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Abstrat

In this paper we show how there is assoiated an integrable Hamiltonian system to a ertain

set of algebrai-geometri data. Roughly speaking these data onsist of a family of algebrai urves,

parametrized by an aÆne algebrai variety B, a subalgebra C of O(B) and a polynomial '(x; y) in

two variables. The phase spae is onstruted geometrially from the family of urves and has a

natural projetion onto B; the regular funtions on B lead to an algebra of funtions in involution

and the level sets of the moment map are symmetri produts of algebrai urves.

While ompletely transparant from the geometrial point of view, a slight hange of these

integrable Hamiltonian systems is needed in order to expliitly realize these integrable Hamiltonian

systems. Thus, we assoiate to the same data another integrable Hamiltonian system and show

how they relate to the �rst one: there is a birational map between them (whih is regular in one

diretion) whih is (in the regular diretion) a morphism of integrable Hamiltonian systems. Both

the Poisson struture and the funtions in involution are found by performing an Eulidean division

of two polynomials, so that when the data are expliitly given, all ingredients of the integrable

Hamiltonian system an be easily omputed from it in an expliit way.

In the same spirit we also onstrut a large lass of integrable bi-Hamiltonian systems. They

depend on the extra datum of a polynomial  (x; y) in two variables, whih spei�es a deformation

of our family of urves. Our onstrution shows learly how and why (ertain) symmetries in the

family of urves lead to a bi-Hamiltonian struture for the orresponding integrable Hamiltonian

system.
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1. Introdution

In [Van2℄ we have shown that there is assoiated a (�nite-dimensional) integrable Hamiltonian

system to the following data

1) an integer d � 1,

2) a polynomial '(x; y) 2 C[x; y℄ n f0g,

3) a polynomial F (x; y) 2 C[x; y℄ nC[x℄.

(1:1)

Expliitly, the phase spae is C

2d

, whih is viewed as the spae of pairs of polynomials (u(�); v(�))

where

u(�) = �

d

+ u

1

�

d�1

+ � � �+ u

d�1

�+ u

d

;

v(�) = v

1

�

d�1

+ � � �+ v

d�1

�+ v

d

;

(1:2)

(thus the oeÆients u

i

and v

i

of u(�) and v(�) serve as oordinates on C

2d

); the Poisson braket

on C

2d

, ditated by '(x; y), is given by

fu(�); u

j

g

'

= fv(�); v

j

g

'

= 0;

fu(�); v

j

g

'

= fu

j

; v(�)g

'

= '(�; v(�))

�

u(�)

�

d�j+1

�

+

modu(�); 1 � j � d;

(1:3)

�nally d independent funtions H

1

; : : : ;H

d

, in involution with respet to f� ; �g

'

, are omputed from

F (�; v(�))mod u(�) = H

1

�

d�1

+ � � �+H

d�1

�+H

d

: (1:4)

In this paper we wish to explain and generalize this onstrution by using the onepts and tools

whih we introdued in [Van3℄. The onepts we use here are those of an integrable Hamiltonian

system on an aÆne Poisson variety and morphisms between suh systems. In short an aÆne

Poisson variety (M; f� ; �g) is an aÆne algebrai variety M whose ring of regular funtions O(M)

is equipped with a Poisson braket f� ; �g; an integrable Hamiltonian system on it is given by an

involutive subalgebra A � O(M) (i.e., fA;Ag = 0) whih has the right size; a morphism between

suh systems is a morphism between their phase spaes whih is ompatible with the Poisson

brakets and the involutive subalgebras. The tools we use onsist of some basi theorems whih

allow to onstrut new integrable systems from old ones. See Setion 2 below and Ch. II of [Van3℄.

The present onstrution generalizes the previous one in two aspets. The �rst one is that

we replae the third datum in (1.1) by a d-parameter family of polynomials, i.e., by a polynomial

F(x; y; b), the parameter b belonging to a d-dimensional aÆne variety B; in geometri terms the

third datum in (1.1) is that of an algebrai urve (embedded in C

2

), whih we replae here by

an (e�etive) deformation family of algebrai urves. The seond aspet whih makes the present

onstrution more general is that there is an extra datum, whih is that of a subalgebra C of O(B).

Essentially this extra datum spei�es the algebra of Casimirs of the Poisson struture, whih was

trivial in our previous onstrution (it orresponds to the trivial hoie C = C).

The phase spae of the generalized integrable systems is given (possibly up to a divisor whih

needs to be removed) by the aÆne variety

M

�

= f(u(�); v(�); b) j F(�; v(�); b)mod u(�) = 0g � C

2d

�B; (1:5)

whih is �bered over B with projetion map p

�

:M

�

! B. A Poisson braket f� ; �g

�

on M

�

is

determined as before by ' giving (1.2) and all other brakets are omputed from these by using the
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equation(s) F(�; v(�); b) = 0. In partiular it follows that fp

�

�

O(B); p

�

�

O(B)g

�

= 0, yielding that

(M; f� ; �g

�

; p

�

�

O(B)) is an integrable Hamiltonian system. When B = C

d

and F takes the form

F(x; y; b) = F (x; y)� (b

1

x

d�1

+ � � �+ b

d�1

x+ b

d

)

we reover our original onstrution.

Our onstrution is lari�ed by the onstrution of a slightly di�erent integrable Hamiltonian

system, assoiated to the same data. Namely, starting from the family of urves F(x; y; b) = 0

we �rst onstrut the orresponding family of d-fold symmetri produts of these urves, where

d = dimB � dimC. This family an be desribed globally as the quotient of the aÆne algebrai

variety

�

(d)

�

=

n

((x

1

; y

1

); : : : ; (x

d

; y

d

); b) 2

�

C

2

�

d

�B j F(x

i

; y

i

; b) = 0

o

;

by the symmetri group S

d

(whih ats by permuting the d opies of C

2

). On �

(d)

�

we use ' to

onstrut a braket for whih all elements of C are Casimirs; moreover this braket is S

d

-invariant,

hene it passes to the quotient. Stritly speaking these brakets are not regular but rational, we will

explain in the text in detail how to deal with this, i.e., how to remove a divisor from �

(d)

�

in order

to make it into a genuine aÆne Poisson variety. As for integrability, the regular funtions on O(B)

give as before an integrable algebra, via the natural projetion on the spae B whih parametrizes

the family. This algebra is also S

d

-invariant so we get an integrable Hamiltonian system on the

quotient spae �

(d)

�

=S

d

.

