Integrable Hamiltonian systems associated to families of curves

and their bi-Hamiltonian structure

Pol Vanhaecke

Abstract

In this paper we show how there is associated an integrable Hamiltonian system to a certain
set of algebraic-geometric data. Roughly speaking these data consist of a family of algebraic curves,
parametrized by an affine algebraic variety B, a subalgebra C of O(B) and a polynomial ¢(z,y) in
two variables. The phase space is constructed geometrically from the family of curves and has a
natural projection onto B; the regular functions on B lead to an algebra of functions in involution
and the level sets of the moment map are symmetric products of algebraic curves.

While completely transparant from the geometrical point of view, a slight change of these
integrable Hamiltonian systems is needed in order to explicitly realize these integrable Hamiltonian
systems. Thus, we associate to the same data another integrable Hamiltonian system and show
how they relate to the first one: there is a birational map between them (which is regular in one
direction) which is (in the regular direction) a morphism of integrable Hamiltonian systems. Both
the Poisson structure and the functions in involution are found by performing an Euclidean division
of two polynomials, so that when the data are explicitly given, all ingredients of the integrable
Hamiltonian system can be easily computed from it in an explicit way.

In the same spirit we also construct a large class of integrable bi-Hamiltonian systems. They
depend on the extra datum of a polynomial 9(x,y) in two variables, which specifies a deformation
of our family of curves. Our construction shows clearly how and why (certain) symmetries in the
family of curves lead to a bi-Hamiltonian structure for the corresponding integrable Hamiltonian
system.
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1. Introduction

In [Van2] we have shown that there is associated a (finite-dimensional) integrable Hamiltonian
system to the following data
1) an integer d > 1,

2) a polynomial ¢(z,y) € Clz,y] \ {0}, (1.1)
3) a polynomial F(z,y) € C[z,y| \ C[z].

Explicitly, the phase space is C2?, which is viewed as the space of pairs of polynomials (u()\),v()\))

where

U(A):>\d+’u,1>\d_1+"'+ud—l>‘+ud, (12)
v(A) = v AT ug A g, '

(thus the coefficients u; and v; of u()\) and v()\) serve as coordinates on C2?); the Poisson bracket
on C??, dictated by ¢(z,y), is given by

{u(N),u;}* = {v(N),v;}" =0,

u(A) _ (1.3)

{u(N), 07} = {3, vV} = (A, v(N) [mLmodu(A), l<j<d
finally d independent functions Hy, ..., Hg, in involution with respect to {-,-}?, are computed from
F,o(0) mod u(A) = HIASY 4+ -+ Hy o)+ Hy. (1.4)

In this paper we wish to explain and generalize this construction by using the concepts and tools
which we introduced in [Van3]. The concepts we use here are those of an integrable Hamiltonian
system on an affine Poisson variety and morphisms between such systems. In short an affine
Poisson variety (M,{-,-}) is an affine algebraic variety M whose ring of regular functions O(M)
is equipped with a Poisson bracket {-,-}; an integrable Hamiltonian system on it is given by an
involutive subalgebra A C O(M) (i.e., {A, A} = 0) which has the right size; a morphism between
such systems is a morphism between their phase spaces which is compatible with the Poisson
brackets and the involutive subalgebras. The tools we use consist of some basic theorems which
allow to construct new integrable systems from old ones. See Section 2 below and Ch. II of [Van3].

The present construction generalizes the previous one in two aspects. The first one is that
we replace the third datum in (1.1) by a d-parameter family of polynomials, i.e., by a polynomial
F(z,y,b), the parameter b belonging to a d-dimensional affine variety B; in geometric terms the
third datum in (1.1) is that of an algebraic curve (embedded in C?), which we replace here by
an (effective) deformation family of algebraic curves. The second aspect which makes the present
construction more general is that there is an extra datum, which is that of a subalgebra C of O(B).
Essentially this extra datum specifies the algebra of Casimirs of the Poisson structure, which was
trivial in our previous construction (it corresponds to the trivial choice C = C).

The phase space of the generalized integrable systems is given (possibly up to a divisor which
needs to be removed) by the affine variety

M, = {(u(\),v(\),b) | F(\,v()),b) mod u()) = 0} C C2¢ x B, (1.5)

which is fibered over B with projection map p,: M, — B. A Poisson bracket {-,-}  on M, is
determined as before by ¢ giving (1.2) and all other brackets are computed from these by using the
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equation(s) F(A,v(X),b) = 0. In particular it follows that {p},O(B),p;,O(B)}, = 0, yielding that
(M,{-,"},,p,O(B)) is an integrable Hamiltonian system. When B = C? and F takes the form

-7:(33,% b) = F(.’L’,y) - (blmd_l +-+ bd—lm + bd)

we recover our original construction.

Our construction is clarified by the construction of a slightly different integrable Hamiltonian
system, associated to the same data. Namely, starting from the family of curves F(z,y,b) = 0
we first construct the corresponding family of d-fold symmetric products of these curves, where
d = dim B — dimC. This family can be described globally as the quotient of the affine algebraic
variety

P = { (@) (e ya) b) € (€)% B | Flaryib) =0}

by the symmetric group Sy (which acts by permuting the d copies of C?). On F&d) we use ¢ to
construct a bracket for which all elements of C are Casimirs; moreover this bracket is Sg-invariant,
hence it passes to the quotient. Strictly speaking these brackets are not regular but rational, we will
explain in the text in detail how to deal with this, i.e., how to remove a divisor from F&d) in order
to make it into a genuine affine Poisson variety. As for integrability, the regular functions on O(B)
give as before an integrable algebra, via the natural projection on the space B which parametrizes
the family. This algebra is also Si-invariant so we get an integrable Hamiltonian system on the
quotient space rd /Saq.

