsn = Ysn (x) − Ysn (−x) . (5.2)
In order to prove the results we require the following technical lemma. The proof
of this lemma is quite similar to the proof of Lemma 2 of [25].

Lemma 5.1. Let (vn) ∈ GS (v∗), (γsn) ∈ GS (−α), and m > 0 such that
m− v∗ξ > 0 where ξ is defined in (1.4). We have

lim
n→+∞

vnΠm
n

n∑
k=1

Π−m
k

γsk

vk
= 1
m− v∗ξ

.

Moreover, for all positive sequence (αsn
) such that limn→+∞ αsn

= 0, and for
all δ ∈ R,

lim
n→+∞

vnΠm
n

[
n∑

k=1

Π−m
k

γsk

vk
αsk

+ δ

]
= 0.

First, it follows from (1.1), that
fn(x) − f(x)

= (1 − γsn) (fn−1(x) − f(x)) + γsn (Zn(x) − f(x))

=
n−1∑
k=1

 n∏
j=k+1

(
1 − γsj

) γsk
(Zsk

(x) − f(x))

+γsn (Zsn(x) − f(x))

+

 n∏
j=1

(
1 − γsj

) (f0(x) − f(x))

= Πn

n∑
k=1

Π−1
k γsk

(Zsk
(x) − f(x)) + Πn (f0(x) − f(x)) .

Then, we readily infer that
E [fn(x)] − f(x)

= Πn

n∑
k=1

Π−1
k γsk

(E [Zsk
(x)] − f(x)) + Πn (f0(x) − f(x)) .

Hence, it follows that

fn(x) − E [fn(x)] = Πn

n∑
k=1

Π−1
k γsk

(Zsk
(x) − E [Zsk

(x)])

= Πn

n∑
k=1

Π−1
k γsk

h−d
sk

(Ysk
− E [Ysk

]) .
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Now, we let (Ψn) and (Bn) be the sequences defined as follows:

Ψn(x) = Πn

n∑
k=1

Π−1
k γsk

h−d
sk

(Ysk
− E [Ysk

])

Bn(x) = E [fn(x)] − f(x).
It is easy to see that

fn(x) − f(x) = Ψn(x) +Bn(x). (5.3)
We then deduce that, Theorems 2.2, 2.3 and 2.4 are consequences of (5.3) and the
pointwise LDP and MDP for (Ψn), which is given in the following propositions.

Proposition 5.2 (Pointwise LDP and MDP for (Ψn)). (1) Under the assump-
tions (L1)-(L4), the sequence (fn(x) − E (fn(x))) satisfies a LDP with
speed

(
nhd

sn

)
and rate function Ia,x.

(2) Under the assumptions (L1), (L2′)-(L4),
the sequence (fn(x) − E (fn(x))) satisfies a LDP with speed

(
nhd

sn

)
and

rate function Ix.
(3) Under the assumptions (M1)-(M5), the sequence (vnΨn(x)) satisfies a

LDP with speed
(
hd

sn
/
(
γsnv

2
n

))
and rate function Ja,α,x.

The proof of the following proposition is given in [9].

Proposition 5.3 (Pointwise convergence rate of (Bn)). Let the assumptions
(M1)-(M3) be satisfied. We assume that, for all i, j ∈ {1, . . . , d}, ∂2f(·)/∂xi∂xj

is continuous at x. Then, we have
(1) If a ≤ α/(d+ 4),

Bn(x) = O
(
h2

sn

)
.

(2) If a > α/(d+ 4),

Bn(x) = o

(√
γsnh

−d
sn

)
.