The two integrable Hamiltonian system whih we assoiate to the same set of data in this way

are very losely related: they are almost isomorphi. More preisely there exists a regular map

�:M

�

! �

(d)

�

=S

d

whih is a morphism of the orresponding integrable Hamiltonian systems on these spaes. Moreover

this map has a rational inverse, so the geometry of these integrable Hamiltonian systems is slightly

di�erent; for example, while the �bers of the moment map on �

(d)

�

=S

d

are symmetri produts of

algebrai urves, the �bers of the moment map on M

�

are only aÆne parts of these; also, while no

physial systems are known to be isomorphi to the ones on �

(d)

�

=S

d

, many are atually isomorphi

to the ones onM

�

(sometimes up to a over). Sine eah has its proper virtue, we found it important

to give both onstrutions and to ompare the results arefully. This will be done in Setions 3

and 4.

Our onstrution is easily adapted to produe many integrable bi-Hamiltonian systems. The

data are slightly di�erent from the ones above: B should be C

d

, but instead there is a new datum

 (x; y), a (general) polynomial in two variables (for simpliity we also take C = C but that is not

essential). Then the phase spae is (up to a divisor)

M

Æ

= f(u(�); v(�); b

1

; b

2

) j F(�; v(�); b

1

+  (x; y)b

2

)modu(�) = 0g � C

2d

�B �B: (1:6)

Remark that there are now two projetions onto B, say p

1

and p

2

. On M

Æ

we put two Poisson

strutures, the �rst one is the one whih orresponds to ' (as above), the other one is the one

whih orresponds to the produt ' , let us denote these Poisson strutures by f� ; �g

1

and f� ; �g

2

.

For the algebra of Casimirs (given by C in our previous onstrution), we hoose for the �rst one

p

�

2

O(B) and for the seond one p

�

1

O(B). Then for any linear funtion � on B (reall that B = C

d

)

we have

f�; p

�

1

�g

1

= f�; p

�

2

�g

2

;
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showing that these integrable Hamiltonian vetor �elds are bi-Hamiltonian (i.e., Hamiltonian with

respet to two di�erent Poisson strutures). This will be explained in Paragraph 5.1. For some

speial polynomials  our onstrution breaks down. Sine some of these ases are not without

interest (from a ertain point of view they are even more interesting/natural than the general

ones), we will also show how to get a bi-Hamiltonian struture in these ases. That will be done in

Paragraph 5.2.
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2. Integrable Hamiltonian systems on aÆne Poisson varieties

In this setion we reall from [Van3℄ the basi de�nitions and properties of integrable Hamil-

tonian systems on aÆne Poisson varieties.

2.1. Basi de�nitions

For an aÆne (algebrai) variety M (whih is, as in [Har℄, assumed to be irreduible) we denote

its ring of regular funtions by O(M). A Lie algebra struture f� ; �g on O(M) is alled a Poisson

braket if for any f 2 O(M) the map

X

f

= f� ; fg:O(M) ! O(M)

is a derivation, i.e., it satis�es the Leibniz rule. It leads to the onept of an aÆne Poisson variety.

De�nition 2.1 An aÆne Poisson variety is a pair (M; f� ; �g) where M is an aÆne variety and

f� ; �g is a Poisson braket on its ring of regular funtions. The derivations f� ; fg for f 2 O(M) are

alled Hamiltonian vetor �elds.

As in the theory of Lie algebras, the main objets in this theory are the enter and the maximal

abelian subalgebras for the braket; in the ontext of aÆne Poisson varieties the enter of the braket

is alled the algebra of Casimirs and a maximal abelian subalgebra is alled an integrable algebra.

De�nition 2.2 Let (M; f� ; �g) be an aÆne Poisson variety. If f is an element of O(M) whose

assoiated Hamiltonian vetor �eld is zero the f is alled a Casimir; the Casimirs form a subalgebra

of O(M) alled the algebra of Casimirs, whih we denote by Cas(M).

De�nition 2.3 Let (M; f� ; �g) be an aÆne Poisson variety. Funtions f; g 2 O(M) are said to

be in involution if ff; gg = 0; a subalgebra A of O(M) is said to be involutive if all its elements

are in involution, fA;Ag = 0. An involutive subalgebra A � O(M) is said to be integrable if

1) dimA =

1

2

(dimM + dimCas(M));

2) A is omplete, i.e., f 2 A , ff;Ag = 0.

If A is integrable then (M; f� ; �g;A) is alled an integrable Hamiltonian system.

Completeness fores any integrable algebra to ontain the algebra of Casimirs. The string of

inlusions

Cas(M) � A � O(M)

leads to a ommutative triangle of morphisms.

M

�

A

?

?

y

&

�

CasM

SpeA �!

�

SpeCas(M)

The map �

A

:M ! SpeA is alled the moment map and SpeA is alled the base spae; the

Hamiltonian vetor �elds f� ; fg; f 2 A are tangent to the �bers of the moment map and span (at a

general point of the eah �ber) its tangent spae. In this paper A will always be �nitely generated

so that SpeA an be seen as an aÆne variety.
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We will enounter in this paper also bi-Hamiltonian vetor �elds and bi-Hamiltonian hierar-

hies, whih we de�ne as follows. Let f� ; �g

1

and f� ; �g

2

be two (ompatible

1

) Poisson brakets

on M . Then every vetor �eld whih is Hamiltonian with respet to both brakets is alled a

bi-Hamiltonian vetor �eld and a sequene of funtions ff

i

j i 2 Zg is alled a bi-Hamiltonian

hierarhy (w.r.t. the brakets f� ; �g

1

and f� ; �g

2

) if

f� ; f

i

g

2

= f� ; f

i+1

g

1

; (i 2 Z):

Finally we also reall the notion of a morphism between integrable Hamiltonian systems.

De�nition 2.4 Let (M

1

; f� ; �g

1

;A

1

) and (M

2

; f� ; �g

2

;A

2

) be two integrable Hamiltonian systems,

then a morphism �: (M

1

; f� ; �g

1

;A

1

) ! (M

2

; f� ; �g

2

;A

2

) is a regular map �:M

1

! M

2

with the

following properties

1) � is a Poisson morphism, i.e., �

�

ff; gg

2

= f�

�

f; �

�

gg

1

for all f; g 2 O(M

2

);

2) �

�

Cas(M

2

) � Cas(M

1

);

3) �

�

A

2

� A

1

.

If � is moreover an isomorphism then �

�1

automatially satis�es 1), 2) and 3) and � is alled an

isomorphism of integrable Hamiltonian systems.

Shematially, regularity of the map and 2) and 3) an be represented by the following ommutative

diagram:

Cas(M

2

) � A

2

� O(M

2

)

�

�

?

?

y

�

�

?

?

y

?

?

y

�

�

Cas(M

1

) � A

1

� O(M

1

)

(2:1)

By dualizing this diagram a ommutative diagram between the orresponding Spe's is easily ob-

tained.

2.2. Basi onstrutions and propositions

In order to show that a given subalgebra A � O(M) on aÆne Poisson variety (M; f� ; �g) is

integrable one needs to verify that it is involutive, omplete and of the right dimension. In this

paper involutivity will be obvious from a diret omputation, in other ases one often relies on the

onstrution of an r-matrix representing the Poisson struture. Alternatively, involutivity is also

obvious when A admits one or several bi-Hamiltonian hierarhies, as in Setion 5 below. We reall

the argument briey in the following proposition, whih goes essentially bak to Lenard and Magri.

