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Abstra
t

In this paper we show how there is asso
iated an integrable Hamiltonian system to a 
ertain

set of algebrai
-geometri
 data. Roughly speaking these data 
onsist of a family of algebrai
 
urves,

parametrized by an aÆne algebrai
 variety B, a subalgebra C of O(B) and a polynomial '(x; y) in

two variables. The phase spa
e is 
onstru
ted geometri
ally from the family of 
urves and has a

natural proje
tion onto B; the regular fun
tions on B lead to an algebra of fun
tions in involution

and the level sets of the moment map are symmetri
 produ
ts of algebrai
 
urves.

While 
ompletely transparant from the geometri
al point of view, a slight 
hange of these

integrable Hamiltonian systems is needed in order to expli
itly realize these integrable Hamiltonian

systems. Thus, we asso
iate to the same data another integrable Hamiltonian system and show

how they relate to the �rst one: there is a birational map between them (whi
h is regular in one

dire
tion) whi
h is (in the regular dire
tion) a morphism of integrable Hamiltonian systems. Both

the Poisson stru
ture and the fun
tions in involution are found by performing an Eu
lidean division

of two polynomials, so that when the data are expli
itly given, all ingredients of the integrable

Hamiltonian system 
an be easily 
omputed from it in an expli
it way.

In the same spirit we also 
onstru
t a large 
lass of integrable bi-Hamiltonian systems. They

depend on the extra datum of a polynomial  (x; y) in two variables, whi
h spe
i�es a deformation

of our family of 
urves. Our 
onstru
tion shows 
learly how and why (
ertain) symmetries in the

family of 
urves lead to a bi-Hamiltonian stru
ture for the 
orresponding integrable Hamiltonian

system.
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1. Introdu
tion

In [Van2℄ we have shown that there is asso
iated a (�nite-dimensional) integrable Hamiltonian

system to the following data

1) an integer d � 1,

2) a polynomial '(x; y) 2 C[x; y℄ n f0g,

3) a polynomial F (x; y) 2 C[x; y℄ nC[x℄.

(1:1)

Expli
itly, the phase spa
e is C

2d

, whi
h is viewed as the spa
e of pairs of polynomials (u(�); v(�))

where

u(�) = �

d

+ u

1

�

d�1

+ � � �+ u

d�1

�+ u

d

;

v(�) = v

1

�

d�1

+ � � �+ v

d�1

�+ v

d

;

(1:2)

(thus the 
oeÆ
ients u

i

and v

i

of u(�) and v(�) serve as 
oordinates on C

2d

); the Poisson bra
ket

on C

2d

, di
tated by '(x; y), is given by

fu(�); u

j

g

'

= fv(�); v

j

g

'

= 0;

fu(�); v

j

g

'

= fu

j

; v(�)g

'

= '(�; v(�))

�

u(�)

�

d�j+1

�

+

modu(�); 1 � j � d;

(1:3)

�nally d independent fun
tions H

1

; : : : ;H

d

, in involution with respe
t to f� ; �g

'

, are 
omputed from

F (�; v(�))mod u(�) = H

1

�

d�1

+ � � �+H

d�1

�+H

d

: (1:4)

In this paper we wish to explain and generalize this 
onstru
tion by using the 
on
epts and tools

whi
h we introdu
ed in [Van3℄. The 
on
epts we use here are those of an integrable Hamiltonian

system on an aÆne Poisson variety and morphisms between su
h systems. In short an aÆne

Poisson variety (M; f� ; �g) is an aÆne algebrai
 variety M whose ring of regular fun
tions O(M)

is equipped with a Poisson bra
ket f� ; �g; an integrable Hamiltonian system on it is given by an

involutive subalgebra A � O(M) (i.e., fA;Ag = 0) whi
h has the right size; a morphism between

su
h systems is a morphism between their phase spa
es whi
h is 
ompatible with the Poisson

bra
kets and the involutive subalgebras. The tools we use 
onsist of some basi
 theorems whi
h

allow to 
onstru
t new integrable systems from old ones. See Se
tion 2 below and Ch. II of [Van3℄.

The present 
onstru
tion generalizes the previous one in two aspe
ts. The �rst one is that

we repla
e the third datum in (1.1) by a d-parameter family of polynomials, i.e., by a polynomial

F(x; y; b), the parameter b belonging to a d-dimensional aÆne variety B; in geometri
 terms the

third datum in (1.1) is that of an algebrai
 
urve (embedded in C

2

), whi
h we repla
e here by

an (e�e
tive) deformation family of algebrai
 
urves. The se
ond aspe
t whi
h makes the present


onstru
tion more general is that there is an extra datum, whi
h is that of a subalgebra C of O(B).

Essentially this extra datum spe
i�es the algebra of Casimirs of the Poisson stru
ture, whi
h was

trivial in our previous 
onstru
tion (it 
orresponds to the trivial 
hoi
e C = C).

The phase spa
e of the generalized integrable systems is given (possibly up to a divisor whi
h

needs to be removed) by the aÆne variety

M

�

= f(u(�); v(�); b) j F(�; v(�); b)mod u(�) = 0g � C

2d

�B; (1:5)

whi
h is �bered over B with proje
tion map p

�

:M

�

! B. A Poisson bra
ket f� ; �g

�

on M

�

is

determined as before by ' giving (1.2) and all other bra
kets are 
omputed from these by using the
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equation(s) F(�; v(�); b) = 0. In parti
ular it follows that fp

�

�

O(B); p

�

�

O(B)g

�

= 0, yielding that

(M; f� ; �g

�

; p

�

�

O(B)) is an integrable Hamiltonian system. When B = C

d

and F takes the form

F(x; y; b) = F (x; y)� (b

1

x

d�1

+ � � �+ b

d�1

x+ b

d

)

we re
over our original 
onstru
tion.

Our 
onstru
tion is 
lari�ed by the 
onstru
tion of a slightly di�erent integrable Hamiltonian

system, asso
iated to the same data. Namely, starting from the family of 
urves F(x; y; b) = 0

we �rst 
onstru
t the 
orresponding family of d-fold symmetri
 produ
ts of these 
urves, where

d = dimB � dimC. This family 
an be des
ribed globally as the quotient of the aÆne algebrai


variety

�

(d)

�

=

n

((x

1

; y

1

); : : : ; (x

d

; y

d

); b) 2

�

C

2

�

d

�B j F(x

i

; y

i

; b) = 0

o

;

by the symmetri
 group S

d

(whi
h a
ts by permuting the d 
opies of C

2

). On �

(d)

�

we use ' to


onstru
t a bra
ket for whi
h all elements of C are Casimirs; moreover this bra
ket is S

d

-invariant,

hen
e it passes to the quotient. Stri
tly speaking these bra
kets are not regular but rational, we will

explain in the text in detail how to deal with this, i.e., how to remove a divisor from �

(d)

�

in order

to make it into a genuine aÆne Poisson variety. As for integrability, the regular fun
tions on O(B)

give as before an integrable algebra, via the natural proje
tion on the spa
e B whi
h parametrizes

the family. This algebra is also S

d

-invariant so we get an integrable Hamiltonian system on the

quotient spa
e �

(d)

�

=S

d

.