Set x ∈ Rd; since the assumptions of Theorems 2.2 and 2.3 gives that
lim

n→∞
Bn(x) = 0,

Theorem 2.2 (respectively Theorem 2.3) is a consequence of the application of
the first Part (respectively of the second Part) of Proposition 5.2. Moreover,
under the assumptions of Theorem 2.4, the application of Proposition 5.3,

lim
n→∞

vnBn(x) = 0;

Theorem 2.4 thus follows from the application of third Part of Proposition 5.2.
Let us now state a preliminary lemma, which is the key of the proof of Proposi-
tion 5.2. For any u ∈ R, Set

Λn,x (u) = γsnv
2
n

hd
sn

logE

[
exp

(
u

hd
sn

γsnvsn

Ψn(x)

)]
,

ΛL,1
x (u) = f(x) (ψa (u) − u) ,

ΛL,2
x (u) = f(x) (ψ (u) − u) ,

ΛM
x (u) = u2

2 (2 − (α− ad) ξ)
f(x)

∫
Rd

K2 (z) dz.
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Lemma 5.4. [Convergence of Λn,x] If f(·) is continuous at x, then for all u ∈ R

lim
n→∞

Λn,x (u) = Λx (u) , (5.4)

where

Λx (u) =


ΛL,1

x (u) when vn ≡ 1, (L1)-(L4) hold,
ΛL,2

x (u) when vn ≡ 1, (L1), (L2′)-(L4) hold,
ΛM

x (u) when vn → ∞, (M1)-(M5) hold.

Our proofs are now organized as follows. We first proof Lemma 5.4 and after
give the proof of Proposition 5.2.

Proof of Lemma 5.4. Set u ∈ R, un = u/vn and asn = hd
sn
γ−1

sn
. We have:

Λn,x (u) = v2
n

asn

logE [exp (unasnΨn(x))]

= v2
n

asn

logE

[
exp

(
unasnΠn

n∑
k=1

Π−1
k a−1

sk
(Ysk

− E [Ysk
])

)]

= v2
n

asn

n∑
k=1

logE
[
exp

(
un
asnΠn

ask
Πk

Ysk

)]

−uvnΠn

n∑
k=1

Π−1
k a−1

sk
E [Ysk

] .

By Taylor expansion, there exists ck,n between 1 and E
[
exp

(
un

asn Πn

ask
Πk
Ysk

)]
such that

logE
[
exp

(
un

asnΠn

ask
Πsk

Ysk

)]
= E

[
exp

(
un
asnΠn

ask
Πk

Ysk

)
− 1
]

− 1
2c2

k,n

(
E
[
exp

(
un
asnΠn

ask
Πk

Ysk

)
− 1
])2

,

and Λn,x can be rewritten as

Λn,x (u) = v2
n

asn

n∑
k=1

E
[
exp

(
un
asnΠn

ask
Πk

Ysk

)
− 1
]

− v2
n

2asn

n∑
k=1

1
c2

k,n

(
E
[
exp

(
un
asnΠn

ask
Πk

Ysk

)
− 1
])2

−uvnΠn

n∑
k=1

Π−1
k a−1

sk
E [Ysk

] . (5.5)
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First case: vn → ∞. A Taylor’s expansion implies the existence of c′
k,n between

0 and un
asn Πn

ask
Πk
Ysk

such that

E
[
exp

(
un
asnΠn

ask
Πk

Ysk

)
− 1
]

= un
asnΠn

ask
Πk

E [Ysk
] + 1

2

(
un
asnΠn

ask
Πk

)2

E
[
Y 2

sk

]
+1

6

(
un
asnΠn

ask
Πk

)3

E
[
Y 3

sk
ec′

k,n

]
.

Therefore, we obtain

Λn,x (u)

= 1
2
u2asnΠ2

n

n∑
k=1

Π−2
k a−2

sk
E
[
Y 2

sk

]
+1

6
u2una

2
sn

Π3
n

n∑
k=1

Π−3
k a−3

sk
E
[
Y 3

sk
ec′

k,n

]
− v2

n

2asn

n∑
k=1

1
c2

k,n

(
E
[
exp

(
un
asnΠn

ask
Πk

Ysk

)
− 1
])2

= 1
2
f(x)u2asnΠ2

n

n∑
k=1

Π−2
k a−1

sk
γsk

∫
Rd

K2 (z) dz +R(1)
n,x (u)

+R(2)
n,x (u) , (5.6)

with

R(1)
n,x (u) = 1

2
u2asnΠ2

n

n∑
k=1

Π−2
k a−1

sk
γsk

∫
Rd

K2 (z) [f (x − zhsk
) − f(x)] dz

R(2)
n,x (u) = 1

6
u3

vn
a2

sn
Π3

n

n∑
k=1

Π−3
k a−3

sk
E
[
Y 3

sk
ec′

k,n

]
− v2

n

2asn

n∑
k=1

1
c2

k,n

(
E
[
exp

(
un
asnΠn

ask
Πk

Ysk

)
− 1
])2

.

