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Résumé

Cette thèse explore la manière dont l’intelligence artificielle peut diminuer l’énergie
consommée dans les centres de données. L’intelligence artificielle est un vaste domaine de
recherche très populaire. Ce domaine est souvent idéalisé, mais comment les nouveautés de
la recherche peuvent-elles être appliquées à des cas d’utilisation réels ? Entre considérations
physiques, théories mathématiques et technologies informatiques, cette thèse utilise différents
domaines pour aider à déployer et améliorer les technologies récentes afin de répondre aux
défis énergétiques actuels.
La première partie de la thèse évalue les problèmes énergétiques et les technologies déployées
dans les centres de données et les bâtiments de télécommunications. Les infrastructures
d’information et de communication sont de gros consommateurs d’énergie et nécessitent
des systèmes de climatisation spécifiques en raison des conditions de travail du matériel
informatique. L’optimisation des systèmes de climatisation et de leur consommation est une
préoccupation majeure dans la réduction de la consommation d’énergie. La deuxième partie
de la thèse explore l’apprentissage statistique et probabiliste pour optimiser la consommation
d’énergie. Elle se concentre principalement sur les modèles d’apprentissage par renforcement
profond (Deep Reinforcement Learning) pour la prise de décision automatisée basée sur la
méthode axée sur les données. L’apprentissage profond est flexible dans la modélisation et
peut s’adapter à de nombreux problèmes, ce qui est pratique lorsqu’une méthode doit être
généralisée.
La dernière partie décrit la mise en œuvre et l’application dans des environnements simples
afin de soulever et de traiter les problèmes courants et de discuter de la manière d’adapter
le modèle à la réalité. On sait qu’un grand nombre de projets de science des données sont
très prometteurs mais ne sont pas mis en œuvre. Ce travail vise à faire un pas en avant dans
l’introduction de l’IA dans des environnements sensibles tels que les centres de données.
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Abstract

This thesis explores how Artificial Intelligence can diminish the energy consumed in Data
centres. Artificial Intelligence is a vast research area that is very popular. This domain is
often idealised, but how can the research novelties be applied to actual use cases ? Between
physical considerations, mathematics theory and computer science technologies, this thesis
employs various fields to help deploy and improve recent technologies to address current
energy challenges.
The first part of the thesis assesses the energy issues and the technologies deployed in Data
centres and telecommunication buildings. Information and communication infrastructures
are massive energy consumers and need specific air conditioning systems due to the working
conditions of IT material. Optimising air conditioning systems and their consumption is a
primary concern in reducing energy consumption.
The second part of the thesis explores statistical and probabilistic learning to optimise energy
consumption. It mainly focuses on Deep Reinforcement Learning models for automated
decision-making based on the data-driven method. Deep learning is flexible in modelisation
and can suit many problems, which is convenient when a method must be generalised and
industrialised.
The last part describes the implementation and application in simple environments to raise
and deal with common issues and discuss how to scale the model to reality. It is known that a
lot of Data Science projects have great promises but fail to be implemented due to practical
difficulties. This work aims to make a step in introducing AI in sensitive environments such
as Data Centres.
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Mathematical Notations

A Action space

S State space

r A reward function

R Cumulative rewards

a Action

s State

π A stochastic policy

π(a|s) The probability of getting the action a, knowing the policy π and the state s

µ A deterministic policy

µ(s) The action generated by the policy µ, for the state s

V π(s) Value function for the state s under the stochastic policy π

Qπ(s, a) State-action value function for the state s and action a
under the stochastic policy π
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Chapitre 1

Introduction

1.1 Data Centres

1.1.1 Data Centres and Energy Consumption
In the current energy, environmental and social context [2], diminishing energy consumption

is a significant issue for the population’s well-being. Data and network usage around the
world are growing exponentially [1]. Energy consumption is following the trend. This thesis
aims to explore AI and develop tools to diminish the energy consumption of DC and similar
buildings such as telecom centres. In 2009 [28], DCs consumed 200 TWh or nearly 2% of the
world’s electricity. In 2007, in Western Europe, the DCs consumed 56 TWh and information
and communication technology was estimated to account for 10% of total UK electricity
consumption. At the same time, France consumed a total of 480 TWh. This sector is growing
by 10 to 15% per year.
Moreover, with the arrival of 5G, the number of connected devices is expected to reach 50
billion by 2020, generating 2.5 quintillion bytes of data per day [97]. DCs should increase
as they are part of the infrastructure related to implementing these networks. The actors
of these transformations must anticipate these new needs, especially if they wish to respect
their societal commitments, such as the net zero carbon commitment by 2040 of Orange.
Equipment and infrastructures must evolve and use new techniques to fulfil this goal. The
issue of energy optimisation in DCs makes it possible to reconcile the ever-increasing digital
technology needs while limiting energy costs and environmental impacts. Developing more
advanced thermodynamic techniques increases the efficiency of DC cooling systems, such
as liquid cooling. The cooling systems in DCs consume around 30% of the overall power
consumption [14]. However, these improvements require orchestration to perform optimally.
Given the systems’ complexity and diversity [69], artificial intelligence demonstrates great
potential concerning the control of cooling systems and usage in building energy prediction [95].
More complex models, such as RL, can be considered. For example, a study [51] has shown
that a model could achieve a 9% energy saving on server cooling, which is particularly effective
when these servers receive an exceptionally high load. However, those methods must be deeply
studied to be applied in actual conditions.
In this thesis, we focus on the use of AI to improve the efficiency of the DCs cooling system.
To explore how AI can reduce energy consumption, we must understand how DCs work and

23



the physical issues raised by maintaining high computation inside buildings. This is why
the first part of the thesis describes the DCs and their physical behaviour and issues. The
complexity of the task does not allow us to explore and describe the phenomenon deeply, but
introduces the main ideas and gives context to the choices made in the two following parts.
The purpose is to provide hints and intuitions on the main concerns and why we focus on RL
technologies. The application motivated the theoretical results as the models were developed
to tackle the issues encountered while optimising.

1.1.2 Data Centres: Introduction
DCs do not look like ordinary buildings and usually have no windows and minimal air

circulation. They come in various sizes, from small rooms to large buildings. DC rooms contain
racks that contain servers, storage, and networking equipment. DCs gather IT materials
with high density. It is different to individual uses of computers. There are many uses for
DCs. They usually centralise data storage, applications and cloud computing. They are
essential for developing big data in various fields: commerce and business, research, and
society administration [67].

Figure 1.1 – DCs servers room with cold air distributed through the raised floor. The
picture was taken in Orange’s DC in Val De Reuil, in 2013.

There are many configurations for DCs, but one of the most effective is to place the racks
in an alternating fashion, making cold aisles through which refrigerated air enters the shelves
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Figure 1.2 – Example of architecture for air cooling and distribution for a DC.

and hot aisles through which heated air is evacuated. In DCs, electrical power supplies the
equipment. A power unit receives current without interruption and distributes the load to the
equipment. However, the electricity used in DCs is almost wholly transformed into heat (Joule
effect), so it is necessary to cool them to avoid material deterioration. DCs often have air
conditioning units containing fans, filters, and air cooling systems. Usually, these systems use
a chilled water unit to cool water before serving it to the IT equipment through hatches on
the floor. IT materials also require a specific range of hygrometry to function correctly. There
are climate conditions adapted for optimising the performance of the equipment, and there
are ranges to keep them in and avoid deterioration. Some organisations provide standards for
these ranges.

1.1.3 Data Centre Standards

ASHRAE

In fact, it is essential to keep computer equipment in a suitable condition to function
correctly and safely. Normalisation of metrics and evaluation of the efficiency of IT DCs
conditioning is essential to compare and evaluate. For this purpose, ASHRAE, the American
Society of Heating, Refrigerating and Air-Conditioning Engineers, advises keeping computer
equipment in a temperature range of 18 to 27°C. The organisation furnishes guidelines [35]
with allowed values for equipment depending on its type. There are six equipment classes (A1
to A4, B and C). These classes separate the equipment according to their constitution. The
new equipment is more likely to be A4 than A1, so they have more permissive ranges. These
standards make it easier to save energy by adopting behaviours that are more concerned with
the equipment in place.

From literature benchmark [35], we find that fans are big energy consumers in DCs among
the three major power consumers in HVAC (Heating, ventilation, and air conditioning) systems:
fans (39%), chillers (39%), and cooling water pumps (18%). This requires consideration of
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Figure 1.3 – Representation of energy consumption in DCs [73]

the optimum conditions for the equipment. Some equipment manufacturers specify a wider
window of inlet air temperatures for the safe operation of their equipment. Higher inlet air
temperatures in DCs, beyond an optimum value, increase the overall power consumption due
to increased power dissipation in many parts of the overall multi-scale system, for example,
from the chips and server fans [65]. In this regard, the 2011 ASHRAE guidelines suggest that
increasing the inlet air temperature from 15°C to 35°C could result in a 7 to 20% increase in
the power consumption of IT equipment due to increased fan speeds.

ETSI

The European Telecommunications Standards Institute (ETSI) defines the standards
for telecommunications. It is a non-profit organisation that produces telecommunications
standards for the present and the future [25]. This organisation acts for telecommunications
and is interested in DCs, which are very energy intensive, and it gives recommendation
ranges for telecom equipment. ETSI furnishes standard conditions for telecommunications
equipment [24]. This diagram is given by ETSI (see Figure 1.5) frames the conditions in
which telecom equipment can operate without degrading, considering the equipment in DCs.
It is advisable to stay in the grey area. However, it can leave the grey area and go into the
solid area if it is less than 10. % of the time. The dotted line area is the exceptional area
where the material cannot exceed 1% of the time. Going outside these limits could damage
the equipment. To limit the impact of energy, ETSI gives guidelines for telecom hardware
but also proposes other measures, such as implementing efficiency indicators.
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Figure 1.4 – Air condition advised by ASHRAE for IT material [100]

Data Centre Efficiency Measures

As said previously, improving the efficiency of DCs needs reference values for comparison.
Different metrics have been studied to evaluate DCs’ performance [97]. Therefore, there are
indicators, such as PUE (Power Use Effectiveness), which corresponds to the total energy
consumption of the centre divided by the energy consumption of IT equipment. The closer it
is to 1, the more efficient it is.

PUE = total energy consumption of the centre
IT equipment energy consumption .

These indicators will allow us to compare the operation of the different centres and the
methods used. They are essential tools for setting up studies on the energy efficiency of DCs.

The ETSI also proposes its indicators [23] to compare DCs, the DCEM, which uses four
indicators of lower granularity. The DCP indicates the level of energy performance of the
DC by comparing the power consumption of the IT and telecom equipment with the total
power consumption. According to their power consumption, the Gauge (DCG) classifies DCs
into four sizes - from S to XL. REUSE considers the reused calories, and REN the share
of renewable energy used. The DCEM has the advantage of measuring energy consumption
while considering the efficiency of the tasks performed, the use of renewable energy, and the
reuse of the energy consumed.

Indicators have several advantages:
1. Compare different DCs.
2. Get the evolution of the indicator to assess improvement.
3. Detects undesired behaviour that affects the efficiency of DCs.
When dealing with air conditioning systems, as they do not participate in the computations

of centres, we can minimise their energy consumption to maximise DCs’ efficiency.
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Figure 1.5 – The norm given by ETSI for "Temperature-controlled locations" such as DCs
or telecom centres.

1.2 Cooling Systems and Management

1.2.1 Physical Considerations
Basic knowledge of thermodynamic concepts helps to understand and tackle the modelling

issues of DCs and equivalent systems. Using the following notation:
Q the heat transfer rate [J]
W Amount of work transferred [J] nominally in the form of electricity or mechanical work
m Mass flow [kg]
E energy stored in the system [J]
e Energy transported per unit mass flow [J/kg]

The first law of thermodynamics yields energy conservation for a closed system, leading
to the following equation, :

∆E = Q − W . (1.1)
With ∆ indicating the changes. And with mass flow entering and quitting the system, we

have:
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Q̇ − Ẇ +
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ṁoeo = dE

dt
. (1.2)

Where ei is the energy transferred per unit mass flow to the system while eo is the energy
out. We consider Equation (1.2) to represent a DC room with airflow entering and exiting
the room to ventilate and evacuate the heat.

Figure 1.6 – Representation of the energy conservation on a system with mass exchanges.

1.2.2 Cooling Technologies

It is possible to use more efficient cooling techniques to reduce the energy impact of DCs.
The use of free cooling, for example, is a convenient solution in terms of power consumption.
Research is currently also looking toward liquid cooling. The control of the cooling system is
also an area of improvement. Control techniques such as PID control (proportional, integral,
derivative) are currently used. The use of AI for this type of problem is getting much more
attention [73]. The method for reducing energy consumption can be divided into the following
groups:

1. Hardware efficiency

2. Software efficiency

3. Strategy and Management

Hardware efficiency concerns the chips in place and other CPU/GPU performances.
Software efficiency is dealing with virtualisation, dividing the load between the servers. The
last group concerns Strategy and Management. In this section, AI has a significant role to
play. It may help make predictions to anticipate. To detect anomalies to prevent material
failures.
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Free cooling

Free cooling is a technique that uses available natural cold sources to chill DCs, reducing
the energy consumption of air cooling. Free cooling has many possible configurations, and its
benefits depend on the outside air conditions. Free cooling did not develop in the DCs until
2008 when ASHRAE gave more flexible climate ranges for equipment, allowing for greater
use of outside air. Free cooling of DCs can be divided into three categories [102]: airside-free
cooling, waterside-free cooling and heat pipe-free cooling. Among the three categories of free
cooling systems, a heat pipe system has good energy efficiency and cooling capacity due to its
ability to transfer heat at small temperature differences without external energy. In addition,
it has no disturbance in the indoor environment and can be integrated with compression
systems. Although it has the shortest history, it shows excellent application potential.

Liquid cooling

The production of cold is very energy-consuming, and using air as a heat transfer fluid is
not the most efficient solution. Liquids offer a promising alternative with higher convective
heat exchange coefficients. One possible approach to reduce power consumption is applying
heat transfer to the closest to the equipment. Like free cooling, there are many approaches
with their advantages and inconveniences [37], we have spray cooling, pool boiling, heat pipe
cooling, and two-phase cooling. One significant advantage of water cooling is focusing directly
on the chips. The electronic components can be immersed in mineral oil to keep them at a
proper temperature. The results are satisfactory in terms of power consumption. However,
there are still some elements to consider, such as cooling the processor. The use of heatsinks
dedicated to cooling by immersion in viscous liquids can be improved. The use of liquid cooling
has higher maintenance costs than plain free cooling and is more complex to implement.
Those technologies are more or less effective depending on the objective and if we consider
the long or short term. The efficiency of liquid cooling technologies is often bounded by other
technologies, leading to its application mainly in recent and high-performance computing
DCs.

Data Centre Management

Different studies show that the DC air condition system management can be seriously
improved, as shown in different studies [105], [103]. In most cases, the cooling models of
DCs consider a hot source and a cold source. The goal is to maintain the hot source at
an acceptable temperature using a classical control, usually PID (proportional, integral,
derivative). The cold air is distributed in the cold aisles and does not consider the bays
individually. From this observation, we could consider using a more precise air-conditioning
system to individually cool the racks with variable opening hatches. For example, this would
allow adapting the cooling. However, such optimisation requires controlling many parameters,
controlling the blower units, and opening the different hatches while monitoring each rack.
The choice of these parameters is an optimisation problem under constraint. It is a question of
minimising power consumption while ensuring that the material’s environment (temperature,
hygrometry) remains adapted to its operation. The ideal purpose is to implement a DC
orchestration system based on agents capable of processing large volumes of data. These
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agents make predictions based on the DC activity. They collect a maximum amount of data
(several sensors) and use external data, such as the weather, to carry out an optimised action
plan. The goal is to cool the DC more efficiently and perform predictive and monitoring
maintenance to reduce maintenance costs. The implemented infrastructure allows the sharing
of information to realise different tasks (cooling optimisation, server activity optimisation,
monitoring) related to the maintenance of the DC and decrease the generated costs. This
thesis focuses on the air conditioning aspects. The solution could go further by integrating
DC software optimisation with the management of the computing structure [20].

1.2.3 Artificial intelligence for System Control

AI has grown significantly in recent years with advances in computer hardware and the
emergence of Big Data. The AI market for enterprise applications is estimated to be worth
over $36 billion by 2025 in AI compared to $643 million in 2016. Intelligence is a human
concept that can be defined with [27]: "Intelligence is that faculty, of mind, by which order
is perceived in a situation previously considered disordered." This seems incompatible with
artificial intelligence, as observed: "Thus machines may have intelligent-like performance
but cannot be intelligent because the machine’s instruction set is a proper subset of man’s
instruction set." But intelligence is a broad concept with different meanings. An interesting
concept is intellectual emancipation [72], the point is for the machine to emancipate itself
from humans by operating in an environment with the least human guidance possible. Even
if intelligence was defined for living creatures when it comes to machines, the meaning of
artificial intelligence is not a consensus and depends on the context [94]. The main idea is to
use cognitive abilities to structure information by censoring, memorising, and learning.