Proposition 2.5 All funtions f

i

of a bi-Hamiltonian hierarhy ff

i

j i 2 Zg are in involution

with respet to both Poisson brakets (hene with respet to any linear ombination). If one of these

funtions is a Casimir (for either of the strutures) then all these f

i

are also in involution with the

elements of any other bi-Hamiltonian hierarhy (w.r.t. these brakets).

1

Some authors impose the natural ondition of ompatibility of the brakets (i.e., the sum of

the two brakets is also Poisson) but this is inessential for this paper, it is for example not used for

the proof of Proposition 2.5.
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Proof

If ff

i

j i 2 Zg forms a hierarhy, then for any i < j

ff

i

; f

j

g

1

= ff

i

; f

j�1

g

2

;

= ff

i+1

; f

j�1

g

1

;

= : : : ;

= ff

j

; f

i

g

1

;

so ff

i

; f

j

g

1

= 0 by skew symmetry. They are also in involution with respet to the seond braket

sine ff

i

; f

j

g

2

= ff

i

; f

j+1

g

1

. In the same way, if fg

j

j j 2 Zg is another bi-Hamiltonian hierarhy

and f

k

is a Casimir, say of f� ; �g

1

then for any i; j 2 Z

ff

i

; g

j

g

1

= ff

k

; g

i+j�k

g

1

= 0;

so all funtions of the hierarhy ff

i

j i 2 Zg are in involution with all funtions of any other

bi-Hamiltonian hierarhy.

The omputation of the dimension of A often turns out to be quite hard. Usually this is done

by omputing the o-dimension of the general �ber of the moment map �

A

:M ! SpeA, whih

is, of ourse, equal to the dimension of A. A lose investigation of the �bers of the moment map is

also essential to the veri�ation that A is omplete, as is given in the following proposition (for a

proof see [Van3℄).

Proposition 2.6 Let (M; f� ; �g) be an aÆne Poisson variety and A an involutive subalgebra of

O(M) of dimension

dimA =

dimM + dimCasM

2

:

If the �bers of �

A

:M ! Spe(A) have the following two properties,

1) the general �ber is irreduible,

2) the �bers over all losed points have the same dimension,

then A is omplete, hene integrable.

We will use two onstrutions whih allow to onstrut new aÆne Poisson varieties or integrable

Hamiltonian systems from old ones: taking quotients and removing divisors. This is given by the

following two propositions (proofs are given in [Van3℄).

Proposition 2.7 Let (M; f� ; �g

M

) be an aÆne Poisson variety and G a �nite group. If there is

given a regular Poisson ation of G on M , i.e., an ation �:G�M !M suh that � is a Poisson

morphism, then M=G has a unique struture of an aÆne Poisson variety (M=G; f� ; �g

0

) for whih

�:M ! M=G is a Poisson morphism. If A is an integrable algebra on (M; f� ; �g

M

) then A

G

, the

algebra of G-invariant funtions in A, is an integrable algebra on (M=G; f� ; �g

0

) and

�: (M; f� ; �g

M

;A)!

�

M=G; f� ; �g

0

;A

G

�

is a morphism of integrable Hamiltonian systems.
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Proposition 2.8 Let (M; f� ; �g) be an aÆne Poisson variety and f 2 O(M) a regular funtion

whih is not onstant. Then there exists an aÆne Poisson variety (N; f� ; �g

N

) and a Poisson

morphism N ! M whih is dominant, having the omplement (in M) of the zero lous of f as

image.

The last proposition needs some omments. As we will see below, many interesting brakets

on some natural aÆne varieties (e.g., on C

n

) are not regular but rational, having their poles along

some �xed divisor. So one might feel fored to work in the larger ategory of aÆne Poisson varieties

with brakets on their �eld of rational funtions. However, if the brakets of all regular funtions

on M have their poles on a single divisor D (whih may be reduible), it is obvious that if f and g

are any two rational funtions on M , whih have their poles along D only then their braket ff; gg

will also have its poles along D. Thus, instead of onsidering the algebra of rational funtions, we

may work as well with the (smaller and easier to handle) algebra of rational funtions on M whih

have their poles on D only. This algebra is the algebra of regular funtions on an aÆne variety,

whih may be identi�ed with M n D; loosely speaking we will say that M n D is an aÆne variety.

Then the ontent of Proposition 2.8 is that, even when onsidering suh rational brakets, we stay

in the ategory of aÆne Poisson varieties.
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3. Integrable Hamiltonian systems assoiated to families of urves

In this setion we show how there is assoiated an integrable Hamiltonian system to the

following data

1) a polynomial '(x; y) 2 C[x; y℄ n f0g,

2) an aÆne variety B,

3) a losed immersion F :B ! C[x; y℄,

4) a subalgebra C of O(B).

(3:1)

These data will be supposed �xed throughout this setion. It is useful to denote � = (';B;F ; C)

and d = dimB � dimC.

To the morphism F :B ! C[x; y℄ there is naturally assoiated an element of O(B)[x; y℄, whih

we denote by F(x; y; b). In turn F(x; y; b) determines a family of algebrai urves F(x; y; b) = 0,

parametrized by B. This family an be seen as a hypersurfae in C

2

� B whih we will denote

by �

�

. Sine F is a losed immersion (i.e., it restrits to an isomorphism of B onto its image,

whih is losed

2

) the �bers of the projetion map �

�

! B are preisely the algebrai urves of the

family. F is determined by the family of algebrai urves up to a (multipliative) onstant; sine

our onstrution will only depend on F up to a onstant, we may rephrase 3) geometrially as the

datum of a family of algebrai urves, parametrized (e�etively) by B.

We start by desribing a natural integrable system assoiated to �, the one of interest for us

will be obtained as a quotient of it (by a �nite group). To onstrut the phase spae we make the

d-fold �ber produt of �

�

! B, i.e., we onsider the aÆne variety

�

(d)

�

=

n

((x

1

; y

1

); : : : ; (x

d

; y

d

); b) 2

�

C

2

�

d

�B j F(x

i

; y

i

; b) = 0

o

; (3:2)

with its projetion onto B,

�

�

: �

(d)

�

! B:

The dimension of �

(d)

�

is dimB+d, the dimension of the �bers being d. We onstrut in the following

proposition a Poisson struture f� ; �g

�

on �

(d)

�

. Stritly speaking this Poisson struture is rational

(i.e., the braket of regular funtions is rational), but sine all poles are along the zero lous D

�

of

some regular funtion, we may, as explained in and after Proposition 2.8 make

�

�

(d)

�

nD

�

; f� ; �g

�

�

into a genuine aÆne Poisson variety.