The two integrable Hamiltonian system which we associate to the same set of data in this way
are very closely related: they are almost isomorphic. More precisely there exists a regular map

x: My — F&d)/Sd

which is a morphism of the corresponding integrable Hamiltonian systems on these spaces. Moreover
this map has a rational inverse, so the geometry of these integrable Hamiltonian systems is slightly
different; for example, while the fibers of the moment map on I‘,(ld)/ Sy are symmetric products of
algebraic curves, the fibers of the moment map on M, are only affine parts of these; also, while no
physical systems are known to be isomorphic to the ones on F&d) /S4, many are actually isomorphic
to the ones on M,, (sometimes up to a cover). Since each has its proper virtue, we found it important

to give both constructions and to compare the results carefully. This will be done in Sections 3
and 4.

Our construction is easily adapted to produce many integrable bi-Hamiltonian systems. The
data are slightly different from the ones above: B should be C¢, but instead there is a new datum
P(x,y), a (general) polynomial in two variables (for simplicity we also take C = C but that is not
essential). Then the phase space is (up to a divisor)

Ms = {(u(N\),v(\),b1,b2) | F(A,v(N), by +9(x,y)bz) modu(N) = 0} C C* x B x B. (1.6)

Remark that there are now two projections onto B, say p; and ps. On Ms we put two Poisson
structures, the first one is the one which corresponds to ¢ (as above), the other one is the one
which corresponds to the product ¢, let us denote these Poisson structures by {-,-}; and {-,-}2.
For the algebra of Casimirs (given by C in our previous construction), we choose for the first one
p3O(B) and for the second one p;O(B). Then for any linear function 3 on B (recall that B = C%)
we have

{'7p?l(/6}1 = {'7p§/8}27
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showing that these integrable Hamiltonian vector fields are bi-Hamiltonian (i.e., Hamiltonian with
respect to two different Poisson structures). This will be explained in Paragraph 5.1. For some
special polynomials ¢ our construction breaks down. Since some of these cases are not without
interest (from a certain point of view they are even more interesting/natural than the general
ones), we will also show how to get a bi-Hamiltonian structure in these cases. That will be done in
Paragraph 5.2.



2. Integrable Hamiltonian systems on affine Poisson varieties

In this section we recall from [Van3| the basic definitions and properties of integrable Hamil-
tonian systems on affine Poisson varieties.

2.1. Basic definitions

For an affine (algebraic) variety M (which is, as in [Har], assumed to be irreducible) we denote
its ring of regular functions by O(M). A Lie algebra structure {-,-} on O(M) is called a Poisson
bracket if for any f € O(M) the map

Xy ={,r}0M)—= OM)
is a derivation, i.e., it satisfies the Leibniz rule. It leads to the concept of an affine Poisson variety.

Definition 2.1  An affine Poisson variety is a pair (M, {-,-}) where M is an affine variety and
{-,-} is a Poisson bracket on its ring of regular functions. The derivations {-, f} for f € O(M) are
called Hamiltonian vector fields.

As in the theory of Lie algebras, the main objects in this theory are the center and the maximal
abelian subalgebras for the bracket; in the context of affine Poisson varieties the center of the bracket
is called the algebra of Casimirs and a maximal abelian subalgebra is called an integrable algebra.

Definition 2.2  Let (M,{-,-}) be an affine Poisson variety. If f is an element of O(M) whose
associated Hamiltonian vector field is zero the f is called a Casimir; the Casimirs form a subalgebra
of O(M) called the algebra of Casimirs, which we denote by Cas(M).

Definition 2.3  Let (M,{-,-}) be an affine Poisson variety. Functions f,g € O(M) are said to
be in involution if {f,g} = 0; a subalgebra A of O(M) is said to be involutive if all its elements
are in involution, {A, A} = 0. An involutive subalgebra A C O(M) is said to be integrable if

1) dimA = 1(dim M + dim Cas(M));
2) A is complete, ie., f € A< {f, A} =0.

If A is integrable then (M, {-,-},.A) is called an integrable Hamiltonian system.

Completeness forces any integrable algebra to contain the algebra of Casimirs. The string of
inclusions

Cas(M) Cc AC O(M)
leads to a commutative triangle of morphisms.
M
Ml N moas
Spec A — Spec Cas(M)

The map m4: M — Spec A is called the moment map and Spec A is called the base space; the
Hamiltonian vector fields {-, f}, f € A are tangent to the fibers of the moment map and span (at a
general point of the each fiber) its tangent space. In this paper A will always be finitely generated
so that Spec. A can be seen as an affine variety.



We will encounter in this paper also bi-Hamiltonian vector fields and bi-Hamiltonian hierar-
chies, which we define as follows. Let {-,-}; and {-,-}» be two (compatible!) Poisson brackets
on M. Then every vector field which is Hamiltonian with respect to both brackets is called a
bi-Hamiltonian vector field and a sequence of functions {f; | i € Z} is called a bi-Hamiltonian
hierarchy (w.r.t. the brackets {-,-}; and {-,-}5) if

{ fita={", firnh, (1 € Z).
Finally we also recall the notion of a morphism between integrable Hamiltonian systems.

Definition 2.4  Let (M1,{-, }1, A1) and (M2, {-,}2, A2) be two integrable Hamiltonian systems,
then a morphism ¢: (My,{-,}1, A1) — (Ma,{-, }2,A2) is a regular map ¢: My — My with the
following properties

1) ¢ is a Poisson morphism, i.e., ¢*{f,g}t2 = {¢* f,d*g}1 for all f,g € O(M>);
2) ¢* Cas(Ms) C Cas(M;);
3) ¢*.A2 C A;.