1. Information structuring.
2. Intellectual emancipation.

Those two considerations are a way of judging the intelligence of an entity, the ability to
gather data to answer a question, and the ability to do it a minimal instruction. However, our
point is not to make philosophy or neuroscience but to give a starting point and understanding
of the methods used and their limits. In data science, "artificial intelligence" usually describes
a set of concepts inspired by human cognition or the biological brain and intended to assist
or replace the individual in processing massive amounts of information [8]. AI research has
many domains associated: automatic learning, knowledge representation, reasoning modelling,
uncertainty management, constraint satisfaction, planning, heuristic search, autonomous
agents, multi-agent systems, semantic web, automatic language processing, robotics, vision,
pattern recognition, cognition modelling, neuro-informational systems. Using AI models to
optimise physical systems needs to formulate an approach. Most AI algorithms use Data to
solve a problem. The first step is to formulate the issues and choose the best mathematical
formulation for the appropriate models. We seek to orchestrate the system in the best possible
way. We want to provide the optimal configuration of the system in real-time. To do this,
we need to characterise it as well as possible while identifying the levers. These levers will
allow acting to minimise energy consumption while respecting the constraints of the material.
Therefore, it is interesting to study the models used for energy-related systems and those
used for system control.
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From a data science perspective, using "machine learning" is more appropriate to designate
the training of models with data. ML uses specific models to perform supervised and
unsupervised learning and statistical tools to analyse the results. Supervised learning imitates
the relationship provided in data to make predictions or estimations, either regression if a
quantity is estimated or classification if the estimation is a category. Unsupervised learning
uses the data to separate and find patterns in the data. A basic example would be to have a
set of unlabelled images of dogs and cats and to use an algorithm to separate the images.
The main difficulty of this task is the poorly defined objective. Various fields use ML tools
with different approaches [6].

Figure 1.7 – Introducing a decision model to drive the distribution and conditioning systems.
The decision model’s purpose is first to deal with the distribution system to transfer the heat
smartly by anticipating the system evolution. Then limit the cold and humidity production
by mastering the risk.

To deal with the physical phenomenon happening in DCs, we use a digital twin [88],
established on the information collected with sensors. The placement of these sensors is
essential. The sensors allow us to assess the temperature and the hygrometry of the data-
processing material to check if it is well in the imposed standards. Then, sensors are needed
to understand the phenomena occurring in the DC (air flow, solar and wind impact) to
control its evolution and thus have all the elements necessary to develop a management
model. DC modelling may require thousands of sensors using all available data, such as
server loads. Thus, this modelling allows for controlling the air conditioning and managing
the DC’s security by observing and predicting the failures. DC cooling management is a
sensitive subject. A defect in the cooling system can lead to severe consequences, which is
why explaining the models put in place and highlighting abnormal behaviour is necessary. In
France, 24% of the cost of a DC is related to maintenance. Thus, it is possible to monitor
the reliability of systems. Graphical probabilistic models are particularly well suited to this
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problem. The usual paradigms of supervised and unsupervised learning are inadequate for
solving our task. We choose to explore other tools based on statistical and probabilistic theory.
The evolution of an algorithm in an environment such as a DC is suitable for reinforcement
learning algorithms. Indeed, we update the model during its use: it performs learning by
interaction.

Models used in the literature

Concerning predicting energy-related behaviours, many studies have been conducted.
The main models used are neural networks, SVR (Support Vector Machine Regression) [96],
multiple regressions and dynamic Bayesian networks [7]. And that the use of ensemble
methods has encouraging results in the field. The purpose of these models is to predict values
such as temperatures and energy consumed. To diminish the costs, strategies have to be
implemented based on those predictions keeping men in the loop. More complex modelling
must be considered to automate the system entirely with Artificial Intelligence. Machine
learning is spread to model variables’ behaviour and anticipates consumption or temperature
peaks. One major misconception about modelling and ML is how it transforms Data, it
transforms the shape of the Data more understandably. A model, at some point, gives a
particular knowledge, knowing the system behaviour from past data and its current state.
The current state is the model’s input, and the behaviour knowledge is encoded in the learned
parameters of the model. Recycling prediction as input of a second model exploits the error of
the first model. This is why the complexity scales up quickly when modelling more complex
tasks. Graphical models such as Bayesian or hidden Markov networks are commonly used
in biology, aerospace and finance to perform prediction, simulation or control tasks. These
methods are easily interpreted because they combine particularly well with business expertise
and work well for dynamic systems (evolution in time). This algorithm can also be used to
control asynchronous systems: having action delays between the activation of the actuator
and the impact on the system. This can correspond to the time between the activation of the
fans and the expected effect and consider disturbances. Particle swarm optimisation is one
of the algorithms used to optimise systems with actors acting in parallel. They are used to
manage the allocation of resources to servers.

1.2.4 Implementation of Artificial Intelligence Systems
When applying models to physical systems, the application needs coherent implementation

development. The model has to be able to furnish decisions from data observation. Regularly
the model produces instructions for the system’s actuators. A model must be easy to interface
with different systems. Training and deploying models require computer science skills. Using
tools like National Instrument [22], [29]. Most equipment comes with its software. We must
deal with communications when creating a solution integrated into a functioning ecosystem.
It requires developing interfaces and creating a new potential source of errors. The model
should use streaming Data to optimise the DC efficiency. It has to anticipate to avoid latent
effects. From the learning perspective, we often have Data about our system. The model
ideally starts learning from this Data and finishes the training online. For modelling DCs,
having a good Data management setup is very important. It needs some software, Data
engineering, and statistical modelisation skills. The Data transformation from the sensors
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to the instructions sent to the air conditioner system must be integrated. Keeping in mind
the whole pipeline and getting close to the application is a must for avoiding standard
modelisation errors, like using Data that can’t be used, gathering the Data with the shape
adapted for the model, or ensuring the time steps are fixed. If the learning is in two steps, an
offline and an online, then the Data must be the same in the two stages. These considerations
might seem trivial but are often harder to consider and can lead to a failure of the application
of proof of concept. As explained in the article [63], the challenges result from going from
theory to practice. Deploying the models in production requires legal considerations. Our
work considers the deployment until the proof of concept on actual Data. Considering the
company ecosystem and workspace is necessary when working in a company. Often it can
harden the implementation of recent research algorithms for security purposes. It means
most recent algorithms must be reimplemented with the risk of errors. We implement our
algorithm to wholly control and customise the behaviour. This introduces the risk of making
errors in the implementation.

Computer Science in Artificial Intelligence Application

Applying statistical modelling or ML to a specific domain requires exploiting computer
science skills, especially for physical applications. Physical applications consider theoretical
values such as temperatures and hygrometry that can be measured and changed over time.
Then we have to collect those values to generate a dataset. The question of time is also
essential, the timestep is relative, and in reality, it is a continuous value. When collecting data
from the sensors, we make approximations over time of collection and on values collected.
We are mixing computer science with physics. Then we have to feed the models with those
data, we can serve them with datasets, batches of data or streams of data. All of this requires
rigorous development to limit approximations. Computer science is the bridge between
statistical learning and physical reality.

Data Center Replica

We developed a module to collect the data of a replica of DC. Then we serve the data
to a model in streaming based on a computation station and send back the decision to the
replica. The material used was a National Instrument for communicating and controlling the
replica. An interface was developed to ensure the data collection on time, some security had
to be developed to avoid material deterioration.

1.2.5 Existing Framework and Environment
There are various frameworks existing to help develop and practising reinforcement

learning, we can cite:
1. gym
2. stable-baseline3
3. garage

Environments are the equivalent of datasets for more common machine learning but are more
complex to use. Implementing an environment must comply with the Reinforcement Learning
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paradigm, and the environment must be formulated as Decision Markov Process. Some
frameworks already gather environment in an easy-to-integrate framework like Gym. Some
environments are built on physical engines. For example, MuJoCo is a free and open-source
physics engine that aims to facilitate research and development in robotics, biomechanics,
graphics and animation, and other areas where fast and accurate simulation is needed. The
point is to have accurate simulations to perform dynamic optimisation, the primary purpose is
to amend reinforcement learning in realistic environments. If reinforcement learning performs
well in realistic simulations, it can perform well in the real world. Yet there are still a lot of
differences between simulation and the real world. Using Reinforcement Learning, especially
with Deep-Learning tracking the hyper-parameter and comparisons with other algorithms in
various environments is challenging. There are frameworks like stable-baselines3 [70] which
compare runs of Reinforcement Learning. Moreover, scores and benchmarks are available on
their website and saved in their framework. This kind of framework is essential to improve
this field. The implementation of the algorithms is standardised.

1.2.6 Contribution
For this thesis, we built a framework to realise the experiments. RL and, more specifically,

DRL is a recent topic, and few packages are available. We need to use packages such as
Tensorflow and some computer science skills for DRL to implement the interaction between
environments and learning algorithms efficiently. The code must interface the physical
environment described by temperatures and other physical values obtained through sensors,
with agents encoded via statistical models. The major contribution to Orange is the code
interfacing environments with RL and DRL algorithms in scenarios that emulate reality.
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Chapitre 2

Bayesian Actor in Deep Reinforcement
Learning

2.1 Introduction
Various industrial domains encounter dynamic optimisation problems. Many issues are

hard to solve with physical methods. Some physical control applications may benefit from
using artificial intelligence especially Deep Reinforcement Learning (DRL). Some recent
research [16] has shown impressive results. They manage to use Reinforcement Learning
(RL) for controlling tokamak plasma. It helps master nuclear fusion. Such work is promising
regarding the current environmental challenges. RL may face convergence issues [90] [89]
such as over-optimism bias or stability [91]. Traditional learning issues, such problems as
overfitting [101] or catastrophic forgetting [5], [64] amplify the problem. Bayesian methods
introduce new ways of computing the weights of neural networks. It tackles the overfitting
problem [47] while modelling the uncertainty. It also has appreciable properties for sampling
from the model. When experimenting with the current framework of DRL, we struggled with
the lack of control over the actor exploration. The actor tends to saturate the action quickly
and falls into sub-optimum solutions. The mainstream uses of noise for exploration consider
using noisy action leading to the policy with close action. We expect to use more complex
exploration schemes. Bayesian methods have already been considered, especially for the value
function approximation [21].
Policy search is a hot topic in RL, and parameter exploration changes the perspective on
RL exploration. We formalise the use of the Bayesian Neural Network as policy in DRL,
emphasise the parameter space search of the framework and highlight its strength. Bayesian
neural networks ‘naturally’ implement parameter-space search as the randomness comes from
the policy parameters. The model learns noise parameters through iterations. We provide
a new policy gradient theorem to benefit from the deterministic policy gradient theorem’s
efficiency while performing parameter exploration for Bayesian neural networks’ properties.
Actor-critic algorithms in DRL have gotten much attention and solved many tasks. They
tackle both continuous and discrete domains. RL has taken advantage of deep learning
through the policy gradient theorems (see [86], [80]). DRL has seen arisen efficient algorithms,
such as Deep Deterministic Policy Gradient [55], Soft-Actor-Critic [36], and Policy Proximal
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Optimization [76]. One recurrent issue with RL is exploring the environment efficiently.
Parameter exploration was developed [74] to reduce variance during learning. Then it has
been used to tackle unstructured exploration’s "shaky" behaviour. While classic exploration
is made through noises sampled at each action, leading to jerky motion patterns (see [61]),
state-dependant noise generation avoids using noisy action generation to explore. The idea
is to focus on structural generation (see [71]). One major contribution [68] introduces layer
noise to generate policies from a central policy for deep RL algorithms. This approach is close
to our work, but with a Bayesian neural network, the noise is contained in the parameter
and shaped by learning. Another issue is the stability of RL algorithms. Distributional RL
has got attention in research recently (see [84], [11], [41]), but their approaches focus on
the critic. Our work considered that the actor also has a significant role in the stability to
avoid divergence and introduce Bayesian Neural Networks as policies in DRL. It can be
assimilated into the methods using ensemble methods [44] to encode policies. Some techniques
already use ensemble methods, like Neuroevolution methods (see [48], [85], [53]). However,
thanks to the Bayesian paradigm, we attempt to give a theoretical foundation to an ensemble
approach by using probabilities. Bayesian learning methods are being deeply studied by the
community. Another approach consists of modelling the parameters’ behaviour while learning
is an effective way of understanding learning [57] ; their work compares learning through
stochastic gradient descent to a stochastic process. They use it as a variational EM algorithm
and give tools for tuning the learning by choosing hyperparameters to avoid finding degenerate
solutions. Our current objective is to use Bayesian neural to improve policy search and, more
precisely, to encode policies during learning. Our work differs from the usual Bayesian RL
methods [33] because it focuses on using neural networks. We expect to benefit from their
recent improvements and understanding. We also provide the corresponding codebase. We
chose to demonstrate the value of our approach using more common environments. During
this thesis, we based our conceptualisation of RL on the book "Reinforcement Learning: An
Introduction" [86]. This chapter briefly reminds us of the main concepts underlying RL and
Bayesian conception.

2.2 Preliminaries

2.2.1 Dynamic Optimization and Markov Decision Processes
Dynamic optimisation formalises problems with a gain indexed on a discrete variable,

usually associated with time. Many applications are built on Dynamic Optimisation (see
[66], [13]). For example, we have computer communication networks, production operations,
computer operating systems, and macroeconomic system behaviour. Dynamic optimisation
consists in finding the optimal control function u:X,N → X to optimise a gain function
g:X,U,N → R depending on a state function x, which transition is given by f :X,U,N → X:

x(t+ 1) = f(x(t), u(x(t), t), t)
J(t) = g(x(t), u(x(t), t), t).

The point is to find optimal control for the system. For our purposes, we use the discrete
sequence t = 0, 1, 2 . . . for the time steps, and we consider the following notation:
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1. A set of states S,
2. A set of actions A,
3. A distribution over initial states p(s0),
4. A reward function r: S × A → R,
5. A discount factor γ ∈ [0, 1),
6. Transition probabilities p(st+1|st, at),
7. A deterministic policy π: S → A or stochastic π: S → P(A),
8. We consider the trajectory τ = (s0, a0, . . . sn, an . . .) with s0 ∼ p(s0), st+1 ∼ p(st+1|st, at)

and at ∼ π(st).
The state and action sets can be continuous or discrete. The policy is the main matter.

The point is to encode decision methods that can be learned to optimize the reward trajectory.
If the reward attribution is stochastic, we can equivalently define the expected reward:

r(s, a) = E[Rt|St−1 = s, At−1 = a].
But in most cases, the reward is a deterministic function of the state-action pair.

2.2.2 Deep Learning
Deep learning is a hot topic in research, but it is also a broad subject. It comes with a

bunch of models, algorithms and concepts [79]. We start by setting the bases. Multilayer
perceptrons are hierarchical models. Given the composition notation ⃝ as

⃝
i∈[[0 ; n]]

fi(x) = f0 ◦ f1 ◦ ... ◦ fn(x), (2.1)

we define a layer ψ:Ri → Rj with the weights parameters W and the bias parameters B
respectively of size [i× j] and [1 × j] and an activation function φ:

ψ:Ri → Rj

x 7→ φ(Wx+B),
(2.2)

where j is the number of neurons of the layer.
The neural network Ψ is given by:

Ψ:Ri → Rj

x 7→ ⃝
l∈L
ψl(x), (2.3)

with l the number of layers and {ψl}l∈L the layer sequence. Neural networks appeal to
function approximation or policy encoding due to their flexibility and gradient learning. They
are adapted to handle various inputs, such as images or audio streams. They are trained
with a gradient signal, which is convenient when learning is not structured as supervised
or unsupervised learning. Deep Learning potential is no more to prove but comes with
its difficulties. Models’ complexity increases the risk of not handling the convergence of
algorithms.
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2.2.3 Bayesian Probability
Probability is about evaluating uncertainty about events. When considering uncertainty,

the two main philosophies exist ; The frequentist interpretation is based on the law of large
numbers, and many repetitions of events reveal the probabilities. In contrast, the Bayesian
method is subjective and assumes knowledge about an event. Then the data observations
update the beliefs. The Bayesian paradigm has two main ideas:

1. Considering parameters as variables.
2. Usage of prior and posterior knowledge.

With the first idea, the parameter space can be explored to find the most realistic model that
best fits the data. The parameter space exploration is evaluated through the Data and its
likelihood, leading to the second idea: We build our posterior belief from our prior knowledge
and the likelihood. Those two concepts are formulated into the Bayes rule:

p(θ|y) = p(y|θ)p(θ)
p(y) . (2.4)

Where for the data y, and the parameter θ, p(θ|y) is the posterior, p(y) is the prior, p(y) the
marginal and p(y|θ) the likelihood. Bayesian theory is widely discussed in literature [3] The
trust associated with the Bayesian concepts is often discussed.

