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Abstract: In this paper, we propose a data driven bandwidth selection of the recursive Gumbel kernel esti-
mators of a probability density function based on a stochastic approximation algorithm. The choice of the
bandwidth selection approaches is investigated by a second generation plug-in method. Convergence prop-
erties of the proposed recursive Gumbel kernel estimators are established. The uniform strong consistency
of the proposed recursive Gumbel kernel estimators is derived. The new recursive Gumbel kernel estimators
are compared to the non-recursive Gumbel kernel estimator and the performance of the two estimators are
illustrated via simulations as well as a real application.
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1 Introduction
In probability theory and statistics, the Gumbel distribution (called also Generalized Extreme Value distri-
bution Type-I) introduced by [11, 12] is one of the most used parametric model in extreme value theory. This
distribution can be used, for example, to represent the distribution of the maximum level of a watercourse.
It can also be used to predict the probability of an extreme earthquake occurring. See [16] for a variety of
Gumbel model applications.

Many approaches have been considered in the parametric framework, we can cite the work of [17], in
which the model parameters were estimated using an inferential procedure based on likelihood, we can list
also the work of [9], in which the parameters of the Gumbel function were estimated using the mode and the
moments of the distributions. It should be noted that all these methods involve the estimation of unknown
parameters. However, the parametric model may be limited for the analysis of the complex distribution of
extreme values, and may give worse results for small and medium-sized samples. As an alternative to the
Gumbel parametric model, we propose to use a non-parametric kernel method.

In the literature there has been some attention on non-parametric procedures for the tail density estima-
tion. [6] proposes an estimator using the Champernowne transformation distribution and the classical kernel
density estimator. [18] investigates kernel density estimationand its application to theGumbel probability dis-
tribution. [4] considers an estimator based on classical transformation methods, the book includes real-life
examples. [35] proposes two kernel density estimators based on a bias reduction technique. More recently, [2]
develops a transformation kernel density estimator which is able to handle heavy tailed and bounded data.

The �rst objective of this article is to propose a recursive non-parametric Gumbel kernel estimators. The
second objective is to establish the statistical properties of the new estimators and compare them with the
non-recursive version of Gumbel kernel estimator and with the conventional kernel density estimators de-
veloped respectively by [26] and [23] for the non-recursive estimator and [21] and [28, 29] for the recursive
estimator by using a Gaussian kernel and through a plug-in bandwidth selection.
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The layout of the present paper is as follows. Section 2 is devoted to introduce our proposed recursive
Gumbel estimators. We establish the statistical properties of the proposed estimators and we develop a plug-
in bandwidth selection approach in Section 3. Section 4 is dedicated to our application results, �rst by simu-
lation (subsection 4.1) and second using a real dataset (subsection 4.2). We conclude the article in Section 5.
To avoid interrupting the �ow of this paper, all mathematical developments are relegated to Appendix A.

2 Recursive Gumbel kernel estimators
Let X1, . . . , Xn be independent, identically distributed random variables, and let f be the probability of X. In
order to construct a stochastic algorithm to recursively estimate the unknown density function of probability
f at a point x, we consider at the beginning an algorithm of search of the zero of the function h : y → f (x)− y.
Then, we consider Robbins-Monro’s procedure, the proposed algorithm is de�ned by setting f0(x) ∈ R, and,
for all n ≥ 1,

f Gum
n (x) = f Gum

n−1 (x) + βnTGum
n (x) ,

where TGum
n (x) is considered as an observation of the function h at the point f Gum

n−1(x) and the stepsize (βn)
is a sequence of positive real numbers that goes to zero. To construct TGum

n (x), we follow the approach of
[24, 25], [37] and of [28, 30, 34], which are based on the classical properties of stochastic algorithms which
is (E

[
TGum
n (x) |Fn−1

]
= 0, where Fn−1 stands for the σ-algebra of the events occurring up the time n − 1) and

we use the Gumbel kernel KGum (z) = exp (−z − exp (−z)), and a bandwidth (hn) (that is, a sequence of positive
real numbers that goes to zero), and set TGum

n (x) = h−1n KGum (h−1n (Xn − x)
)
− f Gum

n−1(x). Then, the estimator f Gum
n

to recursively estimate the probability density function using the Gumbel kernel at x can be written as

f Gum
n (x) = (1 − βn) f Gum

n−1 (x) + βnh−1n KGum
(
h−1n [Xn − x]

)
. (1)

This recursive property (1) is very useful with a large sample size since f Gum
n can be updated with each addi-

tional observation. In fact, if Xn is a new observation, the estimators f Gum
n (x) can be updated recursively by

relation (1). From a computational cost point of view, this arrangement provides important savings in com-
putational time and storage memory, which is a consequence of the fact that the estimate updating is inde-
pendent of the history of the data. The main drawback of the non-recursive kernel estimators is the use of all
data at each step of estimation. One can check that, if we consider f Gum

0 (x) = 0 and we let Qn =
∏n
j=1
(
1 − βj

)
,

then the last equation (1) can be written as follows:

f Gum
n (x) = Qn

n∑
k=1

Q−1k βkh
−1
k K

Gum
(
Xk − x
hk

)
. (2)

This equation will be very useful to construct a data-driven bandwidth selection. Moreover, we show that
the optimal bandwidth whichminimizesE

∫
R
[
f Gum
n (x) − f (x)

]2 dx depends on the choice of the stepsize (βn);
more precisely, we show that under some conditions of regularity of the unknown density of probability func-
tion f and using the special stepsizes (βn) =

(
n−1
)
, the bandwidth (hn) will be equal to( 1

24γ20

)1/3{ 1∫
R
(
f (1) (x)

)2 dx
}1/3

n−1/3
 ,

where γ0 is the Euler-Mascheroni constant (γ0 ' 0.57721). Then, in this paper we propose an automatic se-
lection of such bandwidth through a plug-in method, and then give the conditions under which the recursive
estimator f Gum

n will be approximately similar to the non-recursive Gumbel density estimator de�ned as

f̃ Gum
n (x) = 1

nhn

n∑
i=1

KGum
(
Xi − x
hn

)
. (3)

The obtained results presented in Section 4 corroborate our theoretical results given in the next section.
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3 Assumptions and main results
We de�ne the following class of regularly varying sequences.