If ¢ is moreover an isomorphism then ¢~! automatically satisfies 1), 2) and 3) and ¢ is called an
isomorphism of integrable Hamiltonian systems.

Schematically, regularity of the map and 2) and 3) can be represented by the following commutative
diagram:
Cas(Mz) C Ay C O(M,)

o | o | I 2.1)
Cas(M;) C Ay C O(M)

By dualizing this diagram a commutative diagram between the corresponding Spec’s is easily ob-
tained.

2.2. Basic constructions and propositions

In order to show that a given subalgebra A C O(M) on affine Poisson variety (M, {-,-}) is
integrable one needs to verify that it is involutive, complete and of the right dimension. In this
paper involutivity will be obvious from a direct computation, in other cases one often relies on the
construction of an r-matrix representing the Poisson structure. Alternatively, involutivity is also
obvious when A admits one or several bi-Hamiltonian hierarchies, as in Section 5 below. We recall
the argument briefly in the following proposition, which goes essentially back to Lenard and Magri.

Proposition 2.5  All functions f; of a bi-Hamiltonian hierarchy {f; | i € Z} are in involution
with respect to both Poisson brackets (hence with respect to any linear combination). If one of these
functions is a Casimir (for either of the structures) then all these f; are also in involution with the
elements of any other bi-Hamiltonian hierarchy (w.r.t. these brackets).

1 Some authors impose the natural condition of compatibility of the brackets (i.e., the sum of
the two brackets is also Poisson) but this is inessential for this paper, it is for example not used for
the proof of Proposition 2.5.



Proof
If {fi | i € Z} forms a hierarchy, then for any i < j

{fiafj}l = {fiafj—1}2a
= {fi+17fj—1}17

= {fj7fi}1a

so {fi, fj}1 = 0 by skew symmetry. They are also in involution with respect to the second bracket
since {f;, fit2 = {fi, fj+1}1. In the same way, if {g; | 7 € Z} is another bi-Hamiltonian hierarchy
and fj is a Casimir, say of {-,-}1 then for any i,j € Z

{fis95}1 = {fr>Gigj—r}1 =0,

so all functions of the hierarchy {f; | ¢ € Z} are in involution with all functions of any other
bi-Hamiltonian hierarchy. (]

The computation of the dimension of A often turns out to be quite hard. Usually this is done
by computing the co-dimension of the general fiber of the moment map 7m4: M — Spec.A, which
is, of course, equal to the dimension of A. A close investigation of the fibers of the moment map is
also essential to the verification that A is complete, as is given in the following proposition (for a
proof see [Van3]).

Proposition 2.6  Let (M,{-,-}) be an affine Poisson variety and A an involutive subalgebra of
O(M) of dimension
dim M + dim Cas M

5 .

If the fibers of ma: M — Spec(A) have the following two properties,
1) the general fiber is irreducible,
2) the fibers over all closed points have the same dimension,

then A is complete, hence integrable.

dim A =

We will use two constructions which allow to construct new affine Poisson varieties or integrable
Hamiltonian systems from old ones: taking quotients and removing divisors. This is given by the
following two propositions (proofs are given in [Van3]).

Proposition 2.7  Let (M,{-,-}n) be an affine Poisson variety and G a finite group. If there is
given a reqular Poisson action of G on M, i.e., an action x: G X M — M such that x is a Poisson
morphism, then M /G has a unique structure of an affine Poisson variety (M/G,{-,-}o) for which
mM — M/G is a Poisson morphism. If A is an integrable algebra on (M,{-,-}ar) then A%, the
algebra of G-invariant functions in A, is an integrable algebra on (M/G,{-,-}o) and

m (M, {-, }m, A) = (M/Gv{'v'}O’AG)

is a morphism of integrable Hamiltonian systems.



Proposition 2.8  Let (M,{-,-}) be an affine Poisson variety and f € O(M) a regular function
which is not constant. Then there exists an affine Poisson variety (N,{-,-}n) and a Poisson
morphism N — M which is dominant, having the complement (in M) of the zero locus of f as
image.

The last proposition needs some comments. As we will see below, many interesting brackets
on some natural affine varieties (e.g., on C™) are not regular but rational, having their poles along
some fixed divisor. So one might feel forced to work in the larger category of affine Poisson varieties
with brackets on their field of rational functions. However, if the brackets of all regular functions
on M have their poles on a single divisor D (which may be reducible), it is obvious that if f and g
are any two rational functions on M, which have their poles along D only then their bracket {f, g}
will also have its poles along D. Thus, instead of considering the algebra of rational functions, we
may work as well with the (smaller and easier to handle) algebra of rational functions on M which
have their poles on D only. This algebra is the algebra of regular functions on an affine variety,
which may be identified with M \ D; loosely speaking we will say that M \ D is an affine variety.
Then the content of Proposition 2.8 is that, even when considering such rational brackets, we stay
in the category of affine Poisson varieties.



3. Integrable Hamiltonian systems associated to families of curves

In this section we show how there is associated an integrable Hamiltonian system to the
following data
1) a polynomial ¢(z,y) € Clz,y] \ {0},

2) an affine variety B,

3
4

3.1
a closed immersion F: B — Clz,y], 3.1)

a subalgebra C of O(B).

~— — ~— ~—

These data will be supposed fixed throughout this section. It is useful to denote o = (¢, B, F,C)
and d = dim B — dimC.