Since f(·) is continuous, we have

lim
k→∞

|f (x − zhsk
) − f(x)| = 0.

Thus a straightforward application of Lebesgue dominated convergence theorem
in connection with condition (M1) implies that

lim
k→∞

∫
Rd

K2 (z) |f (x − zhsk
) − f(x)| dz = 0.

Since (asn) ∈ GS (α− ad), and

lim
n→∞

(nγsn) > (α− ad) /2.



LARGE AND MODERATE DEVIATION PRINCIPLES 13

By an application of Lemma 5.1 we can therefore write

asnΠ2
n

n∑
k=1

Π−2
k a−1

sk
γsk

= 1
(2 − (α− ad) ξ)

+ o (1) . (5.7)

From this we see that

lim
n→∞

∣∣∣R(1)
n,x (u)

∣∣∣ = 0.

Moreover, in view of (5.1), we have |Ysk
| ≤ ∥K∥∞, then

c′
k,n ≤

∣∣∣∣un
asnΠn

ask
Πk

Ysk

∣∣∣∣
≤ |un| ∥K∥∞ . (5.8)

Since, we have

E |Ysk
|3 ≤ hd

sk
∥f∥∞

∫
Rd

∣∣K3 (z)
∣∣ dz.

It follows from, Lemma 5.1 and (5.8), that, there exists a positive constant c1
such that, for n large enough,∣∣∣∣∣u3

vn
a2

sn
Π3

n

n∑
k=1

Π−3
k a−3

sk
E
[
Y 3

sk
ec′

k,n

]∣∣∣∣∣
≤ c1e

|un|∥K∥∞
u3

vn
∥f∥∞

∫
Rd

∣∣K3 (z)
∣∣ dz, (5.9)

which goes to 0 as n → ∞. An application of Lemma 5.1 ensures that∣∣∣∣∣ v2
n

2asn

n∑
k=1

1
c2

k,n

(
E
[
exp

(
un
asnΠn

ask
Πk

Ysk

)
− 1
])2

∣∣∣∣∣
≤ v2

n

2asn

n∑
k=1

(
E
[
exp

(
un
asnΠn

ask
Πk

Ysk

)
− 1
])2

= u2

2
∥f∥2

∞ asnΠ2
n

n∑
k=1

Π−2
k a−1

sk
γsk

hd
sk

+o

(
asnΠ2

n

n∑
k=1

Π−2
k a−1

sk
γsk

hd
sk

)
= o (1) . (5.10)

The combination of (5.9) and (5.10) ensures that

lim
n→∞

∣∣∣R(2)
n,x (u)

∣∣∣ = 0.

Then, it follows from (5.6) and (5.7), that

lim
n→∞

Λn,x (u) = ΛM
x (u) .
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Second case: (vn) ≡ 1. We obtain from (5.5) that

Λn,x (u)

= 1
asn

n∑
k=1

E
[
exp

(
u
asnΠn

ask
Πk

Ysk

)
− 1
]

− 1
2asn

n∑
k=1

1
c2

k,n

(
E
[
exp

(
u
asnΠn

ask
Πk

Ysk

)
− 1
])2

−uΠn

n∑
k=1

Π−1
k a−1

sk
E [Ysk

]

= 1
asn

n∑
k=1

hd
sk

∫
Rd

[
exp

(
u
asnΠn

ask
Πk

K (z)
)

− 1
]
f(x)dz

−uΠn

n∑
k=1

Π−1
k γsk

∫
Rd

K (z) f(x)dz

−R(3)
n,x (u) +R(4)

n,x (u)

