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Abstract. We construct a family of integrable deformations of the Bogoya-

vlenskij-Itoh systems and construct a Lax operator with spectral parameter
for it. Our approach is based on the construction of a family of compatible

Poisson structures for the undeformed system, whose Casimirs are shown to
yield a generating function for the integrals in involution of the deformed

systems. We show how these deformations are related to the Veselov-Shabat

systems.
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1. Introduction

The Bogoyavlenskij-Itoh system was introduced by Bogoyavlenskij in [2] in his

study of the integrability of Lotka-Volterra systems. Recall that the most general

form of Lotka-Volterra equations in dimension n is

ẋi = εixi +

n∑
j=1

Ai,jxixj , i = 1, 2, . . . , n . (1.1)

For the case of the Bogoyavlenskij-Itoh system, n = 2k + 1 is odd, there are no

linear terms (εi = 0 for all i) and the matrix A is skew-symmetric with entries

Ai,j =

{
1 i+ 1 6 j 6 min {i+ k, n} ,
−1 min {i+ k, n} 6 j 6 n ;
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see the matrix (2.2) below. It is a Hamiltonian system, with Poisson structure

defined by

{xi, xj} = Ai,jxixj , (1.2)

and linear Hamiltonian H = x1 +x2 + · · ·+x2k+1. Bogoyavlenskij provides for this

system the following Lax equation (with spectral parameter λ)

(X + λM)· = [X + λM,B − λMk+1] (1.3)

where for i, j ∈ {1, 2, . . . , 2k + 1} the (i, j)-th entry of the matrices X, M and B is

respectively given by

Xi,j := δi,j+kxi , Mi,j := δi+1,j , Bi,j := −δi,j(xi + xi+1 + · · ·+ xi+k) .

The characteristic polynomial of X + λM leads to k + 1 independent constants of

motion, among which are both the Hamiltonian and the Casimir

C :=

2k+1∏
i=1

xi = x1x2 . . . x2k+1 (1.4)

of the Poisson structure (1.2). Itoh gives in [6] a combinatorial description of these

integrals and proves in [7] by a combinatorial argument that they are in involution,

thereby proving the Liouville integrability of the Bogoyavlenskij-Itoh system. Some

integrable reductions of the Bogoyavlenskij-Itoh system were recently constructed

and studied by us in [5].

In this paper we construct and study a certain type of integrable deformations

of the Bogoyavlenskij-Itoh systems. Our approach is based on (compatible) defor-

mations of the Poisson structure (1.2) and of its Casimir (1.4). We show that the

only constant Poisson structures

{xi, xj}b := bi,j , 1 6 i, j 6 2k + 1 ,

which are compatible with (1.2) are the ones for which bi,j = 0 for all i and j such

that |i− j| /∈ {k, k + 1}. If one writes the corresponding Hamiltonian vector field,

with H as Hamiltonian, one finds

ẋi =

2k+1∑
j=1

Ai,jxixj + ci , i = 1, 2, . . . , 2k + 1 , (1.5)

where ci = bi,i+k − bi−k,i. Notice that the ci sum up to zero, but this is the

only relation between these constants. Up to a minor change of variables (see

Section 6) this system coincides with the so-called Veselov-Shabat system, which

was constructed in [13] as fixed point of compositions of Darboux transformations

of the Schrödinger operator. Notice that this system is also known as (one of) the

Noumi-Yamada system(s) (see [11]), but it seems that Noumi and Yamada were

unaware of the Veselov-Shabat system. Also, neither in the Noumi-Yamada paper

[11] nor in the Veselov-Shabat paper [13] are the systems that they consider put in

relation with the Bogoyavlenskij-Itoh systems, of which they are deformations.
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We prove the Liouville integrability of (1.5) by using the deformed Casimir,

i.e., the Casimir of the deformed Poisson structure {· , ·} + {· , ·}b. A combina-

torial description of the deformed Casimir is given in Proposition 4.2. From it,

one gets immediately a Casimir for the Poisson pencil {· , ·} + λ {· , ·}b and so,

using the Lenard-Magri scheme, a family of polynomials in involution, which we

show to be independent, thereby proving the Liouville integrability of the deformed

Bogoyavlenskij-Itoh systems. We also provide a Lax equation with spectral param-

eter for these systems, which is a deformation of the Lax equation (2.6). Notice

that our (2k + 1)× (2k + 1) Lax operator is different from the 2× 2 Lax operator

which was constructed by Veselov and Shabat; our Lax equation has the advantage

that the phase variables appear in it linearly, which makes it easier to extract the

phase variables (in order to know for example their time evolution) from the Lax

operator.