To the morphism F: B — CJz,y] there is naturally associated an element of O(B)[z,y], which
we denote by F(z,y,b). In turn F(z,y,b) determines a family of algebraic curves F(z,y,b) =0,
parametrized by B. This family can be seen as a hypersurface in C? x B which we will denote
by I',. Since F is a closed immersion (i.e., it restricts to an isomorphism of B onto its image,
which is closed?) the fibers of the projection map I', — B are precisely the algebraic curves of the
family. F is determined by the family of algebraic curves up to a (multiplicative) constant; since
our construction will only depend on F up to a constant, we may rephrase 3) geometrically as the
datum of a family of algebraic curves, parametrized (effectively) by B.

We start by describing a natural integrable system associated to «, the one of interest for us
will be obtained as a quotient of it (by a finite group). To construct the phase space we make the
d-fold fiber product of I'y, — B, i.e., we consider the affine variety

@ = { (1,31, (2a,40), ) € (C?)" x B| F(wi, yi,h) =0}, (3.2)

with its projection onto B,
Ta: T — B,

The dimension of T is dim B —+d, the dimension of the fibers being d. We construct in the following
proposition a Poisson structure {-,-}  on F&d). Strictly speaking this Poisson structure is rational
(i.e., the bracket of regular functions is rational), but since all poles are along the zero locus D, of

some regular function, we may, as explained in and after Proposition 2.8 make (F&d) \ Dy, {,} a)

into a genuine affine Poisson variety.
Proposition 3.1  The brackets

{wi, x5}, =y, v}, =0, {vi,zs}, = o5, v:)0i5, (3.3)

and

{-,¢},=0, forall ceC, (3.4)

define a Poisson bracket on the affine variety F,(ld) \ D, where D, is the divisor of some regular

function on I‘Exd) .

2 To be very precise, closed means here Zariski closed in a finite-dimensional subspace A,,, of
C[z,y] consisting of polynomials of degree at most m in z and n in y.



Proof
Let C' denote the subalgebra of O (F,(ld)) generated by C,z; and y; (1 = 1,...,d). Then the

above brackets define a Poisson structure on C’, since the Jacobi identity is verified. Since F is a
closed immersion,

dimC' = dimC + 2d = dim B + d = dimI'(?,
so that every regular (or rational) function on F(ad) is contained in the integral closure of C’ in the
field of fractions of O (F(ad)) Thus, if F € O (I‘,@) then there exists a (not necessarily monic)
polynomial P(u) € C'[u] such that P(F) = 0. This allows to determine the bracket of any two
functions F, G on O (F&d)) as follows. Let P(u) = Y p;u’ and Q(u) = Y g;u’ denote their minimal

defining polynomials, deg P(u) = n, degQ(u) = m. If {-,-} extends to I then for fecl we
have

OZ{P(F)’f}a :Z{pZFluf}a :Z{pzaf}aFZ+ZPZ’LFZ_1{F7JC}(X’
1=0 1=0 =1

and the bracket {F, f}  derives from it; remark that it is rational, its poles being along the divisor
of zeroes of the regular function ) p;iF*~*. Using this, one computes {F, G}, from

0={FQG)}, =Y {F.¢G}, = {Fa}, G+ ¢iG{F,G},;
=0

3=0 J=1

it has also its poles along the zero locus of a regular function on F&d). Since O (F&d)) is finitely

generated, only a finite number of divisors will appear; let us call the minimal® divisor which
contains these divisors D,. Since D, is (up to multiplicities) the divisor of zeroes of a regular

function on F&d) we may conclude using Proposition 2.8 that (F&d) \ Do, {,} a) is an affine Poisson

variety. .

The proposition shows that there exists a divisor D, on 'Y such that (F,(ld) \ D, {-, }a> is

an affine Poisson variety. We now show how the computation of this divisor can be implemented.
Choose any generators 31, ..., 3; for O(B) and let us use as the same notation for the corresponding
generators 7% 3; of n:O(B). Applying naively the construction of the preceding paragraph to
compute D, would consist in determining for each generator (3; its defining polynomial and taking
the bracket with all z; and y;. These defining polynomials can be computed from the relations
F(zi,yi,b) = 0, but this gives rise to long calculations. We show how to avoid their explicit
calculation by computing the brackets {z;, 3;}, and {y;,;}, directly from these relations.

Let us first start with the easiest case, in which C = C (no Casimirs) and s = dim B (so that
B is isomorphic to C%). From the defining equations F(z;,y;,b) = 0 we find

OF ~ OF
0 ={F(zi,yi,b),z;}, = 8—y($iuyiub)90($juyi)5ij +> 8—5k(ivi,yi,b) {Br,zjt,
k=1
: (3.5)
oF oF
0={F(2i,yi,0),9;}, = _%(xiayiab)@(xjayi)éij +y 8—/6k($iayiab) {Br,yit, -
k=1

3 Since the multiplicities of the irreducible components of this divisor are only relevant for the
divisor being the divisor of zeroes of a regular function, we may take them at this point all equal
to 1.



To deduce the brackets {8y, z;},, and {8k, y;},, from it, we use the fact that F is an immersion. If
we denote the natural function on C[z,y| which picks the i-th coefficient (fixing some ordering) by

v; then F being immersive implies that the rank of the big matrix (a%j]: o %-> ~is equal to d. By
ij

elementary operations on this matrix it is seen that this rank is the same as the rank of the square

matrix oF
(853' 1<4,5<d

for general z;,y; i.e., on a Zariski open subset of F,(ld). It follows that the rank of (3.6) is maximal
on a Zariski open subset, which is explicitly given as the complement of the divisor D,; of course
D, is just the zero locus of the determinant of the matrix (3.6). Thus, the brackets {z;,3;} , and
{vi, Bj}, have their poles along the divisor D, only, which is easily computed as

oF
D, det (T@(mi,yi,b)) =0. (3.7)

Remark that removing the divisor D, from F&d) has the effect of removing a divisor from every
fiber of the moment map.