= f(x) 1
asn

n∑
k=1

hd
sk

[∫
Rd

(exp (uVn,kK (z)) − 1) − uVn,kK (z)
]
dz

−R(3)
n,x (u) +R(4)

n,x (u) , (5.11)

with

Vn,k = asnΠn

ask
Πk

R(3)
n,x (u) = 1

2asn

n∑
k=1

1
c2

k,n

(
E
[
exp

(
u
asnΠn

ask
Πk

Ysk

)
− 1
])2

R(4)
n,x (u) = 1

asn

n∑
k=1

hd
sk

∫
Rd

[
exp

(
u
asnΠn

ask
Πk

K (z)
)

− 1
]

× [f (x − zhsk
) − f(x)] dz

−uΠn

n∑
k=1

Π−1
k γsk

∫
Rd

K (z) [f (x − zhsk
) − f(x)] dz.

Moreover, it follows from (5.10), that

lim
n→∞

∣∣∣R(3)
n,x (u)

∣∣∣ = 0.

Now, since

∣∣et − 1
∣∣ ≤ |t| e|t|,
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one can see that∣∣∣R(4)
n,x (u)

∣∣∣
≤ 1

asn

n∑
k=1

hd
sk

∫
Rd

∣∣∣∣[exp
(
u
asnΠn

ask
Πk

K (z)
)

− 1
]

[f (x − zhsk
) − f(x)]

∣∣∣∣ dz

+ |u| Πn

n∑
k=1

Π−1
k γsk

∫
Rd

|K (z)| |f (x − zhsk
) − f(x)| dz

≤ |u| e|u|∥K∥∞Πn

n∑
k=1

Π−1
k γsk

∫
Rd

|K (z)| |f (x − zhsk
) − f(x)| dz

+ |u| Πn

n∑
k=1

Π−1
k γsk

∫
Rd

|K (z)| |f (x − zhsk
) − f(x)| dz

≤ |u|
(
e|u|∥K∥∞ + 1

)
Πn

n∑
k=1

Π−1
k γsk

∫
Rd

|K (z)| |f (x − zhsk
) − f(x)| dz.

Since, Lemma 5.1 ensures that, the sequence
(
Πn

∑n
k=1 Π−1

k γsk

)
is bounded,

then, the dominated convergence theorem ensures that

lim
n→∞

R(4)
n,x (u) = 0.

Then, it follows from (5.11), that

lim
n→∞

Λn,x (u) = lim
n→∞

f(x)γsn

hd
sn

n∑
k=1

hd
sk∫

Rd

[(exp (uVn,kK (z)) − 1) − uVn,kK (z)] dz. (5.12)

In the case when (vn) ≡ 1, (L1)-(L4) hold.
Noting that

Πn

Πk
=

n∏
j=k+1

(
1 − γsj

)
= k

n
,

we then see that

Vn,k = asnΠn

ask
Πk

=
(
k

n

)ad

.

Consequently, it follows from (5.12) and from some calculus that

lim
n→∞

Λn,x (u)

= f(x)
∫
Rd

[∫ 1

0
t−ad

(
exp

(
utadK (z)

)
− 1
)

− utadK (z)
]
dtdz

= ΛL,1
x (u) .
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In the case when (vn) ≡ 1, (L1), (L2′)-(L4) hold.
We have

Πn

Πk
=

n∏
j=k+1

(
1 − γsj

)
=

n∏
j=k+1

1 −
hd

sj

j∑
l=1

hd
sl



=
n∏

j=k+1


j−1∑
l=1

hd
sl

j∑
l=1

hd
sl

 =

k∑
l=1

hd
sl

n∑
l=1

hd
sl

=

k∑
l=1

hd
sl

hd
sk

hd
sk

hd
sn

hd
sn

n∑
l=1

hd
sl

= γsn

γsk

hd
sk

hd
sn

.

From this, we infer that

Vn,k = 1.

Consequently, it follows from (5.23) that

lim
n→∞

Λn,x (u) = f(x)
∫
Rd

[(exp (uK (z)) − 1) − uK (z)] dz.

= ΛL,2
x (u) .

Therefore Lemma 5.4 is proved. □

Proof of Proposition 5.2. To prove Proposition 5.2, we apply similar result
as the one given by Proposition 1 in [26] in the non spatial case, Lemma 5.4 and
the following result (see [31]).