The Bayesian approaches introduce the prior and posterior and use Bayes’ theorem when
frequentist approaches are based on the likelihood. Frequentists assume hypotheses are either
true or false, while Bayesian gives a probability to the hypothesis’ truth. In the same idea,
Bayesian concepts use random variables as parameters for their models, leading to beliefs
about a model. Then, with experiments or Data, we update the beliefs to reduce uncertainty.
This is where we get close to RL, and using Bayesian concepts to find a policy seems
appealing. We start with a policy, which is updated with policy-environment interactions.
Using Bayesian tools, such as Bayesian Neural Networks, captures the uncertainty around a
policy and maintains a probability over its parameters. The uncertainty of the policy can be
integrated and learned through RL. Another point is Deep Learning uses over-parameterised
methods, making the models indiscernible. Bayesian methods diminish the issue by inferring
the posterior shaped by the data and constrained by the prior.

2.2.4 Bayesian Deep Learning
Using the Bayesian paradigm to learn the neural network parameters is a way of dealing

with issues such as over-fitting or uncertainty of the model. Moreover, the Bayesian paradigm
brings some exciting methods, such as variational inference and the ability to sample the
parameters, which can be advantageous in RL. To deal with the inference over the massive
amount of parameters, using a variational approximation to exact Bayesian update is efficient
(see [34], [43]).

Reparametrization Trick

The reparametrisation trick adds stochasticity to a DL model without breaking
differentiation properties. It was first introduced by Kingma and Welling [49] to infer latent
variables in an auto-encoder.
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Figure 2.1 – The reparametrization trick used a random variable and two parameters
to generate a random parameter. The relationship between the parameters µ, ρ and θ is
deterministic.

The reparametrized parameters are estimated using a Kullback-Liebler Divergence and
variational methods to approximate the true distribution maximising the usual loss. This
deterministic transformation is used not to break the back-propagation. It is a way of
making inferences efficiently in neural networks. The parameters are deterministic, and the
stochasticity comes from supplementary random variables usually drawn from standard
normal distributions to compute the gradient.

Bayes by Backprop

From these works, Charles Blundell [9] developed Bayes by Backprop. It regularises
the weights by minimising a compression cost, known as the variational free energy or the
expected lower bound on the marginal likelihood. This method obtains excellent performance
in practice and is easy to implement. Moreover, as it uses gradient updates, it can readily be
scaled using multi-machine optimisation schemes such as asynchronous SGD [15], and it is
compatible with GPU computations, which is convenient for RL and its huge computation
need.
Bayesian neural networks infer the parameters w by using the maximum a posteriori (MAP):

P (w|D) = P (D|w)P (w)
P (D) .

It comes that the MAP parameters w∗ are:

w∗ = arg max
w

logP (w|D) = arg max
w

[logP (D|w) + logP (w)] .

Bayes by backdrop [9] aims at minimizing the divergence of a variational posterior to the real
posterior: KL[q(w|θ)||P (w|D)]. They claim that for ϵ, a random variable having a probability
density given by q(ϵ) and w = t(θ, ϵ) where t(θ, ϵ) is a deterministic function. With the
marginal probability density of w, q(w|θ), is such that:

q(ϵ)dϵ = q(w|θ)dw. (2.5)
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Then for a function f with derivatives in w:

∂Eq(w|θ) [f(w, θ)]
∂θ

= Eq(ϵ)

[
∂f(w, θ)
∂w

∂w

∂θ
+ ∂f(w, θ)

∂θ

]
. (2.6)

For simplicity, we usually consider independent Gaussian distribution for each network
parameter. Instead of the casual deterministic parameter ξ, we use the reparametrization
trick and the parameters ηµ, ηρ, and a random variable ϵ are used in a Bayesian context. From
the learning perspective, the parameters are deterministic. When using the network, drawing
ε from the distribution of ϵ gives the value used for computation. This method doubles the
number of parameters but trains an infinite ensemble of networks. Uncertainty in the hidden
units allows the expression of uncertainty about a particular observation. Uncertainty in
the weights is complementary in that it captures uncertainty about which neural network is
appropriate, leading to regularisation of the weights and model averaging. As in the original
paper [9], we use the following deterministic transformation t:

w = t(ηµ, ηρ, ε) = ηµ + log (1 + exp(ηρ)) ε. (2.7)

This lead to the following cost with θ = (ηµ, ηρ):

F (D, θ) = KL [q(w|θ)||P (w)] − Eq(w|θ) [logP (D|w)] . (2.8)

Which is the variational free energy [30], which is also called the expected lower bound [45].
It can be approximated by:

F (D, θ) ≈
n∑

i=1

[
log q(w(i)|θ) − logP (w(i)) − logP (D|w(i))

]
. (2.9)

With i representing Monte Carlo samples drawn from the variational, using the variance
reduction technique known posterior as common random numbers [78]. The computation of
the parameters is usually done through gradient descent. The prior can be seen as a form of
regularisation.

2.3 Reinforcement Learning
By RL, we consider the machine learning framework built to perform dynamic optimisation.

Usually, machine learning trains models from an already existing dataset. In contrast, RL
is a paradigm that differs from supervised and unsupervised learning because of two main
concepts: exploration and reward. RL is about mapping situations to actions to optimize a
signal. From a possible action set, the learning agent must discover the interactions of actions
on the environment to find an optimal policy. The learning is divided into two components
exploration and parameters learning. The reward signal suggests how good the system’s state
is. RL optimises a dynamic system from which we lack knowledge but can interact with it.
The learning agent explores an environment response and improves the policy through trials
and evaluations. Like the other paradigm, it is a data-driven method, but data generation is
part of the learning process. So the agent has to explore the environment enough to discover
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the optimal policy but must also keep improving the current policy to converge toward
the optimal policy. It is the exploration-exploitation dilemma. The main specificity of RL
is learning by trial and not by example, and the main idea is that the data is generated
during the learning. RL has to both optimise and explore. RL encodes its knowledge in a
policy, which is the agent behaviour for a system state. It is a deterministic or stochastic
mapping between states and actions. The policy is guided by a reward signal, a mapping
between situations represented by system state and values, called reward. The policy goal
is to maximize the whole signal. In RL, we use environment, agent and action, but using
a controller, controlled system, and controlled signal is also common. It depends on the
practitioners.

Figure 2.2 – The interaction of an agent and an environment in a RL context.

2.3.1 Goals and Returns

Reward Design

When considering RL, the reward is significant, and in many cases, the reward function is
not determined by the environment. The signal associated with the reward has to be shaped
to reach an adequate policy. The policy that maximises the sum of the timestep rewards must
solve the task. The signal’s sparsity is a real optimisation issue (see Section 17.4 [86]). In an
episodic task, with a finite horizon for every episode, the return is the sum of the reward for
every step of the episode: G = ∑T

t=0 r(st, at). While for continuous tasks, the return is the
discounted sum of the reward G = ∑∞

t=0 γ
tr(st, at). For the episodic task, industrial robots

are automated for manufacturing welding, painting, assembly, and disassembly. We have
ongoing control for continuous tasks, such as temperature regulation or self-driving cars.

In a dynamic optimisation context (as developed in Section 2.2.1), we use the value
functions to estimate the efficiency of a policy on the environment:

Vπθ
(s) = Eτ [G|s0 = s, πθ], (2.10)

and the state-action value function:

Qπθ
(s, a) = Eτ [G|s0 = s, a0 = a, πθ]. (2.11)
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Then for an agent, the goal is to get a policy that maximises the long-term objective, also
called the total discounted reward or the return.

In RL, we use the return to achieve a goal. The return depends on the nature of the task,
which can be either a finite or infinite horizon. Both representations are unified with the
Return concept. Usually, the concepts of averaged return and discounted return are used in
the literature. Sutton suggests using the averaged return in a continuous context [86], but in
practice, the discounted return is convenient to use and spread in DRL literature.

Monte Carlo

Monte Carlo methods look for optimal policies by sampling whole trajectories. For each
state-action pair, the complete averaged return is computed. For this, we need to sample
trajectories from state-action pairs and estimate the average return for the current policy.
Monte Carlo requires framing the RL problem to be episodes. In RL, Monte Carlo methods are
opposed to methods that estimate the return from partial knowledge and anticipate the full
return. The advantages lie in the estimation’s seeming more trustworthy as no assumptions
are made on the return. Still, it is more time-consuming and more sensitive to variations in
the policy.

Figure 2.3 – Learning a policy to produce an estimate with Monte Carlo setting. The
estimate of the price every month is updated giving the final price.
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TD-learning

Temporal difference learning is a method of learning in RL. The idea is not to wait for the
whole trajectory to be sampled but to estimate the return at every step. The more estimates
we have, the more precise it is. It is a bootstrap method. Having a return estimation at every
step is very convenient for improving the trajectory the agent is choosing. The core idea in
TD-learning is using Bellman Equations to estimate the return recursively. The Bellman
equations are a way of splitting a sum into a current part and a left-over. Assume the existence
of (at)t≥t0 taking values in the set A and G: A → R such as the following sum exist:

B(t0) =
∑
t≥t0

γt−t0G(at) = G(at0) + γ
∑
t>t0

γt−t0−1G(at)

B(t0) = G(at0) + γB(t1).

Then we observe that it is possible to consider a temporal solution in solving the current
part of the Bellman equation and then recursively the future decision. Then the TD error is
given by:

δt = Rt+1 + γV (St+1) − V (St).

Updating the agent at every step is an interesting property for agents learning online.
They do not require the episodic formulation of the problem and can directly tackle continuing
tasks.

N-steps

N-step methods compromise temporal difference and Monte Carlo for estimating the
averaged return. Many applications do not require bootstrapping over one step. Using more
information from the following steps can benefit learning. With n-step consideration, the
impact of actions is observed over several steps. Using our previous example, we now have
for n-steps:

B(t0) =
∑

t0≤t<t0+n

γt−t0G(at) + γt0+nB(t0 + n).

2.3.2 Reinforcement Learning Methods

Tabular and Approximate Methods

RL theory first focused on a Markov Decision Process with finite action and state spaces.
It considered low dimensional spaces and used tabular methods for finding the optimal policy.
Many of these methods have the advantage of finding exact solutions [86].
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Figure 2.4 – Learning a policy to produce an estimate with TD-learning setting. The
estimate of the price every month is updated giving the next month’s price.

Then, methods maintaining an estimation of the return or the policy have been developed
to tackle more complex situations with continuous spaces. We have the state visitation
measure:

ρπ(s) =
∫

S

∞∑
t=0

γtp0(s)p(s → s′, t, π)ds, (2.12)

leading to the following long-term objective:

J(πθ) =
∫

S
ρπ(s)

∫
A
πθ(a|s)r(s, a)dads

= Es∼ρπ ,a∼πθ
[r(s, a)].

Many RL algorithms and methodologies have been built depending on the nature of the
tasks. Environments may have either discrete or continuous state and action spaces. For
complex tasks, we use approximation methods instead of tabular methods. in the thesis,
we focus only on approximation methods, as we consider problems where the state and
action spaces cannot be represented with tables and lists. The approximation methods are
often divided into the following methods: Model-Based, Valued-Based, Policy-Based, and
Actor-Critic.

Model Based Reinforcement Learning

In model-based methods, the environment’s behaviour is captured in a mathematical
model. The transition is modelled then a policy is derived. This kind of method is efficient
for low dimensions and discrete environments.
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Advantages Drawbacks:

1. Easy to learn (supervised learning)
2. Learn from data

1. Learn unuseful behaviour
2. The policy is still to learn

Model-based methods are attractive when the environment mechanism is plain and easy
to model, for example, if the environment is deterministic and the state space is discrete. A
complex stochastic environment may need a considerable data generation process to fit a
model. To use a model, we must be sure that the model is close enough to reality and that we
are not producing counterfactual data without risk analysis [60]. The region where the model
is valid depends on the model training and hyperparametrisation. Model-based methods
are known to be unstable when the environment is too complicated due to uncertainty and
approximation errors in the model.

Value Based Reinforcement Learning

Value-based algorithms learn how the state-action couple performs in the environment and
derive an actor from the relationship. The straightest algorithms use greedy policy derived
from the value function.

Advantages Drawbacks:

1. Directly target the gain
2. The policy is easier to obtain
3. A lot of progress has been made on

the subject

1. We are not focused on the policy

Value-based methods focus on modelling the gain associated with state-action pairs,
avoiding modelling the complexity of the environment. This conception is better when the
environment’s transitions become more complex, but the policy is easy to define. When the
value function is found, we construct the policy that optimises the value function. If the
action space is complex, finding the policy might be tricky.

Policy Based Reinforcement Learning

Policy-based methods build a policy model and update it by estimating how it performs
in the environment online. When iterating on the environment, we use the data generated to
construct the policy gradient, which indicates how to improve the policy. This method uses
the policy gradient theorem.
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Advantages Drawbacks:

1. Directly target the objective
2. Focus on the policy
3. Easy to consider stochastic policy
4. Good trade when the policy is much

simpler than the environment

1. Local optimum
2. The learned policy is specific to the

seen interactions.

Off-policy methods have also been developed to make learning easier.

Actor-Critic Reinforcement Learning

Actor-critic algorithms are a compromise between value-based and policy-based RL. It
maintains two models, one for the policy and one for the critic, both learned simultaneously.
The critic evaluates a state-action couple for the environment’s transitions associated with
a policy. The policy tries to find the actions that suit the best states following the critic
indications. Actor-critic methods are often used with deep learning. The policy and critic are
then encoded with neural networks. Some algorithms use a buffer to stack the transitions for
the learning, then sampling at each step to train the critic and the policy.

On-Policy and Off-Policy Reinforcement Learning

We can split RL algorithms into on-policy and off-policy algorithms. The on-policy
algorithms update the policy, which interacts with the environment, while the off-policy
algorithms split the learning into exploration and learning. With off-policy methods, the
parameter updates are asynchronous of the exploration. The policy for exploring the
environment, usually called the behaviour policy, differs from the target learned policy. The
updates are typically based on the history of interactions of the exploration policy. If the
exploration policy is far from the target policy, the interaction may be irrelevant to learning.
The advantages and drawbacks of using off-policy algorithms, from my perspective, are:

Advantages Drawbacks:

1. Using parallel exploration is easier.
2. Using a data buffer.
3. The exploration benefits from

separating the learned and
exploration policies.

1. The learning uses samples that are
not always relevant.

2. The learned policy might differ
greatly from the exploration policy
and have unexpected behaviour.

Using off-policy learning is advantageous when data is available before the training.
However, it is complicated to implement off-policy due to the counterfactual issue with a
target policy which differs from the behaviour policy. Different approaches have been employed
to tackle this issue, but much work might be necessary to learn policy from past experiences.
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Using off-policy RL with function approximation is cutting-edge in research [86]. Methods
like importance sampling or true gradient are necessary to deal with the challenge of the
target update and the distribution of the update. These challenges arise since the interactions
generated by an exploration policy may be unrelated to the target policies. The return must
be estimated for the target policy, not the exploration one.

2.3.3 Policy Gradient

Policy Gradient theorems

Policy gradient methods are prevalent in continuous action RL. The main idea is to
parameterise and update a policy toward the performance gradient. The main result under
policy gradient methods is the policy gradient theorem giving the formulation for the gradient
of the long-term objective. Policy gradient methods use the following assumption :

Assumption A1. We assume that the policy is differentiable with respect to its parameters.

Assumption A2. S and A are compacts from Rn and Rm.

Assumption A3. p(s), q(ϵ), p(s′|s, a), ∇ap(s′|s, a), r(s, a), ∇ar(s, a), µ(s, w)|w=t(θ,ϵ),
∇θµ(s, w)|w=t(θ,ϵ) are continuous for all s,a,ϵ, θ.

Assumption A4. There are b and L from R such as sups,a r(s, a) < b, sups,a ∇ar(s, a) < L,
sups p(s) < b, sups,a,s′ p(s′|s, a) < b, sups,a,s′ ∇ap(s′|s, a) < L.

We have the policy gradient theorem [87], that state that:

Theorem 1 (Policy Gradient Theorem [87]). Using the same notation as in the original
paper, let Qπ:S ×A → R be the unbiased function approximation of the state-action function
for the policy π:

∇θJPG(πθ) =
∫

S
ρπ(s)

∫
A

∇θπθ(a|s)Qπ(s, a)dads

= Es∼ρπ

a∼πθ

[∇θ log πθ(a|s)Qπ(s, a)].