It can be shown that the deformed Bogoyavlenskij-Itoh systems admit a natural

discretization, which is constructed by using the deformed Lax operator which we

constructed in this paper. This discretization will be worked out and studied in a

future publication.

The structure of the paper is as follows. We recall the main facts about the

Bogoyavlenskij-Itoh systems in Section 2. The combinatorial constructions that we

will use, in the style of Itoh’s combinatorial constructions of the (undeformed) first

integrals, are prepared in Section 3. We proceed in Section 4 with the construction

of the deformed Poisson strutures and deformed Casimirs. Section 5 is devoted to

the Lax equation and the Liouville integrability of the deformed Bogoyavlenskij-Itoh

systems; in particular we match the combinatorial description of the first integrals

with the coefficients of our Lax equation. The upshot is that as integrable systems

they are deformation of the Bogoyavlenskij-Itoh systems. In the last section we

show how these deformed systems are related to the ones constructed by Veselov

and Shabat in [13].

2. The Bogoyavlenskij-Itoh systems and their integrability

We recall in this section the basic results on the Bogoyavlenskij-Itoh systems,

which were obtained in [2, 3, 6, 7]; the notation is a slight simplification of the one

used in [5], where more general systems are considered. Fix k ∈ N∗ and denote

I := {1, 2, . . . , 2k + 1}. We consider on R2k+1 (or on C2k+1) with linear coordinates

x1, . . . , x2k+1 the homogeneous quadratic Poisson structure defined by

{xi, xj} := Ai,jxixj , i, j ∈ I , (2.1)
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where A = (Ai,j) is the constant skew-symmetric matrix

A =



0 1 1 · · · 1 −1 −1 · · · −1 −1
−1 0 1 · · · 1 1 −1 · · · −1 −1

−1 −1 0 · · · 1 1 1
. . . −1 −1

...
...

. . .
...

...
...

. . .
. . .

...
−1 −1 −1 · · · · · · · · · · · · · · · 1 −1
1 −1 −1 · · · · · · · · · · · · · · · 1 1
...

...
. . .

...
...

...
. . .

...
...

1 1 1 · · · −1 −1 −1 · · · 0 1
1 1 1 · · · 1 −1 −1 · · · 1 0


, (2.2)

with −1 appearing k times on the first row (and hence on every row). When k is

not clear from the context, we write A(k) for A and {· , ·}(k) for {· , ·}. The rank of

A is constant and equals 2k; a Casimir for {· , ·} is given by the polynomial function

C :=
∏
i∈I

xi = x1x2 . . . x2k+1 .

As Hamiltonian function, one takes H :=
∑
i∈I xi = x1 +x2 + · · ·+x2k+1, the sum

of all coordinates. If we set x2k+`+1 = x` for all ` ∈ Z, then the Hamiltonian vector

field XH := {· , H} is given by

ẋi = xi

k∑
j=1

(xi+j − xi−j) , i ∈ I . (2.3)

The automorphism of R2k+1 of order 2k + 1, given by

(x1, x2, . . . , x2k, x2k+1) 7→ (x2, x3, . . . , x2k+1, x1) , (2.4)

is a Poisson map and it preserves the Hamiltonian, hence it is an automorphism of

the system. The following Lax equation (with spectral parameter λ) was provided

by Bogoyavlenskij in [2]:

(X + λM)· = [X + λM,B − λMk+1] (2.5)

where for i, j ∈ I the (i, j)-th entry of the matrices X, M and B is respectively

given by

Xi,j := δi,j+kxi , Mi,j := δi+1,j , Bi,j := biδi,j := −δi,j(xi + xi+1 + · · ·+ xi+k) .