The two integrable Hamiltonian system whi
h we asso
iate to the same set of data in this way

are very 
losely related: they are almost isomorphi
. More pre
isely there exists a regular map

�:M

�

! �

(d)

�

=S

d

whi
h is a morphism of the 
orresponding integrable Hamiltonian systems on these spa
es. Moreover

this map has a rational inverse, so the geometry of these integrable Hamiltonian systems is slightly

di�erent; for example, while the �bers of the moment map on �

(d)

�

=S

d

are symmetri
 produ
ts of

algebrai
 
urves, the �bers of the moment map on M

�

are only aÆne parts of these; also, while no

physi
al systems are known to be isomorphi
 to the ones on �

(d)

�

=S

d

, many are a
tually isomorphi


to the ones onM

�

(sometimes up to a 
over). Sin
e ea
h has its proper virtue, we found it important

to give both 
onstru
tions and to 
ompare the results 
arefully. This will be done in Se
tions 3

and 4.

Our 
onstru
tion is easily adapted to produ
e many integrable bi-Hamiltonian systems. The

data are slightly di�erent from the ones above: B should be C

d

, but instead there is a new datum

 (x; y), a (general) polynomial in two variables (for simpli
ity we also take C = C but that is not

essential). Then the phase spa
e is (up to a divisor)

M

Æ

= f(u(�); v(�); b

1

; b

2

) j F(�; v(�); b

1

+  (x; y)b

2

)modu(�) = 0g � C

2d

�B �B: (1:6)

Remark that there are now two proje
tions onto B, say p

1

and p

2

. On M

Æ

we put two Poisson

stru
tures, the �rst one is the one whi
h 
orresponds to ' (as above), the other one is the one

whi
h 
orresponds to the produ
t ' , let us denote these Poisson stru
tures by f� ; �g

1

and f� ; �g

2

.

For the algebra of Casimirs (given by C in our previous 
onstru
tion), we 
hoose for the �rst one

p

�

2

O(B) and for the se
ond one p

�

1

O(B). Then for any linear fun
tion � on B (re
all that B = C

d

)

we have

f�; p

�

1

�g

1

= f�; p

�

2

�g

2

;

2



showing that these integrable Hamiltonian ve
tor �elds are bi-Hamiltonian (i.e., Hamiltonian with

respe
t to two di�erent Poisson stru
tures). This will be explained in Paragraph 5.1. For some

spe
ial polynomials  our 
onstru
tion breaks down. Sin
e some of these 
ases are not without

interest (from a 
ertain point of view they are even more interesting/natural than the general

ones), we will also show how to get a bi-Hamiltonian stru
ture in these 
ases. That will be done in

Paragraph 5.2.
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2. Integrable Hamiltonian systems on aÆne Poisson varieties

In this se
tion we re
all from [Van3℄ the basi
 de�nitions and properties of integrable Hamil-

tonian systems on aÆne Poisson varieties.

2.1. Basi
 de�nitions

For an aÆne (algebrai
) variety M (whi
h is, as in [Har℄, assumed to be irredu
ible) we denote

its ring of regular fun
tions by O(M). A Lie algebra stru
ture f� ; �g on O(M) is 
alled a Poisson

bra
ket if for any f 2 O(M) the map

X

f

= f� ; fg:O(M) ! O(M)

is a derivation, i.e., it satis�es the Leibniz rule. It leads to the 
on
ept of an aÆne Poisson variety.

De�nition 2.1 An aÆne Poisson variety is a pair (M; f� ; �g) where M is an aÆne variety and

f� ; �g is a Poisson bra
ket on its ring of regular fun
tions. The derivations f� ; fg for f 2 O(M) are


alled Hamiltonian ve
tor �elds.

As in the theory of Lie algebras, the main obje
ts in this theory are the 
enter and the maximal

abelian subalgebras for the bra
ket; in the 
ontext of aÆne Poisson varieties the 
enter of the bra
ket

is 
alled the algebra of Casimirs and a maximal abelian subalgebra is 
alled an integrable algebra.

De�nition 2.2 Let (M; f� ; �g) be an aÆne Poisson variety. If f is an element of O(M) whose

asso
iated Hamiltonian ve
tor �eld is zero the f is 
alled a Casimir; the Casimirs form a subalgebra

of O(M) 
alled the algebra of Casimirs, whi
h we denote by Cas(M).

De�nition 2.3 Let (M; f� ; �g) be an aÆne Poisson variety. Fun
tions f; g 2 O(M) are said to

be in involution if ff; gg = 0; a subalgebra A of O(M) is said to be involutive if all its elements

are in involution, fA;Ag = 0. An involutive subalgebra A � O(M) is said to be integrable if

1) dimA =

1

2

(dimM + dimCas(M));

2) A is 
omplete, i.e., f 2 A , ff;Ag = 0.

If A is integrable then (M; f� ; �g;A) is 
alled an integrable Hamiltonian system.

Completeness for
es any integrable algebra to 
ontain the algebra of Casimirs. The string of

in
lusions

Cas(M) � A � O(M)

leads to a 
ommutative triangle of morphisms.

M

�

A

?

?

y

&

�

CasM

Spe
A �!

�

Spe
Cas(M)

The map �

A

:M ! Spe
A is 
alled the moment map and Spe
A is 
alled the base spa
e; the

Hamiltonian ve
tor �elds f� ; fg; f 2 A are tangent to the �bers of the moment map and span (at a

general point of the ea
h �ber) its tangent spa
e. In this paper A will always be �nitely generated

so that Spe
A 
an be seen as an aÆne variety.
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We will en
ounter in this paper also bi-Hamiltonian ve
tor �elds and bi-Hamiltonian hierar-


hies, whi
h we de�ne as follows. Let f� ; �g

1

and f� ; �g

2

be two (
ompatible

1

) Poisson bra
kets

on M . Then every ve
tor �eld whi
h is Hamiltonian with respe
t to both bra
kets is 
alled a

bi-Hamiltonian ve
tor �eld and a sequen
e of fun
tions ff

i

j i 2 Zg is 
alled a bi-Hamiltonian

hierar
hy (w.r.t. the bra
kets f� ; �g

1

and f� ; �g

2

) if

f� ; f

i

g

2

= f� ; f

i+1

g

1

; (i 2 Z):

Finally we also re
all the notion of a morphism between integrable Hamiltonian systems.

De�nition 2.4 Let (M

1

; f� ; �g

1

;A

1

) and (M

2

; f� ; �g

2

;A

2

) be two integrable Hamiltonian systems,

then a morphism �: (M

1

; f� ; �g

1

;A

1

) ! (M

2

; f� ; �g

2

;A

2

) is a regular map �:M

1

! M

2

with the

following properties

1) � is a Poisson morphism, i.e., �

�

ff; gg

2

= f�

�

f; �

�

gg

1

for all f; g 2 O(M

2

);

2) �

�

Cas(M

2

) � Cas(M

1

);

3) �

�

A

2

� A

1

.

If � is moreover an isomorphism then �

�1

automati
ally satis�es 1), 2) and 3) and � is 
alled an

isomorphism of integrable Hamiltonian systems.

S
hemati
ally, regularity of the map and 2) and 3) 
an be represented by the following 
ommutative

diagram:

Cas(M

2

) � A

2

� O(M

2

)

�

�

?

?

y

�

�

?

?

y

?

?

y

�

�

Cas(M

1

) � A

1

� O(M

1

)

(2:1)

By dualizing this diagram a 
ommutative diagram between the 
orresponding Spe
's is easily ob-

tained.