Lemma 5.5. Let (Zn) be a sequence of real random variables, (νn) a positive
sequence satisfying

lim
n→∞

νn = +∞,

and suppose that there exists some convex non-negative function Γ defined on R
such that

∀u ∈ R, lim
n→∞

1
νn

logE [exp (uνnZn)] = Γ (u) .

If the Legendre function Γ∗ of Γ is a strictly convex function, then the sequence
(Zn) satisfies a LDP of speed (νn) and good rate fonction Γ∗.

In our framework, when vn ≡ 1 and γsn = n−1, we take

Zn = fn(x) − E (fn(x)) , νn = nhd
sn
,

with hsn = cn−a, where a ∈ ]0, 1/d[ and

Γ = ΛL,1
x .
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In this case, the Legendre transform of Γ = ΛL,1
x is the rate function

Ia,x : t → f(x)Ia

(
t

f(x)
+ 1
)
,

which is strictly convex by Proposition 1 in [26]. Furthermore, when vn ≡ 1 and

γsn = hd
sn

(
n∑

k=1

hd
sk

)−1

,

we take
Zn = fn(x) − E (fn(x)) , νn = nhd

sn
,

with hsn ∈ GS (−a) where a ∈ ]0, 1/d[ and

Γ = ΛL,2
x .

In this case, the Legendre transform of Γ = ΛL,2
x is the rate function

Ix : t → f(x)I
(

t

f(x)
+ 1
)
,

which is strictly convex by Proposition 1 in [27]. Otherwise, when, vn → ∞, we
take

Zn = vn (fn(x) − E (fn(x))) , νn = hd
sn
/
(
γsnv

2
n

)
and

Γ = ΛM
x ,

Γ∗ is then the quadratic rate function Ja,α,x defined in (1.5) and thus Proposi-
tion 5.2 follows. □

Proofs of the results concerning the symmetry test. In the proofs of
this part, we will use similar arguments as those in the proofs of the preceding
theorems that we include with all details in odder to make our presentation more
self-contained. By using similar arguments to obtain (5.3), one can see that we
have

fn(x) − fn(−x) − E [fn(x) − fn(−x)]

= Πn

n∑
k=1

Π−1
k γsk

h−d
sk

(Tsk
− E [Tsk

]) .

Now, we let
(

Ψ̃n

)
and

(
B̃n

)
be the sequences defined as follows:

Ψ̃n(x) = Πn

n∑
k=1

Π−1
k γsk

h−d
sk

(Tsk
− E [Tsk

])

B̃n(x) = E [fn(x)] − E [fn(−x)] .

It is easy to see that

fn(x) − fn(−x) = Ψ̃n(x) + B̃n(x). (5.13)

We then deduce that, Theorems 3.1, 3.2 and 3.3 are consequences of (5.13)
and the pointwise LDP and MDP for

(
Ψ̃n

)
, which is given in the following

propositions.
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Proposition 5.6 (Pointwise LDP and MDP for
(

Ψ̃n

)
). (1) Under the as-

sumptions (L1)-(L4), the sequence

(fn(x) − fn(−x) − E [fn(x) − fn(−x)])

satisfies a LDP with speed
(
nhd

sn

)
and rate function Ia,x.

(2) Under the assumptions (L1), (L2′)-(L4), the sequence

(fn(x) − fn(−x) − E [fn(x) − fn(−x)])

satisfies a LDP with speed
(
nhd

sn

)
and rate function Ix.

(3) Under the assumptions (M1)-(M5), the sequence(
vnΨ̃n(x)

)
satisfies a LDP with speed

(
hd

sn
/
(
γsnv

2
n

))
and rate function Ja,α,x.