This theorem states that we can learn a policy by evaluating the gain associated with
state-action pairs and then using the gradients of this approximation to improve the policy. In
practice, we observe that the gradients are independent of the data generation process, they
do not appear on the state distribution ρπ, so the gradient estimation can be done through
the interaction process between the policy and the environment.

Theorem 2 (Deterministic Policy Gradient Theorem [80]).

∇θJDPG(µθ) =
∫

S
ρµ(s)∇θµθ(s)∇aQ

µ(s, a)|a=µθ(s)ds

= Es∼ρµ [∇θ∇aµθ(s)Qµ(s, a)|a=µθ(s)].

The gradient expression informs that the derivative of the objective with regard to the
policy parameters does not involve computation of the derivative of the state distribution,
making it possible to sample trajectories to estimate the policy gradient. We use the policy
gradient theorems to learn a policy for policy-based or actor-critic methods.
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Deep Reinforcement Learning

DRL has seen emerged exciting algorithms, such as Deep Deterministic Policy Gradient
[55], Soft-Actor-Critic [36], and Policy Proximal Optimization [76]. One recurrent issue
with RL is exploring the environment efficiently. In applications, the exploration has some
supplementary issues tackled with coherent exploration methods. Paradoxically RL is famous
for its applications with deep learning models. At the same time, the theoretical guarantees
are poor. Sutton even said [86]: "Although current RL theory is mostly limited to methods
using tabular or linear function approximation methods, the impressive performances of
notable RL applications owe much of their success to nonlinear function approximation by
multi-layer ANNs". Policy gradient methods helped introduce neural networks as policy and
critic encoders.

Figure 2.5 – The on-policy learning architecture of an actor-critic algorithm. The agent
interacts with the environment and stacks the information generated in a data history. The
tuple state-action-reward-state usually encodes the trajectory of the system. The critic maps
state-action pairs to the Q-value based on a supervised estimation. The data history is a
buffer with a capacity. When it is complete, the new data overwrites the oldest one.

In an actor-critic representation of RL, we use the following Bellman Operator:

T Q(st, at) = r(st, at) + γ E
st+1∼p,

at+1∼π(st+1)

[Q(st+1, at+1)] . (2.13)

The Bellman’s Operator ensures the convergence of the critic by contraction and allows
consideration of iterative algorithms to find the best policy. The RL agent comprises an
actor encoding the policy and a critic encoding the value estimation. We are considering
off-policy methods with a historic H, filled with the interactions between the policy and the
environment. We use the history to update the critic and the policy. The goal is to estimate
the most suitable action for the environment at every step. The gradient methods are used to
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update the policy and Q function parameters simultaneously. The Bellman operator estimates
the Q function at every time step with its recursive formula. For continuous states and
actions space, it is well known that both the policy and the Q-value estimator can be encoded
with neural networks. The losses of both networks are minimised simultaneously. The usual
objective loss is for the actor:

Jπ(θ) = Es∼H[−Q(s, π(s|θ))],

and for the critic:

JQ(θ, θtarget) = Est,at,st+1∼H[(Q(st, at|θ) − (rt + γQ(st+1, π(st+1)|θtarget)))2].

The critic estimates the long-term reward for a given policy, and a target critic is used to
increase the stability of the learning. The discount value determines the algorithm’s horizon ;
one must choose it to fit the environment. It is a way of characterising how far an action
impacts the reward. Selecting a significant discount value might impact the convergence if
an action impacts a few subsequent rewards. However, a small value will not let the actor
converge to a long-term optimisation. The following expression can give the gradient estimator
of the actor losses for a batch S drawn from the dataset and the number of samples N :

Ĵπ(θ) = 1
N

∑
s∈H

[−Q(s, π(s|θ))].

Respectively for the critic, we have:

ĴQ(θ) = 1
N

∑
s,a∈H[(Q(st, at|θ) − (rt +Qtarget(st+1, π(st+1))))2].

When using the RL algorithm, having an exploratory policy and a target policy is
convenient. By separating the exploration and the learning, we can update the target
policy with the data collected by the exploratory policy. This approach has considerable
advantages [17]: " Off-policy methods have a wider range of applications and learning
possibilities". Still, these methods are more challenging to apply [86]: "Off-policy bootstrapping
combined with function approximation can lead to divergence and infinite MSE.".

2.3.4 Parameters and issues
RL and DRL have a lot of hyperparameters. Choosing them is challenging, and typical

methods are complicated to implement due to the computation time. A run can last for hours
or days. So testing different combinations can take weeks or months. It would be ideal to
have criteria for the other parameters. Still, they are dependent on one another and deriving
the objective is nearly impossible since we don’t have the data distribution before exploring
the environment. This is why it is crucial to understand how the hyperparameters impact
the learning to choose coherent values.
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learning-start is a parameter that delays the start to ensure the model explores and
generates enough data to start learning properly. Starting very soon to learn might be
learning onto too specific data leading the model to failure.

α is a parameter specific to our model. It is a temperature parameter, adjusting the balance
between the regularisation and the performance in the loss.

discount factor is the parameter balancing the consideration of the future with the current
reward. Values too close to one another will lead to massive critic estimation and might
produce divergence. Usually, this parameter is chosen around 0.9.

learning rate has a significant impact on learning [46]. With a significant learning rate,
the model may not converge, oscillate over the optimal solution, and even saturate the
action. In contrast, a too-small learning rate will be too slow to converge.

τ is used with target networks to stabilise the learning critic, and the actor may use a target
updated slower and toward the leading network. It is often associated with the "Polyak
update". Using two critic networks [31] is also common to reduce the over-estimation of
the critic.

Buffer length is the parameter controlling the size of the history. Large values will stack
for a long time previous experiences, even if those states are no longer beneficial for
policy improvement. While short values may "forget" too fast, the policy will not be
able to tackle the forgotten states.

Batch length represents the interactions fed to the policy and gradient during the learning.
A significant value will stabilize the learning but slow the learning and reduce the
variance, which can be beneficial to not fall too fast in a local optimum.

Figure 2.6 – Sampling policies encoded neural networks from a Bayesian neural network. We
obtain standard neural networks by drawing the whole parameter set from the distributions.

2.4 Deep Bayesian Policy Search
In this section, we formalise using the Bayesian Neural Network for policy search. We

emphasise the parameter space search of the framework and highlight its strength. We consider
the Bayesian neural network to ‘naturally’ implement parameter space search as the noise
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is applied to the parameters and is part of the definition of the model. The stochasticity of
the model is learned through the learning iterations. We present our new policy gradient
theorem to use the benefit of the deterministic policy gradient theorem efficiency with the
parameter exploration properties of the Bayesian Neural Network. Distributional RL has
gotten attention in research recently [84], [11], but their approaches focus on the critic. In our
work, we considered that the actor also has a vital role in stability and avoiding divergence.
Our work can be assimilated into the techniques using ensemble methods [44] to encode
policies. Some techniques already take advantage of ensemble methods, like Neuroevolution
methods [48], [85], [53]. However, thanks to the Bayesian paradigm, we attempt to give
statistical substance and theoretical foundation to the approach. Bayesian neural networks
are getting significant improvement and understanding from the community. Modelling the
behaviour of the parameters while learning is an effective way of understanding learning [57] ;
their work compares learning through stochastic gradient descent to a stochastic process.
They use it as a variational EM algorithm and give tools for tuning the learning by choosing
hyperparameters to avoid finding degenerate solutions.
The importance of parameter space exploration instead of action space has been highlighted in
work [68]. For some environments, coherent exploration provided by parameters investigation
is necessary. This work does not describe all the features associated with Bayesian Deep
Learning, and we aim to create a bridge between the disciplines. Our current objective is
not to improve Bayesian neural networks but to check how they can improve policy search
and, more precisely, how they can encode policies during learning. Our work differs from the
usual Bayesian RL methods [33] because it focuses on using neural networks. We expect to
benefit from their recent evolution and development. The Bayesian neural network framework
applies noise directly to the network parameters. The following works [104], [68], [77] have
already studied the action space versus the parameter space exploration problem. We use
parameter space exploration, which is inherent in our framework.

1. We use the recent improvements in Bayesian neural networks to infer parameters in
neural networks (see [9]), set and learn the randomness of our policy.

2. We use the reparametrisation approach to sample policies and realize coherent
exploration through the policy’s parameter space with an algorithm.

3. We furnish a version of the policy gradient theorem to justify using Bayesian neural
networks as actors in actor-critic methods.

Using the Bayesian neural network as a policy is new and has the same objective as parameter
exploration (see [71]). Another approach is considering parameter space exploration and
exploring the policies instead of the actions. One significant contribution introduces layer noise
to generate policies from a central policy (see [68]). This chapter briefly reminds RL, policy
gradient methods, and the Bayesian Neural Networks trained with Bayes by Backprop [9].
Then introduce our agent and its algorithm and give results on typical benchmarks.

2.4.1 Bayesian Deep Policy
Our framework is built over the policies gradient theorem in an actor-critic configuration.

We use Bayesian neural networks for policy encoding. In the original Bayes by backprop
paper [9], an example of RL is given on Contextual Bandits. We explored the idea of using
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Bayesian neural networks for RL. In the example, the Bayesian neural network is used in a
Q-learning method with Thompson sampling. Our work uses a Bayesian neural network as an
ensemble policy encoding. The action-value function may use Montecarlo’s estimation. Our
policy is built on a parameter set θ and the random variable ϵ using our reparametrisation t,
and we obtain w = t(θ, ϵ). When using our policy, we denote a = πθ(s, w), meaning for the
encoded policy with θ as parameters and w as the generated network. We start by defining
the Bayesian Deep Policy:

Definition 1 (Bayesian Deep Policy). A Bayesian Deep Policy πθ depends on the following:
1. A set of parameters θ from Ω.
2. A set of stochastic random variable ϵ from E.
3. A reparametrisation function t: Ω × E → W .
4. A prior probability p.

The parameters θ = (ηµ, ηρ) gives the posterior probability. If we use the reparametrisation
given in Equation (2.7), we have: w|θ ∼ N (ηµ, log(1 + exp(ηρ))). For the Bayesian Deep
Policy, sampling the random variable ϵ is equivalent to sampling standard neural network µw

whose parameters are w = t(θ, ϵ). Bayesian Neural Network can also be seen as a function
from S × E to the action space A. a = µ(s, ϵ). The probability of getting an action a under
the Bayesian policy for the state s is given by:

p(a|s, θ) =
∫

Ω
q(w|θ)p(a = µw(s))dw =

∫
E
q(ϵ)1{a=µ(s,ϵ)}dϵ. (2.14)

As the generated standard neural networks are entirely deterministic, p(a = µ(s, ϵ)) is
always one or zero. For the value function, we have the following from the definitions ((2.10),
(2.11)):

V π(s) =
∫

A
p(a|s, θ)Qπ(s, a)da.

From Equation (2.14), we get rid of action space integral:

V π(s) =
∫

Ω
q(w|θ)Qπ(s, a)|a=µw(s)dw (2.15)

= Eq(w|θ)
[
Qπ(s, a)|a=µw(s)

]
= Eq(ϵ)

[
Qπ(s, a)|a=µθ(s,ϵ)

]
.

We notice that the integral over the action space is not valuable anymore and is replaced by
the integral over the parameter space. We denote it as a parameter space search instead of
an action space search. We can express the associated Bellman operator for the policy πθ as
follows:

T Qπ(s, a) = r(s, a) + γEp(s′|s,a)
q(w|θ)

[Qπ(s′, µw(s′))]

= r(s, a) +
∫

S
γp(s′|s, a)

∫
Ω
q(w|θ)Qπ(s′, a)|a=µw(st1 )dwds

′. (2.16)
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Then our objective function becomes:

J(πθ) =
∫

S
p0(s)V π(s)ds

=
∫

S
p0(s)Eq(ϵ)

[
Qπ(s, a)|a=µθ(s,ϵ)

]
ds

= Eq(ϵ)

[∫
S
p0(s)Qπ(s, a)|a=µθ(s,ϵ)ds

]
. (2.17)

We formulate the following distribution, which will be used as the likelihood in classical MAP
approaches:

P (πθ = π∗|ρπ) = exp(
∫

S p0(s)Qπ(s, a)|a=µθ(s,ϵ)ds)
Z

. (2.18)

The normalisation constant does not depend on the action and won’t participate in the
gradient direction. This consideration has already been seen in the Soft Actor-Critic [36].
This distribution is closely linked to policy performance from the critic’s perspective. Now
we have formulated the RL objective Equation (2.17), we have to plug it into the Bayesian
loss given by Equation (2.8), and we use it as an objective, conducting us to the following
policy objective:

J∗(πθ) =
∫

S
p0(s)Eq(ϵ)

[
Qπ(s, a)|a=µθ(s,ϵ)

]
ds− αKL [q(w|θ)||p(w|θprior)] . (2.19)

We add a parameter α to balance the complexity cost relative to the likelihood cost.
Now we have formulated the objective function. We have to ensure the gradients still have a
convenient form. We formulate our version of the policy gradient theorem for Bayesian neural
network policies. We follow the same ideas and assumptions as the previous versions.

2.4.2 Bayesian Deterministic Policy Gradient
Theorem 3 (Bayesian Deterministic Policy Gradient). Our policy gradient theorem, based on
the usual assumptions (A1, A2, A3, A4), uses the reparametrisation trick from the Bayesian
neural networks. This is from the proposition from Charles Blundell (see [9]), stating: Let
ϵ be a random variable having a probability density given by q(ϵ) and let w = t(θ, ϵ) where
t(θ, ϵ) is a deterministic function. Suppose further that the marginal probability density of w,
q(w|θ), is such that:

q(ϵ)dϵ = q(w|θ)dw. (2.20)
Then for a function f with derivatives in w:

∂Eq(w|θ) [f(w, θ)]
∂θ

= Eq(ϵ)

[
∂f(w, θ)
∂w

∂w

∂θ
+ ∂f(w, θ)

∂θ

]
. (2.21)

Then we have the gradients:

∇θJ
∗(πθ) = Eq(w|θ)

[∫
S
ρπ(s)∇θµθ(s, ϵ)∇aQ

θ(s, a)|a=µθ(s,ϵ)ds

+ α (∇θ logP (w) − ∇θ log q(w|θ))]
= Eq(ϵ),ρπ

[
∇θµθ(s, ϵ)∇aQ

θ(s, a)|a=µθ(s,ϵ)ds

+α
(
∇θ logP (w)|w=t(θ,ϵ)−∇θ log q(w|θ)|w=t(θ,ϵ)

)]
.
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The Theorem 3 introduce the expectation under the state visitation measure for the
gradients, meaning that we can sample from the visited states to estimate the gradients. It
also uses the fact that the sampled policies are deterministic. It shares both the ideas of
the policy gradient theorem and the deterministic gradient theorem. The main idea is when
using a reparametrisation such as q(ϵ)dϵ = q(w|θ)dw, we can update the model by sampling
standard neural networks and their interactions with the environment. It is very convenient
as we can choose the frequency of neural network sampling and sample one every episode if
necessary. Concerning the prior choice, the main principle from the robust Bayesian analysis
is not to choose prior, leading to unreasonable variations. Two factors play a significant role
when choosing the hyperparameters:

1. The parameter α balances the gradient between the compression cost and the likelihood.
To choose this value, it is necessary to consider the size of the reward.

2. The initialisation of the prior and the posterior depends on the environment. It will
shape the exploration. The example of the environment LunarLanderContinuous shows
the importance of a good initialisation.

Those parameters are keys for dealing with the dilemma of exploitation versus exploration.
Choosing them is complex and can be studied from a robust Bayesian perspective. The
main principle is to choose them to have reasonable variation. However, while the action
variation with respect to the parameter depends on the network architecture, the variation
in reward with the action is entirely dependent on the environment. The main issue with
learning methods is that the gradient is built on the function approximation. When using
non-linear function approximations such as neural networks, we don’t have the theoretical
guarantee of the equality of gradients. The question of the prior is fundamental in Bayesian
Learning. Through our work, we try to explore a way of integrating it into RL. We use it as
a regularisation of the parameters.

Algorithm 1 : Bayesian Deep Policy Search
procedure Learning(θ, θQ)

Env Initialization
θ Initialization
θprior ← θ
θQ Initialization
D = {}
for number of episodes do

for number of samples do
Draw ϵ
s = Env.reset()
for number of iterations do

a← µθ(s, ϵ)
r, s′ ← Env.step(a)
append s, a, s′, r to D
s← s′

for number of updates do
for number of actors do

Draw w ∼ θ
Estimate gradients of J(πθ)
Estimate gradients of JQ

Update θ
Update θQ

The algorithm 1 presents the procedure to train an agent using coherent noise application.
The noise comes from the drawing of ϵ before each rollout.
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2.4.3 Implementation

We used Python, TensorFlow and Keras to develop the Deep Bayesian Policy agent.
Tensorflow and Keras allow us to change architecture and loss function in detail by over-
classing the existing classes. We have created a Bayesian layer with a random component.
Drawing neural networks is a functionality that is available for the user. The point is to let
the user choose when sampling the parameters, which is very useful for keeping coherent
noise during a rollout.