(2.6)

The characteristic polynomial of X + λM has the form

det(X + λM − µ Id) = λ2k+1 − µ2k+1 +

k∑
`=0

K`λ
k−`µk−` , (2.7)

where, by homogeneity, each K` is a homogeneous polynomial (in x1, . . . , x2k+1) of

degree 2`+ 1. One has K0 = H, the Hamiltonian, and Kk = C, the above Casimir.

Being a coefficient of the characteristic polynomial of the Lax operator X + λM ,

each one of the K` is a first integral of (2.3).
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In order to give an explicit formula for K`, we need some more notation, which

will also be needed in the rest of the paper. With k fixed as above, let ` be

an integer with 0 6 ` 6 k. We will consider besides A = A(k) also A(`). Let

m = (m1,m2, . . . ,m2`+1) be a (2`+ 1)-tuple of integers, satisfying 1 6 m1 < m2 <

· · · < m2`+1 6 2k + 1. We view them as indices of the rows and columns of A: we

denote by A′m the square submatrix of A of size 2`+ 1, corresponding to rows and

columns m1,m2, . . . ,m2`+1 of A, so that

(A′m)i,j = Ami,mj
, for i, j = 1, . . . , 2`+ 1 . (2.8)

Let

S` :=
{
m | A′m = A(`)

}
. (2.9)

With this notation, the polynomials K` which appear in the characteristic polyno-

mial (2.7) can be written as

K` =
∑
m∈S`

xm1
xm2

. . . xm`
. . . xm2`+1

. (2.10)

For example, S0 = {1, 2, . . . , 2k + 1} and Sk = {(1, 2, . . . , 2k + 1)}, so that K0 = H

andKk = C, as above. Moreover, Itoh shows by a beautiful combinatorial argument

that the polynomials K` are in involution, {K`,Km} = 0 for 0 6 ` < m 6 k. Since

these k+ 1 polynomials are moreover functionally independent, and since the rank

of the Poisson structure {· , ·} is 2k, the triplet (R2k+1, {· , ·} , (K0,K1, . . . ,Kk)) is

a Liouville integrable system.

3. The sets S`

We establish in this section some combinatorial properties of the sets S` which

will be used in the subsequent sections. We recall that k is a fixed integer and that

I stands for {1, 2, . . . , 2k + 1}. We also denote for s ∈ I by I(s) the set of all strictly

ordered s-tuplets m = (m1,m2, . . . ,ms), with entries in I. We will often use set

theory notation for such elements, for example we write i ∈ m and {i, j} ⊂ m, with

the obvious meanings. If m and n are two vectors with elements in I, satisfying

m ∩ n = ∅, we write m⊕ n for the vector which contains the elements of m and n

(in increasing order); also, if n ⊂ m, we write m 	 n for the vector with elements

in m and not in n. By a slight abuse of notation, we will denote for r ∈ Z by r

mod 2k + 1 the unique element of I which is congruent to r modulo 2k + 1. For

0 6 ` 6 k the set S` is defined by

S` :=
{
m ∈ I(2`+1) | Ami,mj

= A
(`)
i,j , for i, j = 1, . . . , 2`+ 1

}
.

We recall from [5] the following characterization of the elements of S`:

Proposition 3.1. Let m = (m1, . . . ,m2`+1) be an element of I(2`+1). Then m ∈ S`

if and only if the following conditions are satisfied:
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(1) m`+i < mi + k + 1 6 m`+i+1 for i = 1, . . . , `;

(2) m2`+1 < m`+1 + k + 1.

There are for any s ∈ I two natural permutations of I(s): first, there is an

involution σs, given by

σs(m1,m2, . . . ,ms) := (2k + 2−ms, 2k + 2−ms−1, . . . , 2k + 2−m1) .

If we write n := σs(m), then ni = 2k + 2−ms+1−i, for i = 1, 2, . . . , s. Next, there

is a cyclic permutation of order 2k + 1,

τs(m1,m2, . . . ,ms) :=

{
(m1 + 1,m2 + 1, . . . ,ms + 1) when ms < 2k + 1 ;
(1,m1 + 1,m2 + 1, . . . ,ms−1 + 1) when ms = 2k + 1 .