Set x ∈ Rd; since the assumptions of Theorems 3.1 and 3.2 gives that

lim
n→∞

B̃n(x) = 0,

Theorem 2.2 (respectively Theorem 3.2) is a consequence of the application of
the first Part (respectively of the second Part) of Proposition 5.6. Moreover,
under the assumptions of Theorem 3.3, the application of Proposition 5.3,

lim
n→∞

vnB̃n(x) = 0;

Theorem 2.4 thus follows from the application of third Part of Proposition 5.2.
Let us now state a preliminary lemma, which is the key of the proof of Proposi-
tion 5.2. For any u ∈ R, Set

Λ̃n,x (u) = γsn
v2

n

hd
sn

logE

[
exp

(
u

hd
sn

γsnvsn

Ψ̃n(x)

)]
,

ΛL,1
x (u) = f(x) (ψa (u) − u) ,

ΛL,2
x (u) = f(x) (ψ (u) − u) ,

Λ̃M
x (u) = u2

(2 − (α− ad) ξ)
f(x)

∫
Rd

K2 (z) dz.

Lemma 5.7. (Convergence of Λ̃n,x) If f(·) is continuous at x, then for all u ∈ R

lim
n→∞

Λ̃n,x (u) = Λ̃x (u) , (5.14)

where

Λ̃x (u) =


ΛL,1

x (u) when vn ≡ 1, (L1)-(L4) hold.
ΛL,2

x (u) when vn ≡ 1, (L1), (L2′)-(L4) hold.
ΛM

x (u) when vn → ∞, (M1)-(M5) hold.

Our proofs are now organized as follows: Lemma 5.7 is proved in the forth-
coming Section and after we give the proof of Proposition 5.2.
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Proof of Lemma 5.7. Set u ∈ R, un = u/vn and asn = hd
sn
γ−1

sn
. We have:

Λ̃n,x (u) = v2
n

asn

logE
[
exp

(
unasnΨ̃n(x)

)]
= v2

n

asn

logE

[
exp

(
unasnΠn

n∑
k=1

Π−1
k a−1

sk
(Tsk

− E [Tsk
])

)]

= v2
n

asn

n∑
k=1

logE
[
exp

(
un
asnΠn

ask
Πk

Tsk

)]

−uvnΠn

n∑
k=1

Π−1
k a−1

sk
E [Tsk

] .

By Taylor expansion, there exists ck,n between 1 and E
[
exp

(
un

asn Πn

ask
Πk
Tsk

)]
such that

logE
[
exp

(
un

asnΠn

ask
Πsk

Tsk

)]
= E

[
exp

(
un
asnΠn

ask
Πk

Tsk

)
− 1
]

− 1
2c2

k,n

(
E
[
exp

(
un
asnΠn

ask
Πk

Tsk

)
− 1
])2

,

and Λ̃n,x can be rewritten as

Λ̃n,x (u) = v2
n

asn

n∑
k=1

E
[
exp

(
un
asnΠn

ask
Πk

Tsk

)
− 1
]

− v2
n

2asn

n∑
k=1

1
c2

k,n

(
E
[
exp

(
un
asnΠn

ask
Πk

Tsk

)
− 1
])2

−uvnΠn

n∑
k=1

Π−1
k a−1

sk
E [Tsk

] . (5.15)

First case: vn → ∞. A Taylor’s expansion implies the existence of c′
k,n between

0 and un
asn Πn

ask
Πk
Tsk

such that

E
[
exp

(
un
asnΠn

ask
Πk

Tsk

)
− 1
]

= un
asnΠn

ask
Πk

E [Tsk
] + 1

2

(
un
asnΠn

ask
Πk

)2

E
[
T 2

sk

]
+1

6

(
un
asnΠn

ask
Πk

)3

E
[
T 3

sk
ec′

k,n

]
.
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Therefore, we obtain

Λ̃n,x (u)

= 1
2
u2asnΠ2

n

n∑
k=1

Π−2
k a−2

sk
E
[
T 2

sk

]
+ 1

6
u2una

2
sn

Π3
n

n∑
k=1

Π−3
k a−3

sk
E
[
T 3

sk
ec′

k,n

]
− v2

n

2asn

n∑
k=1

1
c2

k,n

(
E
[
exp

(
un
asnΠn

ask
Πk

Tsk

)
− 1
])2

.