2.5 Results and Discussion

2.5.1 Environment

To assess the performance of our agent, we choose to evaluate its performance and compare
it with usual environments. The point is to demonstrate its ability to solve complex tasks
with state-of-the-art performance. We also show that it has specific exploration advantages,
as it can solve problems that usually need supplementary strategies to be solved. We chose
the following environment to perform our evaluation:

MountainCarContinous is a sparse deterministic environment in which the agent tries
to make a car reach the top of a hill. In this environment, the agent action is a value
proportional to the directional force applied to the car. The reward penalizes a value
proportional to the squared of the action at each step and gives +100 if the car succeeds
in reaching the top of the hill. While the agent failed this task, the reward will suggest
more minor actions, leading to a poor policy. To succeed, the agent must explore the
environment before reaching the local optimum. This environment shows the ability of
an agent to solve a simple problem with poor information.

HalfCheetah is based on the work by P. Wawrzynski in “A Cat-Like Robot Real-Time
Learning to Run”. The HalfCheetah is a 2-dimensional robot with nine links and eight
joints connecting them (including two paws). The goal is to apply torque on the joints
to make the cheetah run forward (right) as fast as possible, with a positive reward
allocated based on the distance moved forward and a negative reward allocated for
moving backwards. The torso and head of the cheetah are fixed, and the torque can
only be applied on the other six joints over the front and back thighs (connecting to the
torso), shins (connecting to the thighs) and feet (connecting to the shins). Observations
consist of positional values of different body parts of the cheetah, followed by the
velocities of those individual parts (their derivatives), with all the positions ordered
before all the velocities. The reward consists of two parts: A reward of moving forward,
which is positive if the cheetah runs forward (right). A cost for penalising the cheetah
if it takes too large actions.

LunarLanderContinuous is a starship trajectory optimization problem. The goal is to
land the starship on a pad without crashing. The landing pad is always at coordinates
(0,0). The coordinates are the first two numbers in the state vector. The action space
has two dimensions, the first determines the throttle of the main engine, while the
second specifies the throttle of the lateral boosters. The main engine will be turned
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off entirely if the primary is negative and the throttle scales from 50% to 100% for
0 <= main <= 1. Similarly, if -0.5 < lateral < 0.5, the lateral boosters will not fire.
If lateral < -0.5, the left booster will fire ; if lateral > 0.5, the right booster will fire.
Again, the throttle scales affinely from 50% to 100% between -1 and -0.5 (and 0.5 and
1, respectively). State space has eight dimensions: the coordinates of the lander in x
and y, its linear velocities in x and y, its angle, its angular velocity, and two booleans
representing whether each leg is in contact with the ground. The reward for landing
at the landing pad and coming to rest is about 100-140 points. The starship loses its
reward if it moves away from the landing pad. If the lander crashes, it loses 100 points.
If it comes to rest, it receives an additional +100 points. Each leg with ground contact
is +10 points. Firing the main engine is -0.3 points in each frame. Firing the side engine
is -0.03 points in each frame. We solve the problem if we obtain at least 200 points.

2.5.2 Compared Models

TRPO : Trust Region Policy Optimisation is a policy gradient algorithm authored by
Schulman and al. [75]. They have constructed their policy update on the following
constraint with C, a value discussed in the original paper:

J(πθ+∆θ) − J(πθ) ≥ Lπθ+∆θ
− CDKL(πθ|πθ+∆θ).

The novelties of this algorithm can be summarized as follows:
— The conjugate gradient is used to avoid computing the Hessian, and the Fisher

information matrix can be used without inversion
— The constraint on the update DKL(θ|θk) ≤ δ is enforced by reducing the step size

until the condition is fulfilled
— When updating the actor to a new policy, the improvement is checked: if L(θ) < 0,

then the improvement is rejected
PPO : Proximal Policy Optimisation [76] has various implementations, and we choose to

focus on the clipped version. The algorithm keeps the idea of constraining the learning
like the TRPO but simplifies the loss computations by clipping the loss on every update
if needed:

LCLIP
θk

(θ) = Eτ∼πk

[
T∑

t=0

[
min(rt(θ)Âπk

t , clip(rt(θ), 1 − ϵ, 1 + ϵ)Âπk
t )
]]

0

DDPG/TD3 : Deep Deterministic Policy Gradient [55] is an actor-critic algorithm which
concurrently learns a Q-function and a policy. It uses off-policy data stored in a buffer
and the Bellman equation to learn the state-action function and the approximated
state-action function to learn the policy. For stability, supplementary neural networks
are used to update the other network. The target actor is at the loss of the critic, and
the target critic is used for the actor update. The target network is updated using
the "polyak" update toward its actual network. The actor is entirely deterministic, so
noise is added to the output actions to improve the exploration of the environment.
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Using two critics and choosing the minimum value between them for actor evaluation,
updating the actor with a lower frequency than the critic and adding noise to the
action to perform the critic update lead to the Twin Delayed Deep Deterministic Policy
Gradients (TD3) [31].

ARS : Augmented Random Search [58] is an algorithm proposed by Horia Mania and al.
that focuses on applying noise to policy parameters. For a constant υ and a random
vector of numbers drawn from a normal distribution δ, using n policies and rollouts, a
real stepsize α > 0, the gain G(πk,j,+) for the policy πk increased with the je noise
vector drawn and G(πk,j,−) if the noise vector j applied was multiplied by −1, δ(j) the
maximum of the two gain for j and their standard deviation σG leading to the following
policy update:

θk+1 = θk + α

nσG

n∑
j=1

[G(πk,j,+) −G(πk,j,−)] δ(j).

Moreover, they proposed a version with a normalisation of the policy noise based on
the mean and covariance of the states encountered.

A2C : A2C [59] focus on using various actors asynchronously to explore more efficiently.
They based their work on using asynchronous gradient descent for deep neural network
optimisation. They found that ensembling the actors asynchronously is empirically
robust in learning.

SAC : Soft Actor-Critic is a model-free DRL algorithm developed by Tuomas Haarnoja and
al. [36]. The algorithm is an off-policy actor-critic DRL algorithm having an actor that
maximises the expected reward and the entropy. For this, they consider the following
objective for the actor, with H the entropy:

J(π) =
T∑

t=0
E(st,at)∼ρπ [r(st, at) + αH(π(·|st)] .

They update the critic using the following Bellman operator:

T Q(st, at) = r(st, at) + γEst+1∼p [V (St+1)] .

with

V (St+1) = Eat∼π[Q(st, at) − log π(at|st)].

Then they update the policy according to the following:

πnew = arg min
π

DKL

(
π(·|st)|

exp(Qπold(st, ·))
Zπold(st)

)
.

TQC : The Truncated Quantile Critics [50] tackles overestimation bias as one of the most
significant impediments to accurate off-policy learning. This algorithm blends three
ideas: distributional representation of a critic, truncation of critics’ prediction, and
ensembling of multiple critics. They use distributional representation and truncation
for arbitrary granular overestimation control. TQC values sample efficient off-policy RL
with an accurate approximation of the Q-function.

59



2.5.3 Results

Table 2.1 – Estimated rewards from two hundred runs for different state-of-art agents and
our agent on the environments of HalfCheetah-v3, LLC-v2 and MCC-v0

Model HalfCheetah-v3 LLC-v2 MCC-v0

TQC 12102.81 +/- 119.24 279.66 +/- 13.79 76.40 +/- 38.49
TRPO 1785.07 +/- 55.05 273.95 +/- 23.86 92.59 +/- 0.08
PPO 5836.27 +/- 171.68 274.47 +/- 24.37 94.57 +/- 0.45
DDPG / 223.87 +/- 80.41 93.51 +/- 0.05
TD3 9709.01 +/- 104.84 / 93.46 +/- 0.05
ARS 4046.14 +/- 2253.39 / 96.50 +/- 0.78
A2C 3096.61 +/- 82.49 83.21 +/- 135.70 91.17 +/- 0.26
SAC 9564.23 +/- 79.21 251.89 +/- 71.75 94.53 +/- 1.26
DBP 10611.30 +/- 137.90 231.30 +/- 60.79 91.90 +/- 1.62

The results of our experiments are summarized in Table 2.1. This table shows the rewards
estimated on HalfCheetah-v3, LLC-v2 and MCC-v0 environments. Our agent was tested
on two hundred runs while other agents’ results were obtained from stable-baseline-3 [70],
all taken at 1M steps. Using public results ensures reproducibility and results validated by
the community avoiding error introduction and counter-performance from the state-of-art
algorithms. It is also a way of avoiding unnecessary computations. Indeed, the stability and
reproducibility of DRL [42] is a serious matter. Still, the need for power computation to tune,
evaluate the stability and experiment deeply with an agent lets us only show how promising
Bayesian Neural Network Actors are for DRL. To evaluate our model, we take the centre of
the actor distribution. For this, we fix all the ηρ parameters to 0. Our model is evaluated
on a single training, and then we run 200 episodes with the trained agent to demonstrate
the ability of our agent to solve a task. The results on the mountainCar-continuous-v0 show
how the model can make coherent exploration. Indeed mountainCar-continuous-v0 is hard to
solve without reward modification or specific strategy [12]. Models from stable-baseline-3 use
state-dependent exploration [74] and generalized state-dependent exploration [71] noise to
solve this environment. Our model includes coherent exploration in the model conception
and only needs a particular prior specification to solve it. Indeed the prior needs to be "wide"
enough to include a policy that can be successful. The LunarLander-continuous environment
has particular action and state spaces. The actions activate the boosters only over a threshold,
making exploring such an environment difficult. Our agent seems to be more flexible when it
comes to environment exploration.

2.5.4 Limitation and perspective

Deep Bayesian policy is straightforward to implement, as it means replacing standard
policies with a deep neural network, making little modifications. Then parallelisation is also
easy to implement as it is part of the framework as a Bayesian neural network ensemble model.
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The difficulty with Bayesian methods is to choose a prior correctly. For the Bayesian neural
networks, the prior plays primarily the role of penalisation. The second point is to select the
model initialisation. In our case, we initialise the model to the prior. In our experiments,
we observe using α equal to zero still gives good results and may converge faster in some
cases. However, using a larger value of α is a way of containing the parameters and slowing
the convergence to control exploration. the original paper highlighted that the likelihood
cost and the compression cost should be balanced when using Bayesian inference over the
parameters of a neural network. Perhaps using decreasing series as our α may be interesting.
In practice, we observe good results even with an α equal to zero. With no contribution
from the prior, the agent can still converge but tends to get a more significant value for
the parameters. The prior can be studied deeply to improve the exploration strategy. For
example, considering a mix of models of prior and posterior. Other RL approaches, such as
entropy objectives, may benefit the algorithms. New approaches in the Bayesian learning
field may also improve such methods. For example, using normalising flow [56] would improve
understanding and usage of the probabilities inside the network. Other losses and Bayesian
inference approaches are promising to train neural networks (see [57]). One major perspective
for RL is to develop "curiosity" (see [86] Section 17.6). Probabilities may have a card to
play by using a cost based on entropy or considering different kinds of processes for the
parameters. Bayesian Neural Network is a hot topic in Deep Learning. We can expect that
the improvement of the field can be used in DRL. Through these experiments, we didn’t add
action noise to the action generation to concentrate on the policy noise generation. But both
may be used simultaneously. We could consider using a Bayesian neural network for the critic
to improve the performance as considered in [41]. Still, the point of this chapter was to show
the improvement of using a Bayesian neural network as policy encoding.

2.6 Conclusion

This chapter introduces how to implement a Bayesian neural network in a DRL concept
with a theoretical foundation and an algorithm. The framework encapsulates the policy
exploration concept and furnishes the possibility of using coherent exploration schemes.
Sampling the actor allows tuning the exploration by leveraging the number of networks
sampled. We obtain reproducible results on our physical control application by improving the
procedure’s stability. We compared the Bayesian neural network agent and state-of-the-art
algorithms in the Lunar-Lander, mountain-car-continuous and Halfcheetah environments.
Our agent benefits from a robust exploration due to its definition, making it unnecessary
to use a supplementary exploration strategy for an environment like the mountain car. We
first presented the agent and its behaviour with a plain environment to furnish intuition on
how α and the initialisation impact the learning. Then we realised a comparison showing
the benefit of our approach and highlighting the benefit of using deep Bayesian methods for
encoding the policy in DRL.
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2.7 Appendix

2.7.1 Proof of Theorem 3
We use the assumptions A1, A2, A3 and A4 to use Fubini’s theorem and Leibniz’s

integration rule along with the following proof.

Proof.
Starting with the Equation of the value function (2.15) and the Bellman Equation (2.16):

∇θV
θ(st0) = ∇θEq(w|θ)

[
Qθ(st0 , µw(st0))

]
= ∇θ

∫
Ω
q(w|θ)

[
r(st0 , a)|a=µw(st0 )

+
∫

S
γp(st1 |st0 , µw(st0))

∫
Ω
q(w′|θ)Qθ(st1 , a)|a=µw′ (st1 )dw

′dst1

]
dw.

Then we use the reparametrisation and the result given in Equation (2.21):

∇θV
θ(st0) = ∇θ

∫
E
q(ϵ)

[
r(st0 , a)|a=µθ(st0 ,ϵ)

+
∫

S
γp(st1|st0 , µθ(st0 , ϵ))

∫
E
p(ϵ′)Qθ(st1 , a)|a=µθ(st1 ,ϵ′)dϵ

′dst1

]
dϵ.

Now that the integral does not depend on θ anymore, we use the Leibniz integral rule:

∇θV
θ(st0) =

∫
E
q(ϵ)

[
∇θµθ(st0 , ϵ)∇ar(st0 , a)|a=µθ(st0 ,ϵ)

+
∫

S
γ∇θµθ(st0 , ϵ)∇ap(st1|st0 , a)|a=µθ(st0 ,ϵ)

∫
E
p(ϵ′)Qθ(st1 , a)|a=µθ(st1 ,ϵ′)dϵ

′dst1

+
∫

S
γp(st1|st0 , a)|a=µθ(st0 ,ϵ)∇θ

∫
E
p(ϵ′)Qθ(st1 , a)|a=µθ(st1 ,ϵ′)dϵ

′dst1

]
dϵ.

Now we notice in the first part of the state-action value function, and we start to gather
what’s left to retrieve the state-action visitation measure under the policy:

∇θV
θ(st0) =

∫
E
q(ϵ)

[
∇θµθ(st0 , ϵ)∇a

(
r(st0 , a)|a=µθ(st0 ,ϵ)+

∫
S
γp(st1 |st0 , a)Eq(ϵ)[Qθ(st1 , a)|a=µθ(st1 ,ϵ)]

)
+

∫
S
γp(st1 |st0 , a)|a=µθ(st0 ,ϵ)∇θ

∫
E
p(ϵ′)Qθ(st1 , a)|a=µθ(st1 ,ϵ′)dϵ

′dst1

]
dϵ

= Eq(ϵ)
[
∇θµθ(st0 , ϵ)∇aQ

θ(st0 , a)|a=µθ(st0 ,ϵ)
]

+
∫
E
q(ϵ)

[∫
S
γp(st1|st0 , a)|a=µθ(st0 ,ϵ)∇θ

∫
E
p(ϵ′)Qθ(st1 , a)|a=µθ(st1 ,ϵ′)dϵ

′dst1

]
dϵ

= Eq(ϵ)
[
∇θµθ(st0 , ϵ)∇aQ

θ(st0 , a)|a=µθ(st0 ,ϵ)
]

+
∫
S
p(st0→t1 |π)γ∇θ

∫
E
q(ϵ)Qθ(st1 , a)|a=µθ(st1 ,ϵ)dϵdτ.
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Then we have from the value function definition:

∇θV
θ(st0) = Eq(ϵ)

[
∇θµθ(st0 , ϵ)∇aQ

θ(st0 , a)|a=µθ(st0 ,ϵ)
]

+
∫
S
p(st0→t1|π)γ∇θ

∫
E
q(ϵ)r(st1 , a)|a=µθ(st1 ,ϵ)

+ γ
∫

S
p(st2|st1 , a)|a=µθ(st1 ,ϵ)

∫
E
p(ϵ′)Qθ(st2 |st1 , a)|a=µθ(st1 ,ϵ′)dϵ

′dϵdτ.