2.2. Basi
 
onstru
tions and propositions

In order to show that a given subalgebra A � O(M) on aÆne Poisson variety (M; f� ; �g) is

integrable one needs to verify that it is involutive, 
omplete and of the right dimension. In this

paper involutivity will be obvious from a dire
t 
omputation, in other 
ases one often relies on the


onstru
tion of an r-matrix representing the Poisson stru
ture. Alternatively, involutivity is also

obvious when A admits one or several bi-Hamiltonian hierar
hies, as in Se
tion 5 below. We re
all

the argument brie
y in the following proposition, whi
h goes essentially ba
k to Lenard and Magri.

Proposition 2.5 All fun
tions f

i

of a bi-Hamiltonian hierar
hy ff

i

j i 2 Zg are in involution

with respe
t to both Poisson bra
kets (hen
e with respe
t to any linear 
ombination). If one of these

fun
tions is a Casimir (for either of the stru
tures) then all these f

i

are also in involution with the

elements of any other bi-Hamiltonian hierar
hy (w.r.t. these bra
kets).

1

Some authors impose the natural 
ondition of 
ompatibility of the bra
kets (i.e., the sum of

the two bra
kets is also Poisson) but this is inessential for this paper, it is for example not used for

the proof of Proposition 2.5.
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Proof

If ff

i

j i 2 Zg forms a hierar
hy, then for any i < j

ff

i

; f

j

g

1

= ff

i

; f

j�1

g

2

;

= ff

i+1

; f

j�1

g

1

;

= : : : ;

= ff

j

; f

i

g

1

;

so ff

i

; f

j

g

1

= 0 by skew symmetry. They are also in involution with respe
t to the se
ond bra
ket

sin
e ff

i

; f

j

g

2

= ff

i

; f

j+1

g

1

. In the same way, if fg

j

j j 2 Zg is another bi-Hamiltonian hierar
hy

and f

k

is a Casimir, say of f� ; �g

1

then for any i; j 2 Z

ff

i

; g

j

g

1

= ff

k

; g

i+j�k

g

1

= 0;

so all fun
tions of the hierar
hy ff

i

j i 2 Zg are in involution with all fun
tions of any other

bi-Hamiltonian hierar
hy.

The 
omputation of the dimension of A often turns out to be quite hard. Usually this is done

by 
omputing the 
o-dimension of the general �ber of the moment map �

A

:M ! Spe
A, whi
h

is, of 
ourse, equal to the dimension of A. A 
lose investigation of the �bers of the moment map is

also essential to the veri�
ation that A is 
omplete, as is given in the following proposition (for a

proof see [Van3℄).

Proposition 2.6 Let (M; f� ; �g) be an aÆne Poisson variety and A an involutive subalgebra of

O(M) of dimension

dimA =

dimM + dimCasM

2

:

If the �bers of �

A

:M ! Spe
(A) have the following two properties,

1) the general �ber is irredu
ible,

2) the �bers over all 
losed points have the same dimension,

then A is 
omplete, hen
e integrable.

We will use two 
onstru
tions whi
h allow to 
onstru
t new aÆne Poisson varieties or integrable

Hamiltonian systems from old ones: taking quotients and removing divisors. This is given by the

following two propositions (proofs are given in [Van3℄).

Proposition 2.7 Let (M; f� ; �g

M

) be an aÆne Poisson variety and G a �nite group. If there is

given a regular Poisson a
tion of G on M , i.e., an a
tion �:G�M !M su
h that � is a Poisson

morphism, then M=G has a unique stru
ture of an aÆne Poisson variety (M=G; f� ; �g

0

) for whi
h

�:M ! M=G is a Poisson morphism. If A is an integrable algebra on (M; f� ; �g

M

) then A

G

, the

algebra of G-invariant fun
tions in A, is an integrable algebra on (M=G; f� ; �g

0

) and

�: (M; f� ; �g

M

;A)!

�

M=G; f� ; �g

0

;A

G

�

is a morphism of integrable Hamiltonian systems.

6



Proposition 2.8 Let (M; f� ; �g) be an aÆne Poisson variety and f 2 O(M) a regular fun
tion

whi
h is not 
onstant. Then there exists an aÆne Poisson variety (N; f� ; �g

N

) and a Poisson

morphism N ! M whi
h is dominant, having the 
omplement (in M) of the zero lo
us of f as

image.

The last proposition needs some 
omments. As we will see below, many interesting bra
kets

on some natural aÆne varieties (e.g., on C

n

) are not regular but rational, having their poles along

some �xed divisor. So one might feel for
ed to work in the larger 
ategory of aÆne Poisson varieties

with bra
kets on their �eld of rational fun
tions. However, if the bra
kets of all regular fun
tions

on M have their poles on a single divisor D (whi
h may be redu
ible), it is obvious that if f and g

are any two rational fun
tions on M , whi
h have their poles along D only then their bra
ket ff; gg

will also have its poles along D. Thus, instead of 
onsidering the algebra of rational fun
tions, we

may work as well with the (smaller and easier to handle) algebra of rational fun
tions on M whi
h

have their poles on D only. This algebra is the algebra of regular fun
tions on an aÆne variety,

whi
h may be identi�ed with M n D; loosely speaking we will say that M n D is an aÆne variety.

Then the 
ontent of Proposition 2.8 is that, even when 
onsidering su
h rational bra
kets, we stay

in the 
ategory of aÆne Poisson varieties.
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3. Integrable Hamiltonian systems asso
iated to families of 
urves

In this se
tion we show how there is asso
iated an integrable Hamiltonian system to the

following data

1) a polynomial '(x; y) 2 C[x; y℄ n f0g,

2) an aÆne variety B,

3) a 
losed immersion F :B ! C[x; y℄,

4) a subalgebra C of O(B).

(3:1)

These data will be supposed �xed throughout this se
tion. It is useful to denote � = (';B;F ; C)

and d = dimB � dimC.

To the morphism F :B ! C[x; y℄ there is naturally asso
iated an element of O(B)[x; y℄, whi
h

we denote by F(x; y; b). In turn F(x; y; b) determines a family of algebrai
 
urves F(x; y; b) = 0,

parametrized by B. This family 
an be seen as a hypersurfa
e in C

2

� B whi
h we will denote

by �

�

. Sin
e F is a 
losed immersion (i.e., it restri
ts to an isomorphism of B onto its image,

whi
h is 
losed

2

) the �bers of the proje
tion map �

�

! B are pre
isely the algebrai
 
urves of the

family. F is determined by the family of algebrai
 
urves up to a (multipli
ative) 
onstant; sin
e

our 
onstru
tion will only depend on F up to a 
onstant, we may rephrase 3) geometri
ally as the

datum of a family of algebrai
 
urves, parametrized (e�e
tively) by B.

We start by des
ribing a natural integrable system asso
iated to �, the one of interest for us

will be obtained as a quotient of it (by a �nite group). To 
onstru
t the phase spa
e we make the

d-fold �ber produ
t of �

�

! B, i.e., we 
onsider the aÆne variety

�

(d)

�

=

n

((x

1

; y

1

); : : : ; (x

d

; y

d

); b) 2

�

C

2

�

d

�B j F(x

i

; y

i

; b) = 0

o

; (3:2)

with its proje
tion onto B,

�

�

: �

(d)

�

! B:

The dimension of �

(d)

�

is dimB+d, the dimension of the �bers being d. We 
onstru
t in the following

proposition a Poisson stru
ture f� ; �g

�

on �

(d)

�

. Stri
tly speaking this Poisson stru
ture is rational

(i.e., the bra
ket of regular fun
tions is rational), but sin
e all poles are along the zero lo
us D

�

of

some regular fun
tion, we may, as explained in and after Proposition 2.8 make

�

�

(d)

�

nD

�

; f� ; �g

�

�

into a genuine aÆne Poisson variety.