De�nition 1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We say that (vn) ∈ GS (γ) if

lim
n→+∞

n
[
1 − vn−1vn

]
= γ. (4)

Condition (4)was introduced by [10] to de�ne regularly varying sequences (see also [3]) and by [20] in the con-
text of stochastic approximation algorithms. Noting that the acronym GS stands for (Galambos and Seneta).
Typical sequences in GS (γ) are, for b ∈ R, nγ (log n)b, nγ (log log n)b, and so on.
In this section,we investigate asymptotic properties of the proposed estimators (1). The assumptions towhich
we shall refer to throughout this paper are the following:
(A1) i) (βn) ∈ GS (−β) with β ∈

(
1/2, 1

]
.

ii) (hn) ∈ GS (−a) with a ∈ (0, 1).
iii) limn→∞ (nβn) ∈

(
min {a, (β − a) /2} ,∞

]
.

(A2) f is bounded, di�erentiable and f (1) is bounded.

Assumption (A1) (iii) on the limit of (nβn) as n goes to in�nity is standard in the framework of stochastic
approximation algorithms. It implies in particular that the limit of

(
[nβn]−1

)
is �nite. For simplicity, we in-

troduce the following notations:

ξ = lim
n→∞ (nβn)−1 , (5)

I1 =
∫
R

f 2 (x) dx, I2 =
∫
R

(
f (1) (x)

)2
f (x) dx,

where L(1) (x) is the �rst derivative of the function L at a point x. In this section, we explicit the choice of
the optimal bandwidth (hn) through a plug-in method, based on the minimization the Mean Weighted Inte-
grated Squared ErrorMWISE of our proposed recursive Gumbel kernel density estimators f Gum

n de�ned in (1).
Moreover, we provide a comparison between our proposed estimators with the non-recursive Gumbel kernel
density estimator (3) and with the conventional Gaussian kernel density estimators (see, [29]). In addition,
it has been demonstrated in [21] and considered in [28] that to minimize the Mean Integrated Squared Error
MISE of f Gum

n (MISE
[
f Gum
n
]
= E

∫
R
[
f Gum
n (x) − f (x)

]2 dx), the stepsize (βn)must be chosen in GS (−1) and must
satisfy limn→∞ nβn = 1. We consider here the case (βn) =

(
n−1
)
.

Our �rst result is the following proposition, which gives the bias and the variance of f Gum
n .

Proposition 1 (Bias and variance of f Gum
n ). Let Assumptions (A1) − (A2) hold.

E
[
f Gum
n (x)

]
− f (x) = γ0

(1 − aξ ) f
(1) (x) [1 + o (1)] hn1{a≤β/3} + 1{a>β/3}o

(√
βnh−1n

)
. (6)

Var
[
f Gum
n (x)

]
= 1

4 (2 − (β − a) ξ ) f (x) [1 + o (1)]
βn
hn
1{a>β/3} + 1{a≤β/3}o

(
βn
hn

)
. (7)

Remark 1.

1. When limn→∞ (nβn) > max {a, (a − β) /2}, (6) and (7) hold simultaneously.
2. The bias and the variance of f Gum

n de�ned by the stochastic approximation algorithm (1) depends on the
choice of the stepsize (βn).

Let us now state the following theorem, which gives the weak convergence rate of the estimators f Gum
n de�ned

in (1).
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Theorem 1 (Weak pointwise convergence rate). Let Assumptions (A1) − (A2) hold.
1. If there exists c ≥ 0 such that β−1n h3n → c, then√

β−1n hn
(
f Gum
n (x) − f (x)

) D→ N
(
c1/2γ0
(1−2aξ ) f

(1) (x) , 1
4(2−(β−a)ξ ) f (x)

)
.

2. If β−1n h3n →∞, then

1
hn
(
f Gum
n (x) − f (x)

) P→ c1/2γ0
2 (1 − 2aξ ) f

(1) (x) ,

where D→ denotes the convergence in distribution, N the Gaussian-distribution and P→ the convergence in
probability.

Now, in order to measure the quality of our recursive estimators f Gum
n de�ned in (1), we consider the following

amount,

MWISE
[
f Gum
n
]

= E
∫
R

[
f Gum
n (x) − f (x)

]2 f (x) dx
=

∫
R

(
E
(
f Gum
n (x)

)
− f (x)

)2 f (x) dx + ∫
R

Var
(
f Gum
n (x)

)
f (x) dx.

The next proposition gives the MWISE of our recursive Gumbel kernel density estimators f Gum
n de�ned in (1).

Proposition 2 (MWISE of f Gum
n ). Let Assumptions (A1) − (A2) hold, then

MWISE
[
f Gum
n
]

= γ20
(1 − aξ )2

I2h2n1{a≤β/3} +
1

4 (2 − (β − a) ξ )
βn
hn
I11{a≥β/3} + o

(
h2n
)
.

Theorem 2 (Uniform convergence). Let Assumptions (A1) − (A2) hold, f is uniformly continuous and there
exists η > 0 such that z → ‖z‖η |f (x)| is a bounded function. We let C be a compact set of R. Then, we have

sup
x∈C

∣∣f Gum
n (x) − f (x)

∣∣ = o (1) a.s as n →∞.

3.1 Bandwidth selection

The bandwidth selection methods studied in the literature as part of the non-parametric kernel estimators
can be divided into three main classes: cross-validation techniques, plug-in methods and the bootstrap idea.
[7] proposed a detailed comparison of the three practical bandwidth selection. The last authors reaches the
following conclusions; chosen appropriately, the plug-in and bootstrap selectors both methods exceed the
cross-validation bandwidth, and neither of the two is best in all cases. More recently, [33] compared a plug-in
bandwidth selector of a semi recursive kernel hazard function to a cross-validation bandwidth selector. The
last author conclude that the plug-in method outperforms the cross-validation method. In this section, we
developed a plug-in bandwidth selector based on the minimization of the MWISE of the proposed recursive
Gumbel kernel density estimator by using the function f (x) as a weight function.
The following corollary indicates that the bandwidth which minimizes the MWISE of f Gum

n depends on the
stepsize (βn) and consequently the corresponding MWISE depends also on the stepsize (βn).