We keep expanding on the last part:

∇θV
θ(st0) = Eq(ϵ)

[
∇θµθ(st0 , ϵ)∇aQ

θ(st0 , a)|a=µθ(st0 ,ϵ)
]

+
∫
S
p(st0→t1|π)γ

∫
E
q(ϵ)∇θµθ(st1 , ϵ)∇ar(st1 , a)|a=µ(st1 ,w)

+ γ
∫

S
∇θµθ(st1 , ϵ)∇ap(st2 |st1 , a)|a=µθ(st1 ,ϵ)

∫
E
p(ϵ′)Qθ(st2|st1 , a)|a=µθ(st1 ,ϵ′)dϵ

′

+ γ
∫

S
p(st2|st1 , a)|a=µ(st1 ,w

∫
E
p(ϵ′)∇θQ

θ(st2|st1 , a)|a=µθ(st1 ,ϵ′)dϵ
′dϵdτ

= Eq(ϵ)
[
∇θµθ(st0 , ϵ)∇aQ

θ(st0 , a)|a=µθ(st0 ,ϵ)
]

+
∫
S
p(st0→t1|π)γ

∫
E
q(ϵ)∇θµθ(st1 , ϵ)∇aQ

θ(st1 , a)|a=µθ(st1 ,ϵ)

+ γ
∫

S
p(st2|st1 , a)|a=µθ(st1 ,ϵ)

∫
E
p(ϵ′)∇θQ

θ(st2|st1 , a)|a=µθ(st1 ,ϵ′)dϵ
′dϵdτ

= Eq(ϵ)
[
∇θµ(st0 , ϵ)∇aQ

θ(st0 , a)|a=µθ(st0 ,ϵ)
]

+
∫
S
p(st0→t1|π)γ

∫
E
q(ϵ)∇θµθ(st1 , ϵ)∇aQ

θ(st1 , a)|a=µθ(st1 ,ϵ)dϵdτ

+
∫
S
p(st0→t2|π)γ2

∫
E
q(ϵ)∇θµθ(st1 , ϵ)∇aQ

θ(st2 , a)|a=µθ(st1 ,ϵ)dϵdτ

...

=
∫

S×E

∞∑
t=t0

γt−t0p(st0→t)∇θµθ(st, ϵ)∇aQ
θ(st, a)|a=µθ(st,ϵ)dstdϵ.

We notice Qθ(st, a)|a=µθ(st,ϵ) is not dependant of t. So we obtain by injecting the previous
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result into Equation (2.19) and using the Leibniz integral rule:

∇θJ(θ) = ∇θ

∫
S
p0(s)V θ(s)ds− α∇θKL(q(w|θ)|p(w|θprior))

=
∫

S
p0(st0)∇θV

θ(st0)dst0 − α∇θKL(q(w|θ)|p(w|θprior))

=
∫

S
p0(st0)

∫
S×E

∞∑
t=t0

γt−t0p(τt0→t)∇θµθ(st, ϵ)∇aQ
θ(st, a)|a=µθ(st,ϵ)dstdϵdst0

−α∇θKL(q(w|θ)|p(w|θprior))

=
∫

S×E

∞∑
t=t0

γt−t0
∫

S
p0(st0)p(τt0→t)∇θµθ(s, ϵ)∇aQ

θ(s, a)|a=µθ(s,ϵ)dsdϵ

−α∇θKL(q(w|θ)|p(w|θprior))

We have the state-visitation measure from Equation (2.12):

=
∫

S
ρπ(s)∇θµθ(s, ϵ)∇aQ

θ(s, a)|a=µθ(s,ϵ)dτ − α∇θKL(q(w|θ)|p(w|θprior))

= Eρπ

[
∇θµθ(s, ϵ)∇aQ

θ(s, a)|a=µθ(s,ϵ)
]

− α∇θKL(q(w|θ)|p(w|θprior))

= Eq(w|θ),ρπ

[
∇θµθ(s, ϵ)∇aQ

θ(s, a)|a=µθ(s,ϵ)ds+ α (∇θ log p(w|θprior) − ∇θ log q(w|θ))
]
.

2.7.2 Likelihood and Compression Cost
The parameters are drawn from the posterior to compute this gradient. In the set θ =

(W l
µ,W

l
ρ, ϵ

l
W , B

l
µ, B

l
ρ, ϵ

l
B)l∈L we write η = (ηµ, ηρ), with ηµ, ηρ the corresponding parameters

in the parameters’ matrix either from W or from B. We consider the gradients of the loss
with respect to the parameters given by:

log(q(w|θ)) =
∑

η∗∈w

[
−1

2

(
log(2π) + 2 log(log(1 + exp(ηρ))) + (η∗ − ηµ)2

log2(1 + exp(ηρ))

)]
,

=
∑

η∗∈w

[
−1

2
(
log(2π) + 2 log(log(1 + exp(ηρ))) + ϵ2

)]
,

∂ log(q(w|θ))
∂ηµ

= 0,

∂ log(q(w|θ))
∂ηρ

= − 1
(1 + exp(−ηρ)) log(1 + exp(ηρ)) .

Moreover, we have the prior:

log(p(w|θprior)) =
∑

η∗∈w

[
−1

2

(
log(2π) + 2 log(log(1 + exp(ηprior

ρ ))) +
(η∗ − ηprior

µ )2

log2(1 + exp(ηprior
ρ ))

)]
,
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When injecting the reparametrisation trick, it comes from ((2.7)):

∂p(w|θprior)
∂ηµ

=
ηprior

µ − ηµ − ϵ log(1 + exp(ηρ))
log2(1 + exp(ηprior

ρ ))
,

It comes that:
∂p(w|θprior)

∂ηρ

=
ϵ(ηprior

µ − ηµ) − ϵ2 log(1 + exp(ηρ))
(1 + exp(−ηρ))(log2(1 + exp(ηprior

ρ )))
.

Then we have the gradients:

∇ηµ = α

log2(1 + exp(ηprior
ρ ))

[
ηprior

µ − ηµ − ϵ log(1 + exp(ηρ))
]

− 1
|S|

∑
s∼S

∂Q(s, π(s, w))
∂π(s, w)

∂π(s, w)
∂ηµ

.

and for the ∇ηρ:

∇ηρ = α

1 + exp(−ηρ)

[
ϵ(ηµ − ηprior

µ )
log2(1 + exp(ηprior

ρ ))
+
ϵ2 log2(1 + exp(ηρ)) − log2(1 + exp(ηprior

ρ ))
log2(1 + exp(ηprior

ρ )) log(1 + exp(ηρ))

]

− 1
|S|

∑
s∼S

∂Q(s, π(s, w))
∂π(s, w)

∂π(s, w)
∂ηρ

Considering the reparametrisation, σ = log(1 + exp(ηρ)) and σprior = log(1 + exp(ηprior
ρ )):

∇ηρ = α(exp(σ) − 1)
exp(σ)

[
ϵ(ηµ − ηprior

µ )
σ2

prior
+
ϵ2σ2 − σ2

prior

σ2
priorσ

]

− 1
|S|

∑
s∼S

∂Q(s, π(s, w))
∂π(s, w)

∂π(s, w)
∂ηρ

.

By taking the expectation over the random variable ϵ:

Eq(ϵ) [∇ηµ] = α

log2(1 + exp(ηprior
ρ ))

[
ηprior

µ − ηµ

]
− 1

|S|
∑
s∼S

Eq(ϵ)

[
∂Q(s, π(s, w))
∂π(s, w)

∂π(s, w)
∂ηµ

]
,

and

Eq(ϵ) [∇ηρ] = α(exp(σ) − 1)
exp(σ)

 1
2
√

2σ
2 − σ2

prior

σ2
priorσ


− 1

|S|
∑
s∼S

Eq(ϵ)

[
∂Q(s, π(s, w))
∂π(s, w)

∂π(s, w)
∂ηρ

]
.

The gradients inform us of the importance of α in the gradients. We can directly observe
its impact on the parameters trajectories of our agent in our plain environment presented in
Section 3.3. The parameter trajectories are shown in Figure 3.7
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Architecture Considered

In DRL many configurations are used for actors and critics. For the different experiments,
these are the architectures we considered:

parameter HalfCheetah-v3 LLC-v2 MCC-v0
Actor 400-300 250 - 250 50 - 50
Critic (64 - 64) - 350 - 350 (64 - 64) - 256 - 256 (50 - 50) - 512 - 512

rho_init -3. -2. -1.5
batch size 256 256 256
learn rate 0.0005 0.0003 0.003

alpha 0.000001 0.00005 0.000001
batch length 1 000 000 500 000 100 000

activation (actor-critic) tanh-relu tanh-relu tanh-relu

The main idea is to use the best configurations for the algorithm. The results presented in
table 2.1 show the performance of the algorithms kept as references. The performances we
obtained with our model show the possibilities of performance. For the applications, we used
the following configurations:

parameter Plain Environment Physical Application
Actor 20 - 20 30 - 30
Critic (16 - 16) - 64 - 64 (32 - 32) - 400 - 400

rho_init -3. -3.5
batch size 64 1024
learn rate 0.001 0.0001

alpha 0.0001 0.00003
batch length 100 000 10 008 000

activation (actor-critic) tanh - relu tanh - relu

Those architectures were chosen by starting using commonly used parameters such as those
found on the implementations of stable-baseline [70]. They have published the parameters
associated with the runs they made, giving standard parameters to use. Then closely watching
the learning gives much information on the performance of the parameters, but diagnosing
the source of an issue is still complicated.
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Chapitre 3

Application to Data Center Simulation

3.1 Introduction
Energy consumption due to air conditioning systems in DCs and buildings is a hot topic.

With the emergence of Reinforcement Learning (RL) and Deep Learning (DL), we have
dynamic optimisation tools to reduce infrastructure energy consumption (see [92] [106] [18]).
This work assesses the difficulty of using RL to control building air conditioning simulation
and discusses the application in actual conditions. We expect to find better regulation policies
to diminish the consumption of air conditioning systems. Data-driven approaches have the
advantage of not depending on the definition of the physical model and can have a high
capacity to model reality. Modelling continuous state-action environments, like HVAC control,
is a challenge that RL has recently started tackling. Building’s thermodynamics tend to act
as a filter for high frequencies ventilation variation due to physical properties [4]: "There
are some processes (e.g., dynamics of zone temperature and humidity) in the HVAC system
that are known as slow-moving due to the substantial thermal inertia of the system". As
highlighted in another paper [93], the inertia phenomenon impacts energy consumption to
control the temperature: "The thermal inertia effect can also directly influence the heating and
cooling demand of a building and the resulting energy consumption". We focus on on-policy
algorithms because it is easier to obtain stable results. Still, off-policy agents can be trained
from previous data and seem more adapted to real-world applications. The learning can
start as soon as we have data, and we can learn the policy before deploying the model.
Improving the quality of control of a system that has already been in service for a while and
has generated a lot of Data is very interesting. However, the current methods are inefficient,
mainly due to the difficulty of assessing a counterfactual policy. Training on-policy models in
actual life conditions is a real issue as the Data generation process is much longer, and the
consideration for the training must be different. Also, the usual exploration strategies are
impracticable as the high-frequency variations of fan inputs may damage the material. We
analyse a state-dependent noise (see [61]) to explore the environment and overcome inertia
filtering. We use DL with Bayesian consideration for encoding the policy during the learning.
To learn models, we built an environment for RL on a nodal model of a building heated room
with a fan system. Physical behaviours are computed through differential equations between
the nodes of the system. The model is parameterised to reproduce complex behaviour such
as inertia. The purpose is to estimate the gain of machine learning models over standard

67



methods and assess the current issues to learn policies for fan systems. The performance of
DRL is encouraging, we are getting closer to applying models in actual conditions (see [32]).
But there are also supplementary constraints that are not observable in simulations, such as
the delays between an action and its impact on the state and the fact that a measure of the
temperature is a proxy for the actual state of the system. Moreover, the actual conditions are
far more complex as weather data can be chaotic. RL is very promising, but understanding
the possibilities and how to improve the framework and algorithms is necessary to scale to
larger environments and deploy them in genuine conditions.
The main contributions of this chapter are the following:

— We developed and analysed an environment to simulate thermodynamics in a room
with differential equations on a nodal system. This environment assesses the response
to ventilation and how to control the temperature under temperature inertia.

— We use our algorithm to optimise this environment using state-dependant exploration
and discuss its application in real conditions.

The issues of using artificial intelligence in physical control applications are not clear, and
they need to be more exposed to go further with RL applications. We first use numerical
simulation to understand how our model converges and the impact of the parameters on
learning. Then we focus on the physical simulation and compare our results with optimized
baseline models. Moreover, we discuss the difficulties of implementing DRL in real life. Section
3.4 describes the modelled environment using a nodal system, while Section 3.5 presents the
results and discusses the application in real conditions.

3.2 Related Work
Applications that use RL in a physical and environmental context have become appealing.

The research on nuclear fusion and plasma control has shown impressive results [16]. Some
research contributions already employ RL to optimise air distribution in DCs (see [92] [106]
[18]). The possibilities with RL and DL seem very appealing, but in reality, using those
algorithms is not easy and has several limitations. We focused on analysing how to do RL on
plain application and what the limits are. The knowledge of the DRL applications issues is
poor, whereas the instability and the difficulties in reproducing previous work are well-known
in the research [42]. When using DRL, the DL concerns add up to the RL issues. Nevertheless,
research contributions (see [32]) make applications more realistic. Many environments deal
with robotics, but only some models are available for physical system control. HVAC energy-
plus models are great tools for experimenting [39], but it is hard to master. Its complexity
makes it hard to understand the causes of the issues encountered. DL Meta-modelization
is a hot topic, but explainability and the dependence on the data support are also critical
limitations [99].

3.3 Numerical simulation
To explore the behaviour of our model, we develop a plain environment. The environment

contains a ball, which an actor can move left or right at each step. We use a Gaussian
function for the reward evaluation depending on the ball position. Figure 3.5 represents
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this environment. The reward is associated with the height of the ball. The point of this
environment having only one continuous state and one continuous action is to be easy to
visualize in its plainest form. The environment is easy to solve but can be complexified by
changing the reward function. For example, using a mix of Gaussians instead of a single
Gaussian. The purpose of this environment is to describe how our model works and the
impact of the α temperature parameter and the initialisation on learning. For convenience,
we initialize the prior and posterior on similar configurations.

Figure 3.1 – Simple continuous environment for RL, the point is to train an agent to move
the ball to the highest position. We maximise the reward when the ball is uphill.

