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Abstrat

In this paper we generalize the Mumford system whih desribes for any �xed g all linear

ows on all hyperellipti Jaobians of dimension g. The phase spae of the Mumford system

onsists of triples of polynomials, subjet to ertain degree onstraints, and is naturally seen as

an aÆne subspae of the loop algebra of sl(2). In our generalizations to an arbitrary simple Lie

algebra g the phase spae onsists of dimg polynomials, again subjet to ertain degree onstraints.

This phase spae and its multi-Hamiltonian struture is obtained by a Poisson redution along a

subvariety N of the loop algebra g((�

�1

)) of g. Sine N is not a Poisson subvariety for the whole

multi-Hamiltonian struture we prove an (algebrai) Poisson redution theorem for redution along

arbitrary subvarieties of an aÆne Poisson variety; this theorem is similar in spirit to the Marsden-

Ratiu redution theorem.

We also give a di�erent perspetive on the multi-Hamiltonian struture of the Mumford system

(and its generalizations) by introduing a master symmetry; this master symmetry an be desribed

on the loop algebra g((�

�1

)) as the derivative in the diretion of � and is shown to survive the

Poisson redution. When ating (as a Lie derivative) on one of the Poisson strutures of the system

it produes a next one, similarly when ating on one of the Hamiltonians (in involution) or their

(ommuting) vetor �elds it produes a next one. In this way we arrive at several multi-Hamiltonian

hierarhies, built up by a master symmetry.
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1. Introdution

In its original form the Mumford system onsists, for every positive integer g, of a family of

vetor �elds on an aÆne spae (of dimension 3g + 1) of triples of polynomials (U(�); V (�);W (�))

(see [Mum℄ p. 3.43). The simplest member of this family has the form

_

U(�) = V (�);

_

V (�) =

1

2

[�W (�) + (�� U

g�1

+W

g

)U(�)℄;

_

W (�) = �(�� U

g�1

+W

g

)V (�):

(1:1)

The three polynomials are subjet to the restritions that U and W are moni of degrees g and

g + 1, while V has degree less than g. U

i

is the oeÆient of �

i

in U(�) and similarly for V and

W . A simple omputation shows that

(U(�)W (�) + V

2

(�))

�

= 0

for the above vetor �eld, and similarly for the other members of the family. It follows that if one

assoiates an algebrai urve (of genus g) to every point (U(�); V (�);W (�)) of phase spae by the

equation

�

2

= U(�)W (�) + V

2

(�); (1:2)

then this urve is invariant under the ow of these vetor �elds. This property is \explained" by

Mumford who shows that the generi orbit, traed out by the ow of these vetor �elds, is an aÆne

part of the Jaobian of the urve (1.2) assoiated to any of its points (U(�); V (�);W (�)) and that

the ows of these vetor �elds are linear (the Jaobian of a urve is a omplex torus, hene has a

linear struture). Note that this implies automatially that these vetor �elds ommute, a property

reminisent of integrable systems. Upon introduing a Hamiltonian struture for whih Mumford's

vetor �elds are Hamiltonian it turns out that the Mumford system is indeed an example of an

integrable system (suh a Hamiltonian struture was however only introdued later).

It turns out that the Mumford system and some of its generalizations appear in many di�erent

ontexts, although sometimes in a disguised form and often without referene to its Hamiltonian

struture. It appears in the desription of rings of ommuting di�erential operators, going bak to

the early papers of Burhnall and Chaundy (see [BC℄ or [Pre℄; for a di�erent but equivalent de-

sription see [Sh℄), it is a limit of the lassial Shlesinger equations whih desribe isomonodromy

deformation (see [Gar℄), many lassial integrable systems are isomorphi to a subsystem of the

Mumford system, sometimes up to a over (see [Van3℄) and the Mumford system appears as the

simplest of a large lass of integrable systems on the moduli spae of Higgs bundles on a Riemann

surfae, the latter being in this ase just the Riemann sphere (see [DM℄).

The purpose of this paper is to ombine the ideas in [MM℄, [MR℄, [RS3℄ and [Sh℄ to generalize

the Mumford system and to desribe the symmetries and the multi-Hamiltonian struture of its

generalizations. Let us desribe these ideas.

(1) The main idea from [RS3℄, whih is realled in Setion 2.1, is that the loop algebra

~

g =

g((�

�1

)) of any semi-simple Lie algebra has a (multi-) Hamiltonian struture whih restrits to the

�nite-dimensional spaes

~

g

�

n

of polynomials with leading term ��

n

, where � 2 g. A natural lass

of funtions in involution leads, in many ases, to an integrable system on

~

g

�

n

=G

�

where G

�

is the

isotropy group of �. We will show that for well-hosen � a Poisson redution on an aÆne subspae

N of

~

g

�

n

with respet to a subgroup G

�

�

of G

�

will lead to the generalization of the Mumford system:

1



while

~

g

�

n

=G

�

is never an aÆne spae the quotient whih we desribe will be a spae of (dimg)-tuples

of polynomials with degree onstraints, preisely as in the ase of the Mumford system.

(2) The multi-Hamiltonian struture on

~

g

�

n

, whih is given as a family of ompatible Poisson

brakets, does not restrit to any subvariety of

~

g

�

n

(although some brakets do). Therefore we prove

a general (algebrai) Poisson redution theorem whih is similar in spirit to the Marsden-Ratiu

redution theorem (see [MR℄). In our theorem we onsider a subvariety N of a Poisson variety M

on whih an aÆne Poisson group G ats (leaving N invariant). Assuming that the ation is Poisson

we give a neessary and suÆient ondition for the Poisson struture on M to desend to a Poisson

struture on N=G. The redution theorem will be proven in Setion 3.

(3) The next question then, whih turns out to be Lie-algebrai in nature, is how to pik the

subspae N and the group G

�

�

suh that the quotient is an aÆne spae whih an be naturally

identi�ed with a subspae of N . If we pik in the ase of sl(r + 1) the leading oeÆient � to be

a generi lower triangular matrix, then our ondition for Poisson reduibility implies that we an

only redue along the hyperplane N �

~

g

�

n

whih is obtained by �xing one of the entries (the entry

at position (1; r + 1)) of the oeÆient of �

n�1

. In this ase the quotient N=G

�

is an aÆne spae

if and only if this entry has been �xed to a value di�erent from 0. Notie that in this ase �+ � is

regular, where

� =

0

B

B

�

0 : : : 0 1

0 : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 0 0

1

C

C

A

:

The preise Lie-algebrai ondition imposed on � is that it is a prinipal nilpotent element; sine

all prinipal nilpotent elements of a simple Lie algebra are onjugate we may take � to be given

by � =

P

r

i=1

F

i

, where fH

i

; E

i

; F

i

g

i=1;:::;r

is a Weyl basis of g. Then the ondition whih de�nes

N �

~

g

�

n

is that its elements ��

n

+

P

n�1

i=0

x

i

�

i

satisfy �

k

x

n�1

= �; � is any non-zero top-element

in the gradation �

k

i=�k

g

i

of g, whih is assoiated to the Weyl basis, i.e., 0 6= � 2 g

k

and �

k

is

the projetion onto g

k

. This leads to the proper Lie algebrai setup for a �rst generalization of the

Mumford system to any simple Lie algebra. Indeed, if we de�ne �; � and n in the above way for

an arbitrary simple Lie algebra g then the whole multi-Hamiltonian hierarhy of Poisson strutures

and the algebra of funtions in involution desend to the quotient whih is naturally identi�ed with

an aÆne subspae N

0

of

~

g

�

n

. Notie that the group by whih we redue is in this ase the full

group G

�

, whih is Abelian, and that the ation is Hamiltonian. In the ase of sl(2) we reover

the Mumford system, while in the ase of sl(r+1) we �nd a generalization of the Mumford system

due to Donagi-Markman (see [DM℄).

(4) When � is not a prinipal nilpotent element then the whole struture theory of simple Lie

algebras omes into play. Indeed, we will rely heavily on the beautiful paper [Kos1℄ by Kostant.

As we learned from A. Shwarz, for any d oprime to r + 1, the spae of matries in sl(r + 1) of

the form

�

0 0

I

r+1�d

0

�

�

n

+

�

? M

d

? ?

�

�

n�1

+

n�2

X

i=0

x

i

�

i

; (1:3)

where M

d

is any lower triangular matrix of size d with ones on the diagonal, appears in the

desription of the solutions to the string equation [P;Q℄ = 1, or, in an analogous way, of the solutions

to the ommutativity equation [P;Q℄ = 0; in these equations P and Q are di�erential operators

subjet to ertain normalizations (see [Sh℄ and [KV℄). Notie that the matrix

�

0 I

d

I

r+1�d

0

�

,

whih is obtained from the leading oeÆients, is regular due to the fat that d and r + 1 are
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oprime. Applying our redution theorem to the subspae N of matries of the form (1.3) we

�nd that the multi-Hamiltonian hierarhy redues and that the quotient spae an be naturally

identi�ed with an aÆne subspae of N . A key information whih we also learned from Shwarz'

desription is that we should not at with the full isotropy group G

�

but with the subgroup G

�

�

of

lower triangular matries in G

�

(with ones on the diagonal). In Setion 4 we implement these ideas

in the ase of an arbitrary simple Lie algebra g and �nd for any homogeneous � the orresponding

subspaes N of

~

g

�

n

to whih the multi-Hamiltonian hierarhies redue; moreover we give the hoies

of � whih lead to a quotient whih is aÆne, thereby giving the Lie algebrai interpretation of the

oprime ondition whih appears in the ase of sl(r+1). Notie that in this more general ase G

�

�

is not Abelian; moreover it an be shown that the ation is not Hamiltonian.

(5) Another idea, whih we learned from [MM℄, is that multi-Hamiltonian strutures are often

built up from a basi one by applying a master symmetry, i.e., there is a basi Poisson struture

whose suessive Lie derivatives with respet to a ertain vetor �eld V provides a linear basis for

all the Poisson strutures. This vetor �eld V is given on

~

g

�

n

by

_

X(�) =

�

��

X(�);

and it generates all the Hamiltonians and ommuting vetor �elds starting from a few basi ones.

We show that, as a onsequene of our redution theorem, the vetor �eld V projets on the quotient

to a master symmetry whih builds up the multi-Hamiltonian struture on the quotient spae N

0

.

Sine the operations of redution and taking the Lie derivative ommute it follows that it suÆes

to ompute the redution of one Poisson struture on

~

g

�

n

(in fat preisely the unique linear one)

and apply suessive Lie derivatives to it to �nd the other redued Poisson strutures. The basi

properties of the vetor �eld V will be given in Setion 2.2, we disuss the redution of symmetries

at the end of Setion 3 and we �nd the redued master symmetry in the ase of the loop algebra

in Setion 4.2.

We will end this paper with a list of examples (Setion 5). We will �rst show how our on-

strution speializes in the ase of sl(2) to the Mumford system. In this ase we will expliitly

ompute all redued brakets. We will give an expliit desription of the quotient spae (as a spae

of polynomials) for the lassial Lie algebras and for G

2

.

In onlusion we have a omplete desription of the multi-Hamiltonian struture of the Mum-

ford system and its generalizations to arbitrary simple Lie algebras. It seems non-trivial but inter-

esting to do the same for the even master system (see [Van1℄), whih also desribes all linear ows

on all hyperellipti Jaobians by equations whih are similar to (1.1). A proof of the integrability

of the systems on the redued spae N

0

involves algebrai geometri arguments, revealing also their

algebrai omplete integrability (this is done for the ase of sl(n) in [DM℄); we leave this and a

study of the algebrai geometry of the �bers of the Hamiltonians | some of whih are ertainly

interesting Abelian varieties | for the future.
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Catholique de Louvain and the University of California at Davis for their hospitality.