Proposition 3.1 The bra
kets

fx

i

; x

j

g

�

= fy

i

; y

j

g

�

= 0; fy

i

; x

j

g

�

= '(x

j

; y

i

)Æ

ij

; (3:3)

and

f� ; 
g

�

= 0; for all 
 2 C, (3:4)

de�ne a Poisson bra
ket on the aÆne variety �

(d)

�

n D

�

, where D

�

is the divisor of some regular

fun
tion on �

(d)

�

.

2

To be very pre
ise, 
losed means here Zariski 
losed in a �nite-dimensional subspa
e A

mn

of

C[x; y℄ 
onsisting of polynomials of degree at most m in x and n in y.
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Proof

Let C

0

denote the subalgebra of O

�

�

(d)

�

�

generated by C; x

i

and y

i

(i = 1; : : : ; d). Then the

above bra
kets de�ne a Poisson stru
ture on C

0

, sin
e the Ja
obi identity is veri�ed. Sin
e F is a


losed immersion,

dimC

0

= dimC + 2d = dimB + d = dim�

(d)

�

;

so that every regular (or rational) fun
tion on �

(d)

�

is 
ontained in the integral 
losure of C

0

in the

�eld of fra
tions of O

�

�

(d)

�

�

. Thus, if F 2 O

�

�

(d)

�

�

then there exists a (not ne
essarily moni
)

polynomial P (u) 2 C

0

[u℄ su
h that P (F ) = 0. This allows to determine the bra
ket of any two

fun
tions F;G on O

�

�

(d)

�

�

as follows. Let P (u) =

P

p

i

u

i

and Q(u) =

P

q

j

u

j

denote their minimal

de�ning polynomials, degP (u) = n; degQ(u) = m. If f� ; �g

�

extends to �

(d)

�

then for f 2 C

0

we

have

0 = fP (F ); fg

�

=

n

X

i=0

�

p

i

F

i

; f

	

�

=

n

X

i=0

fp

i

; fg

�

F

i

+

n

X

i=1

p

i

iF

i�1

fF; fg

�

;

and the bra
ket fF; fg

�

derives from it; remark that it is rational, its poles being along the divisor

of zeroes of the regular fun
tion

P

p

i

iF

i�1

. Using this, one 
omputes fF;Gg

�

from

0 = fF;Q(G)g

�

=

m

X

j=0

�

F; q

j

G

j

	

�

=

m

X

j=0

fF; q

j

g

�

G

j

+

m

X

j=1

q

j

jG

j�1

fF;Gg

�

;

it has also its poles along the zero lo
us of a regular fun
tion on �

(d)

�

. Sin
e O

�

�

(d)

�

�

is �nitely

generated, only a �nite number of divisors will appear; let us 
all the minimal

3

divisor whi
h


ontains these divisors D

�

. Sin
e D

�

is (up to multipli
ities) the divisor of zeroes of a regular

fun
tion on �

(d)

�

we may 
on
lude using Proposition 2.8 that

�

�

(d)

�

nD

�

; f� ; �g

�

�

is an aÆne Poisson

variety.

The proposition shows that there exists a divisor D

�

on �

(d)

�

su
h that

�

�

(d)

�

nD

�

; f� ; �g

�

�

is

an aÆne Poisson variety. We now show how the 
omputation of this divisor 
an be implemented.

Choose any generators �

1

; : : : ; �

s

for O(B) and let us use as the same notation for the 
orresponding

generators �

�

�

�

i

of �

�

�

O(B). Applying naively the 
onstru
tion of the pre
eding paragraph to


ompute D

�

would 
onsist in determining for ea
h generator �

j

its de�ning polynomial and taking

the bra
ket with all x

i

and y

i

. These de�ning polynomials 
an be 
omputed from the relations

F(x

i

; y

i

; b) = 0, but this gives rise to long 
al
ulations. We show how to avoid their expli
it


al
ulation by 
omputing the bra
kets fx

i

; �

j

g

�

and fy

i

; �

j

g

�

dire
tly from these relations.

Let us �rst start with the easiest 
ase, in whi
h C = C (no Casimirs) and s = dimB (so that

B is isomorphi
 to C

d

). From the de�ning equations F(x

i

; y

i

; b) = 0 we �nd

8

>

>

>

>

<

>

>

>

>

:

0 = fF(x

i

; y

i

; b); x

j

g

�

=

�F

�y

(x

i

; y

i

; b)'(x

j

; y

i

)Æ

ij

+

s

X

k=1

�F

��

k

(x

i

; y

i

; b) f�

k

; x

j

g

�

;

0 = fF(x

i

; y

i

; b); y

j

g

�

= �

�F

�x

(x

i

; y

i

; b)'(x

j

; y

i

)Æ

ij

+

s

X

k=1

�F

��

k

(x

i

; y

i

; b) f�

k

; y

j

g

�

:

(3:5)

3

Sin
e the multipli
ities of the irredu
ible 
omponents of this divisor are only relevant for the

divisor being the divisor of zeroes of a regular fun
tion, we may take them at this point all equal

to 1.
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To dedu
e the bra
kets f�

k

; x

j

g

�

and f�

k

; y

j

g

�

from it, we use the fa
t that F is an immersion. If

we denote the natural fun
tion on C[x; y℄ whi
h pi
ks the i-th 
oeÆ
ient (�xing some ordering) by




i

then F being immersive implies that the rank of the big matrix

�

�

��

j

F Æ 


i

�

ij

is equal to d. By

elementary operations on this matrix it is seen that this rank is the same as the rank of the square

matrix

�

�F

��

j

(x

i

; y

i

; b)

�

1�i;j�d

(3:6)

for general x

i

; y

i

i.e., on a Zariski open subset of �

(d)

�

. It follows that the rank of (3.6) is maximal

on a Zariski open subset, whi
h is expli
itly given as the 
omplement of the divisor D

�

; of 
ourse

D

�

is just the zero lo
us of the determinant of the matrix (3.6). Thus, the bra
kets fx

i

; �

j

g

�

and

fy

i

; �

j

g

�

have their poles along the divisor D

�

only, whi
h is easily 
omputed as

D

�

: det

�

�F

��

j

(x

i

; y

i

; b)

�

= 0: (3:7)

Remark that removing the divisor D

�

from �

(d)

�

has the e�e
t of removing a divisor from every

�ber of the moment map.