Figures 3.2 and 3.3 show the behaviour of our actors under a high and low α value. As
shown in Equation (2.19), α impacts the loss and accentuates the compression or likelihood
cost. As previously shown, 1

α
could be directly used as a reward scaler. As we use an

exponential distribution over the critic estimation, the scaling sharpens the values making
the gradient higher, while lower 1

α
smooths the estimation and the gradients. We directly

observe the effect of the α on the figures. Low α makes the network parameters find good
values for the critic, favouring the left and right movements. High values impact the model
dispersion, making prior and posterior closer and diminishing the ρ parameters associated
with the uncertainty of the network. Higher or lower α might be preferred depending on the
environment. Larger α tends to benefit more from exploration, while lower α should learn
faster ; this impacts the exploration and exploitation dilemma [86]. From this example, we
can also benefit from the parallelisation of the environment. Several balls are controlled by
the neural networks generated from our Bayesian neural network actor. For every episode, the
experience is run with different policies generating more data and exploring the environment
faster.
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Deep Bayesian Actor
α = 0, ρ = −2, layers = [20, 20]

(a) (b)

(c) (d)

(e) (f)

Figure 3.2 – Learning of the Bayesian Neural Network agent in our plain environment. The
left part represents the agent and the policy generated for the exploration, while the right
part represents the gain estimated by the critic depending on the states and actions.
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Deep Bayesian Actor
α = 10−3, ρ = −2, layers = [20, 20]

(a) (b)

(c) (d)

(e) (f)

Figure 3.3 – Learning of the Bayesian Neural Network on our plain environment for alpha
equals 10.
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Deep Bayesian Actor
α = 0, ρ = −3, layers = [20, 20]

(a) (b)

(c) (d)

(e) (f)

Figure 3.4 – Learning of the Bayesian Neural Network on our plain environment for alpha
equals 0.
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Figure 3.5 – Comparison for different α. We ran one hundred runs and averaged the rewards.
The best configuration is for α = 0.00001.
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Deep Bayesian Actor Learning

(a) (b)

(c) (d)

Figure 3.6 – The trajectories of the rewards and averaged reward of one hundred runs for
different α. The last figure compares the average reward for the different α values. The best
value is 10−5. For α equals, some runs don’t converge, while for α = 10−5, all the runs have
converged.
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Deep Bayesian Actor Parameter Trajectories
ρ = −2 ρ = −3

α = 10−3

(a) (b)

α = 10−5

(c) (d)

α = 0
(e) (f)

Figure 3.7 – The trajectories of the Bayesian Neural Network parameters during the learning
for 30,000 steps. A parameter’s horizontal movements alter the parameter’s mean, while
vertical movements alter the deviation of the parameter. We can observe the impact of α and
the ηρ of the prior on the parameters trajectory.
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3.4 Physical Nodal Environment
This chapter introduces an environment for practising RL methods based on a physical

nodal system. The point is understanding how they tackle these challenges and whether we
can deploy them in real situations. Applying models in actual conditions is complicated due
to the cost of IT material and associated risk. Meta models of DCs are a good choice for
performing RL, but they tend to be complicated to analyse the basics of thermodynamics.
The physical model generates Data behaving similarly to real-world Data. The point of this
environment is to reproduce physical behaviours and to raise the difficulties of handling them.
We highlight the issues we encountered while solving physical environments with DRL and
give our key to understanding and overcoming standard issues. The model’s simplicity eases
the understanding of the physical issues associated with the optimisation. We deploy our
DRL algorithm based on a parameters search for the policy. We explain our choices and give
the key to correctly understanding and using the different hyper-parameters. We discuss the
perspective of scaling up and applying this kind of methodology to real-world applications.
Nodal models are basic modelisations of thermal exchanges when cooling a building room.
They are built on differential equations and energy conservation. They offer a scalable
parametrisation for the room’s characteristics and complexity. Heat dissipation equations
depict the environment’s mechanisms. A simulated IT load heats the room. We model a fan
system to adjust the internal temperature using the external temperature in a conventional
free-cooling approach. The nodal system is a function that computes the temperature nodes,
representing the temperature at different locations within the room. We have a node for the
ambient temperature inside the room and another for the external temperature. According to
the building’s structure, the remaining nodes represent the temperatures within the walls. This
function inputs the preceding nodes’ temperatures, the external temperature, the ventilation
flow, and the dissipated power. This example, with a few features, helps to understand
the behaviour of more complicated physical systems. It has some challenging properties for
RL. When adjusting its parameters, the nodal representation may accumulate energy inside
the walls, which adds inertia to the system. Those plain properties are ideal for visualizing
the challenges associated with RL and physics before deploying models. When deploying a
model on a more complex environment, understanding the causes of convergence issues is far
more complicated. The purpose of this environment is to assess the difficulties of deploying
RL to solve specific environments. The model is a partially observed environment, as the
temperature of the walls’ layers is unseen from the agent’s perspective. The known variables
from the agent’s perspective are the inside and outside temperatures. In our experiments, for
simplicity, we assumed the power dissipated is constant, and the outside temperature follows
a sinus to represent the daily temperature variation. We also considered the temperature
data measured in Mimizan in France on a telecom site, To help the agent, we utilise the
cosinus and sinus of the daily hour for the agent to estimate the temperature evolution. To
increase the Data volume for learning, we used a process on each episode using two random
variables, the first following a normal law centred on one and a centred normal law. We drew
them at each environment reset and multiplied the temperature of each step by the first one,
then added the second one. Figure 3.16 represents the Data as time series and shows its
distribution.

Figure 3.8 represents the physically modelled system. The physical parameters can be
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Figure 3.8 – Schema of a ventilated room with a thermal load.

tuned to adjust the room’s physical properties. The size of the wall or the materials can change,
changing thermal diffusion properties. The following system gives the physical equations
representing the system ∀i ∈ [0, N ] with N the number of nodes:

ρiCiVi
∂Ti

∂t
=


2
(

Ti+1−Ti

Ri+1+Ri
+ Text−Ti

2Rcv+Ri

)
for external nodes.

2
(

Ti−1−Ti

Ri−1+Ri
+ Ti+1−Ti

Ri+1+Ri

)
for internal nodes.

2
(

Ti+1−Ti

Ri+1+Ri
+ Tair−Ti

2Rcv+Ri

)
for surface nodes.

And for the air temperature Tair node, we have:

ρjCjVj
∂Tair

∂t
=

∑
i∈Sint

Ti + Ri

2Rcv
Tair

2Rcv +Ri

− |Sint|
Tair

Rcv

+ Peq + qm.Cm (Text − Tair) . (3.1)

The parameters used in the model are:

ρ Volumic mass kg/m3

C Specific heat J/kg
V Volume m3

R Thermal resistance ◦C/W
Peq Power used by inside equipment W
qm Air mass used to ventilate m3/s
Text Temperature outside the building ◦C
Tair Ambient temperature inside the room ◦C

The action variable of the system is the air mass used to ventilate qm. It is a continuous
variable. The higher the value is, the higher the ventilation blows. Ventilation is the only
way to regulate the temperature, but in most cases, we also want to minimize its utilization
as it increases the energy consumption of the building. Adding nodes for the wall can be
associated with increasing the wall’s number of layers, which leads to delay and variation of
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the heat going through the wall depending on the materials. To solve this system, we used
the implicit method for stability and coherence in computations. The main drawback is the
time used for computing every timestep. However, with the current computation power, it is
possible to train RL agents on this model. However, the difficulties for RL agents are:

— The unobserved nodes delay the impact of the actions
— The exploration of the internal nodes is complex due to the dimension and the delay
— The stochasticity of the external temperature has a high impact on the transition of

the environment
— The model has to anticipate and make counter-intuitive decisions.

Power Consumption

The profile of consumption of the fan system is usually polynomial [62], where the
consumption depends on a polynomial of order 4 of the width (in mm), the depth (in mm),
and the revolutions per minute of the fan. For simplicity, we assume the fan system has a
consumption that depends only on the debit qm with the following equation:

P (qm) = 1
2q

2
m. (3.2)

We could consider a more complex and realistic consumption profile. Still, with this
profile, we can appreciate the behaviour of the agent and system state evolution. The point
is understanding how an agent tackles inertia to optimize non-linear energy consumption.

3.4.1 Reward
We consider the following objective: The policy must keep the temperature inside the

authorised range and limit the distance to the range as best as possible when out. When the
temperature constraint is respected, energy consumption must be minimised. Concerning
the reward, we choose to create a penalisation in two terms. The first one penalises energy
consumption, as we assume the consumption is a function of the debit. Then the second
term is linked to the inside temperature, and if the inside temperature is in the authorised
temperatures, it takes the value zero. Otherwise, it comprises a polynomial term of the
difference between the temperature and the closest temperature limit. The first term takes
the maximal penalisation possible as we expect to respect the temperature constraint before
minimising the energy consumption. The sparsity of the reward is due to the discrete issue
of being or not in the acceptable range of temperatures. The model is not wrong until the
temperature gets out of range. When optimizing energy consumption, the temperature has
to get close to the maximum authorized temperature. Sparsity in rewards is known to be an
issue [40].

We use the following function as a reward, with the temperature T ∈ R, the power used
for the fan P ∈ R, the minimal and maximal temperature (Tmin, Tmax) to not damage IT
material, and the maximal power for the fan system Pmax:

Rτ : R −→ R
T 7 −→ − ([T − Tmax]+ + [Tmin − T ]+)k,
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RP : R2 −→ R
T, P 7 −→ − 1{Rτ (T )>0}Pmax − 1{Rτ (T )=0}P, (3.3)

R: R2 −→ R
T, P 7 −→Rτ (T ) +RP(T, P ).

This reward always ensures temperature control before energy consumption. When out of
bounds, the energy consumption penalty is maximal. More common approaches consider a
sum of temperature and energy components. We consider that a violation of the temperature
constraint is always worse than any over-consumption. For the baseline, we add a term based
on the variation of the action. It is penalised when the variation changes three times of sign
consequently. We introduce this term because otherwise, the model uses steep action
variation leading to instability. In actual conditions, this kind of behaviour may damage the
fans.

To work with the assumptions of the policy gradient theorems 2.3.3, we have to add a
ramp to limit the derivative of the reward at the authorized temperature limit. We can use a
real ξ > 0 to obtain the following expression from Equation (3.3):

RP(T, P ) =


−(1 − Tmax−T

ξ
)Pmax − Tmax−T

ξ
P, if T ∈ [Tmax − ξ, Tmax]

−(1 − T−Tmin

ξ
)Pmax − T−Tmin

ξ
P, if T ∈ [Tmin, Tmin + ξ]

1{Rτ (T )>0}Pmax − 1{Rτ (T )=0}P, otherwise,

3.4.2 Baselines
The usual rule for fan systems is a linear model of the temperature getting as parameters

minimal and maximal values for the fan usage and starting and maximal temperatures. We
decided to create a baseline model which will be data optimized. We optimize a linear model
with four parameters the maximal temperature, the minimal and maximal temperatures and
the minimal and maximal actions. The action is considered constant outside the minimal
and maximal values.

ζ(T ) = clip( T − Tmin

Tmax − Tmin

, 0, 1), (3.4)

a(T ) = ζ(T ) × (Amax − Amin) + Amin. (3.5)

With Ainf ≤ Amin ≤ Amax ≤ Asup, and Ainf , Asup are the bounds of the action.
We also considered the following model:

ζ(T ) = clip( T − Tmin

Tmax − Tmin

, 0, 1), (3.6)

τ(T, Text) = clip(T − Text

C
, 0, 1). (3.7)
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Figure 3.9 – The optimised ventilation based on the parametric exploitation of the
temperature delta. This model ventilates when the temperature difference between outside
and inside is negative, and the room requires cooling.

with C a constant chosen to maximize the reward. The policy is defined by:

a(T, Text) = ζ(T ) × τ(T, Text). (3.8)

We use stochastic proximal optimisation to choose the parameters as the number of
parameters is low, and the system is deterministic. We generate parameters randomly around
a starting configuration and then update the parameter with an iterative mean or max
operator based on a reward for each generated parameter. Once the model has converged,
we check the model to challenge the physical possibility and realise correction if needed.
This method depends on the low dimension of the parametric model and the deterministic
environment with a short-term horizon. For a policy, we obtain stability in a few days at worst.
Then we have a baseline model better than most regulations used in practice due to more
knowledge of the environment and its deterministic behaviour. These baseline models can be
overcome because of the non-linear energy consumption profile, and their parameterised form
may be challenging to obtain the optimal policy.

3.4.3 Inertia and differential impact
Inertia is a physical phenomenon happening in building modelling. Due to heat transfer

and their time counterpart, the heat may be absorbed by walls and then heated back to the
inside temperature. This is dependent on the physical properties of the building. Specifically
the density ρ, the specific heat C or the thermal resistance R of materials. This leads to
delayed responses to variations. The air temperature variation in our model comes from
Equation (3.1). We can estimate the following:
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ρjCjVj
∂Tair

∂qm

= ∂t.Cm (Text − Tair) . (3.9)

We notice the impact of actions on the system depends on the time-step size. Indeed, if we
choose for the simulation a time-step very small, the ventilation will impact less the system
state but will allow more precise regulation. Conversely, with a large time step, actions have
a significant impact on the system, but the policy is less flexible. Considering the wall nodes,
unobserved from the agent for surface nodes in contact with the air temperature:

ρiCiVi
∂Ti

∂t
= 2

(
Ti+1 − Ti

Ri+1 +Ri

+ Tair − Ti

2Rcv +Ri

)
,

and for internal nodes in contact with other wall nodes ;

ρiCiVi
∂Ti

∂t
= 2

(
Ti−1 − Ti

Ri−1 +Ri

+ Ti+1 − Ti

Ri+1 +Ri

)
,

we notice how the density ρ, the specific heat C or the thermal resistance R of material
are impacting the latent state of the system. Changing materials and architecture affects the
building’s ability to stack and return energy. So the impact of the unobserved variables is
mainly due to the building architecture and materials.

Figure 3.11 shows how the unobserved variables play a role in the state transition of the
system. The main idea is that in an environment with inertia, an action impacts states far
from the current state. The policy changes the unobserved variable, modifying the transition
of the environment. So even if reaching an equivalent state at some point, the trajectory will
differ from the expected one. Many environments are not entirely observable or Markovian,
but using the usual RL algorithms still works in most cases.

When the unobserved variables are hidden, the Markovian property is broken. Indeed,
there is a path between an action and the next states not expressed in the model through
the unobserved variables. It induces a lag between the state-action pair and the response in
the state.

The non-stationarity and non-markovian transitions

The Bellman error is known to make a temporal smoothing instead of an accurate
prediction, leading to, in some cases, poor approximations. Some situations may be hard to
solve with function approximation and bellman error. The policy updates impact the reward
in a non-markovian way by changing the transition probability. The latent states depend on
the previous actions, and the transitions depend on the latent states. So, actions impact the
reward with large delays. The issue can be summarized as follows, from a state, the following
trajectory depends on previous states. Then as RL uses only the current state to estimate
the return, the error will be high if the previous states have a high impact. If the critic
estimation has a high variance or error, the actor will be led to the wrong policies. The more
delayed the answer is, the more time the critic needs to be correctly updated. This is because
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Interaction between the model’s nodes and ventilation activation
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(c) No noise low debit

Figure 3.10 – The impact of wall material on the temperature regulation system of a room.
The unseen nodes of the model are represented in the figure and show how the material’s
characteristics alter the temperature behaviour.

the return estimates with the Bellman objective are propagated from one state to the
previous one.
To illustrate this issue, we assume a simple environment with 4 time steps. It goes
T0 → T1 → T2 → T3. The environment starts at T0 in the state S1 with a null reward. To
each other time step a state is associated {S1, S2, S3} with their associated reward
{0, 1,−10}. This example aims to find a policy avoiding the state S3. The agent can at T0
and T1 choose the next state, but at T2 the next state is randomly chosen with equal
probability in one of the following collections: {S1, S2, S3}, {S2, S3}, {S3}, depending on
the state at the timesteps T1 and T2:
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Simulation of data centre temperature with inertia and different air flow policies
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(a) Air flow policy cooling the room and the wall during
the night
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(b) Air flow policy cooling the room and the wall
when outside temperature is at its lowest values, with
an airflow increasing before the outside temperature
exceeds the inside temperature
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(c) Air flow policy neglecting the inertia phenomenon
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(d) This figure compares the room temperature for
all the models used. We can observe the impact of
the previous states and actions on the temperature
transition

Figure 3.11 – These policies show the impact of inertia on the state transitions of the
system. The environment is not Markovian, as we can observe a policy that is not cooling
over the night but lowering the temperature before the temperature starts increasing won’t
succeed in keeping the temperature in the authorized range as the temperature increases
faster than the policies on the two other policies

s(T 1,T 2) Possible state at T3 Expected Return
(S1, S1) → {S1, S2} .5
(S1, S2) → {S2, S3} −3.5
(S2, S1) → {S2, S3} −3.5
(S2, S2) → {S3} −8
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Rewards

Actions

Observed 
variables

Unobserved 
variables

rt rt+1 rt+2 rt+3

zt zt+2zt+1 zt+3

st st+2st+1 st+3

at at+2at+1 at+3

Figure 3.12 – The directed acyclic graph (DAG) represents the transition in a partially
observable Markovian decision process. We assume the reward is computed only from the state
and action at the same timestep, even if other setups exist. The arrows represent conditional
dependencies of the variables

The point is to maximize the expected return. It is easy to see that the only trajectory
avoiding the maximal penalty of −10 is by choosing S1 for the next state at time step T1
and T2, leading to randomly having between S1 and S2 at T3, the expected return is 0.5.
Otherwise, the expected return is −3.5 if T1 or T2 is chosen to be S2 otherwise, the expected
return is −8. Using an approximation method such as the TD error is tricky in this situation:
Indeed, when choosing the state at T2, the conditional expected returns are given by:

E [R|ST 2 = S1] = P (ST 1 = S1) × 0.5 − P (ST 1 = S2) × 3.5
E [R|ST 2 = S2] = −P (ST 1 = S1) × 3.5 − P (ST 1 = S2) × 8.

So whatever the state at T1, the best action is to choose S1 for T2. But when estimating the
best choice at T0 as we use the Bellman equation, which assumes Markov property when
computing the expected return, we have:

E [R|ST 1 = S1] + 1 = E [R|ST 1 = S2] .

Thus the algorithm favours choosing S2 for T1, which is not the optimal policy.
This example is crucial to understand what is happening in our environment. It is an

oversimplification of the system but gives intuitions on what is happening for critic estimation.
Assuming it is related to our problem, the state can be considered as follows:
S1 : The fans blow air and consume energy.
S2 : The fans do not blow air and don’t consume energy, but this leads to a temperature

increase.
S3 : The temperature overcomes the maximum authorized temperature, and the material is

affected.
Even if the best solution is always to activate the fans, the model will converge to a

wrong policy leading to material damage. This is due to the impact of the action on the
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Figure 3.13 – The states of our environment with time and state dependence transitions.
The environment has three states with associated rewards.

transition probabilities, which in the real world is a consequence of inertia in buildings. In
practice, algorithms may give good policies that do not converge to optimal ones. With some
luck, practitioners may encounter policies with good performance and stop learning at that
point. The learning seems unsatisfactory in those conditions. Indeed the learning will not be
reproducible. We lose the possibility of continuous learning, one possibility offered by RL. In
our continuous setting, there are latent variables z due to the wall’s ability to stack energy.
The impact of state-action pairs is diluted in the future through the unobserved states. If the
impact is significant, convergence becomes hard to achieve. Because the small policy changes
involve more changes in trajectories, their consequences can be dramatic if the reward signal
admits some sparsity because it leads to high variance in the return estimation.