Corollary 1. Let Assumptions (A1) − (A2) hold. To minimize the MWISE of f Gum
n , the stepsize (βn) must be

chosen in GS (−1), (β = 1), the bandwidth (hn)must equal{ (1 − aξ )2
8γ20 (2 − (1 − a) ξ )

I1
I2

}1/3

β1/3n

 .

Then, the corresponding MWISE is equal to

MWISE
[
f Gum
n
]

= 3
4γ

2
0 (2 − (1 − a) ξ )−2/3 (1 − aξ )−2/3 I2/31 I1/32 β2/3n + o

(
β2/3n

)
.
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The following corollary shows that, for a special choice of the stepsize (βn) =
(
β0n−1

)
, which ful�lled that

limn→∞ nβn = β0 and that (βn) ∈ GS (−1), the optimal bandwidth (hn) depends on β0 and then the corre-
sponding MWISE depend on β0.

Corollary 2. Let Assumptions (A1) − (A2) hold. To minimize the MWISE of f Gum
n , the stepsize (βn) must be

chosen in GS (−1), limn→∞ nβn = β0, the bandwidth (hn)must equal{(β0 − 1/3)
16γ20

I1
I2

}1/3

n−1/3


and we then have

MWISE
[
f Gum
n
]

= 3
42

−2/3γ20β20
(
β0 − 1/3

)−4/3 I2/31 I1/32 n−2/3 + o
(
n−2/3

)
.

Remark 2.

1. Clearly the optimal bandwidth hn belong to GS
(
−1/3

)
and then a = 1/3, which explain that the band-

width hn and the corresponding MWISE do not depend on the quantity a anymore.
2. Since the minimum of β20

(
β0 − 1/3

)−4/3 is reached at β0 = 1, the optimal bandwidth (hn)must be equal
to ({(

1
24γ20

)
I1
I2

}1/3
n−1/3

)
(8)

and therefore we have

MWISE
[
f Gum
n
]

= 37/3
16 γ20 I2/31 I1/32 n−2/3 + o

(
n−2/3

)
.

3. We consider in the rest of this paper only the stepsize (βn) =
(
n−1
)
.

At this stage in order to estimate the optimal bandwidth (hn) given in (8), we must estimate I1 and I2. We
followed the approach of [1] and [29, 30, 33, 34], which is called plug-in estimation, and we consider the
following kernel estimators for I1 and I2:

Î1 = Qn
n

n∑
i,k=1

Q−1k βkb
−1
k exp

{(
Xi − Xk
bk

)
− exp

(
Xi − Xk
bk

)}
(9)

Î2 = Q′2
n
n

n∑
i,j,k=1
j= ̸k

Q′−1
k Q′−1

j β′kβ
′
jb′−2k b′−2j

×
{
1 − exp

(
Xi − Xk
b′k

)
− exp

(
Xi − Xj
b′j

)
+ exp

(
Xi − Xk
b′k

+ Xi − Xjb′j

)}
, (10)

where bn and b′n are two pilot bandwidth, βn and β′n are two pilot stepsizes for the estimation respectively of
I1 and I2. Qn =

∏n
i=1 (1 − βi) and Q′

n =
∏n
i=1
(
1 − β′i

)
.

In practice, in the �rst step of our method we let

bn = n−βmin
{
ŝ, Q3 − Q1

Q (0.75) − Q (0.25)

}
, β ∈ ]0, 1[ (11)

(see [27]) where ŝ is the sample standard deviation, Q1, Q3 denotes respectively the �rst and third quartiles
of the length-biased distribution and Q represent the quantile function of the standard normal distribution).
We followed the same steps as in [29, 34] and we showed that in order to minimize the MISE of Î1 the pilot
bandwidth (bn)must belong to GS

(
−2/3

)
and the pilot stepsize (βn) =

(
1.36 n−1

)
and in order to minimize
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the MISE of Î2 the pilot bandwidth
(
b′n
)
must belong to GS

(
−3/8

)
and the pilot stepsize

(
β′n
)
=
(
1.48 n−1

)
.

Consequently, the proposed plug-in estimator of the bandwidth (hn) using the recursive estimators de�ned
in (1) with the choice (βn) =

(
n−1
)
is equal to{( 1

24γ20

)
Î1
Î2

}1/3

n−1/3
 , (12)

and the corresponding MWISE is equal to

M̂WISE
[
f Gum
n
]

= 37/3
16 γ20 I2/31 I1/32 n−2/3 + o

(
n−2/3

)
.

Further, using the choice which minimize the variance (7) of the proposed recursive Gumbel density estima-
tors, which is given by (βn) =

(
(1 − a) n−1

)
, the plug-in estimator of the bandwidth (hn)must be equal to{( 1
48γ20

)
Î1
Î2

}1/3

n−1/3
 (13)

and the corresponding MWISE must be equal to

M̂WISE
[
f Gum
n
]

=
(
3
4

)1/3
γ20 Î2/31 Î1/32 n−2/3 + o

(
n−2/3

)
. (14)

One can check easily that by considering the well known non-recursive kernel density estimator intro-
duced by [26] and [23] togetherwith theGumbel kernel, the bias and the variance of the non-recursive Gumbel
density estimator f̃ Gum

n can be equal to the following expression (see the next proposition).

Proposition 3 (Bias and variance of f̃ Gum
n ). Let Assumptions (A1) ii) − (A2) hold.

E
[
f̃ Gum
n (x)

]
− f (x) = γ0hn f (1) (x) + o (hn) ,

and

Var
[
f̃ Gum
n (x)

]
= 1

4nhn
f (x) + o

(
1
nhn

)
.

It follows that,

MWISE
[
f̃ Gum
n

]
= γ20h2n I2 +

1
4nhn

I1 + o
(
h2n +

1
nhn

)
.

Then, to minimize the MWISE of f̃ Gum
n , the bandwidth (hn)must equal to({

1
8γ20

I1
I2

}1/3
n−1/3

)
(15)

and the corresponding MWISE is equal to

MWISE
[
f̃ Gum
n

]
= 3

4γ
2/3
0 I2/31 I2/32 n−2/3 + o

(
n−2/3

)
.