Proposition 3.1 The brakets

fx

i

; x

j

g

�

= fy

i

; y

j

g

�

= 0; fy

i

; x

j

g

�

= '(x

j

; y

i

)Æ

ij

; (3:3)

and

f� ; g

�

= 0; for all  2 C, (3:4)

de�ne a Poisson braket on the aÆne variety �

(d)

�

n D

�

, where D

�

is the divisor of some regular

funtion on �

(d)

�

.

2

To be very preise, losed means here Zariski losed in a �nite-dimensional subspae A

mn

of

C[x; y℄ onsisting of polynomials of degree at most m in x and n in y.
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Proof

Let C

0

denote the subalgebra of O

�

�

(d)

�

�

generated by C; x

i

and y

i

(i = 1; : : : ; d). Then the

above brakets de�ne a Poisson struture on C

0

, sine the Jaobi identity is veri�ed. Sine F is a

losed immersion,

dimC

0

= dimC + 2d = dimB + d = dim�

(d)

�

;

so that every regular (or rational) funtion on �

(d)

�

is ontained in the integral losure of C

0

in the

�eld of frations of O

�

�

(d)

�

�

. Thus, if F 2 O

�

�

(d)

�

�

then there exists a (not neessarily moni)

polynomial P (u) 2 C

0

[u℄ suh that P (F ) = 0. This allows to determine the braket of any two

funtions F;G on O

�

�

(d)

�

�

as follows. Let P (u) =

P

p

i

u

i

and Q(u) =

P

q

j

u

j

denote their minimal

de�ning polynomials, degP (u) = n; degQ(u) = m. If f� ; �g

�

extends to �

(d)

�

then for f 2 C

0

we

have

0 = fP (F ); fg

�

=

n

X

i=0

�

p

i

F

i

; f

	

�

=

n

X

i=0

fp

i

; fg

�

F

i

+

n

X

i=1

p

i

iF

i�1

fF; fg

�

;

and the braket fF; fg

�

derives from it; remark that it is rational, its poles being along the divisor

of zeroes of the regular funtion

P

p

i

iF

i�1

. Using this, one omputes fF;Gg

�

from

0 = fF;Q(G)g

�

=

m

X

j=0

�

F; q

j

G

j

	

�

=

m

X

j=0

fF; q

j

g

�

G

j

+

m

X

j=1

q

j

jG

j�1

fF;Gg

�

;

it has also its poles along the zero lous of a regular funtion on �

(d)

�

. Sine O

�

�

(d)

�

�

is �nitely

generated, only a �nite number of divisors will appear; let us all the minimal

3

divisor whih

ontains these divisors D

�

. Sine D

�

is (up to multipliities) the divisor of zeroes of a regular

funtion on �

(d)

�

we may onlude using Proposition 2.8 that

�

�

(d)

�

nD

�

; f� ; �g

�

�

is an aÆne Poisson

variety.

The proposition shows that there exists a divisor D

�

on �

(d)

�

suh that

�

�

(d)

�

nD

�

; f� ; �g

�

�

is

an aÆne Poisson variety. We now show how the omputation of this divisor an be implemented.

Choose any generators �

1

; : : : ; �

s

for O(B) and let us use as the same notation for the orresponding

generators �

�

�

�

i

of �

�

�

O(B). Applying naively the onstrution of the preeding paragraph to

ompute D

�

would onsist in determining for eah generator �

j

its de�ning polynomial and taking

the braket with all x

i

and y

i

. These de�ning polynomials an be omputed from the relations

F(x

i

; y

i

; b) = 0, but this gives rise to long alulations. We show how to avoid their expliit

alulation by omputing the brakets fx

i

; �

j

g

�

and fy

i

; �

j

g

�

diretly from these relations.

Let us �rst start with the easiest ase, in whih C = C (no Casimirs) and s = dimB (so that

B is isomorphi to C

d

). From the de�ning equations F(x

i

; y

i

; b) = 0 we �nd

8

>

>

>

>

<

>

>

>

>

:

0 = fF(x

i

; y

i

; b); x

j

g

�

=

�F

�y

(x

i

; y

i

; b)'(x

j

; y

i

)Æ

ij

+

s

X

k=1

�F

��

k

(x

i

; y

i

; b) f�

k

; x

j

g

�

;

0 = fF(x

i

; y

i

; b); y

j

g

�

= �

�F

�x

(x

i

; y

i

; b)'(x

j

; y

i

)Æ

ij

+

s

X

k=1

�F

��

k

(x

i

; y

i

; b) f�

k

; y

j

g

�

:

(3:5)

3

Sine the multipliities of the irreduible omponents of this divisor are only relevant for the

divisor being the divisor of zeroes of a regular funtion, we may take them at this point all equal

to 1.
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To dedue the brakets f�

k

; x

j

g

�

and f�

k

; y

j

g

�

from it, we use the fat that F is an immersion. If

we denote the natural funtion on C[x; y℄ whih piks the i-th oeÆient (�xing some ordering) by



i

then F being immersive implies that the rank of the big matrix

�

�

��

j

F Æ 

i

�

ij

is equal to d. By

elementary operations on this matrix it is seen that this rank is the same as the rank of the square

matrix

�

�F

��

j

(x

i

; y

i

; b)

�

1�i;j�d

(3:6)

for general x

i

; y

i

i.e., on a Zariski open subset of �

(d)

�

. It follows that the rank of (3.6) is maximal

on a Zariski open subset, whih is expliitly given as the omplement of the divisor D

�

; of ourse

D

�

is just the zero lous of the determinant of the matrix (3.6). Thus, the brakets fx

i

; �

j

g

�

and

fy

i

; �

j

g

�

have their poles along the divisor D

�

only, whih is easily omputed as

D

�

: det

�

�F

��

j

(x

i

; y

i

; b)

�

= 0: (3:7)

Remark that removing the divisor D

�

from �

(d)

�

has the e�et of removing a divisor from every

�ber of the moment map.

In the general ase one also has to take into aount the algebra C, whose elements are to be

Casimirs and the relations whih hold between the generators. Let us pik any set of generators



1

; : : : ; 

m

for C and any maximal set of independent relations R

1

; : : : ;R

n

. Taking the brakets

with x

j

(and similarly with y

j

) we get as in (3.5),

8

>

>

>

>

<

>

>

>

>

:

0 = f

i

; x

j

g

�

=

s

X

k=1

�

i

��

k

f�

k

; x

j

g

�

;

0 = fR

i

; x

j

g

�

=

s

X

k=1

�R

i

��

k

f�

k

; x

j

g

�

;

(3:8)

where i runs from 1 to m in the �rst line and from 1 to n in the seond one. (3.8) and the �rst line

of (3.5) are ombined by using the matries

M

�

=

0

B

�

�F

��

�

��

�R

��

1

C

A

and N

�

=

0

�

�F

�y

'

0

0

1

A

;

of size (d+m+ n)� s resp. (d+m+ n)� d. We have introdued the matries

�

�F

��

�

ij

=

�F

��

j

(x

i

; y

i

; b);

�

�F

�y

'

�

ij

=

�F

�y

(x

i

; y

i

; b)'(x

j

; y

i

)Æ

ij

;

and

�

�

��

�

ij

=

�

i

��

j

;

�

�R

��

�

ij

=

�R

i

��

j

:

Then (3.8) and the �rst line of (3.5) are equivalent to

M

�

0

B

�

f�

1

; x

1

g

�

: : : f�

1

; x

d

g

�

.