3



2. Multi-Hamiltonian hierarhies and master symmetries on loop

algebras

In this setion we introdue a large lass of multi-Hamiltonian hierarhies on the loop alge-

bra

~

g = g((�

�1

)), where g is a �nite-dimensional Lie algebra, whih is equipped with an ad-invariant

non-degenerate inner produt. The multi-Hamiltonian struture of interest here was �rst introdued

in [RS3℄ by using several R-brakets and is realled in Paragraph 2.1. We exhibit several multi-

Hamiltonian hierarhies, whose Hamiltonians are seen to be in involution by the lassial R-matrix

argument; we provide an alternative proof whih uses the lassial Lenard-Magri sheme. Follow-

ing an idea of [MM℄ we show in Paragraph 2.2 that the di�erent Poisson brakets whih make up

the multi-Hamiltonian struture are onneted by the Lie derivative along a master symmetry V,

thereby giving another, more geometri, onstrution of these brakets. The vetor �eld V allows

one to pass from one Hamiltonian (and its vetor �eld with respet to any of the Poisson brakets)

to another, hene playing a similar role as the reursion operator in the ase of Poisson-Nijenhuis

manifolds (see [KM℄).

2.1. The loop algebra

~

g = g((�

�1

)) and its Poisson brakets

Let g be a (�nite-dimensional) Lie algebra and h�; �i

g

a non-degenerate inner produt whih

is ad-invariant, hx; [y; z℄i

g

= h[x; y℄; zi

g

. We �x a basis fe

a

g

a2I

for g and de�ne linear forms

�

a

:g ! C by �

a

= h�; e

a

i

g

. We look at g as an aÆne (algebrai) variety, in partiular we onsider

O(g) = C [�

a

℄

a2I

as its algebra of (regular) funtions. For any F 2 O(g), its gradient rF (x) at

x 2 g is de�ned by

hrF (x); yi

g

=

d

dt

jt=0

F (x+ ty) 8y 2 g:

For any a 2 I and F 2 O(g) the map x 7! hrF (x); e

a

i

g

belongs to O(g). It follows that for any

F;G 2 O(g) the Poisson braket fF;Gg, de�ned by

fF;Gg(x) = hx; [rF (x);rG(x)℄i

g

; (2:1)

also belongs to O(g), making O(g) into a Poisson algebra.

From g we onstrut the loop algebra

~

g = g((�

�1

)) = g[�℄ � �

�1

g[[�

�1

℄℄: Elements of the

loop algebra will be denoted by apital letters; for an element X = X(�) =

P

x

i

�

i

2

~

g we write

X = X

+

+X

�

aording to the above (vetor spae) deomposition. The inner produt h� ; �i

g

on

g leads to an inner produt h� ; �i on

~

g via

hX(�); Y (�)i =

X

i+j=�1

hx

i

; y

j

i

g

:

By a slight abuse of notation one often writes Res hX(�); Y (�)i

g

for the above right hand side;

here Res

P

x

i

�

i

= x

�1

. Clearly h� ; �i is ad-invariant and non-degenerate just as h� ; �i

g

is. For

a 2 I; i 2 Z we de�ne elements E

i

a

= e

a

�

i

of

~

g and linear funtions �

i

a

=




�; E

�i�1

a

�

. We wish to

introdue an algebra O(

~

g) of funtions on

~

g for whih we an de�ne a gradient and a Poisson braket

as in the ase of g, but whih is large enough to ontain funtions of the type X(�) 7! ResH(X(�))

(for H 2 O(g)), whih will be important later. To do this we �rst de�ne on

~

g

�n

= �

n

g[[�

�1

℄℄ an

algebra of funtions by

O(

~

g

�n

) = C

�

�

i

a

�

a2I

i�n

4



and obtain from it the following algebra of funtions on

~

g:

O(

~

g) =

n

F :

~

g! C j 8n 2 Z : F

j

~

g

�n

2 O(

~

g

�n

)

o

:

Thus, elements of O(

~

g) restrit to polynomials on all subspaes

~

g

�n

. As in the ase of g the

gradient rF (X) of a funtion F 2 O(

~

g) at X 2

~

g is de�ned by

hrF (X); Y i =

d

dt

jt=0

F (X + tY ) 8Y 2

~

g: (2:2)

Proposition 2.1 For any X 2

~

g and F 2 O(

~

g), rF (X) is well-de�ned by (2.2) and belongs

to

~

g. For any F;G 2 O(

~

g) the Poisson braket fF;Gg, de�ned by

fF;Gg(X) = hX; [rF (X);rG(X)℄i ;

belongs to O(

~

g), making O(

~

g) into a Poisson algebra.

Proof

The fat that the gradient is well-de�ned follows from non-degeneray of h�; �i; in fat, for any

j 2 Z the oeÆient (rF (X))

j

2 g is given by

h(rF (X))

j

; e

a

i

g

=




rF (X); E

�j�1

a

�

=

d

dt

jt=0

F (X + tE

�j�1

a

):

If X 2

~

g

�n

then F (X+ tE

j

a

) is independent of t for j suÆiently small, sine F

j

~

g

�n

is a polynomial.

Thus, (rF (X))

j

is zero for j suÆiently large and rF (X) 2

~

g. Further, X 7!




rF (X); E

j

a

�

belongs to O(

~

g) for any j 2 Z sine the restrition to any

~

g

�n

of the map

X 7!

d

dt

jt=0

F (X + tE

j

a

)

is just a polynomial (in this formula, use F

j

~

g

�m

where m = maxfn; jg). As a orollary, if F; G 2

O(

~

g) then the map

X 7! hX; [rF (X);rG(X)℄i

belongs to O(

~

g), giving a braket f� ; �g : O(

~

g)�O(

~

g)! O(

~

g). The fat that it satis�es the Jaobi

identity follows from the fat that (2.1) satis�es the Jaobi identity.

Following [RS3℄ we introdue a family R

l

of endomorphisms of

~

g by

R :

~

g!

~

g : X 7! X

+

�X

�

;

R

l

:

~

g!

~

g : X 7! R(�

l

X):

Proposition 2.2 ([RS3℄) For any l 2 Z a Poisson braket on O(

~

g) is de�ned by

fF;Gg

l

(X) =

1

2

hX; [R

l

rF (X);rG(X)℄ + [rF (X); R

l

rG(X)℄i :

5



Moreover the brakets f� ; �g

l

; l 2 Z form a family of ompatible Poisson brakets, i.e., any linear

ombination of these brakets is a Poisson braket.

As above these brakets are taken as brakets on O(

~

g). We all them R-brakets and all f� ; �g

the anonial Lie-Poisson braket on

~

g. If we denote the struture onstants of g with respet to

the basis fe

a

g

a2I

by C



ab

, i.e., [e

a

; e

b

℄ =

P

2I

C



ab

e



, then one easily �nds by using r�

i

a

= E

�i�1

a

that

f�

i

a

; �

j

b

g

l

= �

ij

l

X

2I

C



ab

�

i+j+1�l



; (2:3)

where �

ij

l

= 1 if i; j < l and �

ij

l

= �1 if i; j � l; otherwise �

ij

l

= 0. The R-brakets have two

remarkable properties whih make them more relevant for integrable systems than the anonial

Lie-Poisson braket on

~

g. The �rst property, whih follows immediately from (2.3), is that if

�p � l � q + 1 then f� ; �g

l

restrits to the following natural �nite-dimensional subspae of

~

g,

~

g

�p;q

=

8

<

:

q

X

i=�p

x

i

�

i

j x

i

2 g

9

=

;

: (2:4)

Sine multipliation by �

p

indues an isomorphism

�

~

g

�p;q

; f� ; �g

l

�

�!

�

~

g

0;p+q

; f� ; �g

l+p

�

we may

restrit ourselves to the spaes

~

g

0;n

of matries whih are polynomial (in �) of degree at most n.

In fat we will be interested in the aÆne subspaes of

~

g

0;n

de�ned by

~

g

�

n

=

(

n

X

i=0

x

i

�

i

2

~

g j x

n

= �

)

; (2:5)

where � is any �xed element in g. The family of R-brakets whih restrits to

~

g

�

n

is also omputed

at one from (2.3) and is given in the following proposition.

Proposition 2.3 If � is not a entral element in g then the Poisson struture

P

1

l=�1



l

f� ; �g

l

restrits to

~

g

�

n

if and only if 

l

= 0 for l < 0 and for l > n.

The seond remarkable property of the R-brakets is that the Ad-invariant funtions on g lead

to a large subalgebra A of O(

~

g) whih is involutive with respet to all these brakets. Indeed,

a funtion H 2 O(g) indues a funtion H :

~

g ! C((�

�1

)) and hene leads for any i 2 Z to a

funtion H

i

on

~

g, de�ned by

H

i

(X(�)) = Res

H(X(�))

�

i+1

: (2:6)

Clearly any suh funtion H

i

belongs to O(

~

g).

Proposition 2.4 ([RS3℄) Let H and K be two Ad-invariant funtions in O(g). Then for any

i; j 2 Z the funtions H

i

and K

j

are in involution with respet to all R-brakets f� ; �g

l

.

Proof

Ad-invariant funtions in O(g) are those funtions whih are invariant for the adjoint ation of

a Lie group G for whih g = LieG. It may be impossible

1

to pik G algebrai but this is irrelevant

1

If g is semi-simple then G is algebrai, see [OV℄, p.29.
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here beause we only use the fat that suh a funtion H 2 O(g) satis�es the in�nitesimal ondition

[x;rH(x)℄ = 0. To show the latter, use ad-invariane of h�; �i

g

and Ad-invariane of H to �nd

h[x;rH(x)℄ ; yi = hrH(x); [y; x℄i =

d

dt

jt=0

H(x+ t[y; x℄) =

d

dt

jt=0

H(Ad

z(t)

x) = 0;

when setting z(t) = exp ty. In partiular, if H 2 O(g) is Ad-invariant then, for any i 2 Z, the

funtion H

i

2 O(

~

g) de�ned by (2.6) is Ad-invariant and [X;rH

i

(X)℄ = 0. It follows that if H and

K are Ad-invariant funtions on g then for any i; j; l 2 Z

fH

i

;K

j

g

l

(X) =

1

2

hX; [R

l

rH

i

(X);rK

j

(X)℄ + [rH

i

(X); R

l

rK

j

(X)℄i = 0;

showing that all funtions on O(

~

g) whih ome from Ad-invariant funtions on g are in involution

with respet to all R-brakets.