Now, in order to estimate the optimal bandwidth (15), we must estimate I1 and I2. For this purpose, we con-
sider the following kernel estimators, to estimate I1 and I2 respectively:

Ĩ1 = 1
n (n − 1) bn

n∑
i,j=1
i= ̸j

exp
{(

Xi − Xk
bn

)
− exp

(
Xi − Xk
bn

)}
, (16)

Ĩ2 = 1
n3b′4n

n∑
i,j,k=1
j= ̸k

{
1 − exp

(
Xi − Xk
b′n

)
− exp

(Xi − Xj
b′n

)
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+ exp
(
Xi − Xk
b′n

+ Xi − Xjb′n

)}
, (17)

where bn and b′n are two pilot bandwidth de�ned by (11).
We show that in order to minimize theMISE of Ĩ1 and Ĩ2 the pilot bandwidth (bn)must belong to GS

(
−2/3

)
,

and in order to minimize the MISE of Ĩ2 the pilot bandwidth
(
b′n
)
must belong to GS

(
−3/8

)
.

Then the plug-in estimator of the bandwidth (hn) using the non-recursive estimator (3), is given by{ 1
8γ20

Ĩ1
Ĩ2

}1/3

n−1/3
 (18)

and the plug-in of the MWISE of the non-recursive Gumbel density estimator (3), is given by

M̃WISE
[
f̃ Gum
n

]
= 3

4γ
2/3
0 Ĩ2/31 Ĩ2/32 n−2/3 + o

(
n−2/3

)
. (19)

An additional motivation of using Gumbel kernel density estimators rather than Gaussian kernel density
estimators is given in the following paragraph.

3.1.0.1 Large and moderate deviation
The theory of large and moderate deviations focuses on rare events and the asymptotic calculation of their
probability on an exponential scale.
We recall that the rate function obtained for the Moderate Deviation Principles (MDP) of the non-recursive

kernel estimator ([26] and [23]) is equal to Jx (t) = t2
2f (x)

∫
R K2(z)dz , when f (x) ≠ 0 (see [19]). By considering

a normal kernel K (z) = exp
(
−z2/2

)
/
√
2π we infer that Jx (t) = t2

√
π

f (x) .
We underline that the rate function obtained for the MDP of the recursive estimators proposed in [21]

and [29], by using the stepsize which minimize the asymptotic variance and by considering a normal
kernel, is equal to Jx (t) (see [28]).

Now by using the Gumbel kernel, the rate function for the MDP of the Gumbel kernel density estimators are
equal to 2t2

f (x) . Then, the rate function obtained for the Gaussian kernel density estimators are smaller than
the one obtained for the Gumbel kernel density estimators. We conclude then that the Gumbel kernel
density estimators are more concentrated around the density function f (x) than the Gaussian kernel
density estimators.

4 Applications
The aim of our applications is to compare the performance of the proposed (R-Gumbel) recursive Gumbel
kernel density estimator de�ned in (1) using the stepsize (βn) =

(
n−1
)
together with the proposed plug-in

bandwidth selection procedure given in (12) to three others methods: The �rst one (NR-Gaussien) consists
of using the non-recursive kernel density estimator proposed by [26] and [23] by using the Gaussian kernel
togetherwith theplug-in bandwidth selectionmethodproposed in [29]; the secondone (R-Gaussien) consists
in using the recursive kernel density estimator proposed by [21] by using the Gaussian kernel together with
the plug-in bandwidth selection method proposed in [29]; the third one (NR-Gumbel) consists in using the
non-recursive Gumbel kernel density estimator de�ned in (3) and the considered plug-in bandwidth selection
procedure given in (18).

4.1 Simulations

In order to investigate the comparison between the four approaches, we consider three sample sizes:
n = 50, 200, and 400. In each case, the number of simulations is �xed to N = 500. Moreover, we
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consider eight models : Model 1- the Gumbel distribution Gum (0, 0.5), Model 2- the Gumbel distri-
bution Gum (−3, 1), Model 3- the Gumbel distribution Gum (7, 3), Model 4- the mixture of two Gum-
bel distributions 0.5Gum (1, 0.5) + 0.5Gum (4, 2), Model 5- the mixture of two Gumbel distributions
0.25Gum (5, 1) + 0.75Gum (10, 2), Model 6- the Fréchet distribution Fre (0, 1, 1), Model 7- the Fréchet
distribution Fre (0, 1, 3), and Model 8- the Fréchet distribution Fre (0, 2, 3). We denote by f *i the reference
density, and by fi the density test, and then we compute the following measures: Mean Absolute Error
(MAE = n−1

∑
i
∣∣fi − f *i ∣∣), Mean Squared Error (MSE = n−1

∑
i
(
fi − f *i

)2) and Mean Relative Absolute Error
(MRAE = n−1∑i

∣∣∣ f *ifi − 1∣∣∣).
We recall that the extreme value type I distribution is referred to as the Gumbel distribution. The general

formula for the probability density function of the Gumbel distribution given parameters (µ and σ) is equal
to:

gG (x; µ, σ) =
1
σ exp (−z − exp (−z)) , where z = x − µσ ; −∞ < x < ∞,

where µ is the mode value (location parameter), σ is the scale parameter (see [11, 12]). As µ increases, the
distribution shifts to the left, whereas when µ decreases, it shifts to the right. Probability distributions that
have thinner tails than an exponential distribution are called light tail distributions. They go to zero much
faster than the exponential, and therefore have less mass in the tail. The Gumbel distribution and the normal
distribution are two examples of light tail distributions. Formally, a distribution F is called light-tailed if and
only if ∫

R

exp (λx) F (dx) < ∞, for some λ > 0.

However, a heavy tailed distribution has a tail that is heavier than an exponential distribution (see [5]). For-
mally, a distribution F is called heavy-tailed if and only if∫

R

exp (λx) F (dx) =∞, for all λ > 0.

Many distributions are heavy tailed, including; Fréchet distribution, Lognormal distribution and Pareto dis-
tribution.