(3.1)

Said differently, τs simply adds 1 to all entries of the vector m, but the result needs

to be slightly reordered when one of the entries of m gets bigger than 2k + 1. We

show in following lemma that σ2`+1 and τ2`+1 both restrict to a permutation of S`.

Lemma 3.2. If m ∈ S` then σ2`+1(m) ∈ S` and τ2`+1(m) ∈ S`.

Proof. Suppose that m ∈ S` and let n := σ2`+1(m). According to Proposition 3.1

we need to show that

1 6 i 6 `+1 =⇒ n`+i < ni+k+1 and 1 6 i 6 ` =⇒ ni+k+1 6 n`+i+1 . (3.2)

In terms of m these two inequalities become m2`+2−i < m`+2−i+k+1 and m`+1−i+

k + 1 6 m2`+2−i. Setting j := `+ 2− i in the first inequality and j := `+ 1− i in

the second inequality, (3.2) becomes

1 6 j 6 `+ 1 =⇒ m`+j < mj + k + 1 and 1 6 j 6 ` =⇒ mj + k + 1 6 m`+j+1 ,

which are exactly the conditions (1) and (2) in Proposition 3.1 which express that

m ∈ S`. This shows that σ2`+1(m) ∈ S`. Next, let n := τ2`+1(m). Again, we

need to verify (3.2): when m2`+1 < 2k + 1 this is completely obvious, so let us

assume that m2`+1 = 2k + 1. We have that n1 = 1 and ni = mi−1 + 1 for

i = 2, 3, . . . , 2`+1. We need to prove (3.2) for this vector n. Again, for i > 2 this is

completely obvious, so we only need to check that m` < k+ 1 6 m`+1. Both follow

from the characterizations of m in Proposition 3.1: the first one from the second

inequality in (1), with i = `, and the second one from (2), with m2`+1 = 2k+1. �

We decompose S` in two subsets S`,+ and S`,−, where

S`,+ := {m ∈ S` | 1 ∈ m} , S`,− := {m ∈ S` | 1 /∈ m} (3.3)

and we define the maps

φ1 : {m ∈ S`−1,− | m` 6 k + 1} → S`, m 7→ m⊕ (1, k + 2) ,
φ2 : {m ∈ S`−1,− | m` > k + 2} → S`, m 7→ m⊕ (1, k + 1) .

(3.4)
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Lemma 3.3. The formulas (3.4) define injective maps with values in S`,+. More

precisely, they are part of the following commutative diagram, where all (restriced)

maps are bijections.

{m ∈ S`−1,− | m` 6 k + 1}
φ1 //

τ`−1◦σ`−1

��

{n ∈ S`,+ | k + 2 ∈ n}

τ`◦σ`

��
{m ∈ S`−1,− | m` > k + 2}

φ2 // {n ∈ S`,+ | k + 1 ∈ n}

Proof. We first show that φ1 is well-defined. Let ` > 1 and suppose that m ∈ S`−1,−

with m` 6 k + 1. We need to show that m ∩ (1, k + 2) = ∅ and that n := φ1(m) =

m⊕ (1, k + 2) belongs to S`. According to Proposition 3.1,

m`−1+i < mi + k + 1 6 m`+i for i = 1, . . . , `− 1 ; (3.5)

m2`−1 < m` + k + 1 , (3.6)

and, by assumption,

m1 > 1 and m` 6 k + 1 . (3.7)

According to (3.5) with s = 1 and (3.7), m`+1 > k + 2 > m`, which shows that

m ∩ (1, k + 2) = ∅. Since m`+1 > k + 2 and m` 6 k + 1,

nj =


1 j = 1 ,

mj−1 j = 2, . . . , `+ 1 ,
k + 2 j = `+ 2 ,
mj−2 j = `+ 3, . . . , 2`+ 1 .

(3.8)

We need to check that n ∈ S`, i.e., that

n`+i < ni + k + 1 6 n`+i+1 for i = 1, . . . , ` ; (3.9)

n2`+1 < n`+1 + k + 1 . (3.10)

To do this, we use (3.8) to write the latter inequalities in terms of the entries of m:

for i = 1, i = 2 and i = 3, . . . , `, (3.9) reads respectively

m` < k + 2 6 k + 2 ,

k + 2 < m1 + k + 1 6 m`+1 ,

m`+i−2 < mi−1 + k + 1 6 m`+i−1 .