In the general case one also has to take into account the algebra C, whose elements are to be
Casimirs and the relations which hold between the generators. Let us pick any set of generators
Y1,-+-,%m for C and any maximal set of independent relations Rq,...,R,. Taking the brackets
with z; (and similarly with y;) we get as in (3.5),

s ) .
0= {’Y?,axj}a = Z 8—,;9 {/Bkaxj}()z7
k=1
L (3.8)
0= {Riaxj}a = Z 8—ﬁ]: {ﬁk’mj}a’
k=1

where ¢ runs from 1 to m in the first line and from 1 to n in the second one. (3.8) and the first line
of (3.5) are combined by using the matrices

g oF

i e
Mo =| 33 and N, = 0 ;

IR 0

op

of size (d +m +n) x s resp. (d +m + n) x d. We have introduced the matrices

B = 9B, i’b’ o, = 5 T, iab Tj,Yi 5i'7

@),=a (%),
op ij_aﬁj’ op ij_ 8ﬂj

Then (3.8) and the first line of (3.5) are equivalent to

{Br, 21}, - {Br,mat,
M, : : = —N,. (3.9)
Bs, 1ty - ABsizat,

10
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We claim that the rank of M, is s on a Zariski open subset. As we have noticed, the first d rows
are independent; since the next m rows correspond to generators of C, there are dimC independent
rows among them, and similarly the last n rows contain s — dim B independent rows. Moreover
rows in the three different blocks can not be dependent: the first ones depend on z;,y; while the
others do not and the last rows cannot be dependent since the Casimirs are independent of the
relations. It follows that

RkM, =d+ dimC + s —dim B = s.

Since the brackets {y;, 3;} , are computed using the same matrix M, and as we will show that all
brackets {;, 3}, are zero, we may conclude that the divisor D, to be removed can be explicitly
computed as the zero locus of one of the determinants which is not identically zero. Of course this
divisor is not unique, it depends on the chosen determinant.

In the following proposition we show that 7 O(B) is involutive and of maximum dimension,
leading to an integrable algebra on (I‘,(ld) \ Do, {-, }a)

Proposition 3.2  If for general b € B the polynomial F(x,y,b) = 0 is irreducible then

(std) \ Daa { ) '}oz aﬂ-;O(B)>
s an integrable Hamiltonian system.

Proof
We first show that ), O(B) is involutive with respect to {-,-} . We use the obvious equality

{F(xiayiab)7F($j7yj’b)}a =0

and write F(i) as a shorthand for F(z;,y;,b). If i # j then this bracket expands in terms of
any system of generators [y, ..., s for O(B) (which we identify as before with the corresponding
generators 7 3; of 75 O(B)) as

E:gﬁ()af(){muﬁk} + gf()af(){yuﬁk} — (i ¢ §)
k=1 1

where (7 +» 7) denotes the two terms obtained by interchanging i and j in the first two terms. Now
for i #j

Z {muﬁk} _{xw (!L’j,yj,b)}a:(),

so the first term vanishes; similarly the next three terms vanish and we are left with

5 o7 0) it g2 3) =0 (5.10)
k=1
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for all 7 # j. By skew symmetry of the bracket, (3.10) is actually valid for all 7 and j. If s = dim B
then the matrix %(i) is invertible and we find that {3, 6}, = 0 for all £,{. Otherwise we use C
and the relations R; as before to obtain

M (18, Bi}) Me, = 0.

Since M, has rank s we are at the same conclusion: 7,0(B) is involutive with respect to {-,-},.

Let us count dimensions:
dim'® = dim B + d,
dim Cas (rf;’)) = dimC = dim B — d,
dim7},O(B) = dimO(B) =d,

where we used in the last line that 7, is surjective. Put together they lead to
1
dimm,0(B) = 5 (dimej’) + dim Cas (rg”)) ,

so that 7 O(B) has the right dimension in order to be integrable. Completeness of 7}, O(B) follows
from the assumption that the general curve in the family is irreducible: under this assumption,
the general fiber of 7, is also irreducible and since all fibers over points of B have the same
dimension d, we have according to Proposition 2.6, that 7 O(B) is complete. It follows that
7 O(B) is integrable. "

If for general b € B the curve F(z,y,b) = 0 is not irreducible then we still get an integrable
Hamiltonian system by completing 7} O(B) (i.e., by replacing it with its integral closure in its field
of of fractions), but it may be hard to obtain a (more) explicit description of this algebra (see
[Van3| for comments and details).

By now we have associated an integrable Hamiltonian system associated to the data (3.1).
Using Proposition 2.7 we construct from it the quotient which is the integrable Hamiltonian system
we were aiming at. The group which is acting on the integrable systems is the symmetry group Sy

(of d letters). First of all, it acts on ' in by permuting the d copies of C? and the quotient
Symél, =T/,

is an affine variety. Clearly the projection map my: T'Y - B factorizes via Sym? T, and, since no
confusion can arise, we will use the same notation for the corresponding map

Tas Symd r, — B;

its fibers are now d-fold symmetric products of the fibers of I', — B (which are algebraic curves); in
particular they are non-singular if the underlying curve is non-singular. The brackets (3.3) and (3.4)

are clearly Sy-invariant, so that the divisor D, and the Poisson structure {-,-}_ (on ri \ D,) are
Sg-invariant — since Sy is a finite group, another way to formulate the latter is that the action of

S4 on F(ad) \ D,, is a Poisson action. A trivial application of Proposition 2.7 leads to the following
corrolary of Propositions 3.1 and 3.2.