.

.

.

.

.

f�

s

; x

1

g

�

: : : f�

s

; x

d

g

�

1

C

A

= �N

�

: (3:9)

10



We laim that the rank ofM

�

is s on a Zariski open subset. As we have notied, the �rst d rows

are independent; sine the next m rows orrespond to generators of C, there are dimC independent

rows among them, and similarly the last n rows ontain s � dimB independent rows. Moreover

rows in the three di�erent bloks an not be dependent: the �rst ones depend on x

i

; y

i

while the

others do not and the last rows annot be dependent sine the Casimirs are independent of the

relations. It follows that

RkM

�

= d+ dimC + s� dimB = s:

Sine the brakets fy

i

; �

j

g

�

are omputed using the same matrixM

�

and as we will show that all

brakets f�

i

; �

j

g

�

are zero, we may onlude that the divisor D

�

to be removed an be expliitly

omputed as the zero lous of one of the determinants whih is not identially zero. Of ourse this

divisor is not unique, it depends on the hosen determinant.

In the following proposition we show that �

�

�

O(B) is involutive and of maximum dimension,

leading to an integrable algebra on

�

�

(d)

�

nD

�

; f� ; �g

�

�

.

Proposition 3.2 If for general b 2 B the polynomial F(x; y; b) = 0 is irreduible then

�

�

(d)

�

nD

�

; f� ; �g

�

; �

�

�

O(B)

�

is an integrable Hamiltonian system.

Proof

We �rst show that �

�

�

O(B) is involutive with respet to f� ; �g

�

. We use the obvious equality

fF (x

i

; y

i

; b); F (x

j

; y

j

; b)g

�

= 0

and write F(i) as a shorthand for F(x

i

; y

i

; b). If i 6= j then this braket expands in terms of

any system of generators �

1

; : : : ; �

s

for O(B) (whih we identify as before with the orresponding

generators �

�

�

�

i

of �

�

�

O(B)) as

s

X

k=1

�F

�x

(i)

�F

��

k

(j) fx

i

; �

k

g

�

+

s

X

k=1

�F

�y

(i)

�F

��

k

(j) fy

i

; �

k

g

�

� (i$ j)

+

s

X

k;l=1

�F

��

k

(i)

�F

��

l

(j) f�

k

; �

l

g

�

= 0;

where (i$ j) denotes the two terms obtained by interhanging i and j in the �rst two terms. Now

for i 6= j

s

X

k=1

�F

��

k

(j) fx

i

; �

k

g

�

= fx

i

;F(x

j

; y

j

; b)g

�

= 0;

so the �rst term vanishes; similarly the next three terms vanish and we are left with

s

X

k;l=1

�F

��

k

(i) f�

k

; �

l

g

�

�F

��

l

(j) = 0; (3:10)
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for all i 6= j. By skew symmetry of the braket, (3.10) is atually valid for all i and j. If s = dimB

then the matrix

�F

��

k

(i) is invertible and we �nd that f�

k

; �

l

g

�

= 0 for all k; l. Otherwise we use C

and the relations R

i

as before to obtain

M

�

�

f�

i

; �

j

g

�

�

M

t

�

= 0:

SineM

�

has rank s we are at the same onlusion: �

�

�

O(B) is involutive with respet to f� ; �g

�

.

Let us ount dimensions:

dim�

(d)

�

= dimB + d;

dimCas

�

�

(d)

�

�

= dimC = dimB � d;

dim�

�

�

O(B) = dimO(B) = d;

where we used in the last line that �

�

is surjetive. Put together they lead to

dim�

�

�

O(B) =

1

2

�

dim�

(d)

�

+ dimCas

�

�

(d)

�

��

;

so that �

�

�

O(B) has the right dimension in order to be integrable. Completeness of �

�

�

O(B) follows

from the assumption that the general urve in the family is irreduible: under this assumption,

the general �ber of �

�

is also irreduible and sine all �bers over points of B have the same

dimension d, we have aording to Proposition 2.6, that �

�

�

O(B) is omplete. It follows that

�

�

�

O(B) is integrable.

If for general b 2 B the urve F(x; y; b) = 0 is not irreduible then we still get an integrable

Hamiltonian system by ompleting �

�

�

O(B) (i.e., by replaing it with its integral losure in its �eld

of of frations), but it may be hard to obtain a (more) expliit desription of this algebra (see

[Van3℄ for omments and details).

By now we have assoiated an integrable Hamiltonian system assoiated to the data (3.1).

Using Proposition 2.7 we onstrut from it the quotient whih is the integrable Hamiltonian system

we were aiming at. The group whih is ating on the integrable systems is the symmetry group S

d

(of d letters). First of all, it ats on �

(d)

�

in by permuting the d opies of C

2

and the quotient

Sym

d

�

�

= �

(d)

�

=S

d

is an aÆne variety. Clearly the projetion map �

�

: �

(d)

�

! B fatorizes via Sym

d

�

�

and, sine no

onfusion an arise, we will use the same notation for the orresponding map

�

�

: Sym

d

�

�

! B;

its �bers are now d-fold symmetri produts of the �bers of �

�

! B (whih are algebrai urves); in

partiular they are non-singular if the underlying urve is non-singular. The brakets (3.3) and (3.4)

are learly S

d

-invariant, so that the divisor D

�

and the Poisson struture f� ; �g

�

(on �

(d)

�

nD

�

) are

S

d

-invariant | sine S

d

is a �nite group, another way to formulate the latter is that the ation of

S

d

on �

(d)

�

nD

�

is a Poisson ation. A trivial appliation of Proposition 2.7 leads to the following

orrolary of Propositions 3.1 and 3.2.

Proposition 3.3 The brakets (3.3) and (3.4) de�ne a Poisson struure f� ; �g

�

on Sym

d

�

�

nD

�

,

where D

�

= D

�

=S

d

. The �ber over b 2 B of the moment map Sym

d

�

�

nD

�

! B is (if non-empty)

12



isomorphi to an aÆne part of the d-fold symmetri produt of the urve F(x; y; b) = 0. Moreover

�

Sym

d

�

�

n D

�

; f� ; �g

�

; �

�

�

O(B)

�

is an integrable Hamiltonian system and the projetion map

�

�

(d)

�

nD

�

; f� ; �g

'

; �

�

�

O(B)

�

!