The first line follows from m` 6 k + 1 (see (3.7)), the other two from m1 > 1

and (3.5). Finally, (3.10), written in terms of m is precisely (3.6). This shows that

n ∈ S`, hence that φ1 takes values in S`,+, more precisely in {n ∈ S`,+ | (1, k + 2) ∈ n}.
Obviously, φ1 is injective. It is proven similarly that φ2 takes values in S`,+ and is

injective; let us just point out that the formula for n := φ2(m) (as in (3.8)) is now

given by

nj =


1 j = 1 ,

mj−1 j = 2, . . . , ` ,
k + 1 j = `+ 1 ,
mj−2 j = `+ 2, . . . , 2`+ 1 .

(3.11)
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In order to show that the (restricted) horizontal maps φ1 and φ2 in the diagram

are bijections, is suffices to construct their inverse maps, which are defined as

restrictions of the following two maps:

φ−11 : {m ∈ S`,+ | k + 2 ∈ m} → S`, m 7→ m	 (1, k + 2) ,
φ−12 : {m ∈ S`,+ | k + 1 ∈ m} → S`, m 7→ m	 (1, k + 1) .

Clearly, these maps are well-defined. We need to show that if n ∈ S` with (1, k+2) ⊂
n then m := n	 (1, k+ 2) satisfies m` 6 k+ 1. Since n ∈ S` it satisfies (3.9), which

yields with i = 1 and n1 = 1 that n`+1 < k + 2 6 n`+2 so that n`+2 = k + 2 and

m` = n`+1 6 k+ 1. Similarly, if n ∈ S` with (1, k+ 1) ⊂ n then m := n	 (1, k+ 1)

satisfies m` > k + 1. This shows that the horizontal arrows in the diagram are

bijections.

Let us show that the vertical arrows of the diagram are also bijections. In view

of Lemma 3.3, τ`−1 ◦ σ`−1 is a permutation (involution) of S`−1; explicitly, it is

given for m ∈ S`−1,− by

τ`−1 ◦ σ`−1(m) = (2k + 3−m2`−1, 2k + 3−m2`−2, . . . , 2k + 3−m1) . (3.12)

The formula shows that 1 /∈ τ`−1◦σ`−1(m) so that τ`−1◦σ`−1 restricts to a bijection

of S`−1,−, and that the `-th component of τ`−1 ◦ σ`−1(m) is given by 2k + 3 −
m`, showing that τ`−1 ◦ σ`−1 restricts further to a bijection between the subsets

{m ∈ S`−1,− | m` 6 k + 1} and {m ∈ S`−1,− | m` > k + 2} of S`,−. Similarly, τ`◦σ`
is an involution of S`, which is given, for n ∈ S`,+ by

τ` ◦ σ`(n) = (1, 2k + 3− n2`+1, 2k + 3− n2i, . . . , 2k + 3− n3, 2k + 3− n2) . (3.13)

Also, it restricts to a bijection between the subsets {n ∈ S`,+ | (1, k + 2) ⊂ n} and

{n ∈ S`,+ | (1, k + 1) ⊂ n} of S`,+: if (1, k + 2) ⊂ n (resp. (1, k + 1) ⊂ n), then

n`+2 = k+2 (resp. n`+1 = k+1), so that τ`(σ`(n)) 3 k+1 (resp. τ`(σi(n)) 3 k+2).

The commutativity of the diagram follows at once from the explicit formulas (3.8)

and (3.11) – (3.13). �

For an element m ∈ I(s), we denote by m′ the vector whose elements are those

elements of I which are absent from m (again these elements will always be put in

the increasing order). In formula, m′ = I	m. We also denote, for 0 6 ` 6 k,

S′` := {m′ | m ∈ S`} .

Clearly, ifm′ ∈ S′` thenm′ has 2(k−`) entries. We give in the following proposition a

characterization of the elements of S′`; it will be used in the construction of integrals

in the following sections.