The algebra of Ad-invariant funtions on g is denoted by O(g)

G

and the involutive algebra

generated by all H

i

; i 2 Z; H 2 O(g)

G

is denoted by A. If we de�ne for any F 2 O(

~

g) a vetor

�eld on

~

g by X

F

= f�; Fg

0

then the i-th vetor �eld X

H

i

(i 2 Z) whih omes from an Ad-invariant

funtion H 2 O(g)

G

is given by the Lax equation

_

X = �

1

2

[X;RrH

i

(X)℄ : (2:7)

Two alternative ways to write this are

_

X = �[X; (rH

i

(X))

+

℄ = [X; (rH

i

(X))

�

℄: (2:8)

The vetor �elds X

H

i

are in fat Hamiltonian with respet to all brakets f� ; �g

l

. To see this, hek

that for any H 2 O(g),

d

dt

jt=0

Res

H(X + tY )

�

i+1

=

d

dt

jt=0

Res

H(X + t�Y )

�

i+2

;

showing that rH

i

(X) = �rH

i+1

(X). It follows that (2.7) an be written in Lax form with

respet to all endomorphisms R

l

and that for any H 2 O(g)

G

the funtions fH

i

g

i2Z

form a multi-

Hamiltonian hierarhy in the sense that

f�;H

i

g

0

= f�;H

i+l

g

l

(i; l 2 Z): (2:9)

The relations (2.9), whih are alled Lenard relations, an be used to give an alternative proof of

Proposition 2.4. For funtions belonging to the same hierarhy the lassial argument applies (see,

e.g., [CMP℄), giving fH

i

;H

j

g

l

= fH

j

;H

i

g

l

= 0: For members of di�erent hierarhies, oming from

di�erent funtions H; K 2 O(g)

G

some are is needed sine none of the H

i

or K

j

is a Casimir

for any of the R-brakets. However, we see from (2.8) that for any X 2

~

g the Hamiltonian vetor

�eld X

H

s

vanishes at X for s large enough sine then (rH

s

(X))

+

= 0. Thus also in this ase the

Lenard relations give (e.g., for the zeroth R-braket)

fH

i

;K

j

g

0

(X) = fH

s

;K

j�s+i

g

0

(X) = 0:

whih shows that funtions whih belong to di�erent hierarhies are also in involution.
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2.2. Master symmetries and the deformation property

In this paragraph we show how the Poisson brakets f� ; �g

l

are related by a vetor �eld V whih

is a master symmetry

2

for the involutive algebra A (introdued after Proposition 2.4). We mean

by this that V has the property [[V;X

F

℄ ;X

G

℄ = 0 for all F; G 2 A (a symmetry has the stronger

property [V;X

F

℄ = 0 for all F 2 A). The vetor �eld V has in addition the deformation property

with respet to the brakets f� ; �g

l

; this means that the Lie derivative of any braket f� ; �g

l

in the

diretion of V is also a Poisson braket

3

. As was shown in [MM℄ this implies that any braket f� ; �g

l

is ompatible with its Lie derivative in the diretion of V.

The vetor �eld V is de�ned as the in�nitesimal generator of the ation of C on

~

g given by

\shift in �",

�

s;

X

x

i

�

i

�

7!

X

x

i

(�+ s)

i

;

here we use for negative powers of � the formal expansion

(�+ s)

�1

=

X

i�0

(�1)

i

s

i

�

�i�1

;

whih is atually onvergent for small s, in partiular it is the right de�nition if one wants to

onsider the fundamental vetor �eld V of this ation: the latter is easily omputed as

_

X(�) =

�

��

X(�) i.e. L

V

�

j

a

= (j + 1)�

j+1

a

;

where L

V

denotes the Lie derivative along V. The two mentioned properties of V are given by the

following proposition.

Proposition 2.5 Let i; l 2 Z and H 2 O(g)

G

be arbitrary.

a) V has the deformation property with respet to all brakets f� ; �g

l

, more preisely the

relation

L

V

fF;Gg

l

� fL

V

F;Gg

l

� fF;L

V

Gg

l

= �lfF;Gg

l�1

(2:10)

holds, i.e., the Lie derivative of the l-th R-braket is (up to a fator �l) the (l � 1)-th

R-braket;

b) L

V

H

i

= (i+ 1)H

i+1

;

) [V;X

H

i

℄ = X

L

V

H

i

= (i+ 1)X

H

i+1

;

d) V is a master symmetry for A.

Proof

It suÆes to verify a) for F = �

i

a

and G = �

j

b

with say i � j. We an use (2.3); sine for this

partiular F and G all terms in (2.10) are proportional to

P



C



ab

�

i+j�l+2



it atually suÆes to

keep trak of the oeÆients and the proof of (2.10) amounts to the veri�ation of the following

identity,

(i+ j � l + 2)�

ij

l

� (i+ 1)�

i+1;j

l

� (j + 1)�

i;j+1

l

= �l�

ij

l�1

:

2

The onept of a master symmetry was �rst introdued by Fuhssteiner (see [Fu℄). The notion

we use here is slightly more general.

3

In many important examples the master symmetries for an algebra whih is involutive with

respet to some Poisson braket have the deformation property with respet to this Poisson braket,

however these two properties are independent in general.
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As for b),

L

V

H

i

(X) =

d

ds

js=0

Res

H(X(�+ s))

�

i+1

= Res

1

�

i+1

d

d�

H(X(�))

= Res

�

d

d�

�

H(X(�))

�

i+1

�

+ (i+ 1)

H(X(�))

�

i+2

�

= (i+ 1)Res

H(X(�))

�

i+2

;

whih is preisely (i+ 1)H

i+1

(X). For ) we substitute l = 0 and G = H

i

in part a) to �nd

L

V

fF;H

i

g

0

= fL

V

F;H

i

g

0

+ fF;L

V

H

i

g

0

;

whih an also be written as L

V

(X

H

i

(F )) = X

H

i

(L

V

F ) + X

L

V

H

i

(F ); using b) we onlude ). In

order to show d) �rst notie that [X

F

;X

G

℄ = �X

fF;Gg

0

= 0 for any F;G 2 A. Then ) implies that

[[V;X

H

i

℄;X

G

℄ = 0 for any H 2 O(g)

G

and for any G 2 A. By the Jaobi identity we also have that

[[V;X

G

℄;X

H

i

℄ = 0: The more general statement that [[V;X

G

℄;X

F

℄ = 0 for any F;G 2 A follows

from b) upon using the fat that A is generated by the funtions H

i

where i runs over Z and H

runs over O(g)

G

.

Piking any two Poisson strutures suh as f� ; �g

0

and f� ; �g

l

the relations (2.9) and Proposi-

tion 2.5 an be depited in the following diagram (we omit the oeÆients; L

l

V

:= L

V

Æ L

l�1

V

),

: : :

H

i

L

l

V

�! H

i+l

L

l

V

�! H

i+2l

0

?

?

y

.
l

0

?

?

y

.
l

0

?

?

y

X

H

i

L

l

V

�! X

H

i+l

L

l

V

�! X

H

i+2l

: : :

Remark 2.6 An R-braket on a Lie algebra g leads also to a quadrati and a ubi braket,

assuming that the Lie algebra derives from an assoiative algebra, with a pairing h� ; �i

g

whih

derives from a traeform (see [LP℄ and [OR℄). Expliitly the quadrati braket f� ; �g

Q

and the ubi

braket f� ; �g

C

are given for F; G 2 O(g) by

fF;Gg

Q

(x) =

1

2

h[x;rF (x)℄; R(xrG(x) +rG(x)x)i

g

�

1

2

h[x;rG(x)℄; R(xrF (x) +rF (x)x)i

g

fF;Gg

C

(x) = h[x;rF (x)℄; R(xrG(x)x)i

g

� h[x;rG(x)℄; R(xrF (x)x)i

g

:

When applied to the R-braket on the loop algebra

~

g of g = gl(N) we get a quadrati and a ubi

Poisson braket on O(

~

g). It was shown in [LP℄ that the linear, the quadrati and the ubi braket

are related by the vetor �eld U

X(�)

= X

2

(�). It is easy to prove that U is a master symmetry for

the algebra A, whih is in the ase g = gl(N) generated by the funtions

I

ij

(X) = Res

TrX

i

(�)

�

j+1

; i > 0; j 2 Z;

[LP℄ gives Lenard relations for the funtions I

ij

with respet to these brakets. Using the fat that

U and V ommute it is easy to show that V also has the deformation property with respet to both

the quadrati and the ubi brakets, e.g., the Lie derivative in the diretion of V of the quadrati

9



braket whih orresponds to R

l

is (�l times) the quadrati braket whih orresponds to R

l�1

;

this leads in partiular to another set of Lenard relations for the funtions I

ij

. It follows that on

the loop algebra

~

g the ubi and the quadrati braket have all properties whih the R-brakets

have: A is involutive with respet to these brakets, the orresponding Hamiltonian vetor �elds

are multi-Hamiltonian with respet to these brakets and the brakets are onneted by the Lie

derivative with respet to the vetor �elds U and V whih are master symmetries for A. The higher

order brakets di�er however from the linear strutures in one ruial aspet: as it is easy to see

they do not restrit to any of the �nite-dimensional spaes

~

g

�p;q

, de�ned in (2.4). Similarly the

vetor �eld U learly does not restrit to any of the subspaes

~

g

�p;q

(exept in the trivial ase

p = q = 0).
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3. Poisson redution and redution of symmetries

In order to onstrut our examples we need a redution theorem whih leads to a Poisson

struture in the following situation: for N a subvariety of an aÆne Poisson variety (M; f� ; �g) with

an algebrai group G ating on it (leaving N stable) we want an inherited Poisson struture on

the quotient spae N=G. By an aÆne Poisson variety we mean an aÆne variety whose algebra of

regular funtions is equipped with the struture of a Poisson algebra. We will assume that our

group G also arries a Poisson struture (whih may be trivial).

If N is a Poisson subvariety of M then a Poisson struture on N=G, or, more preisely, on the

ring O(N)

G

of G-invariant regular funtions on N , will exist if the map � : G�N ! N is a Poisson

map with respet to some Poisson struture on G; suh an ation is alled a Poisson ation

4

and

the braket is alled a redued braket. If N is not a Poisson subvariety of M then N=G may still

inherit a braket fromM : we will give below neessary and suÆient onditions for this to happen.

The following notation will be useful: the algebra of regular funtions on M whih restrit

to G-invariant funtions on N is denoted by O(M;N)

G

; we have a natural restrition

5

map � :

O(M;N)

G

! O(N)

G

. The ideal of N is denoted by I(N) and we have an inlusion map { : N !M .

Also, if � : M

1

! M

2

is a regular map between aÆne varieties then we denote by �

�

the indued

map O(M

2

)! O(M

1

) de�ned by �

�

(f) = f Æ �.

De�nition 3.1 Let (M; f� ; �g) be an aÆne Poisson variety, � : G �M ! M a Poisson ation

and N a subvariety of M whih is G-stable. Then the triple (M;G;N) is alled Poisson-reduible

if O(M;N)

G

is a Poisson subalgebra of O(M) and if there exists a Poisson braket on O(N)

G

suh

that

f�(F

1

); �(F

2

)g

O(N)

G = �fF

1

; F

2

g (3:1)

holds for all F

1

; F

2

2 O(M;N)

G

.

Formula (3.1) says that in order to ompute the Poisson braket of two G-invariant funtions

on N one omputes the Poisson braket of any extensions to M and then restrits the result to N .

Note also that (3.1) uniquely de�nes a braket on O(N)

G

(if it exists) sine � is surjetive. In the

following theorem, whih is similar in spirit to the Marsden-Ratiu redution theorem (see [MR℄),

we give neessary and suÆient onditions for (M;G;N) to be Poisson-reduible.

Theorem 3.2 Let (M; f� ; �g) be an aÆne Poisson variety, � : G �M ! M a Poisson ation

and N a subvariety of M whih is G-stable. Then (M;G;N) is Poisson-reduible if and only if

�

�

O(M;N)

G

; I(N)

	

= 0; (3:2)

it is impliit in this ondition that its left hand side makes sense.