�

Sym

d

�

�

n D

�

; f� ; �g

'

; �

�

�

O(B)

�

is a morphism of integrable Hamiltonian system.

For an expliit given � an expliit desription of these integrable Hamiltonian system an in

priniple be given. To obtain it, one looks for a desription of the ring of regular funtions on

�

(d)

�

whih are S

d

invariant (i.e., exhibit generators and a omplete set of relations), whih is often

diÆult to obtain. Thus, in pratie the above desription is already at the level of the phase

spae not very expliit (remark however that an expliit desription of the Poisson braket and the

integrable algebra would follow at one from an expliit desription of the phase spae). We will

ome bak to this in the next setion.

To lose this setion we whih to point out how the di�erent Poisson strutures f� ; �g

�

for

varying ' are related via S

d

-invariant vetor �elds whih have the property that the Lie derivative

of the Poisson brakets are also Poisson brakets

4

. In view of the formula

f� ; �g

'+ 

= f� ; �g

'

+ f� ; �g

 

our spae of Poisson strutures is linearly generated by the Poisson brakets assoiated to monomials

x

i

y

j

and we will exhibit the symmetries only for these. To do this, we de�ne two vetor �elds X

and Y as follows.

Xx

i

= �1;

Xy

i

= 0;

Y x

i

= 0;

Xy

i

= 1:

Let us ompute the Lie derivatives L

X

f� ; �g

'

and L

Y

f� ; �g

'

for ' = x

m

y

n

, evaluated on x

i

and y

j

(all other brakets are obviously zero).

L

X

f� ; �g

x

m

y

n

(x

i

; y

j

) = L

X

fx

i

; y

j

g

x

m

y

n

� fL

X

x

i

; y

j

g

x

m

y

n

� fx

i

; L

X

y

j

g

x

m

y

n

;

= �X(x

m

i

y

n

j

Æ

ij

);

= mx

m�1

i

y

n

j

Æ

ij

so we see that the Lie derivative of f� ; �g

x

m

y

n

with respet to X is proportional to f� ; �g

x

m�1

y

n
. Sim-

ilarly we �nd that the Lie derivative of f� ; �g

x

m

y

n

with respet to Y is proportional to f� ; �g

x

m

y

n�1
.

Remark also that vetor �elds X and Y (hene their Lie derivatives) ommute. Thus we get the

following diagram representing the Poisson strutures assoiated to x

m

y

n

and their relations.

f� ; �g

1

X

 � f� ; �g

x

X

 � f� ; �g

x

2

X

 � � � �

x

?

?

Y

x

?

?

Y

x

?

?

Y

f� ; �g

y

X

 � f� ; �g

xy

X

 � f� ; �g

x

2

y

X

 � � � �

x

?

?

Y

x

?

?

Y

x

?

?

Y

f� ; �g

y

2

X

 � f� ; �g

xy

2

X

 � f� ; �g

x

2

y

2

X

 � � � �

x

?

?

Y

x

?

?

Y

x

?

?

Y

� � � � � � � � �

4

Sine only ' is relevant for the present disussion we will suppose now all data �xed, exept

for ' and we will denote the braket orresponding to ' by f� ; �g

'

.
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4. A onrete realization

We now pass to the onstrution of a slightly di�erent integrable Hamiltonian system, asso-

iated to the same data � = (';B;F ; C) as in (3.1). While the integrable Hamiltonian systems

onstruted in Proposition 3.3 have the advantage of being most natural and their geometry is

ompletely transparant at all levels, they are not totally expliit; for example the phase spae

Sym

d

�

�

is de�ned as the quotient �

(d)

�

=S

d

and has a quite ompliated struture (many generators

and relations). Moreover no lassial integrable system is of this form, while many turn out to be

birational to suh systems; the ones we will onstrut now are birational to the ones of Setion 3,

they are totally expliit and turn out to be losely related to (i.e., isomorphi to, or isomorphi to

a quotient of) most known examples of (�nite-dimensional) integrable Hamiltonian systems. We

�rst treat the general ase and then show how the integrable Hamiltonian system introdued in

[Van2℄ are obtained as a speial ase of it.

4.1. The general ase

Consider the following aÆne variety

M

�

=

�

(u(�); v(�); b) 2 C

2d

�B j F(�; v(�); b)mod u(�) = 0

	

;

(C

2d

is viewed here as the spae of pairs of polynomials as in (1.2)) and denote the natural projetion

map on B by p

�

. There is a natural map

�:M

�

! Sym

d

�

�

whih is de�ned by

(u(�); v(�); b) 7! ((x

1

; v(x

1

)); : : : ; (x

d

; v(x

d

)); b);

where x

i

are the (not neessarily distint) roots of u(�), i.e., u(�) =

Q

d

i=1

(� � x

i

). Remark that

this map is a (well-de�ned) morphism sine the oordinate ring of Sym

d

�

�

ontains all funtions

whih are symmetri in (x

i

; y

i

); moreover a point of F(�; v(�); b) = 0modu(�) is learly mapped

into a point for whih F(x

i

; y

i

; b) = 0; (i = 1; : : : ; d) sine eah x

i

is a root of u(�). The morphism

� is atually a birational isomorphism with inverse

((x

1

; y

1

); (x

2

; y

2

); : : : ; (x

d

; y

d

)) 7! (u(�); v(�)) =

0

�

d

Y

i=1

(�� x

i

);

d

X

i=1

y

i

Y

j 6=i

�� x

j

x

i

� x

j

1

A

: (4:1)

whih is de�ned away from �=S

d

where � denotes the diagonal

� = f((x

1

; y

1

); (x

2

; y

2

); : : : ; (x

d

; y

d

)) j x

i

= x

j

for some i 6= jg:

Having a birational map we an transfer the Poisson struture f� ; �g

�

on Sym

d

�

�

n D

�

to the

omplement of a divisor inM

�

. Realling from Setion 3 that the Poisson struture on Sym

d

�

�

nD

�

was ompletely determined by the brakets

fx

i

; x

j

g

�

; fy

i

; y

j

g

�

and fx

i

; y

j

g

�

14



upon using the relations whih de�ne the phase spae and the elements of C, we see that the

orresponding Poisson struture (i.e., the one whih makes � into a Poisson morphism) on M

�

is

ompletely determined by the brakets

fu

i

; u

j

g

�

; fv

i

; v

j

g

�

and fu

i

; v

j

g

�

(we use the same notation for the Poisson struture on both spaes), upon using the relations whih

de�neM

�

and the elements of C. This is a more eonomial way to determine the Poisson struture

onM

�

than by using the birational map sine, as we will see, the divisor E

�

to be removed might be

smaller than expeted when using the birational map (see Paragraph 4.2); moreover, transferring

the integrable algebra via a birational map is very deliate (one may lose ompleteness).