We recall that the probability density of the Fréchet distribution given parameters (µ, σ and τ) is equal
to:

gF (x; µ, σ, τ) =
τ
σ

( x − µ
σ

)−1−τ
exp

(
−
( x − µ

σ

)−τ)
,

for x ∈ (µ,∞), µ, σ and τ are the location, scale and shape parameters (see [8]).
Performing all the considered methods, we report theMAE,MSE andMRAE values for each considered

distribution function and for each sample size in Tables 1 and 2.
From Tables 1 and 2, we observe that

• using Model 1, the NR-Gaussian kernel estimator gives better results for small sample size n = 50 and
for large sample size n = 400. However, the R-Gumbel kernel estimator gives better results for moderate
sample size n = 200.

• using Model 2 and Model 3, the NR-Gumbel kernel estimator gives better results for small sample size.
However the R-Gumbel kernel estimator gives better results for moderate and large sample size regarding
to the MAE, MSE and MRAE, with an exception for the second model for large sample size regarding to
the MRAE.

• using Model 4 and Model 5, the Gumbel kernel estimators outperformed the Gaussian kernel estimators
for all the sample sizes regarding to theMAE andMSE. However, the NR-Gaussian kernel estimator give
better results regarding toMRAE for bothmoderate and large sample size using for the fourthmodel and
for large sample size for the last model.
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Table 1: Quantitative comparison between the four considered methods. The bold values indicate the smallest values regarding
the MAE, MSE and MRAE.

Model 1: X ∼ Gum (0, 0.5)
n = 50 n = 200 n = 400

MAE MSE MRAE MAE MSE MRAE MAE MSE MRAE
NR-Gaussian 0.0220 0.0009 0.0931 0.0191 0.0008 0.1100 0.0117 3e−04 0.1499
R-Gaussian 0.0450 0.0038 0.1693 0.0286 0.0017 0.1577 0.0207 1e−03 0.2224
NR-Gumbel 0.0331 0.0021 0.1554 0.0223 0.0010 0.2056 0.0440 4e−03 0.4879
R-Gumbel 0.0347 0.0020 0.1257 0.0138 0.0004 0.0923 0.0130 4e−04 0.1542

Model 2: X ∼ Gum (−3, 1)
n = 50 n = 200 n = 400

MAE MSE MRAE MAE MSE MRAE MAE MSE MRAE
NR-Gaussian 0.0163 4e−04 0.1403 0.0093 2e−04 0.1204 0.0060 7e−05 0.0981
R-Gaussian 0.0241 1e−03 0.2080 0.0142 4e−04 0.1811 0.0104 2e−04 0.1705
NR-Gumbel 0.0063 1e−04 0.0573 0.0119 3e−04 0.2189 0.0222 1e−03 0.4761
R-Gumbel 0.0151 3e−04 0.1316 0.0076 1e−04 0.1021 0.0057 6e−05 0.1455

Model 3: X ∼ Gum (7, 3)
n = 50 n = 200 n = 400

MAE MSE MRAE MAE MSE MRAE MAE MSE MRAE
NR-Gaussian 0.0054 5e−05 0.1405 0.0031 2e−05 0.1369 0.0029 2e−05 0.1210
R-Gaussian 0.0078 1e−04 0.2021 0.0051 5e−05 0.2042 0.0043 4e−05 0.1670
NR-Gumbel 0.0018 6e−06 0.0496 0.0044 4e−05 0.2549 0.0072 1e−04 0.4469
R-Gumbel 0.0045 3e−05 0.1143 0.0024 9e−06 0.1294 0.0024 1e−05 0.1109

Model 4: X ∼ 0.5Gum (1, 0.5) + 0.5Gum (4, 2)
n = 50 n = 200 n = 400

MAE MSE MRAE MAE MSE MRAE MAE MSE MRAE
NR-Gaussian 0.0151 0.0013 0.0876 0.0084 5e−04 0.0948 0.0057 2e−04 0.1557
R-Gaussian 0.0195 0.0021 0.1290 0.0122 1e−03 0.1159 0.0089 6e−04 0.1559
NR-Gumbel 0.0043 0.0001 0.0501 0.0065 1e−04 0.2478 0.0111 3e−04 0.5663
R-Gumbel 0.0147 0.0009 0.1321 0.0071 3e−04 0.1023 0.0056 1e−04 0.1841

Model 5: X ∼ 0.25Gum (5, 1) + 0.75Gum (10, 2)
n = 50 n = 200 n = 400

MAE MSE MRAE MAE MSE MRAE MAE MSE MRAE
NR-Gaussian 0.0120 4e−04 0.1694 0.0053 1e−04 0.0952 0.0041 4e−05 0.1137
R-Gaussian 0.0156 6e−04 0.2429 0.0089 3e−04 0.1613 0.0067 1e−04 0.1486
NR-Gumbel 0.0024 1e−05 0.0492 0.0057 6e−05 0.1968 0.0081 1e−04 0.3857
R-Gumbel 0.0099 2e−04 0.1873 0.0044 5e−05 0.0992 0.0033 1e−05 0.1361

• using Model 6, the NR-Gaussian kernel estimator gives better results for small sample size, while the
R-Gumbel kernel estimator gives better results for moderate and large sample size.

• using Models 7 and 8, the NR-Gumbel kernel estimator gives better results for small sample size, while
the R-Gumbel kernel estimator gives better results for moderate and large sample size.
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Table 2: Quantitative comparison between the four considered methods. The bold values indicate the smallest values regard-
ing the MAE, MSE and MRAE.