Moreover, we have

E
[
T 2

sk

]
= E

[
(Ysk

(x) − Ysk
(−x))2

]
= E

[(
K

(
x −Xsk

hsk

)
−K

(
−x −Xsk

hsk

))2
]

= E
[
K2
(

x −Xsk

hsk

)]
+ E

[
K2
(

−x −Xsk

hsk

)]
−2E

[
K

(
x −Xsk

hsk

)]
E
[
K

(
−x −Xsk

hsk

)]
= hd

sk

{∫
Rd

K2 (z) [f (x + zhsk
) + f (x − zhsk

)] dz

− 2
∫
Rd

K (z)K
(

z − 2 x
hsk

)
f (x − zhsk

) dz
}
.

Then, we have

Λ̃n,x (u) = f(x)u2asnΠ2
n

n∑
k=1

Π−2
k a−1

sk
γsk

∫
Rd

K2 (z) dz

+R(1)
n,x (u) +R(2)

n,x (u) , (5.16)

with

R̃(1)
n,x (u) = 1

2
u2asnΠ2

n

n∑
k=1

Π−2
k a−1

sk
γsk∫

Rd

K2 (z) {[f (x − zhsk
) − f(x)] + [f (x + zhsk

) − f(x)]} dz

R̃(2)
n,x (u) = 1

2
u2asn

Π2
n

n∑
k=1

Π−2
k a−1

sk
γsk∫

Rd

K (z)K
(

z − 2 x
hsk

)
f (x − zhsk

) dz

R̃(3)
n,x (u) = 1

6
u3

vn
a2

sn
Π3

n

n∑
k=1

Π−3
k a−3

sk
E
[
T 3

sk
ec′

k,n

]
− v2

n

2asn

n∑
k=1

1
c2

k,n

(
E
[
exp

(
un
asnΠn

ask
Πk

Tsk

)
− 1
])2

.
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Since f(·) is continuous, we have

lim
k→∞

|f (x ± zhsk
) − f(x)| = 0.

Thus a straightforward application of Lebesgue dominated convergence theorem
in connection with condition (M1) implies that

lim
k→∞

∫
Rd

K2 (z) {[f (x − zhsk
) − f(x)] + [f (x + zhsk

) − f(x)]} dz = 0.

Since (asn
) ∈ GS (α− ad), and

lim
n→∞

(nγsn) > (α− ad) /2.

By an application of Lemma 5.1 we can therefore write

asnΠ2
n

n∑
k=1

Π−2
k a−1

sk
γsk

= 1
(2 − (α− ad) ξ)

+ o (1) . (5.17)

From this we see that
lim

n→∞

∣∣∣R̃(1)
n,x (u)

∣∣∣ = 0.

Moreover, it follows from (M1) that for any ε > 0, there exists n0 such that for
n ≥ n0, ∣∣∣∣K (z − 2 x

hsk

)∣∣∣∣ < ε, (5.18)

then,∣∣∣∣∫
Rd

K (z)K
(

z − 2 x
hsk

)
f (x − zhsk

) dz
∣∣∣∣ < ε ∥f∥∞

∫
Rd

K (z) dz,

then, it follows from (5.7), that

lim
n→∞

∣∣∣R̃(2)
n,x (u)

∣∣∣ = 0.

Moreover, in view of (5.1), we have

|Tsk
| ≤ 2 ∥K∥∞ ,

then

c′
k,n ≤

∣∣∣∣un
asnΠn

ask
Πk

Tsk

∣∣∣∣ ≤ 2 |un| ∥K∥∞ . (5.19)

Since, we have

E |Tsk
|3 ≤ hd

sk
∥f∥∞

∫
Rd

∣∣K3 (z)
∣∣ dz.

It follows from, Lemma 5.1 and (5.19), that, there exists a positive constant c1
such that, for n large enough,∣∣∣∣∣u3

vn
a2

sn
Π3

n

n∑
k=1

Π−3
k a−3

sk
E
[
T 3

sk
ec′

k,n

]∣∣∣∣∣
≤ c1e

2|un|∥K∥∞
u3

vn
∥f∥∞

∫
Rd

∣∣K3 (z)
∣∣ dz, (5.20)
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which goes to 0 as n → ∞. An application of Lemma 5.1 ensures that∣∣∣∣∣ v2
n

2asn

n∑
k=1

1
c2

k,n

(
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(
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− 1
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(
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− 1
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)
= o (1) . (5.21)

The combination of (5.9) and (5.21) ensures that

lim
n→∞

∣∣∣R̃(3)
n,x (u)

∣∣∣ = 0.