Proof

Suppose �rst that ondition (3.2) is satis�ed. We proeed to show that

�

O(M;N)

G

;O(M;N)

G

	

� O(M;N)

G

:

4

Some authors, e.g., [LM℄ use this term in the more restrited sense in whih G is given the

trivial Poisson struture; then � being a Poisson ation means that for any g 2 G the indued map

�

g

: N ! N is a Poisson map.

5

This restrition map is onto, although the restrition map O(M)

G

! O(N)

G

is not onto in

general.
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If we denote by �

2;N

the projetion G � N ! N onto the seond fator then G-invariane of a

funtion f 2 O(N) is onveniently expressed by the formula �

�

f = �

�

2;N

f . Thus we need to show

that

�

�

{

�

fF

1

; F

2

g = �

�

2;N

{

�

fF

1

; F

2

g (3:3)

for any F

1

; F

2

2 O(M;N)

G

. Sine � and �

2;N

are the restritions to G�N of the orresponding

maps � and �

2;M

on G�M and sine these maps are Poisson maps, (3.3) is equivalent to

(1

G

� {)

�

�

f�

�

F

1

; �

�

F

2

g

G�M

� f�

�

2;M

F

1

; �

�

2;M

F

2

g

G�M

�

= 0; (3:4)

where 1

G

is the identity map on G. For g 2 G and n 2 N we de�ne maps �

g

: M ! M and

�

n

: G!M by inserting g resp. n in �. Then �

�

n

F is onstant for any F 2 O(M;N)

G

so that

f�

�

F

1

; �

�

F

2

� �

�

2;M

F

2

g

G�M

(g; n) = f�

�

g

F

1

; �

�

g

F

2

� F

2

g(n) + f�

�

n

F

1

; �

�

n

F

2

� F

2

(n)g

G

(g)

= f�

�

g

F

1

; �

�

g

F

2

� F

2

g(n);

whih vanishes by the assumption (3.2). Therefore

(1

G

� {)

�

f�

�

F

1

; �

�

F

2

� �

�

2;M

F

2

g

G�M

= 0; (3:5)

and similarly

(1

G

� {)

�

f�

�

F

1

� �

�

2;M

F

1

; �

�

2;M

F

2

g

G�M

= 0: (3:6)

Summing (3.5) and (3.6) we �nd (3.4) whih shows that fF

1

; F

2

g 2 O(M;N)

G

.

It follows that we an atually use (3.1) to de�ne f� ; �g

O(N)

G : on the one hand � is surjetive,

on the other hand the braket on O(N)

G

given by (3.1) is well-de�ned sine if �(

~

F

2

) = �(F

2

) then

{

�

fF

1

;

~

F

2

� F

2

g = 0; another appliation of (3.2). From the de�nition it is also immediate that

f� ; �g

O(N)

G satis�es the Jaobi identity so we get a Poisson braket on O(N)

G

whih satis�es (3.1).

This shows the if part; the only if part is trivial sine �(I(N)) = 0.

Remark 3.3 Suppose that all algebras under onsideration are �nitely generated. Then O(N)

G

is the algebra of funtions on an aÆne variety N=G whih an be onsidered as the quotient of N

by G. Similarly O(M;N)

G

orresponds then to an aÆne variety (M;N)=G, obtained by taking the

quotient of M with respet to G but along N only, i.e., only N is shrunk inside M into its orbit

spae N=G while the other points of M remain intat. In geometri terms formula (3.2) states

that the Hamiltonian vetor �elds whih are assoiated to funtions on M whih are G-invariant

on N , are tangent to N (at points of N). It follows from the proof of Theorem 3.2 that if ondition

(3.2) holds then (M;N)=G inherits a Poisson braket from M and in turn N=G inherits a Poisson

braket from (M;N)=G, the latter beause all Hamiltonian vetor �elds on (M;N)=G are tangent

to N=G.

As an appliation of this theorem let us show that if a vetor �eld V whih desends to the

quotient has the deformation property with respet to some Poisson-reduible braket then this

deformation property is onserved after the redution. We need the following lemma.

Lemma 3.4 Let M be an aÆne variety, V a vetor �eld on M and G a linear algebrai group

ating on M ; let N be an aÆne subvariety, stable for G, and suppose that V is tangent to N ,

W = V

jN

. Then

L

W

O(N)

G

� O(N)

G

(3:7)
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is equivalent to

L

V

O(M;N)

G

� O(M;N)

G

(3:8)

and implies the ommutativity of the following diagram.

O(M;N)

G

�

�! O(N)

G

L

V

?

?

y

?

?

y

L

W

O(M;N)

G

�!

�

O(N)

G

(3:9)

Proof

Let �

�

N

: O(N)

G

! O(N) denote the inlusion map (whih may be thought of as oming

from the quotient map �

N

: N ! N=G) and note the obvious relation {

�

= �

�

N

�, whih holds on

O(M;N)

G

. Then formula (3.8) follows from (3.7),

{

�

L

V

O(M;N)

G

= L

W

{

�

O(M;N)

G

= L

W

�

�

N

O(N)

G

= �

�

N

L

W

O(N)

G

� �

�

N

O(N)

G

;

for the proof of the other diretion surjetivity of � is essential:

�

�

N

L

W

O(N)

G

= L

W

�

�

N

� O(M;N)

G

= {

�

L

V

O(M;N)

G

� {

�

O(M;N)

G

= �

�

N

O(N)

G

:

Moreover, for F 2 O(M;N)

G

we have

�

�

N

L

W

�(F ) = L

W

�

�

N

�(F ) = L

W

{

�

F = {

�

L

V

F = �

�

N

�L

V

F;

whih shows that the diagram is ommutative.

Theorem 3.5 Let (M;G;N) be Poisson-reduible with respet to a Poisson braket f� ; �g on M

and suppose that V is a vetor �eld on M whih is tangent to N; W = V

jN

, and whih has the

deformation property with respet to f� ; �g. If L

W

O(N)

G

� O(N)

G

then

a) (M;G;N) is Poisson-reduible with respet to f� ; �g

0

, the Lie derivative of f� ; �g in the

diretion of V;

b) W has the deformation property with respet to f� ; �g

O(N)

G
;

) the Lie derivative of f� ; �g

O(N)

G in the diretion of W is the redued braket of f� ; �g

0

.

Thus the deformation property survives the redution and the operations of redution and deforma-

tion ommute.

Proof

To show that (M;G;N) is Poisson-reduible with respet to f� ; �g

0

, we use the neessary and

suÆient ondition (3.2) of Theorem 3.2. Sine

fF;Gg

0

= L

V

fF;Gg � fL

V

F;Gg � fF;L

V

Gg;

we have that

�fO(M;N)

G

; I(N)g

0

= �L

V

fO(M;N)

G

; I(N)g��fL

V

O(M;N)

G

; I(N)g��fO(M;N)

G

;L

V

I(N)g

and eah term of the right hand side vanishes beause (M;G;N) is Poisson-reduible with respet

to f� ; �g: for the �rst term use ommutativity of (3.9), for the seond one use (3.8) and the last is

zero beause V is tangent to N; L

V

I(N) = 0.

13



Next we show that the Lie derivative of f� ; �g

O(N)

G in the diretion ofW is the redued braket

f� ; �g

0

O(N)

G

of f� ; �g

0

. This means that if f

1

; f

2

2 O(N)

G

then

ff

1

; f

2

g

0

O(N)

G

= L

W

ff

1

; f

2

g

O(N)

G � fL

W

f

1

; f

2

g

O(N)

G � ff

1

;L

W

f

2

g

O(N)

G : (3:10)

Let f

1

= �(F

1

); f

2

= �(F

2

) and use (3.1) and ommutativity of (3.9):

ff

1

; f

2

g

0

O(N)

G

= �fF

1

; F

2

g

0

= �L

V

fF

1

; F

2

g � �fL

V

F

1

; F

2

g � �fF

1

;L

V

F

2

g

= L

W

ff

1

; f

2

g

O(N)

G � fL

W

f

1

; f

2

g

O(N)

G � ff

1

;L

W

f

2

g

O(N)

G :

Sine we have proved that f� ; �g

0

O(N)

G

is a Poisson braket on O(N)

G

we have shown in partiular

that L

W

has the deformation property with respet to f� ; �g

O(N)

G and we are done.

Remark 3.6 Under the onditions of Remark 3.3 the onditions (3.7) and (3.8) mean that the

vetor �elds W and V are tangent to the quotient spaes N=G and (M;N)=G.

Remark 3.7 The onditions of Theorem 3.5 are also suÆient to onlude that a master symme-

try for a subalgebra A � O(M;N)

G

desends to a master symmetry on the quotient. To prove this

let F 2 O(M;N)

G

and note that X

F

= f�; Fg is tangent to N . If we denote by Y

F

the restrition

of X

F

to N then Y

F

is given as a derivation of O(N)

G

by Y

F

= f�; �(F )g

O(N)

G and we have that

Y

F

� = �X

F

. Using (3.9), written as W� = �V, we get

[Y

F

; [Y

G

;W℄℄ � = � [X

F

; [X

G

;V℄℄ = 0;

sine V is a master symmetry for A. Sine � is surjetive W is a master symmetry for �(A).

14



4. Redution for simple Lie algebras

In this setion we apply our two redution theorems to the �nite-dimensional subspaes

~

g

�

n

of

~

g, de�ned in (2.5), in ase

~

g is the loop algebra of a omplex simple Lie algebra g � gl(N) of rank

r (see [Hum℄ and [Ser℄). We denote by G any algebrai group whose Lie algebra equals g. We �x a

Weyl basis fH

i

; E

i

; F

i

g

r

i=1

of g, i.e., a olletion of 3r generators for g suh that H

i

spans a Cartan

subalgebra h, and the following ommutation relations

6

hold:

[E

i

; F

j

℄ = Æ

ij

F

i

; [H

i

; E

j

℄ = n

ji

E

j

; [H

i

; F

j

℄ = �n

ji

F

j

:

Here (n

ij

) is the Cartan matrix of g and the indies i; j take values between 1 and r. The Weyl

basis leads to a gradation g = �

k

i=�k

g

i

of g: g

0

= h and for i positive (negative) g

i

is spanned

by the i-fold ommutators of the elements E

1

; : : : ; E

r

(F

1

; : : : ; F

r

). An element of g

i

is alled a

homogeneous element of degree i and h = k+1 is alled the Coxeter number of g. The projetion of

g on g

i

is denoted by �

i

. We will also use the deomposition g = n

�

�h�n

+

, where n

�

= �

�k

i=�1

g

i

.

We will onsider a set fI

1

; : : : ; I

r

g of Chevalley invariants of g. They are homogeneous polynomials

whih generate the algebra O(g)

G

of invariants for the adjoint ation of G on g (see [Var℄ p. 333).

We denote the degree of I

j

by d

j

and all the numbers q

j

= d

j

� 1 the exponents of g. We will

always assume the invariants I

j

to be ordered by degree. Then the exponents bear the following

relations (see [Kos1℄):

1 = q

1

< q

2

� q

3

� � � � � q

r�1

< q

r

= k: (4:1)

The Chevalley invariants lead to the following G-invariant funtions on

~

g:

I

ij

(X) = Res

I

i

(X)

�

j+1

;

whih by de�nition generate the involutive algebra A introdued in Setion 2.