Proposition 3.3  The brackets (3.3) and (3.4) define a Poisson strucure {-,-},, on Sym? T, \ D,
where Do = Dy /Sy. The fiber over b € B of the moment map Sym® Ty \ D, — B is (if non-empty)
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isomorphic to an affine part of the d-fold symmetric product of the curve F(z,y,b) = 0. Moreover
(Symd La\Das{,}, ,WZO(B)) is an integrable Hamiltonian system and the projection map

(TS9N Das {547, 20(B) ) = (Sym” Lo\ D, {+,}* m50(B))

is a morphism of integrable Hamiltonian system.
| |

For an explicit given « an explicit description of these integrable Hamiltonian system can in
principle be given. To obtain it, one looks for a description of the ring of regular functions on
I‘Exd) which are Sy invariant (i.e., exhibit generators and a complete set of relations), which is often
difficult to obtain. Thus, in practice the above description is already at the level of the phase
space not very explicit (remark however that an explicit description of the Poisson bracket and the
integrable algebra would follow at once from an explicit description of the phase space). We will
come back to this in the next section.

To close this section we which to point out how the different Poisson structures {-,-}  for
varying ¢ are related via Sg-invariant vector fields which have the property that the Lie derivative
of the Poisson brackets are also Poisson brackets*. In view of the formula

{' ) '}L,O-H/) = { ’ '}LP + { ) '}l/)
our space of Poisson structures is linearly generated by the Poisson brackets associated to monomials

z'y? and we will exhibit the symmetries only for these. To do this, we define two vector fields X

and Y as follows.
XQ}Z' = —1, Yﬂ)i = 0,

Xyi = Oa Xyz =1

Let us compute the Lie derivatives Lx{-,-}, and Ly{-, -}, for ¢ = 2™y", evaluated on z; and y;
(all other brackets are obviously zero).

Lx{-, Yamyn (®i,y5) = Lx{wi, yjtamyn — {LxTi, Yjtemyn — {Ti, Lxy; famyn,
= —X(z"yj 0i5),
= mxzn_ly?&j
so we see that the Lie derivative of {-,-},m,» with respect to X is proportional to {-, -} m-1,=. Sim-
ilarly we find that the Lie derivative of {-,-},m,» with respect to Y is proportional to {-,-}zmyn-1.

Remark also that vector fields X and Y (hence their Lie derivatives) commute. Thus we get the
following diagram representing the Poisson structures associated to #™y™ and their relations.

X X X
{.7.}1 & {7}z {'7'}w2 &
Y Y Y

X X X
{'7'}11 — {'a'}wy — { w2y
Y Y Y

X X X
{'7'}?;2 Piaka {.’. oy? Vil {'7'}x2y2 &

Y Y Y

% Since only ¢ is relevant for the present discussion we will suppose now all data fixed, except
for ¢ and we will denote the bracket corresponding to ¢ by {-,-},.

13



4. A concrete realization

We now pass to the construction of a slightly different integrable Hamiltonian system, asso-
ciated to the same data o = (p, B, F,C) as in (3.1). While the integrable Hamiltonian systems
constructed in Proposition 3.3 have the advantage of being most natural and their geometry is
completely transparant at all levels, they are not totally explicit; for example the phase space
Symd I, is defined as the quotient F(ad) /Sq and has a quite complicated structure (many generators
and relations). Moreover no classical integrable system is of this form, while many turn out to be
birational to such systems; the ones we will construct now are birational to the ones of Section 3,
they are totally explicit and turn out to be closely related to (i.e., isomorphic to, or isomorphic to
a quotient of) most known examples of (finite-dimensional) integrable Hamiltonian systems. We
first treat the general case and then show how the integrable Hamiltonian system introduced in
[Van2| are obtained as a special case of it.

4.1. The general case

Consider the following affine variety
M, = {(u(N),v(\),b) € C** x B | F(A\,v(\),b) mod u()) =0},

(C?4 is viewed here as the space of pairs of polynomials as in (1.2)) and denote the natural projection
map on B by p,. There is a natural map

x: M, — Sym? T,

which is defined by

(’U’(A)a 1)()\), b) = ((mlav(ml))a ) (xda U(l'd)), b)a
where z; are the (not necessarily distinct) roots of u(A), i.e., u(A) = Hle()\ — ;). Remark that
this map is a (well-defined) morphism since the coordinate ring of Sym? ', contains all functions
which are symmetric in (z;,y;); moreover a point of F (A, v(A),b) = 0modu()) is clearly mapped
into a point for which F(x;,y;,b) =0, (i = 1,...,d) since each z; is a root of u(\). The morphism
x is actually a birational isomorphism with inverse

((@1,92); (£2,92), - (@ayya) = (N, 0(0) = | [[A =2, S [[

i=1 i=1 G
which is defined away from A/S; where A denotes the diagonal

A ={((z1,v1), (z2,92),...,(xa,ya)) | z; = z; for some ¢ # j}.
Having a birational map we can transfer the Poisson structure {-,-} on Sym’[, \ D, to the

complement of a divisor in M. Recalling from Section 3 that the Poisson structure on Symd La\D,
was completely determined by the brackets

{zi 25}y s {viyit, and {z5,y5},
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upon using the relations which define the phase space and the elements of C, we see that the
corresponding Poisson structure (i.e., the one which makes x into a Poisson morphism) on M, is
completely determined by the brackets

{uiuuj}aa {’l)i,'l)j}a and {UZ’,’Uj}a

(we use the same notation for the Poisson structure on both spaces), upon using the relations which
define M, and the elements of C. This is a more economical way to determine the Poisson structure
on M, than by using the birational map since, as we will see, the divisor &, to be removed might be
smaller than expected when using the birational map (see Paragraph 4.2); moreover, transferring
the integrable algebra via a birational map is very delicate (one may lose completeness).