In the general 
ase one also has to take into a

ount the algebra C, whose elements are to be

Casimirs and the relations whi
h hold between the generators. Let us pi
k any set of generators




1

; : : : ; 


m

for C and any maximal set of independent relations R

1

; : : : ;R

n

. Taking the bra
kets

with x

j

(and similarly with y

j

) we get as in (3.5),

8

>

>

>

>

<

>

>

>

>

:

0 = f


i

; x

j

g

�

=

s

X

k=1

�


i

��

k

f�

k

; x

j

g

�

;

0 = fR

i

; x

j

g

�

=

s

X

k=1

�R

i

��

k

f�

k

; x

j

g

�

;

(3:8)

where i runs from 1 to m in the �rst line and from 1 to n in the se
ond one. (3.8) and the �rst line

of (3.5) are 
ombined by using the matri
es

M

�

=

0

B

�

�F

��

�


��

�R

��

1

C

A

and N

�

=

0

�

�F

�y

'

0

0

1

A

;

of size (d+m+ n)� s resp. (d+m+ n)� d. We have introdu
ed the matri
es

�

�F

��

�

ij

=

�F

��

j

(x

i

; y

i

; b);

�

�F

�y

'

�

ij

=

�F

�y

(x

i

; y

i

; b)'(x

j

; y

i

)Æ

ij

;

and

�

�


��

�

ij

=

�


i

��

j

;

�

�R

��

�

ij

=

�R

i

��

j

:

Then (3.8) and the �rst line of (3.5) are equivalent to

M

�

0

B

�

f�

1

; x

1

g

�

: : : f�

1

; x

d

g

�

.

.

.

.

.

.

f�

s

; x

1

g

�

: : : f�

s

; x

d

g

�

1

C

A

= �N

�

: (3:9)
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We 
laim that the rank ofM

�

is s on a Zariski open subset. As we have noti
ed, the �rst d rows

are independent; sin
e the next m rows 
orrespond to generators of C, there are dimC independent

rows among them, and similarly the last n rows 
ontain s � dimB independent rows. Moreover

rows in the three di�erent blo
ks 
an not be dependent: the �rst ones depend on x

i

; y

i

while the

others do not and the last rows 
annot be dependent sin
e the Casimirs are independent of the

relations. It follows that

RkM

�

= d+ dimC + s� dimB = s:

Sin
e the bra
kets fy

i

; �

j

g

�

are 
omputed using the same matrixM

�

and as we will show that all

bra
kets f�

i

; �

j

g

�

are zero, we may 
on
lude that the divisor D

�

to be removed 
an be expli
itly


omputed as the zero lo
us of one of the determinants whi
h is not identi
ally zero. Of 
ourse this

divisor is not unique, it depends on the 
hosen determinant.

In the following proposition we show that �

�

�

O(B) is involutive and of maximum dimension,

leading to an integrable algebra on

�

�

(d)

�

nD

�

; f� ; �g

�

�

.

Proposition 3.2 If for general b 2 B the polynomial F(x; y; b) = 0 is irredu
ible then

�

�

(d)

�

nD

�

; f� ; �g

�

; �

�

�

O(B)

�

is an integrable Hamiltonian system.

Proof

We �rst show that �

�

�

O(B) is involutive with respe
t to f� ; �g

�

. We use the obvious equality

fF (x

i

; y

i

; b); F (x

j

; y

j

; b)g

�

= 0

and write F(i) as a shorthand for F(x

i

; y

i

; b). If i 6= j then this bra
ket expands in terms of

any system of generators �

1

; : : : ; �

s

for O(B) (whi
h we identify as before with the 
orresponding

generators �

�

�

�

i

of �

�

�

O(B)) as

s

X

k=1

�F

�x

(i)

�F

��

k

(j) fx

i

; �

k

g

�

+

s

X

k=1

�F

�y

(i)

�F

��

k

(j) fy

i

; �

k

g

�

� (i$ j)

+

s

X

k;l=1

�F

��

k

(i)

�F

��

l

(j) f�

k

; �

l

g

�

= 0;

where (i$ j) denotes the two terms obtained by inter
hanging i and j in the �rst two terms. Now

for i 6= j

s

X

k=1

�F

��

k

(j) fx

i

; �

k

g

�

= fx

i

;F(x

j

; y

j

; b)g

�

= 0;

so the �rst term vanishes; similarly the next three terms vanish and we are left with

s

X

k;l=1

�F

��

k

(i) f�

k

; �

l

g

�

�F

��

l

(j) = 0; (3:10)

11



for all i 6= j. By skew symmetry of the bra
ket, (3.10) is a
tually valid for all i and j. If s = dimB

then the matrix

�F

��

k

(i) is invertible and we �nd that f�

k

; �

l

g

�

= 0 for all k; l. Otherwise we use C

and the relations R

i

as before to obtain

M

�

�

f�

i

; �

j

g

�

�

M

t

�

= 0:

Sin
eM

�

has rank s we are at the same 
on
lusion: �

�

�

O(B) is involutive with respe
t to f� ; �g

�

.

Let us 
ount dimensions:

dim�

(d)

�

= dimB + d;

dimCas

�

�

(d)

�

�

= dimC = dimB � d;

dim�

�

�

O(B) = dimO(B) = d;

where we used in the last line that �

�

is surje
tive. Put together they lead to

dim�

�

�

O(B) =

1

2

�

dim�

(d)

�

+ dimCas

�

�

(d)

�

��

;

so that �

�

�

O(B) has the right dimension in order to be integrable. Completeness of �

�

�

O(B) follows

from the assumption that the general 
urve in the family is irredu
ible: under this assumption,

the general �ber of �

�

is also irredu
ible and sin
e all �bers over points of B have the same

dimension d, we have a

ording to Proposition 2.6, that �

�

�

O(B) is 
omplete. It follows that

�

�

�

O(B) is integrable.

If for general b 2 B the 
urve F(x; y; b) = 0 is not irredu
ible then we still get an integrable

Hamiltonian system by 
ompleting �

�

�

O(B) (i.e., by repla
ing it with its integral 
losure in its �eld

of of fra
tions), but it may be hard to obtain a (more) expli
it des
ription of this algebra (see

[Van3℄ for 
omments and details).

By now we have asso
iated an integrable Hamiltonian system asso
iated to the data (3.1).

Using Proposition 2.7 we 
onstru
t from it the quotient whi
h is the integrable Hamiltonian system

we were aiming at. The group whi
h is a
ting on the integrable systems is the symmetry group S

d

(of d letters). First of all, it a
ts on �

(d)

�

in by permuting the d 
opies of C

2

and the quotient

Sym

d

�

�

= �

(d)

�

=S

d

is an aÆne variety. Clearly the proje
tion map �

�

: �

(d)

�

! B fa
torizes via Sym

d

�

�

and, sin
e no


onfusion 
an arise, we will use the same notation for the 
orresponding map

�

�

: Sym

d

�

�

! B;

its �bers are now d-fold symmetri
 produ
ts of the �bers of �

�

! B (whi
h are algebrai
 
urves); in

parti
ular they are non-singular if the underlying 
urve is non-singular. The bra
kets (3.3) and (3.4)

are 
learly S

d

-invariant, so that the divisor D

�

and the Poisson stru
ture f� ; �g

�

(on �

(d)

�

nD

�

) are

S

d

-invariant | sin
e S

d

is a �nite group, another way to formulate the latter is that the a
tion of

S

d

on �

(d)

�

nD

�

is a Poisson a
tion. A trivial appli
ation of Proposition 2.7 leads to the following


orrolary of Propositions 3.1 and 3.2.

Proposition 3.3 The bra
kets (3.3) and (3.4) de�ne a Poisson stru
ure f� ; �g

�

on Sym

d

�

�

nD

�

,

where D

�

= D

�

=S

d

. The �ber over b 2 B of the moment map Sym

d

�

�

nD

�

! B is (if non-empty)

12



isomorphi
 to an aÆne part of the d-fold symmetri
 produ
t of the 
urve F(x; y; b) = 0. Moreover

�

Sym

d

�

�

n D

�

; f� ; �g

�

; �

�

�

O(B)

�

is an integrable Hamiltonian system and the proje
tion map

�

�

(d)

�

nD

�

; f� ; �g

'

; �

�

�

O(B)

�

!