4.1. Poisson redution

Let � and � be homogeneous elements of g suh that deg�� deg � = h. We put deg � = �d

and we de�ne, as in Paragraph 2.1,

~

g

�

n

=

(

n

X

i=0

x

i

�

i

2

~

g j x

n

= �

)

;

together with the following aÆne subspae

N =

(

n

X

i=0

x

i

�

i

2

~

g

�

n

j �

j

(x

n�1

� �) = 0 if j � deg�

)

:

Lemma 4.1 Let g

�

be the isotropy algebra of � and let g

�

�

= g

�

\ n

�

. Then the ation of

G

�

�

= exp g

�

�

on

~

g

�

n

leaves N invariant.

6

Our de�nition of a Weyl basis di�ers from the one in [Ser℄ by a transposition in the Cartan

matrix, i.e., [Ser℄ takes [H

i

; E

j

℄ = n

ij

E

j

; our hoie simpli�es the expliit formulas for the Weyl

bases given in the examples.
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Proof

It suÆes to show that if �

j

(x

n�1

��) vanishes for all j � deg� then the same holds true for

�

j

(Ad

exp �

x

n�1

� �) when � 2 n

�

. The result follows at one from Ad

exp �

= exp ad

�

:

Reall from Proposition 2.3 that the brakets f� ; �g

l

restrit to

~

g

�

n

for 0 � l � n. Notie however

that the braket f� ; �g

n

does not restrit to N : if e

a

is a basis element suh that deg e

a

= deg�

then �

n�1

a

� �

a

(�) belongs to the ideal I(N) of N but f�

n�1

a

; �

0

b

g

n

= C



ab

�

0



, whih is non-zero for

at least one value of b sine g is simple. Therefore we are preisely in the ase of the redution

theorem (Theorem 3.2).

Theorem 4.2 The triple

�

~

g

�

n

; G

�

�

; N

�

is Poisson-reduible with respet to eah Poisson struture

P

n

l=0



l

f� ; �g

l

.

Proof

We �rst show that the ation of G

�

�

on

~

g

�

n

is Poisson. To do this we take the trivial Poisson

struture on G, we �x any l 2 Z and show that (Ad

g

)

�

ff

1

; f

2

g

l

= f(Ad

g

)

�

f

1

; (Ad

g

)

�

f

2

g

l

for any

g 2 G and any f

1

; f

2

2 O(

~

g). It is suÆient to show this for f

1

and f

2

linear; then (Ad

g

)

�

f

1

and

(Ad

g

)

�

f

2

are linear too and their gradients do not depend on X 2

~

g (in partiular we an omit the

argument). Sine

d

dt

jt=0

f

1

(Ad

g

(X + tY )) = f

1

(Ad

g

Y ) = hrf

1

;Ad

g

Y i

we �nd that hr(Ad

g

)

�

f

1

; Y i =




Ad

g

�1
rf

1

; Y

�

giving r(Ad

g

)

�

f

1

= Ad

g

�1
rf

1

. Then

f(Ad

g

)

�

f

1

; (Ad

g

)

�

f

2

g

l

(X) =




X; [Ad

g

�1
rf

1

;Ad

g

�1
rf

2

℄

R

l

�

= hAd

g

X; [rf

1

;rf

2

℄

R

l

i

= ff

1

; f

2

g

l

(Ad

g

X)

= (Ad

g

)

�

ff

1

; f

2

g

l

(X):

We will see in Proposition 4.4 that in ertain interesting ases the ation is even Hamiltonian.

We now verify ondition (3.2). The ideal I(N) of N is generated by those elements of the form

�

n�1

a

� �

a

(�) for whih deg e

a

� d � h. For l = 0; : : : ; n� 1 these elements are Casimirs of f� ; �g

l

.

Indeed, if X 2

~

g

�

n

and b 2 I and 0 � k � n� 1 then

f�

n�1

a

; �

k

b

g

l

(X) = �

n�1;k

l

C



ab

�

n+k�l



(X) = 0

for k 6= l, while if k = l then

f�

n�1

a

; �

l

b

g

l

(X) = C



ab

�

n



(X) = C



ab

he



; �i

g

= h[e

a

; e

b

℄; �i

g

= h[�; e

a

℄; e

b

i

g

= 0:

We used in the last equality that [�; e

a

℄ = 0 if deg e

a

� d� h, whih follows from deg[�; e

a

℄ � �h.

This shows that (3.2) is satis�ed when l 6= n. As for the n-th braket, let F 2 O(

~

g

�

n

; N)

G

�

�

and let

a be suh that deg e

a

� d � h; notie that if F restrits to a G

�

�

invariant funtion on N then F

satis�es the in�nitesimal ondition

h[rF (X);X℄; �i = 0; 8X 2 N; 8� 2 g

�

�

:
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We need to show that f�

n�1

a

; Fg

n

(X) = 0 for any X 2 N . But

f�

n�1

a

; Fg

n

(X) =

1

2




X; [e

a

;rF (X)℄ + [�

�n

e

a

; R(�

n

rF (X))℄

�

=

1

2




X; [e

a

;rF (X)℄ + [�

�n

e

a

; �

n

rF (X) � 2(�

n

rF (X))

�

℄

�

= hX; [e

a

;rF (X)℄i �




X; [�

�n

e

a

; (�

n

rF (X))

�

℄

�

:

For the �rst term we have hX; [e

a

;rF (X)℄i = he

a

; [rF (X);X℄i = 0 sine e

a

2 g

�

�

, again beause

[�; e

a

℄ = 0. Similarly we �nd that the seond term vanishes:




X; [�

�n

e

a

; (�

n

rF (X))

�

℄

�

= h�; [e

a

; (�

n

rF (X))

�1

℄i

g

= 0:

If � is a generi nilpotent element then the ation of G

�

�

is Hamiltonian, a fat that an be

used to give an alternative proof of Theorem 4.2 for suh �. The proof of this depends on several

fats about simple Lie algebras whih we will reall now (see [Kos1℄ for details). A nilpotent

element is alled prinipal when its isotropy algebra has dimension r; in this ase the isotropy

algebra is Abelian. A generi nilpotent element is prinipal and all prinipal nilpotent elements

are onjugate to � =

P

r

i=1

F

i

whose isotropy algebra g

�

is ontained in n

�

. Notie that as a

onsequene G

�

�

= G

�

and thus that it suÆes to prove that the ation of G

�

on

~

g

�

n

is Hamiltonian

for � =

P

r

i=1

F

i

. We will use the following lemma about the gradients of the Chevalley invariants.

Lemma 4.3 If � =

P

r

i=1

F

i

then the gradient of the i-th Chevalley invariant I

i

at � is homoge-

neous of degree �(d

i

� 1) and the gradients rI

1

(�); : : : ;rI

r

(�) are linearly independent.

Proof

For the �rst laim it suÆes to show that hrI

i

(�); yi

g

= 0 for all y 2 g

j

with j 6= (d

i

�1), sine

hg

l

;g

m

i

g

= 0 if l+m 6= 0. To show this we introdue for all x 2 g the operator �

x

: O(g)! O(g)

de�ned by

(�

x

f)(z) = hrf(z); xi =

d

dt

jt=0

f(z + tx);

and we observe that g(x) =

1

m!

(�

m

x

g)(0) for any homogeneous polynomial g of degree m. Then, for

x = � and f = I

i

, we get

hrI

i

(�); yi = �

y

I

i

(�) =

1

(d

i

� 1)!

(�

d

i

�1

�

�

y

I

i

)(0):

But the proof of Lemma 14 in [Kos2℄ shows that (�

d

i

�1

�

�

y

I

i

)(0) = 0 if y 2 g

j

with j 6= d

i

� 1.

Finally, the elements rI

i

(�) are linearly independent sine dimg

�

= r (see [Kos2℄, Theorem 9).

Proposition 4.4 If � =

P

r

i=1

F

r

then the adjoint ation of G

�

on

~

g

�

n

is Hamiltonian with respet

to every Poisson struture f� ; �g

l

; l = 0; : : : ; n. We an hoose a basis fb

i

g

r

i=1

of g

�

in suh a way

that the orresponding in�nitesimal generators X

i

of the ation are the Hamiltonian vetor �elds

X

i

= f�; I

i;n(d

i

�1)�1

g

0

= f�; I

i;n(d

i

�1)+l�1

g

l

; l = 0; : : : ; n; i = 1; : : : ; r:
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Proof

We �rst show that for any X 2

~

g

�

n

and i = 1; : : : ; r

b

i

:=

�

rI

i;n(d

i

�1)�1

(X)

�

+

(4:2)

is independent of X as well as of � and belongs to g

�

. To see this, take x 2 g to �nd that




rI

i;n(d

i

�1)�1

(X); x�

�l

�

=

d

dt

jt=0

Res

I

i

(X + tx�

�l

)

�

n(d

i

�1)

= Res

1

�

n(d

i

�1)

d

dt

jt=0

I

i

(��

n

+ : : :+ x

0

+ tx�

�l

);

= Res �

n

d

dt

jt=0

I

i

(� + x

n�1

�

�1

+ : : :+ x

0

�

�n

+ tx�

�l�n

)

= Res �

�l

hrI

i

(� + x

n�1

�

�1

+ : : :+ x

0

�

�n

); xi

g

:

Developing rI

i

in a Taylor series at � we �nd (taking l � 2) that b

i

is independent of �, and

(taking l = 1) that b

i

= rI

i

(�), independent of X. From this desription we may onlude on the

one hand that the elements b

i

are independent, as a orollary of Lemma 4.3; on the other hand we

may onlude that eah b

i

belongs to the isotropy algebra g

�

of �, sine

[�; b

i

℄ = [�;rI

i

(�)℄ = 0

by Ad-invariane of I

i

. Sine dimg

�

= r, it follows that the b

i

(i = 1; : : : ; r) span g

�

.

The orresponding generators are learly the vetor �elds X

i

de�ned by

_

X = [b

i

;X℄, where

X 2

~

g

�

n

. But using (2.8) and the de�nition of b

i

it is easily seen that X

i

is the Hamiltonian vetor

�eld assoiated with I

i;n(d

i

�1)�1

by means of f� ; �g

0

. Moreover, sine their Hamiltonians are of the

form I

ij

the ation of G

�

is atually Hamiltonian with respet to any of the Poisson strutures

f� ; �g

l

(l = 0; : : : ; n).

4.2. Redution of the master symmetry

We now turn our attention to the vetor �eld V on

~

g whih was shown to be a master symmetry

for A and to have the deformation property with respet to the brakets f� ; �g

l

. We will now show

that V desends to a master symmetry whih has the deformation property. We will use the same

notation f� ; �g

l

for the redued brakets (on O(N)

G

�

�

) as for the original ones (on O(

~

g

�

n

)).

Proposition 4.5 The master symmetry V is tangent to

~

g

�

n

and L

W

O(N)

G

�

�

� O(N)

G

�

�

, where

W denotes the restrition of V to N . Therefore, the brakets f� ; �g

l

and f� ; �g

l�1

on O(

~

g

�

n

) whih

are onneted by the Lie derivative with respet to V redue to two brakets f� ; �g

l

and f� ; �g

l�1

on

O(N)

G

�

�

whih are onneted by the Lie derivative with respet to W. Moreover W is a master

symmetry for �(A).