Model 6: X ∼ Fre (0, 1, 1)
n = 50 n = 200 n = 400

MAE MSE MRAE MAE MSE MRAE MAE MSE MRAE
NR-Gaussian 6.8e−04 2.0e−05 0.3430 5.4e−0.4 5.6e−05 0.2126 3.6e−04 4.4e−05 0.1024
R-Gaussian 9.6e−04 4.3e−05 0.3445 5.2e−04 5.2e−05 0.2185 3.6e−04 5.2e−05 0.1018
NR-Gumbel 7.6e−04 3.0e−05 0.6271 2.1e−04 6.0e−06 0.1109 1.4e−04 4.0e−06 0.1014
R-Gumbel 1.2e−03 6.8e−05 0.4826 5.2e−05 1.2e−06 0.1095 1.3e−04 2.0e−06 0.1012

Model 7: X ∼ Fre (0, 1, 3)
n = 50 n = 200 n = 400

MAE MSE MRAE MAE MSE MRAE MAE MSE MRAE
NR-Gaussian 0.0221 0.0031 0.0860 0.0125 0.0019 0.2731 0.0072 0.0005 0.0882
R-Gaussian 0.0318 0.0059 0.0837 0.0174 0.0024 0.2625 0.0086 0.0007 0.0848
NR-Gumbel 0.0102 0.0003 0.0827 0.0121 0.0011 0.1060 0.0089 0.0022 0.0821
R-Gumbel 0.0232 0.0023 0.0979 0.0105 0.0005 0.0528 0.0063 0.0004 0.0431

Model 8: X ∼ Fre (0, 2, 3)
n = 50 n = 200 n = 400

MAE MSE MRAE MAE MSE MRAE MAE MSE MRAE
NR-Gaussian 0.0111 0.0008 0.1153 0.0048 1.4e−04 0.0853 0.0035 1.2e−04 0.0854
R-Gaussian 0.0156 0.0015 0.1125 0.0057 3.2e−04 0.0695 0.0054 2.2e−03 0.0724
NR-Gumbel 0.0062 0.0001 0.1106 0.0130 7.4e−04 0.0892 0.0165 1.4e−03 0.0744
R-Gumbel 0.0111 0.0005 0.1260 0.0046 1.2e−04 0.0545 0.0045 1.1e−04 0.0633

• using all the considered models, the R-Gumbel kernel estimator outperformed the NR-Gumbel kernel es-
timator for moderate and large sample size. However, the NR-Gumbel kernel estimator gives better results
for small sample size.

• using all the considered models and by performing the four approaches, the MAE, MSE and MRAE de-
crease as the sample size increase.

• by considering models with light tail distribution (see Model 1, Model 2, Model 3), we observe that the
more the location parameter moves away from zero and the more the scale parameter moves away from
one, the more the MAE, MSE and MRAE decrease.

• by consideringmodels with heavy tailed distribution (seeModel 6, Model 7, Model 8), we observe that the
more the scale and shape parameter move away from one, the more theMAE,MSE andMRAE decrease.

Remark 3. Form Tables 1 and 2, we can observe that the Gumbel kernel estimators outperfomed the Gaussian
kernel estimators for all the consideredmodels including thosewith light tail distribution (seeModel 1,Model
2, Model 3, Model 4 and Model 5) and those with heavy tailed distribution (see Model 6, Model 7 and Model
8), an exception is made when the location is equal to zero (see Model 1 and Model 6).

Figure 1 shows that the Gumbel kernel estimators are closer to the true density compared to the Gaussian
kernel estimators. Moreover, Figure 2 shows clearly that the recursive Gumbel kernel estimator is closer to
the true density compared to the three other methods.
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Figure 1: Qualitative comparison between the four considered estimators. The circles represent the true distribution. Here we
consider the Gumbel distribution Gum (7, 3) and the sample size n = 200.

Table 3: The comparison between the plug-In MWISE of the four considered estimators using the proposed real data. The bold
values indicate the smallest values regarding the plug-In MWISE

I1 I2 hn MWISE
NR-Gaussian 0.1680 0.0145 0.5478 0.001638
R-Gaussian. 0.1633 0.0172 0.4140 0.001756
NR-Gumbel 0.1768 0.0429 0.2861 0.001215
R-Gumbel 0.1637 0.0246 0.2327 0.000976

4.2 Caniapiscau River Daily Flows

We considered caniapiscau dataset which appears in the R package FlowScreen.
This data contain themean daily stream�ow for the Caniapiscau River for the period 1954-1999. The Ca-

niapiscau River is located in Nunavik, Quebec, Canada, and �ows northward. The headwaters were dammed
to create the Caniapiscau Reservoir, which started �lling in 1981. In 1985, the reservoir was diverted to the
west into the La Grande hydroelectric complex. This �ow time series is used as an example of a river with a
known change point to demonstrate the package’s screening capabilities.

We are interested by the estimation of the probability density of the Mean daily stream�ow, measured in
m3/s.

Remark 4.

1. The results given in Table 3 are based on the Plug-In estimator of I1 and I2 (see, (9), (10), (16) and (17)
for the estimation of I1 and I2 and (14) and (19) for the plug-In MWISE). This estimators are very useful
when we use real data since we do not need to know the density of our sample.
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Figure 2: Qualitative comparison between the four considered estimators. The circles represent the true distribution. Here we
consider the mixture of two Gumbel distributions 0.25Gum (5, 1) + 0.75Gum (10, 2) and the sample size n = 200.

2. Table 3 provides the estimation of the two unknown quantities I1 and I2 before given the optimal band-
width of the four considered methods respectively, we then use the MWISE to compare the four consid-
ered approaches, we infer that the Gumbel kernel estimators outperformed the Gaussian kernel estima-
tors with a particular preference for using the recursive version.

3. Qualitative comparison between the Gumbel and Gaussian kernel estimators are given in Figures 3 and 4.
4. Figure 4 illustrates that the Gumbel kernel estimator provides globally the best �t, whilst the Gaussian

kernel estimator tends to underestimate the density function.
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Figure 3: Qualitative comparison between the four considered estimators. Here we consider the caniapiscau dataset of the
package FlowScreen.

5 Conclusion
This paper propose an automatic selection of the bandwidth of two proposed Gumbel kernel density esti-
mators, the �rst one is recursive, however the second one is non-recursive. The two proposed estimators
asymptotically follow normal distributions. The estimators are compared to the two classical Gaussian den-
sity estimators, the �rst one is non-recursive and introduced by [26] and [23], the second one is recursive and
proposed by [21] and investigated by [29]. We showed that, using some selected bandwidth and some par-
ticularly stepsizes, the two proposed Gumbel estimators are very competitive to the two classical Gaussian
density estimators. The simulation study con�rms the bene�ts of our two proposed Gumbel estimators.