Proposition 3.4. Let 0 6 ` 6 k and let m′ = (r1, r2, . . . , rk−`, s1, s2, . . . , sk−`) ∈
I(2k−2`). Then m′ ∈ S′` if and only if

sj − rj ∈ {k, k + 1} , for j = 1, . . . , k − ` .
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Proof. The proof goes by induction on `, starting from ` = k, downwards to ` = 0.

When ` = k, the equivalence is trivially satisfied, because Sk has a single element

m = (1, 2, . . . , 2k+ 1), whose complement m′ has no entries. Suppose now that the

above equivalence is true for some ` with 0 < ` 6 k and for all m′ ∈ I(2k−2`). Let

m′ = (r1, r2, . . . , rk−`+1, s1, s2, . . . , rk−`+1). We prove that

m′ ∈ S′`−1 if and only if sj − rj ∈ {k, k + 1} , for j = 1, . . . , k− `+ 1 . (3.14)

Let us assume first that m′ ∈ S′`−1, i.e., that m ∈ S`−1. According to Lemma 3.2,

τ2`−1(m) ∈ S`−1 and it is easy to see that if m′ satisfies the right hand side of (3.14)

then so does τ2k−2`+2(m′) = τ2`−1(m)′. We may therefore assume that 1 /∈ m, but

also that m` 6 k+ 1: indeed, if 1 /∈ m and m` > k+ 1 then it suffices to replace m

by τk2`−1(m) (note that m`−1 6 k, as follows easily by taking s = `−1 in item (1) of

Proposition 3.1). According to Lemma 3.3, m⊕ (1, k + 2) ∈ S`. By the recurrence

hypothesis, we can write (m⊕ (1, k+ 2))′ = (r̄2, . . ., r̄k−`+1, s̄2, . . . , s̄k−`+1), satisfy-

ing sj−rj ∈ {k, k + 1} for j = 2, . . . , k−`+1; also, r̄2 > 1 and r̄k−`+1 < k+2 < s̄2.

Then

(1, r̄2, . . ., r̄k−`+1, k + 2, s̄2, . . . , s̄k−`+1) = m′ = (r1, r2, . . . , rk−`, s1, s2, . . . , sk−`) ,

so that rj = r̄j and sj = s̄j for j = 2, 3, . . . , k` + 1. As a consequence, the entries

of m′ satisfy the right hand side of (3.14).

We now assume that the entries of m′ satisfy the right hand side of (3.14). Again,

using τ2`−1 we may assume that r1 = 1 and that s1 = k + 2. Thus, 1 /∈ m and

k + 2 /∈ m. Then

(m⊕ (1, k + 2))′ = (r2, r3, . . . , rk−`+1, s2, s3, . . . , sk−`+1)

with sj − rj ∈ {k, k + 1} for j = 2, . . . , k − ` + 1. By the recursion hypothesis,

m ⊕ (1, k + 2) ∈ S`; more precisely, m ⊕ (1, k + 2) ∈ {n ∈ S`,+ | k + 2 ∈ n}. By

Lemma 3.3, m ∈ S`−1, and so m′ ∈ S′`−1, as was to be shown. �

4. The deformed Poisson structure and its basic Casimir

In this section, we introduce a class of deformations of the Poisson structure {· , ·},
defined by (2.1) and construct a Casimir for it. In the following proposition, we

determine all constant Poisson structures on R2k+1 which are compatible with {· , ·}.

Proposition 4.1. Let (bi,j)16i,j62k+1 be an arbitrary skew-symmetric matrix with

entries in R and consider the corresponding constant Poisson structure on R2k+1,

defined by {xi, xj}b := bi,j for 1 6 i, j 6 2k + 1. Then {· , ·}b is compatible with

the quadratic Poisson structure {· , ·} if and only if bi,j = 0 for all i and j such

that |i − j| /∈ {k, k + 1}. In particular, the constant Poisson structures which are

compatible with {· , ·} form a vector space of dimension 2k + 1.
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Proof. Recall (e.g. from [8, Section 3.3.2]) that two Poisson structures are said to be

compatible when their sum is a Poisson structure, i.e., when it satisfies the Jacobi

identity. Denote

{· , ·}(k)b := {· , ·}+ {· , ·}b . (4.1)