Then, it follows from (5.16) and (5.7), that

lim
n→∞

Λ̃n,x (u) = Λ̃M
x (u) .

Second case: (vn) ≡ 1. We obtain from (5.15) that
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= 1
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with

Vn,k = asnΠn
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Πk

R̃(3)
n,x (u) = 1
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n∑
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1
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Moreover, it follows from (5.10), that

lim
n→∞

∣∣∣R̃(3)
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∣∣∣ = 0.

Now, since |et − 1| ≤ |t| e|t|, one can see that
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(
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Since, Lemma 5.1 ensures that, the sequence
(
Πn

∑n
k=1 Π−1

k γsk

)
is bounded,

then, the dominated convergence theorem ensures that

lim
n→∞

R̃(4)
n,x (u) = 0.
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Then, it follows from (5.18) and (5.22), that

lim
n→∞

Λ̃n,x (u) = lim
n→∞

f(x)γsn

hd
sn

n∑
k=1

hd
sk

∫
Rd

[(exp (uVn,kK (z)) − 1)

−uVn,kK (z)] dz. (5.23)
In the case when (vn) ≡ 1, (L1)-(L4) hold.
By using the fact that

Πn

Πk
=

n∏
j=k+1

(
1 − γsj

)
= k

n
,

we readily infer that we have

Vn,k = asnΠn

ask
Πk

=
(
k

n

)ad

.

Consequently, it follows from (5.23) and routine calculation that
lim

n→∞
Λn,x (u)

= f(x)
∫
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[∫ 1

0
t−ad

(
exp

(
utadK (z)

)
− 1
)

− utadK (z)
]
dtdz

= ΛL,1
x (u) .

In the case when (vn) ≡ 1, (L1), (L2′)-(L4) hold.
We have

Πn

Πk
= γsn

γsk

hd
sk

hd
sn

.

Then, we have
Vn,k = 1.

Consequently, it follows from (5.23) that

lim
n→∞

Λn,x (u) = f(x)
∫
Rd

[(exp (uK (z)) − 1) − uK (z)] dz.

= ΛL,2
x (u) .

Therefore Lemma 5.4 is proved. □

Proof of Proposition 5.6. We will use similar arguments as in the proof of
Proposition 5.2. In our framework, when vn ≡ 1 and γsn = n−1, we take

Z̃n = (fn(x) − fn(−x) − E [fn(x) − fn(−x)]) ,

νn = nhd
sn

with hsn = cn−a where a ∈ ]0, 1/d[ and Γ = ΛL,1
x . In this case, the

Legendre transform of Γ = ΛL,1
x is the rate function

Ia,x : t → f(x)Ia

(
t

f(x)
+ 1
)
,

that is strictly convex by Proposition 1 in [26]. Furthermore, when vn ≡ 1 and

γsn = hd
sn

(
n∑

k=1

hd
sk

)−1

,
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we take
Z̃n = (fn(x) − fn(−x) − E [fn(x) − fn(−x)]) ,

νn = nhd
sn

with hsn ∈ GS (−a) where a ∈ ]0, 1/d[ and Γ = ΛL,2
x . In this case,

the Legendre transform of Γ = ΛL,2
x is the rate function

Ix : t → f(x)I
(

t

f(x)
+ 1
)
,

that is strictly convex by Proposition 1 in [27]. Otherwise, when, vn → ∞, we
take

Z̃n = vn (fn(x) − fn(−x) − E [fn(x) − fn(−x)]) ,
νn = hd

sn
/
(
γsnv

2
n

)
and Γ = Λ̃M

x ; Γ∗ is then the quadratic rate function Ja,α,x
defined in (3.2) and thus Proposition 5.2 follows. □
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