�

Sym

d

�

�

n D

�

; f� ; �g

'

; �

�

�

O(B)

�

is a morphism of integrable Hamiltonian system.

For an expli
it given � an expli
it des
ription of these integrable Hamiltonian system 
an in

prin
iple be given. To obtain it, one looks for a des
ription of the ring of regular fun
tions on

�

(d)

�

whi
h are S

d

invariant (i.e., exhibit generators and a 
omplete set of relations), whi
h is often

diÆ
ult to obtain. Thus, in pra
ti
e the above des
ription is already at the level of the phase

spa
e not very expli
it (remark however that an expli
it des
ription of the Poisson bra
ket and the

integrable algebra would follow at on
e from an expli
it des
ription of the phase spa
e). We will


ome ba
k to this in the next se
tion.

To 
lose this se
tion we whi
h to point out how the di�erent Poisson stru
tures f� ; �g

�

for

varying ' are related via S

d

-invariant ve
tor �elds whi
h have the property that the Lie derivative

of the Poisson bra
kets are also Poisson bra
kets

4

. In view of the formula

f� ; �g

'+ 

= f� ; �g

'

+ f� ; �g

 

our spa
e of Poisson stru
tures is linearly generated by the Poisson bra
kets asso
iated to monomials

x

i

y

j

and we will exhibit the symmetries only for these. To do this, we de�ne two ve
tor �elds X

and Y as follows.

Xx

i

= �1;

Xy

i

= 0;

Y x

i

= 0;

Xy

i

= 1:

Let us 
ompute the Lie derivatives L

X

f� ; �g

'

and L

Y

f� ; �g

'

for ' = x

m

y

n

, evaluated on x

i

and y

j

(all other bra
kets are obviously zero).

L

X

f� ; �g

x

m

y

n

(x

i

; y

j

) = L

X

fx

i

; y

j

g

x

m

y

n

� fL

X

x

i

; y

j

g

x

m

y

n

� fx

i

; L

X

y

j

g

x

m

y

n

;

= �X(x

m

i

y

n

j

Æ

ij

);

= mx

m�1

i

y

n

j

Æ

ij

so we see that the Lie derivative of f� ; �g

x

m

y

n

with respe
t to X is proportional to f� ; �g

x

m�1

y

n
. Sim-

ilarly we �nd that the Lie derivative of f� ; �g

x

m

y

n

with respe
t to Y is proportional to f� ; �g

x

m

y

n�1
.

Remark also that ve
tor �elds X and Y (hen
e their Lie derivatives) 
ommute. Thus we get the

following diagram representing the Poisson stru
tures asso
iated to x

m

y

n

and their relations.

f� ; �g

1

X

 � f� ; �g

x

X

 � f� ; �g

x

2

X

 � � � �

x

?

?

Y

x

?

?

Y

x

?

?

Y

f� ; �g

y

X

 � f� ; �g

xy

X

 � f� ; �g

x

2

y

X

 � � � �

x

?

?

Y

x

?

?

Y

x

?

?

Y

f� ; �g

y

2

X

 � f� ; �g

xy

2

X

 � f� ; �g

x

2

y

2

X

 � � � �

x

?

?

Y

x

?

?

Y

x

?

?

Y

� � � � � � � � �

4

Sin
e only ' is relevant for the present dis
ussion we will suppose now all data �xed, ex
ept

for ' and we will denote the bra
ket 
orresponding to ' by f� ; �g

'

.
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4. A 
on
rete realization

We now pass to the 
onstru
tion of a slightly di�erent integrable Hamiltonian system, asso-


iated to the same data � = (';B;F ; C) as in (3.1). While the integrable Hamiltonian systems


onstru
ted in Proposition 3.3 have the advantage of being most natural and their geometry is


ompletely transparant at all levels, they are not totally expli
it; for example the phase spa
e

Sym

d

�

�

is de�ned as the quotient �

(d)

�

=S

d

and has a quite 
ompli
ated stru
ture (many generators

and relations). Moreover no 
lassi
al integrable system is of this form, while many turn out to be

birational to su
h systems; the ones we will 
onstru
t now are birational to the ones of Se
tion 3,

they are totally expli
it and turn out to be 
losely related to (i.e., isomorphi
 to, or isomorphi
 to

a quotient of) most known examples of (�nite-dimensional) integrable Hamiltonian systems. We

�rst treat the general 
ase and then show how the integrable Hamiltonian system introdu
ed in

[Van2℄ are obtained as a spe
ial 
ase of it.

4.1. The general 
ase

Consider the following aÆne variety

M

�

=

�

(u(�); v(�); b) 2 C

2d

�B j F(�; v(�); b)mod u(�) = 0

	

;

(C

2d

is viewed here as the spa
e of pairs of polynomials as in (1.2)) and denote the natural proje
tion

map on B by p

�

. There is a natural map

�:M

�

! Sym

d

�

�

whi
h is de�ned by

(u(�); v(�); b) 7! ((x

1

; v(x

1

)); : : : ; (x

d

; v(x

d

)); b);

where x

i

are the (not ne
essarily distin
t) roots of u(�), i.e., u(�) =

Q

d

i=1

(� � x

i

). Remark that

this map is a (well-de�ned) morphism sin
e the 
oordinate ring of Sym

d

�

�


ontains all fun
tions

whi
h are symmetri
 in (x

i

; y

i

); moreover a point of F(�; v(�); b) = 0modu(�) is 
learly mapped

into a point for whi
h F(x

i

; y

i

; b) = 0; (i = 1; : : : ; d) sin
e ea
h x

i

is a root of u(�). The morphism

� is a
tually a birational isomorphism with inverse

((x

1

; y

1

); (x

2

; y

2

); : : : ; (x

d

; y

d

)) 7! (u(�); v(�)) =

0

�

d

Y

i=1

(�� x

i

);

d

X

i=1

y

i

Y

j 6=i

�� x

j

x

i

� x

j

1

A

: (4:1)

whi
h is de�ned away from �=S

d

where � denotes the diagonal

� = f((x

1

; y

1

); (x

2

; y

2

); : : : ; (x

d

; y

d

)) j x

i

= x

j

for some i 6= jg:

Having a birational map we 
an transfer the Poisson stru
ture f� ; �g

�

on Sym

d

�

�

n D

�

to the


omplement of a divisor inM

�

. Re
alling from Se
tion 3 that the Poisson stru
ture on Sym

d

�

�

nD

�

was 
ompletely determined by the bra
kets

fx

i

; x

j

g

�

; fy

i

; y

j

g

�

and fx

i

; y

j

g

�

14



upon using the relations whi
h de�ne the phase spa
e and the elements of C, we see that the


orresponding Poisson stru
ture (i.e., the one whi
h makes � into a Poisson morphism) on M

�

is


ompletely determined by the bra
kets

fu

i

; u

j

g

�

; fv

i

; v

j

g

�

and fu

i

; v

j

g

�

(we use the same notation for the Poisson stru
ture on both spa
es), upon using the relations whi
h

de�neM

�

and the elements of C. This is a more e
onomi
al way to determine the Poisson stru
ture

onM

�

than by using the birational map sin
e, as we will see, the divisor E

�

to be removed might be

smaller than expe
ted when using the birational map (see Paragraph 4.2); moreover, transferring

the integrable algebra via a birational map is very deli
ate (one may lose 
ompleteness).