Proposition 4.1 There is a Poisson struture f� ; �g

�

onM

�

nE

�

(where E

�

is some divisor) whih

makes � into a Poisson morphism and (M

�

n E

�

; f� ; �g

�

; p

�

�

O(B)) is an integrable Hamiltonian

system.

Proof

Let us ompute the brakets fu

i

; u

j

g

�

; fv

i

; v

j

g

�

and fu

i

; v

j

g

�

whih make � into a Poisson

morphism. Clearly fu

i

; u

j

g

�

= 0. If 1 � j � d, then

fu

j

; v(�)g

�

= (�1)

j

8

<

:

X

i

1

<i

2

<���<i

j

x

i

1

x

i

2

� � � x

i

j

;

d

X

l=1

y

l

Y

k 6=l

�� x

k

x

l

� x

k

9

=

;

�

;

= (�1)

j

X

i

1

<i

2

<���<i

j

d

X

l=1

�

x

i

1

x

i

2

� � � x

i

j

; y

l

	

�

Y

k 6=l

�� x

k

x

l

� x

k

;

= (�1)

j�1

X

i

1

<i

2

<���<i

j

j

X

t=1

x

i

1

x

i

2

� � �x

i

t

� � � x

i

j

'(x

i

t

; y

i

t

)

Y

k 6=i

t

�� x

k

x

i

t

� x

k

;

= (�1)

j�1

X

l=2fi

1

<i

2

<���<i

j�1

g

x

i

1

x

i

2

� � � x

i

j�1

'(x

l

; y

l

)

Y

k 6=l

�� x

k

x

l

� x

k

;

= (�1)

j�1

d

X

l=1

'(x

l

; y

l

)

Y

k 6=l

�� x

k

x

l

� x

k

(�1)

j�1

j�1

X

m=0

x

m

l

u

j�m�1

;

=

d

X

l=1

j�1

X

m=0

x

m

l

u

j�m�1

'(x

l

; y

l

)

Y

k 6=l

�� x

k

x

l

� x

k

:
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Substituting � = x

l

in the right hand side one sees that fu

j

; v(�)g

�

is the (unique) polyno-

mial in � of degree less than d, whih takes at � = x

l

the value

P

j�1

m=0

x

m

l

u

j�m�1

'(x

l

; v(x

l

)),

for l = 1; : : : ; d. As the x

l

are the zeros of u(�) and sine y

l

= v(x

l

) the same is true for

P

j�1

m=0

�

m

u

j�m�1

'(�; v(�))mod u(�), and we �nd

fu

j

; v(�)g

�

=

j�1

X

m=0

�

m

u

j�m�1

'(�; v(�))mod u(�);

= '(�; v(�))

�

u(�)

�

d�j+1

�

+

modu(�):

(4:2)

By a similar (but simpler) omputation it follows that fv

i

; v

j

g

�

= 0.

Sine � is a Poisson morphism, p

�

�

O(B) is an involutive algebra. Sine p

�

is surjetive,

dim p

�

�

O(B) = dimB =

1

2

(dimB + d+ dimB � d) =

1

2

(dimM

�

+ dimC):

To see that p

�

�

O(B) is omplete, remark that � maps every �ber of p

�

to a �ber of �

�

, i.e.,

M

�

�

�! Sym

d

�

�

p

�

& .

�

�

B

is ommutative. Sine � is regular with rational inverse it restrits to a birational map on eah �ber

of the moment map p

�

so all �bers of p

�

have the same dimension (sine the ones of �

�

do) and

the general �ber of p

�

is irreduible (same reason). It follows from Proposition 2.6 that p

�

�

O(B) is

omplete, hene integrable.

The integrable vetor �elds f� ; �

k

g

�

are omputed as in Setion 3 by using the de�ning re-

lations F(�; v(�); b) = 0modu(�) and C: sine these relations were suÆient to determine the

brakets on Sym

d

�

�

they are also suÆient here. The (minimal) divisor on whih they fail to

be regular is denoted by E

�

(it may be empty, see Paragraph 4.2). Thus we have shown that

(M

�

n E

�

; f� ; �g

�

; p

�

�

O(B)) is an integrable Hamiltonian system. The symmetries X and Y whih

we disussed in the preeding setion an be transferred to the spae M

�

but we will not disuss

this here.

4.2. The easiest ase

We now show how the integrable Hamiltonian system introdued in [Van2℄ (Setion 2) are a

speial ase of the systems of Paragraph 4. We start from the following data

1) an integer d � 1,

2) a polynomial '(x; y) 2 C[x; y℄ n f0g,

3) a polynomial F (x; y) 2 C[x; y℄ nC[x℄,

(4:3)

and assoiate to it orresponding data of the form (3.1), namely we hoose

1) B = C[�

1

; : : : ; �

d

℄

�

=

C

d

;

2) '(x; y) as above,

3) F(x; y; b) = F (x; y)� (b

1

x

d�1

+ � � �+ b

d�1

x+ b

d

);

4) C = C;

(4:4)
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(in item 3 b

i

= �

i

(b) for b 2 B). The main observation to be made here is that with this hoie M

�

is isomorphi to C

2d

(and E

�

is empty).

Lemma 4.2 The projetion map C

2d

�B ! C

2d

restrits to an isomorphism M

�

! C

2d

.

Proof

For F as above we have that

M

�

= f(u(�); v(�); b) j F(�; v(�); b)mod u(�) = b

1

�

d�1

+ � � �+ b

d�1

�+ b

d

)g:

Sine u(�) is moni, F(�; v(�); b)mod u(�) is a polynomial in u

i

; v

i

(and �), hene the map

(u(�); v(�); b) ! (u(�); v(�)) has a regular inverse.

Thus in the present ase the phase spae is just C

2d

, the Poisson struture is given by

fu

i

; u

j

g

�

= fv

i

; v

j

g

�

and the brakets (4.2). The involutive algebra on C

2d

is the polynomial

algebra A

F;d

generated by the d oeÆients of

F (�; v(�))mod u(�):

In onlusion, for any data (4.3), (C

2d

; f� ; �g

�

;A

F;d

) is an integrable Hamiltonian system and it

oinides with the ones introdued in [Van2℄ (Setion 2).

17



5. Integrable bi-Hamiltonian systems assoiated to families of

urves

The above onstrutions lead at one to the onstrution of many bi-Hamiltonian systems,

namely we will assoiate one to the following data

1) a polynomial '(x; y) 2 C[x; y℄ n f0g,

2) an aÆne spae B = C

d

; (d � 1),

3) a losed immersion F :B ! C[x; y℄,

4) a general polynomial  2 C[x; y℄.

(5:1)

The meaning of  being general will be explained in Paragraph 5.1 below; a speial ase of interest

(in whih  (x; y) fails to be general in that sense) will be disussed in the seond paragraph.