Proof

The ow of V is given by

�

s

: X(�) 7! X(�+ s);
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if X(�) 2 N; X(�) = ��

n

+ x

n�1

�

n�1

+ � � �, then

X(�+ s) = �(�+ s)

n

+ x

n�1

(�+ s)

n�1

+ � � �

= ��

n

+ (ns� + x

n�1

)�

n�1

+ � � �

(4:3)

belongs to N sine � 2 n

�

, showing that V is tangent to N . Also it is lear that L

W

O(N)

G

�

�

�

O(N)

G

�

�

beause G

�

�

ats by simultaneous onjugation on the oeÆients of � in X(�), hene

ommutes with L

W

. Thus Theorem 3.5 applies to yield the �rst statement. The fat that W is a

master symmetry for �(A) follows from Remark 3.7.

4.3. The redued spae N=G

�

�

as a linear subspae N

0

� N

We now show that when � + � is regular then the algebra O(N)

G

�

�

is �nitely generated

(although G

�

�

is not redutive) and that the quotient spae N=G

�

�

an be identi�ed in a natural

way with an aÆne subspae N

0

of N . By naturality we mean here that under the identi�ation

whih we will onstrut the involutive algebra A � O(N=G

�

�

)

�

=

O(N)

G

�

�

and the vetor �eld W

orrespond to their restrition to N

0

, hene an easily be omputed. Note however that the Poisson

strutures f� ; �g

l

on N

0

are not obtained by restrition.

We will assume, as in Paragraph 4.1, that � and � are homogeneous with deg�� deg � = h.

We put d = �deg � and we assume that  = �+� is regular, meaning that the isotropy subalgebra

of  is a Cartan subalgebra. We will give at the end of this setion for every simple Lie algebra g

an important lass of pairs (�; �) suh that � + � is regular. The only property that we will use

about the regularity of �+ � is ontained in the following lemma.

Lemma 4.6 Let � and � be as above. Then g

�

\ g

�

�

= f0g.

Proof

If x 2 g

�

\ g

�

�

, then x belongs to the isotropy algebra of �+ �, whih is a Cartan subalgebra,

hene x is semisimple. On the other hand x 2 n

�

hene it is nilpotent. Therefore x = 0.

The spae N

0

is onstruted as follows. Let q

i

be a subspae of g

i

, for i = 1� d; : : : ; h� d� 1,

suh that

g

i

= q

i

�

�

g

�

\ g

i+d�h

; �

�

: (4:4)

If we denote

q =

�

�

�d

i=�k

g

i

�

�

�

�

h�d�1

i=1�d

q

i

�

;

then N

0

is de�ned by

N

0

= fX 2 N j x

n�1

= �+ ~x

n�1

; ~x

n�1

2 qg:

Theorem 4.7 If �+� is regular then the inlusion | : N

0

! N indues an algebra isomorphism

O(N)

G

�

�

�

=

O(N

0

) so that N=G

�

�

is an aÆne spae whih an be identi�ed with N

0

: The funtions in

involution I

ij

and the master symmetry W on N

0

are the restritions of the orresponding funtions

I

ij

and the master symmetry W on N .
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Proof

We �rst de�ne a regular map N ! G

�

�

: X 7! g

X

whih has the property that Ad

g

X

X 2 N

0

for any X 2 N and equals X for any X 2 N

0

. To determine g

X

use the fat that g

�

�

is ontained

in n

�

to write it as

g

X

= exp �; with � =

k

X

j=1

�

�j

2 g

�

; �

�j

2 g

�

\ g

�j

:

Then

(Ad

g

X

)

n�1

= Ad

g

X

x

n�1

= x

n�1

+ [�; x

n�1

℄ + � � �

=

 

�+

k�d

X

i=�k

�

i

x

n�1

!

+

2

4

k

X

j=1

�

�j

; �+

k�d

X

i=�k

�

i

x

n�1

3

5

+ � � � ;

whih has to be equal to �+

P

h�1�d

i=1�d

q

i

+p; with q

i

2 q

i

and p 2 �

�d

i=�k

g

i

. The projetion on g

h�d

yields � = � while projetion on g

h�d�1

leads to

�

h�d�1

x

n�1

= q

h�d�1

� [�

�1

; �℄ ;

from whih q

h�d�1

and �

�1

are uniquely determined beause of the diret sum deomposition

g

h�d�1

= q

h�d�1

�

�

g

�

\ g

�1

; �

�

and g

�

\ g

�

�

= f0g (Lemma 4.6). More generally, the projetion on g

j

(j = h � d � 1; : : : ; 1 � d)

yields

�

j

x

n�1

+ (known stu�) = q

j

� [�

j+d�h

; �℄ ;

whih gives a unique q

j

2 q

j

and a unique �

j+d�h

2 g

�

\ g

j+d�h

. This gives us the desired map

N ! G

�

�

; sine all q

j

and �

i

are unique, all elements of N

0

map to the identity element in G

�

�

. The

map N ! G

�

�

is regular beause the �

i

depend linearly on the entries of x

n�1

and exp : g

�

�

! G

�

�

is a regular map. Notie that only �

j

x

n�1

; j = 1 � d; : : : ; h � d � 1 enter the onstrution of g

X

;

so that g

X

= g

X

0

if �

j

x

n�1

= �

j

x

0

n�1

for j = 1� d; : : : ; h� d� 1.

We thus also have a regular map  : N ! N

0

given by X 7! Ad

g

X

X. Let us show that the

image of the indued injetive map  

�

: O(N

0

)! O(N) is preisely O(N)

G

�

�

. If F 2 O(N

0

) then

 

�

F is G

�

�

-invariant beause  is G

�

�

-invariant, hene  

�

is injetive; also, if F is a G

�

�

-invariant

funtion then its restrition to N

0

maps to F under  

�

, hene the image of  

�

is O(N)

G

�

�

. In

onlusion O(N

0

) and O(N)

G

�

�

are isomorphi and we an identify N

0

as the quotient N=G

�

�

.

The funtions I

ij

on N are G

�

�

-invariant hene pass to the quotient N

0

. Sine the quotient map

was indued by the inlusion map | : N

0

! N the orresponding funtions on N

0

are just obtained

by restrition. Formula (4.3) implies that W is tangent to N

0

and also that g

X(�)

= g

X(�+s)

. If we

denote the restrition of W to N

0

by W

0

then it follows that L

W

 

�

=  

�

L

W

0

, in other words the

projetion of W on N

0

= N=G

�

�

is justW

0

, the restrition of W to N

0

. In onlusion the funtions

in involution and their master symmetry have a simple desription on the redued spae N

0

.

We end this setion by giving a general rule to selet pairs (�; �), with deg��deg � = h, suh

that �+� is regular. We �rst reall some fats from [Kos1℄, Theorem 6.7. Let �

1

=

P

r

i=1

F

i

and let
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�

1

2 g

k

, �

1

6= 0. Then 

1

= �

1

+ �

1

is regular, so that h

0

= g



1

is a Cartan subalgebra. Moreover,

there exists a basis f

1

; : : : ; 

r

g of h

0

with the following properties (here �

�

is the projetion onto

n

�

and q

1

� q

2

: : : � q

r

are the exponents of g):

1) �

s

= �

�

(

s

) is homogeneous of degree �q

s

;

2) �

s

= �

+

(

s

) is homogeneous of degree h� q

s

.

The next proposition allows us to determine whih pairs (�

s

; �

s

) are suh that 

s

= �

s

+�

s

is

regular. We are grateful to B. Kostant for providing us with a proof.

Proposition 4.8 The element 

s

is regular if and only if q

s

is oprime to the Coxeter number h.

Proof

Let H

0

be the unique element in h suh that [H

0

; E

i

℄ = E

i

for all i = 1; : : : ; r (the existene

and uniqueness of H

0

follow from the fat that the Cartan matrix of g is invertible). Then it is

easily seen that

[H

0

; x℄ = jx 8 x 2 g

j

: (4:5)

If we de�ne P

0

2 G by P

0

= exp(

2�

p

�1

h

H

0

), then (4.5) implies that Ad

P

0



i

= !

�q

i



i

, where

! = e

2�

p

�1=h

. In partiular we have that Ad

P

0

(h

0

) � h

0

, so that P

0

belongs to the normalizer

N(H

0

) of H

0

= exph

0

in G. We denote the element of N(H

0

)=H

0

whih orresponds to P

0

by .

The group W = N(H

0

)=H

0

is alled the Weyl group of g. Clearly eah element w 2 W ats on h

0

by the adjoint ation; we will use w(x) to stand for Ad

g

x, where g 2 N(H

0

) is any representative

of w. Sine q

1

= 1, it follows from the fat that (

s

) = !

�q

s



s

for s = 1; : : : ; r that the order of 

is h.

Now let us suppose that m > 1 is a ommon divisor of q

s

and h. Then we an write h = h

0

m,

q

s

= q

0

s

m for some h

0

; q

0

s

2 N. We show that 

s

annot be regular by proving that 

h

0

is a nontrivial

element of W that leaves 

s

�xed (see, e.g., [Kna℄, p.426{427). Indeed,



h

0

(

s

) = !

�q

s

h

0



s

= !

�hq

0

s



s

= 

s

;

and 

h

0

is not identity beause the order of  is h > h

0

.

Conversely, assume that q

s

is oprime to h. Then !

s

= !

�q

s

is still a primitive h-root of unity.

If fI

j

g

j=1;:::;r

are the Chevalley invariants, deg I

j

= q

j

+ 1, then we have that I

j

(

s

) = 0 for all

j < r. Indeed,

I

j

(

s

) = I

j

((

s

)) = I

j

(!

s



s

) = !

q

j

+1

s

I

j

(

s

);

while (4.1) implies that q

j

+1 < q

r

+1 = h, so that !

q

j

+1

s

6= 1 for j < r. On the other hand, I

r

(

s

)

annot vanish, beause any element of g at whih all invariants vanish is nilpotent (see Theorem

9.1 of [Kos1℄). Therefore there exists a non-zero b 2 C suh that I

j

(b

1

) = I

j

(

s

) for j = 1; : : : ; r.

Now, Lemma 9.2 of [Kos1℄ states that two elements of a Cartan subalgebra at whih all invariants

take the same values are W -onjugate. Sine 

1

is regular, 

s

is regular too.
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5. Examples

In this setion we elaborate on the examples of the lassial Lie algebras and G

2

. Eah will be

realized as a subalgebra of sl(N) and we will use hx; yi

g

= Tr(xy) as ad-invariant inner produt;

the representation will be suh that g has a Weyl basis of a simple form. We denote by e

ij

the

N �N matrix whose only non-zero entry is a one at position (i; j).

5.1. The Mumford system

We �rst show that when our onstrution is applied to the ase of g = sl(2) we get the Mumford

system. We expliitly desribe the redued brakets, exhibit the multi-Hamiltonian hierarhies and

hek the deformation property of the master symmetry.