Proposition 4.1 There is a Poisson stru
ture f� ; �g

�

onM

�

nE

�

(where E

�

is some divisor) whi
h

makes � into a Poisson morphism and (M

�

n E

�

; f� ; �g

�

; p

�

�

O(B)) is an integrable Hamiltonian

system.

Proof

Let us 
ompute the bra
kets fu

i

; u

j

g

�

; fv

i

; v

j

g

�

and fu

i

; v

j

g

�

whi
h make � into a Poisson

morphism. Clearly fu

i

; u

j

g

�

= 0. If 1 � j � d, then

fu

j

; v(�)g

�

= (�1)

j

8

<

:

X

i

1

<i

2

<���<i

j

x

i

1

x

i

2

� � � x

i

j

;

d

X

l=1

y

l

Y

k 6=l

�� x

k

x

l

� x

k

9

=

;

�

;

= (�1)

j

X

i

1

<i

2

<���<i

j

d

X

l=1

�

x

i

1

x

i

2

� � � x

i

j

; y

l

	

�

Y

k 6=l

�� x

k

x

l

� x

k

;

= (�1)

j�1

X

i

1

<i

2

<���<i

j

j

X

t=1

x

i

1

x

i

2

� � �
x

i

t

� � � x

i

j

'(x

i

t

; y

i

t

)

Y

k 6=i

t

�� x

k

x

i

t

� x

k

;

= (�1)

j�1

X

l=2fi

1

<i

2

<���<i

j�1

g

x

i

1

x

i

2

� � � x

i

j�1

'(x

l

; y

l

)

Y

k 6=l

�� x

k

x

l

� x

k

;

= (�1)

j�1

d

X

l=1

'(x

l

; y

l

)

Y

k 6=l

�� x

k

x

l

� x

k

(�1)

j�1

j�1

X

m=0

x

m

l

u

j�m�1

;

=

d

X

l=1

j�1

X

m=0

x

m

l

u

j�m�1

'(x

l

; y

l

)

Y

k 6=l

�� x

k

x

l

� x

k

:
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Substituting � = x

l

in the right hand side one sees that fu

j

; v(�)g

�

is the (unique) polyno-

mial in � of degree less than d, whi
h takes at � = x

l

the value

P

j�1

m=0

x

m

l

u

j�m�1

'(x

l

; v(x

l

)),

for l = 1; : : : ; d. As the x

l

are the zeros of u(�) and sin
e y

l

= v(x

l

) the same is true for

P

j�1

m=0

�

m

u

j�m�1

'(�; v(�))mod u(�), and we �nd

fu

j

; v(�)g

�

=

j�1

X

m=0

�

m

u

j�m�1

'(�; v(�))mod u(�);

= '(�; v(�))

�

u(�)

�

d�j+1

�

+

modu(�):

(4:2)

By a similar (but simpler) 
omputation it follows that fv

i

; v

j

g

�

= 0.

Sin
e � is a Poisson morphism, p

�

�

O(B) is an involutive algebra. Sin
e p

�

is surje
tive,

dim p

�

�

O(B) = dimB =

1

2

(dimB + d+ dimB � d) =

1

2

(dimM

�

+ dimC):

To see that p

�

�

O(B) is 
omplete, remark that � maps every �ber of p

�

to a �ber of �

�

, i.e.,

M

�

�

�! Sym

d

�

�

p

�

& .

�

�

B

is 
ommutative. Sin
e � is regular with rational inverse it restri
ts to a birational map on ea
h �ber

of the moment map p

�

so all �bers of p

�

have the same dimension (sin
e the ones of �

�

do) and

the general �ber of p

�

is irredu
ible (same reason). It follows from Proposition 2.6 that p

�

�

O(B) is


omplete, hen
e integrable.

The integrable ve
tor �elds f� ; �

k

g

�

are 
omputed as in Se
tion 3 by using the de�ning re-

lations F(�; v(�); b) = 0modu(�) and C: sin
e these relations were suÆ
ient to determine the

bra
kets on Sym

d

�

�

they are also suÆ
ient here. The (minimal) divisor on whi
h they fail to

be regular is denoted by E

�

(it may be empty, see Paragraph 4.2). Thus we have shown that

(M

�

n E

�

; f� ; �g

�

; p

�

�

O(B)) is an integrable Hamiltonian system. The symmetries X and Y whi
h

we dis
ussed in the pre
eding se
tion 
an be transferred to the spa
e M

�

but we will not dis
uss

this here.

4.2. The easiest 
ase

We now show how the integrable Hamiltonian system introdu
ed in [Van2℄ (Se
tion 2) are a

spe
ial 
ase of the systems of Paragraph 4. We start from the following data

1) an integer d � 1,

2) a polynomial '(x; y) 2 C[x; y℄ n f0g,

3) a polynomial F (x; y) 2 C[x; y℄ nC[x℄,

(4:3)

and asso
iate to it 
orresponding data of the form (3.1), namely we 
hoose

1) B = C[�

1

; : : : ; �

d

℄

�

=

C

d

;

2) '(x; y) as above,

3) F(x; y; b) = F (x; y)� (b

1

x

d�1

+ � � �+ b

d�1

x+ b

d

);

4) C = C;

(4:4)
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(in item 3 b

i

= �

i

(b) for b 2 B). The main observation to be made here is that with this 
hoi
e M

�

is isomorphi
 to C

2d

(and E

�

is empty).

Lemma 4.2 The proje
tion map C

2d

�B ! C

2d

restri
ts to an isomorphism M

�

! C

2d

.

Proof

For F as above we have that

M

�

= f(u(�); v(�); b) j F(�; v(�); b)mod u(�) = b

1

�

d�1

+ � � �+ b

d�1

�+ b

d

)g:

Sin
e u(�) is moni
, F(�; v(�); b)mod u(�) is a polynomial in u

i

; v

i

(and �), hen
e the map

(u(�); v(�); b) ! (u(�); v(�)) has a regular inverse.

Thus in the present 
ase the phase spa
e is just C

2d

, the Poisson stru
ture is given by

fu

i

; u

j

g

�

= fv

i

; v

j

g

�

and the bra
kets (4.2). The involutive algebra on C

2d

is the polynomial

algebra A

F;d

generated by the d 
oeÆ
ients of

F (�; v(�))mod u(�):

In 
on
lusion, for any data (4.3), (C

2d

; f� ; �g

�

;A

F;d

) is an integrable Hamiltonian system and it


oin
ides with the ones introdu
ed in [Van2℄ (Se
tion 2).
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5. Integrable bi-Hamiltonian systems asso
iated to families of


urves

The above 
onstru
tions lead at on
e to the 
onstru
tion of many bi-Hamiltonian systems,

namely we will asso
iate one to the following data

1) a polynomial '(x; y) 2 C[x; y℄ n f0g,

2) an aÆne spa
e B = C

d

; (d � 1),

3) a 
losed immersion F :B ! C[x; y℄,

4) a general polynomial  2 C[x; y℄.

(5:1)

The meaning of  being general will be explained in Paragraph 5.1 below; a spe
ial 
ase of interest

(in whi
h  (x; y) fails to be general in that sense) will be dis
ussed in the se
ond paragraph.