Proposition 4.1  There is a Poisson structure {-, -}, on Mo \Ey (where &, is some divisor) which
makes x into a Poisson morphism and (My \ Ea,{-, -}, ,pEO(B)) is an integrable Hamiltonian
system.

Proof
Let us compute the brackets {u;,u;}  , {vi,v;}, and {u;,v;}, which make x into a Poisson
morphism. Clearly {u;,u;}, =0.If1 <j <d, then

d
{uj, vV}, = (-1 > xil%,,,mj’zylﬂ’\_‘”’c ’

T — T
i1 <ia <+ <ij =1 kRl VT E N
d
3 A — Tl
_ J . e
- (_1) E § {wuxlz :L'Zjayl}a H T — xk,
i1<in<<ij I=1 k£l
J
- A—x
-1 —~ k
= (-1) E E Ty Tiy * Tiy Ty (T, Yiy) H O
i1 <ip<-+<ij t=1 ktip it R
- A—x
-1 k
= (_1)J E xi1$i2"'$ij7190(xlayl)H:L_ ]
1¢ i1 <iz<-<ij_1} Rt LT R
d 7—1
. \— .
—1 k -1
= )Y e [[ A2 (17 Y g,
=1 TR m=0
i1
o m, A — Tk
- X ug—m—l(p(xlayl) I — 1 .
I=1 m=0 PR
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Substituting A = z; in the right hand side one sees that {u;,v(\)}

mial in A of degree less than d, which takes at A = z; the value Efn_:lo U —m—1(21,v(27)),
for l = 1,...,d. As the z; are the zeros of u(A) and since y; = v(z;) the same is true for
Z )\ Uj—m—19(A, v(A)) mod u(A), and we find

is the (unique) polyno-

[e)

{Uj,’l)()\)}a = Z Am“j—m—l@(AaU(A)) mod u(A),
=0 (4.2)
— (0 0(V) [ ;jfﬁl] mod u(\).
+

By a similar (but simpler) computation it follows that {v;,v;}_, = 0.

Since x is a Poisson morphism, p’ O(B) is an involutive algebra. Since p, is surjective,
1 1
dimp;O(B) =dim B = i(dimB +d+dimB —d) = E(dimMa + dimC).

To see that p O(B) is complete, remark that x maps every fiber of p, to a fiber of 7, i.e.,
M, X, Symd r'.

pa Ny o
B

is commutative. Since y is regular with rational inverse it restricts to a birational map on each fiber
of the moment map p, so all fibers of p, have the same dimension (since the ones of 7, do) and
the general fiber of p,, is irreducible (same reason). It follows from Proposition 2.6 that p}O(B) is
complete, hence integrable.

The integrable vector fields {-, 3}, are computed as in Section 3 by using the defining re-
lations F(A,v(\),b) = Omodwu(A) and C: since these relations were sufficient to determine the
brackets on Sym?T', they are also sufficient here. The (minimal) divisor on which they fail to
be regular is denoted by &, (it may be empty, see Paragraph 4.2). Thus we have shown that
(Mo \ €ar {5}, ,p5O(B)) is an integrable Hamiltonian system. The symmetries X and Y which
we discussed in the preceding section can be transferred to the space M, but we will not discuss
this here. ]

4.2. The easiest case
We now show how the integrable Hamiltonian system introduced in [Van2] (Section 2) are a
special case of the systems of Paragraph 4. We start from the following data
1) an integer d > 1,
2) a polynomial ¢(z,y) € Clz,y] \ {0}, (4.3)
3) a polynomial F(z,y) € C[z,y] \ C[z],

and associate to it corresponding data of the form (3.1), namely we choose

1) B= C[ﬁla "aﬁd]%cda

2) ¢(x,y) as above,

)
)

4.4
) (4.4)
)€

3 ( y,b) = F(z,y) — (blxd_l + o+ bg_1z + bg),

4
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(in item 3 b; = (;(b) for b € B). The main observation to be made here is that with this choice M,
is isomorphic to C?¢ (and &, is empty).

Lemma 4.2  The projection map C?>? x B — C?? restricts to an isomorphism M, — C??.

Proof
For F as above we have that

My = {(u(N), p(\),b) | FO\ (), b) mod w(A) = by A=t + -+ + by_y A + b))}

Since w(A) is monic, F(A,v(A),b)modu(N) is a polynomial in u;, v; (and A), hence the map
(u(X),v(A),b) = (u(A),v(A)) has a regular inverse. "

Thus in the present case the phase space is just C2?, the Poisson structure is given by
{ui,u;}, = {vi,v;}, and the brackets (4.2). The involutive algebra on C?¢ is the polynomial
algebra AFp 4 generated by the d coefficients of

F(X,v(A)) mod u(A).

In conclusion, for any data (4.3), (C?¢,{-,-}_,AFp.a) is an integrable Hamiltonian system and it
coincides with the ones introduced in [Van2] (Section 2).
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5. Integrable bi-Hamiltonian systems associated to families of
curves

The above constructions lead at once to the construction of many bi-Hamiltonian systems,
namely we will associate one to the following data

1) a polynomial ¢(z,y) € C[z,y] \ {0},
2) an affine space B = CY, (d > 1),

3)
)

5.1
a closed immersion F: B — Clz,y], (5.1)
4) a general polynomial ¢ € C[z, y].