From Figure 3.14 we can understand the behaviour of the unobserved nodes. The behaviour
of the unobserved node influences the air temperature, but if the policy is fixed, the impact
is considered in the transition function. The environment is partially observed, but if we
know previous iterations, the environment can be entirely described. Alternatively, the
environment can be considered stochastic as the transition function is stochastic, which can
be associated with policy uncertainty. We know the system is time-dependent and has hidden
variables. To mitigate the latent effect would use memory or latent models. However, the poor
understanding of neural networks coupled with RL needs a better understanding of how they
deal with information and what matters. As the latent state influences the transition, adding
the states and actions of previous steps integrates the latent effect into the learning. The
idea is to let the agent implicitly estimate the latent state through the variations of states
and actions. Assuming previous steps, we deduce that estimating the heat transfer with the
nodes in contact with the air is possible from Equation (3.1), reducing the uncertainty about
the unobserved variables.

∑
i∈Sint

Ti

2RcvRi

= ρjCjVj
∂Tair

∂t
+ |Sint|

Tair

Rcv

− qm.Cm (Text − Tair) .

Another possibility is to consider Monte Carlo estimation methods of the return by
sampling whole trajectories. The current policy is evaluated on the whole trajectory, but this
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approach has poor scaling capacity, as it needs several trajectories to estimate the return of a
policy. With a stochastic and high dimensional environment, the learning will be slow or too
much approximated.

3.5 Results and Discussion
We trained efficient DRL models that can outperform baseline models in some conditions:

Energy consumption for the policy considered
Baseline 249.26

Baseline delta T 221.12
DRL 205.12

Table 3.1 – The DRL model performs better than the baseline optimized for this problem.
We have a gain of 17% for the plain baseline and 7% for the optimised baseline. None of the
models gets out of the authorized range.

When learning a model in a deterministic environment, we observe that the model has
random behaviour outside the learning domain and cannot perform in slightly different
settings.

In real-world applications, the external temperature is more inconsistent. The sinus
function needs to be a proper way of modelling it. The outside temperature can be very noisy
and uncertain. The trained models must consider the uncertainty when estimating the best
actions. The policies are subject to the environment’s stochasticity. This consideration makes
usual optimisations far more complicated than in the previous case. The main concern is how
DRL scales to this complexity. The stochasticity of the environment influences the probability
of getting to a state knowing the current state and action p(st+1|st, at) if the confidence of
the transition of the environment is low, a lot of Data is needed to compensate. It motivates
to favorise off-policy methods as on-policy requires to sample with the current policy.

We couple the nodal model with actual data presented in Figure 3.16. For more uncertainty
and to increase the Data, use two supplementary variables following the normal distribution
drawn before each simulation. One variable is added to the temperature, and the other
multiplies it. When doing such, we add the time in the variables for the agents. The time is
encoded with a sinus and cosines to keep the cyclic aspect. The purpose is to help the agent
to deal with day and night cycles to anticipate heat peaks.

3.5.1 Discussion

The results obtained in this section give the motivation to use RL to optimise physical
systems, even if the studied environment was purely deterministic. At first, our primary goal
was to obtain results close to the baseline as they are optimised on this particular environment
using the fact that it is deterministic. The Learned model can outperform the baseline for
the reason that the baseline parametric model with linear form. Neural networks learned are
more flexible. But even if good results can be obtained, the learning of agents able to control
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fan systems is harder than it seems. The stability of learning is not granted and it is a real
problem for applications
When the outside temperature is stochastic, the model should consider the risk. The learning
is more complex and the inertia is more difficult to deal with. More complex models using
memory or latent might be needed to find good policies. When using simulated cyclic data,
the model has no issue estimating the risk of action, but the complexity is much higher if
the environment is stochastic. In RL and DRL choosing the hyperparameters for solving an
environment is a pain as the optimisation of a complex scenario need a huge computation
capacity due to the number of possible configuration, the time of running a simulation and
the instability of RL. Starting with an already-tuned parameter for similar environments and
algorithms is a good start. Using implementation that the community has recognized is a
significant concern to ease the reproduction of the results, as the complexity of the algorithms
leads to errors that are challenging to detect.

3.5.2 Deploying a model in actual conditions
In actual conditions, deploying an agent will face more complex situations. Simulated

environments for physical applications tend to be perfect. But in reality, we know that
measured values with sensors can be misleading, the air is not perfectly mixed, and sensors
are a proxy for the real state of the system. So when observing values, there are still
uncertainties about the real state of the system. Moreover, agents have to deal with delays.
When picking an action with the agent, there will be delays between the decision and
the impact on the state. It is due to the fact physical limit of the system but also due
to the engineering pipeline. So using the step objective will be misleading. Adding n-step
methods [86] to the objective is necessary. It considers the impact of an action on the n next
steps. The agent will have to deal with unexpected events due to implementation (like coding
errors) or external conditions (like a storm). From the agent’s perspective, those unrecognised
events may lead him to execute random actions. This is why security management must take
control in case of incidental behaviour. But one major issue is the data generation process of
an agent in actual conditions is far more important. Training agents in RL is time-consuming.
Depending on the computer’s performance and the environment’s difficulty, teaching an agent
to behave as expected can take hours or days. In actual conditions, the data generation
process is even longer. Still, progress is realized in improving off-policy learning, and some
strategies may be employed to train agents more efficiently. This is a good reason to use
off-policy RL. If we have data generated previously by some policies, we can start learning
an agent. Also, the trained agent does not need to be the one producing the action. Yet it
is preferable to have an agent close to the target agent to learn the behaviour on which it
will act. The second advantage is that the learning steps are asynchronous from the data
generation, so the learning speed is not entirely dependent on the exploration. From our
perspective to deploy RL, the main considerations are:

— Using off-policy RL.
— Ensuring a security system to take the lead in case of an issue.
— Using a proper objective like n-step methods.
— Maintaining a very clean engineering pipeline.
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Interaction between the model’s nodes and ventilation activation
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(e) Time coherent noise

Figure 3.14 – Comparison of the system’s action profile shows that coherent schemes of
exploration are necessary to explore the intern states of the system correctly. High-frequency
action variations are not perceptible on the intern nodes. In the left top figure, the behaviour
of the intern nodes is very close to the one in the right top figure, while the last figure shows
variation in the intern nodes.
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Comparison of DRL with baseline models
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(a) Baseline model
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(c) Baseline model delta T (d) Policy visualisation

Figure 3.15 – We compare the baseline models to the policies found with DRL. The airflow
was scaled by a factor of ten. The last figure represents the policy using colour mapping.
From the outside and inside temperature to the action chosen. From this figure, we observe
when the model would choose to ventilate. The results for the consumption are in Table 3.1
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Real Data temperature at Mimizan in the summer of 2021
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timesteps
m

ea
su

re
d-

va
lu

es

(b) Temperature sequence with sinus and cosines of time
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(d) Density of temperatures in the dataset

Figure 3.16 – Data used to add uncertainty and get closer from actual conditions to the
model.
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Figure 3.17 – In this figure, we can observe how time impacts the policy. It shows the
model’s ability to adapt the policy for the moment of the day and anticipate.

91



92



Chapitre 4

Conclusion and Perspective

4.1 Conclusion
Artificial Intelligence has much potential for improving the functioning of Data Centers

and other industrial applications. Reinforcement learning seems the ideal candidate for
artificial intelligence tools to design autonomous agents for providing optimal decisions in
an operating environment. Reinforcement learning was first designed as a tabular method,
with the limitation of dealing with discrete states and actions. But with Deep Learning
and function approximation, Reinforcement Learning gains a lot of potential. It can tackle
complex environments. It can deal with continuous states and actions, and having variables
such as temperature or hygrometry is not an issue anymore. Moreover, Deep Learning is
known for scaling relatively well with the dimensions of the input/output, making it an ideal
candidate for dealing with structures that can scale up. The results presented by the research
community are very promising. Many papers are improving the theory and showing results in
applications. However, we must keep in sight the actual limit of the current methods. Even
if Deep Learning is appealing, its theoretical foundation is poor compared to traditional
methods like linear models. In Reinforcement Learning with function approximation, there is
also the risk of divergence and non-reproducibility. So combining the technology increases
the risks during learning. Sutton, in his book [86] is talking about "The Deadly Triad",
composed of Function approximation, Bootstrapping and Off-policy training. But Function
approximation is necessary for dealing with complex continuous environments. Bootstrapping
diminishes the computation a lot. Off-policy is a way of learning from experiences that are
not generated from the policy, which is learning. It is a major asset for safe learning. When
evaluating Reinforcement Learning, the time needed to train models makes the comparison
fastidious, and the number of hyperparameters is too big to find the fittest collection. It
is challenging to evaluate the impact of the hyperparameters individually. It is common to
choose them by trying different values until an acceptable value is found. The hyperparameters
are often chosen as typical values in the field. This is an issue regarding comparing agents.
The comparison cannot be valid if one is better tuned than the other. If the results are not
reproducible, the comparison needs many runs, making it hard to conduct. The current state
of the art of Deep Reinforcement Learning compels practitioners to implement a lot of code to
produce models. The community is working on creating reliable packages to assess algorithms
and techniques and experiment and develop environments associated with use cases.
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Solving specific tasks also brings challenges. Many environments are not perfect Markovian
Decision Processes. In actual conditions (not in simulations), most environments are partially
observed, and some do not satisfy the Markov property or the stationarity of the chain. Even
if, in many cases, it is possible to trick to find a setup in which the Markov property is
enough by, for example, integrating several previous steps in the state. Those methods are
not ideal, and the research on approximate methods is ongoing. Even if results start to be
shown in simulations, there are more possibilities for demonstration than actual application
successes. Until more understanding of convergence and robustness is furnished, these methods
won’t be able to tackle the current environment safely. The dependency on initialisation
and randomness makes them currently not practical in most applications. Moreover, when
stepping into actual conditions, the data face new issues, such as the chaotic weather data,
leading to high variation and stochasticity in system state transitions. The observed data
undergo measurement uncertainties, the physical behaviours are more complex than what we
simulated, and gazes obey more complex theories, such as the mechanics of fluids. Fortunately,
most IT material currently has a wider temperature range than what we could experiment
with.

4.2 Perspective
Reinforcement learning is an ongoing research subject, and approximate methods,

specifically when associated with deep learning methods, need to be more understood and
explored to be used efficiently. The difficulties and the solutions are not well assessed. Many
frameworks must be assessed and answer some difficulties encountered when solving
environments with Deep Reinforcement Learning. Some of these frameworks’ impact may
leverage Reinforcement Learning’s expectations for high-dimensional environments with
complex transitions and observations. Among those technologies, we have variational
methods for discovering latent space or encoding high dimensional spaces. Recurrent
modelling works with environments that do not satisfy the Markov property due to response
delays. However, the complexity of these models is a burden added to the reinforcement
learning complexity. Understanding the issue inherent in the framework is necessary before
introducing more complex methods.

4.2.1 VRAE/LSTM

To perform better in environments with no Markovian properties on the state transitions,
VRAE [26] and recurrent models [19] are popular deep-learning models with high potential
[10], [38], [52]. The issue is their complexity and need for large data consumption to perform.
LSTM use memory to improve the prediction. Previous information is consumed through a
memory path inside the network.

4.2.2 Bayesian Methods

Bayesian methods have a lot of perspectives [98], especially to deal with the
understanding and transparency of deep learning models. Bayesian methods seem a good
choice to counterbalance the over-parametrization and black box drawbacks. Normalizing
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flow [56] for Bayesian neural networks is an exciting perspective to improve our actor as it
has been shown to improve the prediction ability and uncertainty measure of Bayesian neural
networks. Moreover, it is a key to new strategies such as empirical methods for the prior.

4.2.3 Offline Methods
Developing offline (which has no access to the environment and uses only a dataset of

interactions) and off-policy (the exploration policy and learning policies are different) methods
is a requirement to deploy agents in more concrete situations. Offline configuration returns to
more traditional supervised learning, as the environment mechanics are drawn from data.
This configuration is more complex as the learning agent cannot try on the environment
and must be satisfied with counterfactual experiments [54]. The current limitations are very
hard to overcome, but successful offline algorithms would be a great achievement for many
applications.

4.2.4 Non-Parametric Recursive Regression
Combining deep learning with a more traditional stochastic learning algorithm is also a

promising perspective. When using deep learning approximations, we sacrifice the convergence
insurance and control over learning compared to techniques with more theoretical backgrounds.
Non-parametric regression is a good compromise with non-parametric regression flexibility and
its theoretical knowledge [82], [83], [81]. Recursive non-parametric regression has the advantage
of having the possibility to be learned online, which has the same spirit as reinforcement
learning. Using this kind of model for critic representation may help solidify the ground
of reinforcement learning. The distributional representation of the framework is a tool for
tackling the counterfactual issue of off-policy learning.
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Optimisation of Energy Consumption of Data Center using Artificial
Intelligence

Résumé
Cette thèse explore la manière dont l’intelligence artificielle peut diminuer l’énergie consommée dans les centres de données.
L’intelligence artificielle est un vaste domaine de recherche très populaire. Ce domaine est souvent idéalisé, mais comment les
nouveautés de la recherche peuvent-elles être appliquées à des cas d’utilisation réels ? Entre considérations physiques, théories
mathématiques et technologies informatiques, cette thèse utilise différents domaines pour aider à déployer et améliorer les
technologies récentes afin de répondre aux défis énergétiques actuels.
La première partie de la thèse évalue les problèmes énergétiques et les technologies déployées dans les centres de données et les
bâtiments de télécommunications. Les infrastructures d’information et de communication sont de gros consommateurs d’énergie et
nécessitent des systèmes de climatisation spécifiques en raison des conditions de travail du matériel informatique. L’optimisation
des systèmes de climatisation et de leur consommation est une préoccupation majeure dans la réduction de la consommation
d’énergie. La deuxième partie de la thèse explore l’apprentissage statistique et probabiliste pour optimiser la consommation
d’énergie. Elle se concentre principalement sur les modèles d’apprentissage par renforcement profond (Deep Reinforcement
Learning) pour la prise de décision automatisée basée sur la méthode axée sur les données. L’apprentissage profond est flexible
dans la modélisation et peut s’adapter à de nombreux problèmes, ce qui est pratique lorsqu’une méthode doit être généralisée.
La dernière partie décrit la mise en œuvre et l’application dans des environnements simples afin de soulever et de traiter les
problèmes courants et de discuter de la manière d’adapter le modèle à la réalité. On sait qu’un grand nombre de projets de science
des données sont très prometteurs mais ne sont pas mis en œuvre. Ce travail vise à faire un pas en avant dans l’introduction de
l’IA dans des environnements sensibles tels que les centres de données.

Mots clés : Intelligence Artificielle, Apprentissage par Renforcement, Apprentissage Automatique, Apprentissage
Profond, Statistiques Bayésienne, Energie, Data Centres, Optimisation Dynamique

Abstract
This thesis explores how Artificial Intelligence can diminish the energy consumed in Data centres. Artificial Intelligence is a vast
research area that is very popular. This domain is often idealised, but how can the research novelties be applied to actual use
cases ? Between physical considerations, mathematics theory and computer science technologies, this thesis employs various
fields to help deploy and improve recent technologies to address current energy challenges.
The first part of the thesis assesses the energy issues and the technologies deployed in Data centres and telecommunication
buildings. Information and communication infrastructures are massive energy consumers and need specific air conditioning
systems due to the working conditions of IT material. Optimising air conditioning systems and their consumption is a primary
concern in reducing energy consumption.
The second part of the thesis explores statistical and probabilistic learning to optimise energy consumption. It mainly focuses on
Deep Reinforcement Learning models for automated decision-making based on the data-driven method. Deep learning is flexible
in modelisation and can suit many problems, which is convenient when a method must be generalised and industrialised.
The last part describes the implementation and application in simple environments to raise and deal with common issues and
discuss how to scale the model to reality. It is known that a lot of Data Science projects have great promises but fail to be
implemented due to practical difficulties. This work aims to make a step in introducing AI in sensitive environments such as
Data Centres.

Keywords: Artificial Intelligence, Reinforcement Learning, Machine Learning, Deep Learning, Bayesian statistic,
Energy, Data Centers, Dynamic Optimisation
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