In conclusion, the proposed estimators are very competitive to the two classical Gaussian density esti-
mators. We plan to extend this work to the multi-dimensional context with a comparison to the work of [2].
We plan also to consider the bias correction techniques with application to heavy tailed data.

We plan also to consider Bernstein polynomials rather than kernels and to propose an adaptation of
the estimators developed in [15] and [36] with application to heavy tailed data. Moreover, we plan to make
an extensions of our proposed plug-in method in future with application on extreme value and to consider
the case of the averaged Révész’s regression estimators (see [22] and [31, 32]) and the semi-recursive kernel
regression estimators proposed by [34] and the case of time series as in [13] in recursive way (see [14]).
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Figure 4: Qualitative comparison between Gumbel and Gaussian kernel estimators. Here we consider the caniapiscau dataset
of the package FlowScreen.

A Proofs
Throughout this section we use the following notation:

Qn =
n∏
j=1

(
1 − γj

)
,

KGum (z) = exp (−x − exp (x)) .

ZGum
n (x) = h−1n KGum

(
Xn − x
hn

)
. (20)

YGum
n (x) = Q−1n βn

(
ZGum
n (x) − E

(
ZGum
n (x)

))
. (21)

Let us �rst state the following technical lemma.

Lemma 1. Let (vn) ∈ GS
(
v*
)
, (βn) ∈ GS (−β), and m > 0 such that m − v*ξ > 0 where ξ is de�ned in (5). We

have

lim
n→+∞

vnQmn
n∑
k=1

Q−mk
βk
vk

= 1
m − v*ξ .

Moreover, for all positive sequence (βn) such that limn→+∞ βn = 0, and all δ ∈ R,

lim
n→+∞

vnQmn

[ n∑
k=1

Q−mk
βk
vk
βk + δ

]
= 0.

Remark 5.
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1. The application of Lemma 1 requires Assumption (A1)(iii) on the limit of (nβn) as n goes to in�nity.
2. The application of Lemma 1 ensures that the bias and the variance depend only on hn and not on
h1, . . . , hn.

A.1 Proof of Proposition 1

First, it follows from (1) and (20), that

f Gum
n (x) − f (x) = (1 − βn)

(
f Gum
n−1 (x) − f (x)

)
+ βn

(
ZGum
n (x) − f (x)

)
=

n−1∑
k=1

 n∏
j=k+1

(
1 − γj

) βk (ZGum
k (x) − f (x)

)
+ βn

(
ZGum
n (x) − f (x)

)

+

 n∏
j=1

(
1 − γj

) (f Gum
0 (x) − f (x)

)
= Qn

n∑
k=1

Q−1k βk
(
ZGum
k (x) − f (x)

)
+ Qn

(
f Gum
0 (x) − f (x)

)
. (22)

Moreover, we have

E
(
f Gum
n (x)

)
− f (x) = Qn

n∑
k=1

Q−1k βk
(
E
(
ZGum
k (x)

)
− f (x)

)
+ Qn

(
f Gum
0 (x) − f (x)

)
.

Further, since we have
∫
R KGum (z) dz = 1, Taylor’s expansion with integral remainder ensures that

E
[
ZGum
k (x)

]
− f (x) =

∫
R

h−1k KGum

(
h−1k (y − x)

)
f (y) dy − f (x)

=
∫
R

KGum (z) [f (x + zhk) − f (x)] dz

= hk f (1) (x)
∫
R

zKGum (z) dz + hkδk (x)

with

δk (x) = h−1k
∫
R

KGum (z)
[
f (x + zhk) − f (x) − zhk f (1) (x)

]
dz,

and, since f (1) is bounded and continuous at x, we have limk→∞ δk (x) = 0. Moreover, since∫
R

zKGum (z) dz = −
+∞∫
0

exp (−z) ln (z) dz =
1∫

0

Hzdz = γ0,

where Hz is the fractional harmonic number and γ0 is the Euler-Mascheroni constant (γ0 ' 0.57721). When
a ≤ β/3, we have limn→∞ (nβn) > 2a, we apply Lemma 1 to infer that

E
[
f Gum
n (x)

]
− f (x) =

∫
R

zKGum (z) dzf (1) (x)Qn
n∑
k=1

Q−1k βkhk[1 + o(1)] + Qn (f0 (x) − f (x))

= γ0
(1 − aξ ) f

(1) (x) hn
[
1 + o(1)

]
.

Moreover, in the case a > β/3, we have hn = o
(√

βnh−1n
)
. Whence, since limn→∞ (nβn) > (β − a) /2, the

application of Lemma 1 gives

E
[
f Gum
n (x)

]
− f (x) = Qn

n∑
k=1

Q−1k βko
(√

βkh−1k

)
+ O (Qn)
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= o
(√

βnh−1n
)
,

which gives (6). Now, we have

Var
[
f Gum
n (x)

]
= Q2

n

n∑
k=1

Q−2k β
2
kVar [Zk (x)]

= Q2
n

n∑
k=1

Q−2k β
2
k

hk

∫
R

K2Gum (z) f (x + zhk) dz − hk

∫
R

KGum (z) f (x + zhk) dz

2
= Q2

n

n∑
k=1

Q−2k β
2
k

hk

f (x)∫
R

K2Gum (z) dz + νk (x) − hk ν̃k (x)


with

νk (x) =
∫
R

K2Gum (z) [f (x + zhk) − f (x)] dz and ν̃k (x) =

∫
R

K2Gum (z) f (x + zhk) dz

2

.

In view of (A2), we have limk→∞ νk (x) = 0 and limk→∞ hk ν̃k (x) = 0. In the case a ≥ β/3, we have
limn→∞ (nβn) > (β − a) /2, we make use of Lemma 1 to infer that

Var
[
f Gum
n (x)

]
= Q2

n

n∑
k=1

Q−2k β
2
k

hk

f (x)∫
R

K2Gum (z) dz + o (1)


= 1

2 − (β − a) ξ
βn
hn

f (x)∫
R

K2Gum (z) dz + o (1)

 .
Moreover, by using the following variable change t = exp (−z), we have∫

R

K2Gum (z) dz =
∫
R

exp (−2z) exp (−2 exp (−z)) dz = 1
4 .