The meaning of 1) being general will be explained in Paragraph 5.1 below; a special case of interest
(in which 9 (z,y) fails to be general in that sense) will be discussed in the second paragraph.
Throughout this section the above data are fixed and we denote 6 = (¢, B, F,1). A subalgebra C
of O(B), specifying the Casimirs, could also be chosen, but we take it to be trivial (i.e., C = C)
for the simplicity of exposition and notation. Our construction is done at the level of ng), for
Sym? T’y and M; the corresponding construction follows from it at once (e.g., in the introduction
we formulated the result for My). We will also restrict ourselves here to bi-Hamiltonian structures,
the construction of multi-Hamiltonian structures (i.e., the case of several instead of just two Poisson
brackets) also follows from it at once.

5.1. The general case

Using F we construct the following morphism,

F':B x B = Clz,y]

1 32 1 2 (5.2)
(07,6%) = F(z,y,b" + (2, y)b%),

where we view F(x,y,b) as an element of O(B)[z,y] (i.e., for given b as an element of Clz,y|) as
before. Since F is a closed immersion, F' will also be a closed immersion for general (i.e., most)
(x,y); this is the case treated in this paragraph, we call such a v (z,y) simply general. From F’

we construct as in (3.2) the space ng) by

d
F((;d) = {((mlayl)a' ) (wdayd)ablab2) € (C2) X Bx B | f(wiayiabl +¢($iayi)b2) = O}a

which admits two projections onto B, which we denote by 7; and 7. From these we construct two
data of the type (3.1):

ar = (p, B x B, F',m;0(B)),

Qz = (901:[)7 B x Buflu 7Ti((?(B))
They lead to two different integrable Hamiltonian systems. Remark that their phase space is

the same® but they have different Poisson structures, in particular they have different algebras of
Casimirs. However, they bare the following relation.

5 The divisor to be removed from ng) may be different for the two Poisson structures; to have
a common space we can e.g. remove their sum. We denote the divisor which we remove by Djy.
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Proposition 5.1  The integrable Hamiltonian systems
(05N D5, £+, Yoy HOB) @ m30(B)) (i =1,2) (5.3)

have many integrable vector fields in common, namely for any linear function 3 on B = CY,

{718 an = {", ™20} -

Proof
Recall from (3.9) that the Hamiltonian vector fields {f3;,-},, were determined completely by

Ma {ﬁam}a = _Naa
and a similar equation for {3,y} ; we have introduced here a matrix

({Bax}a)ij = {Bivxj}a :

The corresponding equation for the integrable vector fields of «; is given by

o ol 1 oF'
0BT GReE {B ,x}a1> _ ( <,0>
(%(wsw a%(m) ({52,3:}&1 ) (5.4)

while the ones for as are given by

oF' oF! )
o7 o5 {ﬁl,m}a2> :_<£¢ )
<a%1(7r1‘v) a%(wm) ({ﬁ%m %) (5.5)

Our notation is the same as the one we used in (3.9), except that we denote here by 3! (resp. 3?)
the generators which come from O(B) using 71 (resp. m2). Since the elements of 750O(B) (resp.
71 O(B)) are Casimirs for {-,-},, (resp. {-,-}4,) and

0
8—ﬁ1(W;7) = 8—ﬁ2(7ﬁ"¥) =0,

(5.4) and (5.5) are equivalent to

oOF' oF'
1{/31,3:}061 =7 %
op Oy (5.6)
oF'" oOF' ’
8ﬁ2 {/6 7$}Oé2 = - 8y (10¢
Now for the last equation we have that
oOF' oOF'

(xiayiabl + zp(m“yZ)bz) = 1/)($zayz) (xhyiabl +¢(x17y1)b2)7

o8 98}
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so that the last equation of (5.6) can be written as

OF'

62737 ax — T 5 ¥
{B%,x} o

OF'
op!

and we arrive at the conclusion
{/617 m}()ﬁl = {ﬁ27 m}az -

Since the same holds for the brackets with y, we have shown that
{/817 '}Oél = {/827 '}aza
i.e., the integrable vector fields corresponding to linear functions of B agree. ]

If we denote the vector field {-, 5} }a, = {-,87}a, by X; (j = 1,...,d) then we arrive at d
bi-Hamiltonian hierarchies, which we depict in the following way.

5.2. A special case

We next consider a case in which F’, defined in 5.2 is not a closed immersion but still leads
to bi-Hamiltonian vector fields. For a particular immersion F and (z,y) = z these were first
described by us in [Vanl] and later generalized in [Bue] for arbitrary F (still taking ¢ (z,y) = ).

We fix some basis of C¢ and we suppose that F is of the form
F(x,y,b) = F(z,y) = (b + Pbz + by + - + 9" 1ba),
where b = (b1, ...,bs) with respect to the chosen basis. Then F' leads to the family of curves
F(z,y) = (b1 + b + -+ +9bay1),
leading to an affine variety ng) as before. The two projection maps ng) — B are now given by

71'1(3}1,... ,yd,bl,... ,bd+1) = (bl,... ,bd),
71'2(3}1,... ,yd,bl,... ,bd+1) = (bg,... ,bd_|_1),

and we have that 8}, = 82, i.e., mifip1 = 130, (i =1,...,d — 1), where (B1,...,[Bq) denotes the

2
basis dual to the chosen basis. It follows that in this case Proposition 5.1 is still valid; there is now

however only one bi-Hamiltonian hierarchy and it takes the following form.

i 5 =0} 5
SN NG 2 N 1N
0 X1 X5 Xq 0
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