Throughout this setion the above data are �xed and we denote Æ = (';B;F ;  ): A subalgebra C

of O(B), speifying the Casimirs, ould also be hosen, but we take it to be trivial (i.e., C = C)

for the simpliity of exposition and notation. Our onstrution is done at the level of �

(d)

Æ

, for

Sym

d

�

Æ

and M

Æ

the orresponding onstrution follows from it at one (e.g., in the introdution

we formulated the result for M

Æ

). We will also restrit ourselves here to bi-Hamiltonian strutures,

the onstrution of multi-Hamiltonian strutures (i.e., the ase of several instead of just two Poisson

brakets) also follows from it at one.

5.1. The general ase

Using F we onstrut the following morphism,

F

0

:B �B ! C[x; y℄

(b

1

; b

2

) 7! F(x; y; b

1

+  (x; y)b

2

);

(5:2)

where we view F(x; y; b) as an element of O(B)[x; y℄ (i.e., for given b as an element of C[x; y℄) as

before. Sine F is a losed immersion, F

0

will also be a losed immersion for general (i.e., most)

 (x; y); this is the ase treated in this paragraph, we all suh a  (x; y) simply general. From F

0

we onstrut as in (3.2) the spae �

(d)

Æ

by

�

(d)

Æ

=

n

((x

1

; y

1

); : : : ; (x

d

; y

d

); b

1

; b

2

) 2

�

C

2

�

d

�B �B j F(x

i

; y

i

; b

1

+  (x

i

; y

i

)b

2

) = 0

o

;

whih admits two projetions onto B, whih we denote by �

1

and �

2

. From these we onstrut two

data of the type (3.1):

�

1

= (';B �B;F

0

; �

�

2

O(B));

�

2

= (' ;B �B;F

0

; �

�

1

O(B)):

They lead to two di�erent integrable Hamiltonian systems. Remark that their phase spae is

the same

5

but they have di�erent Poisson strutures, in partiular they have di�erent algebras of

Casimirs. However, they bare the following relation.

5

The divisor to be removed from �

(d)

Æ

may be di�erent for the two Poisson strutures; to have

a ommon spae we an e.g. remove their sum. We denote the divisor whih we remove by D

Æ

.
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Proposition 5.1 The integrable Hamiltonian systems

�

�

(d)

Æ

nD

Æ

; f� ; �g

�

i

; �

�

1

O(B)
 �

�

2

O(B)

�

(i = 1; 2) (5:3)

have many integrable vetor �elds in ommon, namely for any linear funtion � on B = C

d

,

f� ; �

�

1

�g

�

1

= f� ; �

�

2

�g

�

2

:

Proof

Reall from (3.9) that the Hamiltonian vetor �elds f�

i

; �g

�

were determined ompletely by

M

�

f�; xg

�

= �N

�

;

and a similar equation for f�; yg

�

; we have introdued here a matrix

(f�; xg

�

)

ij

= f�

i

; x

j

g

�

:

The orresponding equation for the integrable vetor �elds of �

1

is given by

 

�F

0

��

1

�F

0

��

2

�

��

1

(�

�

2

)

�

��

2

(�

�

2

)

!

�

f�

1

; xg

�

1

f�

2

; xg

�

1

�

= �

�

�F

0

�y

'

0

�

; (5:4)

while the ones for �

2

are given by

 

�F

0

��

1

�F

0

��

2

�

��

1

(�

�

1

)

�

��

2

(�

�

1

)

!

�

f�

1

; xg

�

2

f�

2

; xg

�

2

�

= �

�

�F

0

�y

' 

0

�

: (5:5)

Our notation is the same as the one we used in (3.9), exept that we denote here by �

1

(resp. �

2

)

the generators whih ome from O(B) using �

1

(resp. �

2

). Sine the elements of �

�

2

O(B) (resp.

�

�

1

O(B)) are Casimirs for f� ; �g

�

1

(resp. f� ; �g

�

2

) and

�

��

1

(�

�

2

) =

�

��

2

(�

�

1

) = 0;

(5.4) and (5.5) are equivalent to

�F

0

��

1

f�

1

; xg

�

1

= �

�F

0

�y

';

�F

0

��

2

f�

2

; xg

�

2

= �

�F

0

�y

' :

(5:6)

Now for the last equation we have that

�F

0

��

2

j

(x

i

; y

i

; b

1

+  (x

i

; y

i

)b

2

) =  (x

i

; y

i

)

�F

0

��

1

j

(x

i

; y

i

; b

1

+  (x

i

; y

i

)b

2

);
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so that the last equation of (5.6) an be written as

�F

0

��

1

f�

2

; xg

�

2

= �

�F

0

�y

';

and we arrive at the onlusion

f�

1

; xg

�

1

= f�

2

; xg

�

2

:

Sine the same holds for the brakets with y, we have shown that

f�

1

; �g

�

1

= f�

2

; �g

�

2

;

i.e., the integrable vetor �elds orresponding to linear funtions of B agree.

If we denote the vetor �eld f� ; �

1

j

g

�

1

= f� ; �

2

j

g

�

2

by X

j

(j = 1; : : : ; d) then we arrive at d

bi-Hamiltonian hierarhies, whih we depit in the following way.

�

1

j

�

2

j

.

2 1

& .

2 1

&

0 X

j

0

5.2. A speial ase

We next onsider a ase in whih F

0

, de�ned in 5.2 is not a losed immersion but still leads

to bi-Hamiltonian vetor �elds. For a partiular immersion F and  (x; y) = x these were �rst

desribed by us in [Van1℄ and later generalized in [Bue℄ for arbitrary F (still taking  (x; y) = x).

We �x some basis of C

d

and we suppose that F is of the form

F(x; y; b) = F (x; y)� (b

1

+  b

2

+  

2

b

3

+ � � �+  

d�1

b

d

);

where b = (b

1

; : : : ; b

d

) with respet to the hosen basis. Then F

0

leads to the family of urves

F (x; y)� (b

1

+  b

2

+ � � � +  

d

b

d+1

);

leading to an aÆne variety �

(d)

Æ

as before. The two projetion maps �

(d)

Æ

! B are now given by

�

1

(x

1

; : : : ; y

d

; b

1

; : : : ; b

d+1

) = (b

1

; : : : ; b

d

);

�

2

(x

1

; : : : ; y

d

; b

1

; : : : ; b

d+1

) = (b

2

; : : : ; b

d+1

);

and we have that �

1

i+1

= �

2

i

, i.e., �

�

1

�

i+1

= �

�

2

�

i

; (i = 1; : : : ; d� 1), where (�

1

; : : : ; �

d

) denotes the

basis dual to the hosen basis. It follows that in this ase Proposition 5.1 is still valid; there is now

however only one bi-Hamiltonian hierarhy and it takes the following form.

�

1

1

�

1

2

= �

2

1

: : : �

2

d

.

2 1

& .

2 1

& .

2 1

& .

2 1

&

0 X

1

X

2

: : : X

d

0
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