Further, in the case when a < β/3, we have βnh−1n = o
(
h2n
)
, and since limn→∞ (nβn) > a, Lemma 1 ensures

that

Var
[
f Gum
n (x)

]
= Q2

n

n∑
k=1

Q−2k βko
(
h2k
)

= o
(
h2n
)
,

which gives (7).

A.2 Proof of Theorem 1

Let us at �rst assume that, if a ≥ β/3, then√
β−1n hn

(
f Gum
n (x) − E

[
f Gum
n (x)

]) D→ N

(
0, 1

4 (2 − (β − a) ξ ) f (x)
)
. (23)

In the case when a > β/3, Part 1 of Theorem 1 follows from the combination of (6) and (23). In the case when
a = β/3, Parts 1 and 2 of Theorem 1 follow from the combination of (6) and (23). In the case a < β/3, (7)
implies that

h−2n
(
f Gum
n (x) − E

(
f Gum
n (x)

)) P→ 0,
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and the application of (6) gives Part 2 of Theorem 1.

Let us now prove (23). In view of (22), we have

f Gum
n (x) − E

[
f Gum
n (x)

]
= (1 − βn)

(
f Gum
n−1 (x) − E

[
f Gum
n−1 (x)

])
+ βn

(
ZGum
n (x) − E

[
ZGum
n (x)

])
= Qn

n∑
k=1

Q−1k βk
(
ZGum
k (x) − E

[
ZGum
k (x)

])
.

Moreover, the application of Lemma 1 ensures that

v2n =
n∑
k=1

Var
(
YGum
k (x)

)
=

n∑
k=1

Q−2k β
2
kVar

(
ZGum
k (x)

)
=

n∑
k=1

Q−2k β
2
k

hk

f (x)∫
R

K2Gum (z) dz + o (1)

 = O
(

1
Q2
n

βn
hn

)
.

Further, we have, for all p > 0,

E
[∣∣ZGum

k (x)
∣∣2+p] = O

(
1
h1+pk

)
. (24)

We let Vn = h1+pn
β1+pn

, then Vn ∈ GS ((β − a) (1 + p)). Moreover, since limn→∞ (nβn) > (β − a) /2, then, there exists
p > 0 such that limn→∞ (nβn) > 1+p

2+p (β − a) > (β − a) /2. Then, the application of Lemma 1 ensures that

VnQ2+p
n

n∑
k=1

Q−2−pk
βk
Vk

= O (1) . (25)

Then, the combination of (21), (24) and (25), ensure that
n∑
k=1

E
[∣∣YGum

k (x)
∣∣2+p] = O

( n∑
k=1

Q−2−pk β2+pk E
[∣∣ZGum

k (x)
∣∣2+p])

= O
( n∑
k=1

Q−2−pk β2+pk
h1+pk

)
= O

(
β1+pn

Q2+p
n h1+pn

)
,

we thus get

1
v2+pn

n∑
k=1

E
[∣∣YGum

k (x)
∣∣2+p] = O

([
βnh−1n

]p/2)
= o (1) .

The convergence in (23) then follows from the application of Lyapounov’s Theorem.

A.3 Proof of Theorem 2

First, using the compactness property of the set C, we infer that, for some (xk)1≤k≤γn , C ⊂
⋃γn
k=1 B (xk , an),

where γn ∼ a−1n with an = h
2
α +1
n .

Now, for any x ∈ C, we set k̃ (x) = argmink ‖xk − x‖. Then, for any x ∈ C, we have

sup
x∈C

∣∣f Gum
n (x) − E

[
f Gum
n (x)

]∣∣ ≤ sup
x∈C

∣∣f Gum
n (x) − f Gum

n
(
xk̃
)∣∣

+ sup
x∈C

∣∣f Gum
n
(
xk̃
)
− E

[
f Gum
n
(
xk̃
)]∣∣

+ sup
x∈C

∣∣E [f Gum
n
(
xk̃
)]
− E

[
f Gum
n (x)

]∣∣



392 | Yousri Slaoui

=: T1,n + T2,n + T3,n . (26)

First, let α denote the Hölder order of KGum and
∥∥KGum∥∥

H its corresponding Hölder norm. Then, it follows
from (2) that for any x ∈ C

∣∣f Gum
n (x) − f Gum

n
(
xk̃
)∣∣ ≤ Qn

n∑
k=1

Q−1k βkh
−1
k

∣∣∣∣KGum
(
Xk − x
hk

)
− KGum

(Xk − xk̃
hk

)∣∣∣∣
≤ 2

∥∥KGum∥∥
H Qn

n∑
k=1

Q−1k βkh
−1
k

(∥∥x − xk̃∥∥
hk

)α

≤ 2
∥∥KGum∥∥

H Qn
n∑
k=1

Q−1k βkhk ,

we then get T1,n = o (1) and T3,n = o (1). Now, we set ρ > 0 and M such that ‖f∞‖
∫
‖z‖>M

∣∣KGum (z)
∣∣ dz ≤ ρ/2.

Moreover, Lemma 1 ensures that Qn
∑n

k=1 Q
−1
k βk = 1 + o (1), then, it comes that

∣∣f Gum
n
(
xk̃
)
− E

[
f Gum
n
(
xk̃
)]∣∣ ≤ Qn

n∑
k=1

Q−1k βkh
−1
k

∣∣∣∣E [KGum
(Xk − xk̃

hk

)]∣∣∣∣
≤ ρ

2 +
∫

‖z‖≤M

∣∣KGum (z)
∣∣ ∣∣f (xk̃)∣∣ dz

+Qn
n∑
k=1

Q−1k βk
∫

‖z‖>M

∣∣KGum (z)
∣∣ ∣∣f (xk̃ − zhk) − f (xk̃)∣∣ dz.

Then, the uniform continuity of f combined with the dominate convergence and the existence of η > 0 such
that z → ‖z‖η |f (x)| is a bounded function ensure that T2,n = o (1). Then the combination of (6) and (26)
concludes the proof of Theorem 2.
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