Throughout this se
tion the above data are �xed and we denote Æ = (';B;F ;  ): A subalgebra C

of O(B), spe
ifying the Casimirs, 
ould also be 
hosen, but we take it to be trivial (i.e., C = C)

for the simpli
ity of exposition and notation. Our 
onstru
tion is done at the level of �

(d)

Æ

, for

Sym

d

�

Æ

and M

Æ

the 
orresponding 
onstru
tion follows from it at on
e (e.g., in the introdu
tion

we formulated the result for M

Æ

). We will also restri
t ourselves here to bi-Hamiltonian stru
tures,

the 
onstru
tion of multi-Hamiltonian stru
tures (i.e., the 
ase of several instead of just two Poisson

bra
kets) also follows from it at on
e.

5.1. The general 
ase

Using F we 
onstru
t the following morphism,

F

0

:B �B ! C[x; y℄

(b

1

; b

2

) 7! F(x; y; b

1

+  (x; y)b

2

);

(5:2)

where we view F(x; y; b) as an element of O(B)[x; y℄ (i.e., for given b as an element of C[x; y℄) as

before. Sin
e F is a 
losed immersion, F

0

will also be a 
losed immersion for general (i.e., most)

 (x; y); this is the 
ase treated in this paragraph, we 
all su
h a  (x; y) simply general. From F

0

we 
onstru
t as in (3.2) the spa
e �

(d)

Æ

by

�

(d)

Æ

=

n

((x

1

; y

1

); : : : ; (x

d

; y

d

); b

1

; b

2

) 2

�

C

2

�

d

�B �B j F(x

i

; y

i

; b

1

+  (x

i

; y

i

)b

2

) = 0

o

;

whi
h admits two proje
tions onto B, whi
h we denote by �

1

and �

2

. From these we 
onstru
t two

data of the type (3.1):

�

1

= (';B �B;F

0

; �

�

2

O(B));

�

2

= (' ;B �B;F

0

; �

�

1

O(B)):

They lead to two di�erent integrable Hamiltonian systems. Remark that their phase spa
e is

the same

5

but they have di�erent Poisson stru
tures, in parti
ular they have di�erent algebras of

Casimirs. However, they bare the following relation.

5

The divisor to be removed from �

(d)

Æ

may be di�erent for the two Poisson stru
tures; to have

a 
ommon spa
e we 
an e.g. remove their sum. We denote the divisor whi
h we remove by D

Æ

.
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Proposition 5.1 The integrable Hamiltonian systems

�

�

(d)

Æ

nD

Æ

; f� ; �g

�

i

; �

�

1

O(B)
 �

�

2

O(B)

�

(i = 1; 2) (5:3)

have many integrable ve
tor �elds in 
ommon, namely for any linear fun
tion � on B = C

d

,

f� ; �

�

1

�g

�

1

= f� ; �

�

2

�g

�

2

:

Proof

Re
all from (3.9) that the Hamiltonian ve
tor �elds f�

i

; �g

�

were determined 
ompletely by

M

�

f�; xg

�

= �N

�

;

and a similar equation for f�; yg

�

; we have introdu
ed here a matrix

(f�; xg

�

)

ij

= f�

i

; x

j

g

�

:

The 
orresponding equation for the integrable ve
tor �elds of �

1

is given by

 

�F

0

��

1

�F

0

��

2

�

��

1

(�

�

2


)

�

��

2

(�

�

2


)

!

�

f�

1

; xg

�

1

f�

2

; xg

�

1

�

= �

�

�F

0

�y

'

0

�

; (5:4)

while the ones for �

2

are given by

 

�F

0

��

1

�F

0

��

2

�

��

1

(�

�

1


)

�

��

2

(�

�

1


)

!

�

f�

1

; xg

�

2

f�

2

; xg

�

2

�

= �

�

�F

0

�y

' 

0

�

: (5:5)

Our notation is the same as the one we used in (3.9), ex
ept that we denote here by �

1

(resp. �

2

)

the generators whi
h 
ome from O(B) using �

1

(resp. �

2

). Sin
e the elements of �

�

2

O(B) (resp.

�

�

1

O(B)) are Casimirs for f� ; �g

�

1

(resp. f� ; �g

�

2

) and

�

��

1

(�

�

2


) =

�

��

2

(�

�

1


) = 0;

(5.4) and (5.5) are equivalent to

�F

0

��

1

f�

1

; xg

�

1

= �

�F

0

�y

';

�F

0

��

2

f�

2

; xg

�

2

= �

�F

0

�y

' :

(5:6)

Now for the last equation we have that

�F

0

��

2

j

(x

i

; y

i

; b

1

+  (x

i

; y

i

)b

2

) =  (x

i

; y

i

)

�F

0

��

1

j

(x

i

; y

i

; b

1

+  (x

i

; y

i

)b

2

);
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so that the last equation of (5.6) 
an be written as

�F

0

��

1

f�

2

; xg

�

2

= �

�F

0

�y

';

and we arrive at the 
on
lusion

f�

1

; xg

�

1

= f�

2

; xg

�

2

:

Sin
e the same holds for the bra
kets with y, we have shown that

f�

1

; �g

�

1

= f�

2

; �g

�

2

;

i.e., the integrable ve
tor �elds 
orresponding to linear fun
tions of B agree.

If we denote the ve
tor �eld f� ; �

1

j

g

�

1

= f� ; �

2

j

g

�

2

by X

j

(j = 1; : : : ; d) then we arrive at d

bi-Hamiltonian hierar
hies, whi
h we depi
t in the following way.

�

1

j

�

2

j

.

2 1

& .

2 1

&

0 X

j

0

5.2. A spe
ial 
ase

We next 
onsider a 
ase in whi
h F

0

, de�ned in 5.2 is not a 
losed immersion but still leads

to bi-Hamiltonian ve
tor �elds. For a parti
ular immersion F and  (x; y) = x these were �rst

des
ribed by us in [Van1℄ and later generalized in [Bue℄ for arbitrary F (still taking  (x; y) = x).

We �x some basis of C

d

and we suppose that F is of the form

F(x; y; b) = F (x; y)� (b

1

+  b

2

+  

2

b

3

+ � � �+  

d�1

b

d

);

where b = (b

1

; : : : ; b

d

) with respe
t to the 
hosen basis. Then F

0

leads to the family of 
urves

F (x; y)� (b

1

+  b

2

+ � � � +  

d

b

d+1

);

leading to an aÆne variety �

(d)

Æ

as before. The two proje
tion maps �

(d)

Æ

! B are now given by

�

1

(x

1

; : : : ; y

d

; b

1

; : : : ; b

d+1

) = (b

1

; : : : ; b

d

);

�

2

(x

1

; : : : ; y

d

; b

1

; : : : ; b

d+1

) = (b

2

; : : : ; b

d+1

);

and we have that �

1

i+1

= �

2

i

, i.e., �

�

1

�

i+1

= �

�

2

�

i

; (i = 1; : : : ; d� 1), where (�

1

; : : : ; �

d

) denotes the

basis dual to the 
hosen basis. It follows that in this 
ase Proposition 5.1 is still valid; there is now

however only one bi-Hamiltonian hierar
hy and it takes the following form.

�

1

1

�

1

2

= �

2

1

: : : �

2

d

.

2 1

& .

2 1

& .

2 1

& .

2 1

&

0 X

1

X

2

: : : X

d

0
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