A Weyl basis for g = sl(2) is given by E = e

12

; F = e

21

; H = e

11

� e

22

, leading to � = e

21

and � = e

12

: Then

~

g

�

n

onsists of those matries

�

v(�) u(�)

w(�) �v(�)

�

for whih w(�) is moni of degree n and both u(�) and v(�) have degree less than n. We will

write u(�) =

P

n�1

i=0

u

i

�

i

and similarly for v(�) and w(�). The hyperplane N of

~

g

�

n

is de�ned by

the extra ondition that u(�) is moni of degree n � 1, i.e., it is de�ned by u

n�1

= 1. The group

G

�

onsists of all matries of the form

�

1 0

a 1

�

with Lie algebra g

�

= C� = g

�1

. For i = 0 the

deomposition (4.4) gives

g

0

= q

0

� [g

�1

; �℄;

leading to q

0

= 0. Therefore the quotient spae N=G

�

is identi�ed with the aÆne spae N

0

of all

matries

�

V (�) U(�)

W (�) �V (�)

�

suh that

8

>

<

>

:

U(�) moni, degU(�) = n� 1;

deg V (�) < n� 1;

W (�) moni, degW (�) = n:

Again we will write U(�) =

P

n�1

i=0

U

i

�

i

, where U

n�1

= 1; and similarly for V (�) and W (�). Sine

the algebra of invariant polynomials on g is generated by x 7! Trx

2

we �nd that the algebra A on

~

g

�

n

is generated by the oeÆients (in �) of the polynomial

u(�)w(�) + v

2

(�);

and on N

0

by the oeÆients of

U(�)W (�) + V

2

(�):

In order to desribe the redued Poisson strutures on N

0

we de�ne u

i

; U

i

; : : : to be zero for all

values for whih those variables have not been previously de�ned (e.g., u

�1

= u

n

= 0). Then

formula (2.3) for the brakets f� ; �g

l

(0 � l � n) gives

fu

i

; v

j

g

l

= �

ij

l

u

i+j+1�l

;

fv

i

; w

j

g

l

= �

ij

l

w

i+j+1�l

;

fw

i

; u

j

g

l

= 2�

ij

l

v

i+j+1�l

;
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and all other brakets (between linear funtions) are zero. The map N ! G

�

: X 7! g

X

sends

�

v(�) u(�)

w(�) �v(�)

�

7!

�

1 0

v

n�1

1

�

so that the quotient map N ! N

0

: X 7! Ad

g

X

X is given expliitly by

U

i

= u

i

;

V

i

= v

i

� u

i

v

n�1

;

W

i

= w

i

+ 2v

i

v

n�1

� u

i

v

2

n�1

;

i = 0; 1; : : : ; n� 1: (5:1)

The redued brakets are omputed by extending the funtions at the right hand side of (5.1)

(whih are G

�

-invariant funtions on N) to funtions on

~

g

�

n

and by taking their braket; we will

7

do this simply by taking the same expressions, but forgetting that u

n�1

= 1: For example if l 6= n

then fV

i

;W

j

g

l

is found from

fv

i

� u

i

v

n�1

; w

j

+ 2v

j

v

n�1

� u

j

v

2

n�1

g

l

= �

ij

l

w

i+j+1�l

� �

ij

l

u

i+j+1�l

v

2

n�1

+ 2�

ij

l

v

i+j+1�l

v

n�1

+ u

i

Æ

l

j

;

giving fV

i

;W

j

g

l

= �

ij

l

W

i+j+1�l

+ U

i

Æ

l

j

: In this way the redued brakets f� ; �g

l

are found to be

given, for l = 0; 1; : : : ; n� 1, by

fU

i

; V

j

g

l

= �

ij

l

U

i+j+1�l

;

fV

i

;W

j

g

l

= �

ij

l

W

i+j+1�l

+ U

i

Æ

l

j

;

fW

i

; U

j

g

l

= 2�

ij

l

V

i+j+1�l

;

fU

i

; U

j

g

l

= 0;

fV

i

; V

j

g

l

= 0;

fW

i

;W

j

g

l

= 2Æ

l

i

V

j

� 2Æ

l

j

V

i

;

(5:2)

while the braket f� ; �g

n

is quadrati and is given by

fU

i

; V

j

g

n

= �

ij

n

U

i+j+1�n

� U

i

U

j

;

fV

i

;W

j

g

n

= �

ij

n

W

i+j+1�n

� U

i

W

j

;

fW

i

; U

j

g

n

= 2�

ij

n

V

i+j+1�n

� 2U

j

V

i

;

fU

i

; U

j

g

n

= 0;

fV

i

; V

j

g

n

= 0;

fW

i

;W

j

g

n

= 2V

i

W

j

� 2V

j

W

i

:

(5:3)

Using these expliit formulas it is easy to verify that V has the deformation property with respet

to all these brakets. For example, for the n-th braket (whih is quadrati) we �nd

L

V

fU

i

; V

j

g

n

� fL

V

U

i

; V

j

g

n

� fU

i

;L

V

V

j

g

n

= [(i+ j + 2� n)�

ij

n

� (i+ 1)�

i+1;j

n

� (j + 1)�

i;j+1

n

℄U

i+j+2�n

= �n�

ij

n�1

U

i+j+2�n

= �nfU

i

; V

j

g

n�1

:

7

Note that we an e.g. extend v

i

�u

i

v

n�1

also to the more symmetri expression u

n�1

v

i

�u

i

v

n�1

,

but aording to Theorem 3.2 the �nal result is independent of the hosen extensions.
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Similarly (5.2) and (5.3) an be used to ompute the Hamiltonian vetor �elds X

I

i

= f� ; I

i

g

0

on

N

0

, where I

i

is the i-th oeÆient of U(�)W (�) + V

2

(�). For example

X

i

(U(�)) = fU(�); I

i

g

0

=

X

j+k=i

n�2

X

l=0

fU

l

; U

j

W

k

+ V

j

V

k

g

0

�

l

=

X

j+k=i

n�2

X

l=0

(2U

j

V

k+l+1

� V

j

U

k+l+1

� U

l+j+1

V

k

)�

l

= 2U(�)

�

V (�)

�

i+1

�

+

� 2V (�)

�

U(�)

�

i+1

�

+

:

If we denote

A =

�

V (�) U(�)

W (�) �V (�)

�

and B

i

=

�

0 0

�U

i

0

�

then we reover the Lax equations

_

A = �[A; (�

�i�1

A)

+

+B

i

℄ (5:4)

of whih Mumford's vetor �eld (1.1) is a speial ase (up to a fator �2; here n = g+1). Another

way to obtain the vetor �eld X

I

i

on N

0

is to projet the orresponding vetor �eld on N along

the tangent spae to the orbits of G

�

. Sine this is spanned by [A; �℄, one has to write

[A; (�

�i�1

A)

�

℄ =

_

A+ (A)[A; �℄; A 2 N

0

;

where  is a funtion on N

0

. The entry (1,1) of the oeÆient of �

n�1

of this equation gives

(A) = U

i

, and then (5.4) follows.

5.2. A

r

We now disuss the ase of sl(r+1) and obtain for every positive integer whih is smaller than

r + 1 and oprime to r + 1 a generalization of the Mumford system to matries of size r + 1. We

will label the entries of elements of sl(r + 1) with indies 0; : : : ; r.

A Weyl basis fH

i

; E

i

; F

i

g

r

i=1

is de�ned by H

i

= e

i�1;i�1

� e

i;i

, E

i

= e

i;i�1

, and F

i

= E

t

i

.

Clearly then g

i

is spanned by the elements e

j;i+j

so that dimg

i

= r� i+1 for i > 0 and h = r+1.

The elements �

1

2 g

r+1

and �

1

=

P

r

i=1

F

i

look as follows:

�

1

=

0

B

B

�

0 � � � 0 1

0 � � � 0 0

.

.

.

.

.

.

.

.

.

0 � � � 0 0

1

C

C

A

�

1

=

0

B

B

B

B

B

�

0 � � � 0

1 0

0 1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � 0 1 0

1

C

C

C

C

C

A

:

The isotropy algebra of �

1

+ �

1

is the algebra of matries (a

ij

) for whih a

ij

= a

i+1;j+1

, where the

indies i; j take values in Z

r+1

. It follows that �

d

and �

d

are given by

�

d

=

�

0 I

d

0 0

�

�

d

=

�

0 0

I

r+1�d

0

�

:
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We �x a d oprime to r+1 and let � = �

d

and � = �

d

. Then the spae

~

g

�

n

onsists of polynomials

of degree n with oeÆients in g whose top oeÆient equals �. The elements of the subvariety N

are those for whih the seond oeÆient equals � plus arbitrary terms of degree less than r+1�d.

The Lie algebra g

�

�

onsists of the stritly lower triangular matries of the form a

ij

for whih

a

i+d;j+d

= a

ij

; here 0 � j < i � r � d:

Proposition 5.1 If g = sl(r + 1) and d is oprime to h = r + 1 then the quotient spae N

0

is

given by

8

N

0

=

(

�

0 0

I

h�d

0

�

�

n

+

�

0 I

d

? ?

�

�

n�1

+

n�2

X

i=0

x

i

�

i

j x

i

2 sl(r + 1)

)

:

Proof

Taking into aount Theorem 4.7, we need to show that the spaes q

i

, for 1�d � i � h�d�1,

an be hosen in suh a way that the elements of q have the form

�

0

d;r+1

?

�

. In other words, if q

i

is

the span of fe

j;j+i

g

j=d;:::;h�1�i

, we must hek that q

i

� [g

�

\g

i+d�h

; �℄ = g

i

. Sine g

�

�

\g

a

= f0g

(by Lemma 4.6), we have that dim[g

�

\ g

i+d�h

; �℄ = dim(g

�

\ g

i+d�h

); then from the expliit

desription of g

�

�

it is easily seen that

dimq

i

+ dim[g

�

\ g

i+d�h

; �℄ = dimg

i

;

so that we are left with showing that q

i

\ [g

�

\ g

i+d�h

; �℄ = f0g. To this aim, let us suppose that

M 2 g

�

\ g

i+d�h

and [M;�℄ 2 q

i

; then [M;�℄

s;s+i

= 0 for all s = maxf�i; 0g; : : : ; d� 1, that is,

M

s;s+i+d�h

=M

h+s�d;s+i

for any s = 0; : : : ; d� 1; (5:5)

where we have put M

jk

= 0 for indies j and k outside the range 0; : : : ; r = h� 1. Let us de�ne for

t = 0; : : : ; h� 1 the elements m

t

=M

t;t+i+d�h

; then we have that m

t

= 0 for 0 � t � h� d� i� 1.

Moreover, equation (5.5) takes the form

m

t

= m

t+h�d

for t = 0; : : : ; d� 1: (5:6)

If i � 0, it is not diÆult to show that this implies m

t

= 0 for all t, that is, M = 0. For i � 1, we

have to use also the fat that M 2 g

�

, i.e., that

m

t

= m

t+d

for t = h� d� i; : : : ; h� d� 1: (5:7)

Now, equation (5.6) says that we an think of the indies in m

t

as belonging to Z

h�d

. We already

know that m

t

= 0 for 0 � t � h�d�i�1. In order to show thatm

s

= 0 for h�d�i � s � h�d�1,

we �x suh an m

s

and we observe that m

s

= m

s+d

on aount of (5.7). If s+ d = s

1

+ t

1

(h � d)

with 0 � s

1

� h � d � i � 1 then we are done. Otherwise, we an add d again to s

1

, and we are

sure that �nally we will obtain an s

i

suh that 0 � s

i

� h� d� i� 1 sine the equivalene lass of

d is a generator of Z

h�d

(beause d and h� d are oprime).

A set of Chevalley invariant of g is given by the polynomials I

i

: x 7! Trx

i+1

; i = 1; : : : ; r,

or, equivalently, by the oeÆients of the harateristi polynomial det(x � � Id). Therefore the

oeÆients of det(X(�) � � Id) give generators for A.

8

In this formula and in several formulas that follow we use stars as an abbreviation for arbitrary

matries of the appropriate size; of ourse it is understood that these \arbitrary" matries must be

hosen suh that the resulting matrix is in g.
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5.3. B

r

and C

r

As usually these two families, whih orrespond to the sympleti and half of the orthogonal

algebras an be treated simultaneously. The representations whih we will hoose are the ones for

whih the gradation is the restrition of the one for sl(N); here N = 2r + 1 orresponds to the

orthogonal algebra B

r

and N = 2r to the sympleti algebra C

r

. Let T denote the following N�N

matrix,

T =

0

B

B

B

�

1

�1

1

�1

.

.

.

1

C

C

C

A

i.e. T

ij

= (�1)

N�j

Æ

i+j;N+1

;

then g is de�ned by X

t

T + TX = 0; i.e.

X

N+1�l;k

= (�1)

N+k+l

X

N+1�k;l

:

The meaning of this is that the main diagonal and all its parallels at even distane are skew-

symmetri with respet to the seondary diagonal (hene TrX = 0) while the other ones are

symmetri. Then dimg = r(2r + 1) where r =

�

N

2

�

is the rank of g. If N = 2r + 1 then we de�ne

E

i

= e

i;i+1

+ e

2r+1�i;2r+2�i

; i = 1; : : : ; r � 1;

E

r

= 2(e

r;r+1

+ e

r+1;r+2

);

F

i

= e

i+1;i

+ e

2r+2�i;2r+1�i

; i = 1; : : : ; r;

while if N = 2r we de�ne

E

i

= e

i;i+1

+ e

2r�i;2r+1�i

; i = 1; : : : ; r � 1;

E

r

= e

r;r+1

;

and F

i

= E

t

i

for i = 1; : : : ; r. In either ase, if we introdue H

i

= [E

i

; F

i

℄ for i = 1; : : : ; r, then

fH

i

; E

i

; F

i

g is a Weyl basis for g. In partiular the assoiated gradation g = �

k

�k

g

i

is the restrition

of the one for sl(N) and we have dimg

i

= r � [i=2℄ for i � 1. In both ases the Coxeter number h

equals 2r. The prinipal nilpotent element �

1

is the same one as in the sl(N) ase and �

1

is for N

even respetively for N odd given by

�

1

=

0

B

B

�

0 � � � 0 1

0 � � � 0 0

.

.

.

.

.

.

.

.

.

0 � � � 0 0

1

C

C

A

resp. �

1

=

0

B

B

�

0 � � � 1 0

0 � � � 0 1

.

.

.

.

.

.

.

.

.

0 � � � 0 0

1

C

C

A

:

If N is even then �

1

+ �

1

is the same as in the sl(2r) ase and therefore its isotropy algebra an

be obtained by means of a simple restrition. In partiular �

d

and �

d

have the same form as in

the sl(2r) ase (but only odd values of d are allowed) and when d is oprime to 2r (i.e., to r) the

quotient spae an be identi�ed with a suitable aÆne subspae N

0

. If d = 1 a possible hoie for

the oeÆient of �

n�1

of the elements in N

0

is

0

B

B

B

B

�

0 ? 0 ? � � � ? 0 1

? ? ? ? � � � ? ? 0

? � � � � � � ?

.

.

.

.

.

.

? � � � � � � ? 0

1

C

C

C

C

A

:
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If d = 2r � 1 two possible hoies are

0

B

B

B

B

B

B

B

B

B

B

B

�

0 1 0 � � �

0 0 1 0 � � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 1 0

? 0 1

.

.

. .

.

.

.

.

.

0 ? 0 � � � 1

? 0 � � � 0

1

C

C

C

C

C

C

C

C

C

C

C

A

or

0

B

B

B

B

B

B

B

B

B

B

B

B

�

0 1 0 � � �

? 0 1 0 � � �

0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 1 0

.

.

. 0 1

?

.

.

.

.

.

.

0 0 0 � � � 1

? 0 ? � � � 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

When N is odd the isotropy algebra of �

1

+ �

1

onsists of those elements of the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 t

r

0 � � � � � � t

2

0 t

1

0

t

1

0 2t

r

0 � � � � � � 2t

2

0 t

1

0 t

1

0 2t

r

� � � 0 � � � 2t

2

0

t

2

.

.

.

.

.

.

.

.

.

.

.

.

� � � t

2

0 t

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. t

2

0 t

1

0 2t

r

0

t

r

t

2

0 t

1

0 t

r

0 t

r

� � � t

2

0 t

1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

giving immediately the expressions for �

d

and �

d

. For d = 1 the oeÆient of �

n�1

in N

0

an be

hosen as

0

B

B

B

B

�

0 ? 0 ? � � � 0 1 0

? ? ? ? � � � ? 0 1

? � � � � � � 0

.

.

.

.

.

.

? � � � � � � ? 0

1

C

C

C

C

A

;

while for d = 2r � 1 two natural hoies are

0

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 1 0 � � �

0 0 2 0 � � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 2 0

? 0 2

.

.

. .

.

.

.

.

.

0 ? 0

.

.

.

0 2 0

? 0 ? 0 1

0 ? 0 � � � 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

or

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 1 0 � � �

? 0 2 0 � � �

0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 2 0

.

.

. 0 2

?

.

.

.

.

.

.

0 0 0 � � � 0 2 0

? 0 0 � � � 0 1

0 ? 0 ? 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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A set of Chevalley invariants, whose degrees are 2; 4; : : : ; 2r is given by the non-zero oeÆients

of the harateristi polynomial, viewed as funtions on g.

5.4. D

r

We realize D

r

as a subalgebra of sl(N); N = 2r as follows. Let T denote the following N �N

matrix,

T =

0

B

B

B

�

1

�1

.

.

.

�1

1

1

C

C

C

A

i.e. T

ij

= (�1)

jj�ij+1

2

Æ

i+j;N+1

;

then g is de�ned as before by X

t

T + TX = 0; i.e.

X

N+1�l;k

= �(�1)

k�l

X

N�k+1;l

; if

2k �N � 1

2l �N � 1

<

> 0:

Thus, up to the � sign this is the same as in the ase of C

r

and a generi element of D

r

is

written down by writing down a generi element of C

r

, putting zeros at the seondary diagonal and

hanging all signs under this diagonal, exept in the south-east r� r blok. In partiular TrX = 0

and dimg = r(2r � 1). A Weyl basis for g is in this ase given by fE

i

; F

i

;H

i

g where

E

i

= e

i;i+1

+ e

2r�i;2r+1�i

; i = 1; : : : ; r � 1;

E

r

= e

r�1;r+1

+ e

r;r+2

;

F

i

= E

t

i

and H

i

= [E

i

; F

i

℄ for i = 1; : : : ; r: The assoiated gradation g = �

k

�k

g

i

is now slightly

more ompliated; the portion above the seondary diagonal of a typial element of g

i

; i > 0 has

the following snake-shaped form.

?

.

.

.

? ?

?

.

.

.

?

(5:8)

Preisely, a basis of g

i

; i > 0 is given by

e

j;i+j

+ (�1)

i�1

e

2r�i�j+1;2r�j+1

; j = 1; : : : ; r � i;

e

j�1;i+j

+ (�1)

i�1

e

2r�i�j+1;2r�j+2

; j = maxf2; r � i+ 1g; : : : ; r �

�

i

2

�

;

giving dimg

i

= r � [i=2℄ for 1 � i < r and dimg

i

= r � [i=2℄ � 1 for i � r. A set of Chevalley

invariants is given by the non-zero oeÆients of the harateristi polynomial, with the highest
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order one (the determinant) being replaed with its square root. The elements �

1

and �

1

take the

form

�

1

=

0

B

B

�

0 � � � 1 0

0 � � � 0 1

.

.

.

.

.

.

.

.

.

0 � � � 0 0

1

C

C

A

and �

1

=

0

B

B

B

B

B

B

B

B

B

B

B

�

0

1 0

.

.

.

.

.

.

1 0

1 0 0

1 1 0

.

.

.

.

.

.

1 0

1

C

C

C

C

C

C

C

C

C

C

C

A

and one an show that �

2r�2

= E

1

+ 2

P

r�2

i=2

E

i

+E

r�1

+E

r

and

�

2r�2

=

0

B

B

�

0 0 � � � 0

.

.

.

.

.

.

.

.

.

1 0 � � � 0

0 1 � � � 0

1

C

C

A

:

For d = 1 the spae q may be taken onsisting of all elements in g of the form

0

�

0 ? 0 ? � � � 0 ? ? 0 ? 0 ? � � � 0 0 0

? ? ? ? � � � ? 0 ? ? ? ? ? � � � ? ? 0 0

? � � � ? � � � ?

1

A

;

the 0 in the seond row appearing at position 2

�

r+1

2

�

. For d = 2r � 2 a possible hoie for q is

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 � � � � � � 0

? 0 � � � � � �

0 0

.

.

.

.

.

.

.

.

.

? 0

? 0 � � � � � �

0 0 � � � � � �

.

.

.

.

.

.

? 0

.

.

.

0 0

? 0 � � � � � �

0 ? � � � � � � 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where the pair of stars in the �rst olumn appear at positions 2[r=2℄ and 2[r=2℄ + 1.

5.5. G

2

Finally here is g = g

2

in the standard representation, as taken from [FH℄. A Weyl basis is

given by

E

1

=

0

B

B

B

B

B

B

B

�

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 �1

0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

A

; E

2

=

0

B

B

B

B

B

B

B

�

0 0 0 0 0 0 0

0 0 �1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

A

;
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F

1

is obtained by transposing E

1

and interhanging the middle 1 and 2, F

2

= E

t

2

and H

i

=

[E

i

; F

i

℄; (i = 1; 2). The spaes g

i

making up the gradation are spanned by the following vetors:

g

1

: E

1

; E

2

g

2

: E

3

= [E

1

; E

2

℄

g

3

: E

4

= [E

1

; [E

1

; E

2

℄℄

g

4

: E

5

= [E

1

; [E

1

; [E

1

; E

2

℄℄℄

g

5

: E

6

= [E

2

; [E

1

; [E

1

; [E

1

; E

2

℄℄℄℄

the spaes g

�i

; i > 0, being onstruted by using in the above formulas F 's instead of E's. The

ring of invariants is generated by TrX

2

and TrX

6

, so that the exponents are 1 and 5. The elements

�

1

and �

1

are given by �

1

= E

6

and �

1

= F

1

+ F

2

, and the isotropy algebra of �

1

+ �

1

is spanned

by F

1

+ F

2

+E

6

and F

6

+ 36E

1

+ 72E

2

. Therefore we also have �

5

= 6E

1

+ 12E

2

and �

5

= F

6

=6.

Sine

[g

�

1

\ g

�1

; �

1

℄ = g

4

;

[g

�

1

\ g

�5

; �

1

℄ = C[H

1

+ 2H

2

℄ = Cdiag [�1;�1; 0; 0; 0; 1; 1℄;

the quotient spae an for d = 1 be taken as N

0

= �

1

�

n

+

P

0

i=n�1

x

i

�

i

where x

n�1

��

1

lies in the

11-dimensional span of the vetors

H

2

; E

1

; E

2

; E

3

; E

4

; F

1

; F

2

; F

3

; F

4

; F

5

; F

6

:

For d = 5 we have that g

�

�

5

= n

�

and the quotient spae an be taken as N

0

= �

5

�

n

+

P

0

i=n�1

x

i

�

i

where x

n�1

� �

5

lies in the span of the vetors F

2

and F

6

.
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