Then {· , ·}(k)b satisfies the Jacobi identity if and only if{
{xi, xj}(k)b , xm

}(k)

b
+ 	 (i, j,m) = 0 ,

for all triplets of distinct indices i, j,m ∈ I, where 	 (i, j,m) has the obvious

meaning. Since {· , ·}b is a constant Poisson bracket this condition amounts to

{{xi, xj} , xm}b + 	 (i, j,m) = 0 , that is,

Ai,j {xixj , xm}b + 	 (i, j,m) = Ai,jxibj,m +Ai,jxjbi,m+ 	 (i, j,m) =

Ai,jxibj,m +Am,ixibm,j+ 	 (i, j,m) = xibj,m (Ai,j +Ai,m) + 	 (i, j,m) = 0 ,

which is in turn equivalent with

bj,m (Ai,j +Ai,m) = 0 (4.2)

for all triplets of distinct indices i, j,m ∈ I. It follows that {· , ·} and {· , ·}b are

compatible if and only if bj,m = 0 for all j,m ∈ I such that Ai,j + Ai,m 6= 0 for

some i ∈ I, with i 6= j and i 6= m.

Suppose that j and m satisfy |j −m| ∈ {k, k + 1}; without loss of generality, we

may assume that m = i + k. From the structure of the i-th line of the matrix A

(see (2.2) we see that Ai,j + Ai,m = 0 whenever i 6= j and i 6= m. Therefore, there

are no constraints on the entries bj,m, when |j−m| ∈ {k, k + 1}. We show that the

other entries bj,m all have to be zero. By permuting j and m if necessary, we may

suppose that j < m. If m − j < k, then picking i = j − 1 (or i = m + 1 in case

j = 1) we have Ai,j +Ai,m 6= 0; one arrives at the same result when m− j > k+ 1

by picking i = j + 1. In both cases, it follows that the corresponding coefficient

bj,m must be zero. �

Notice that the conditions on b which are given in the above proposition are void

when k = 1.

The rank of the Poisson structure {· , ·} is 2k, as follows from the fact that the

rank of A is 2k (see e.g. [8, Example 8.14]). Thus, the Poisson matrix of {· , ·} has

a non-vanishing (2k× 2k)-minor; the latter is a homogeneous polynomial P4k(x) of

degree 4k since the entries of the Poisson matrix are homogeneous and quadratic.

The corresponding (2k × 2k)-minor of the Poisson matrix of {· , ·}(k)b is a non-

homogeneous polynomial of degree 4k, whose homogeneous part of top degree is

P4k(x), hence this minor is also non-zero (at a generic point of R2k+1), so that the

rank of {· , ·}(k)b is 2k.
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We show that {· , ·}(k)b has a polynomial Casimir of degree 2k + 1 whose leading

term is the Casimir C = x1x2 . . . x2k+1 of {· , ·}. To do this, we need some more

notation. First, in order to eliminate many signs in the formulas that follow, we

define new constants b′i,j , which are just the constants bi,j , possibly up to a sign:

we define, b′i,j := −bi,j = bj,i when |i− j| = k + 1 and b′i,j := bi,j otherwise. Also,

for m ∈ S`, we denote by xm the product xm = xm1
xm2

. . . xm2`+1
and by b′m the

product

b′m := b′r1,s1b
′
r2,s2 . . . b

′
rk−`,sk−`

,

where m′ = (r1, . . . , rk−`, s1, . . . , sk−`) is the ordered list of all indices of I that are

absent in m (see Proposition 3.4).

Proposition 4.2. The polynomial

Kb
k :=

k∑
`=0

∑
m∈S`

b′mxm (4.3)

is a Casimir of {· , ·}(k)b = {· , ·}+ {· , ·}b.

Proof. In order to simplify the notation in the proof, we will write Kb
k simply as

C. We need to prove that {xj , C}(k)b = 0 for all j ∈ I. To do this, it is sufficient to

prove that {x1, C}(k)b = 0. Indeed, consider the cyclic permutation τ : I→ I which

sends j to j + 1, for j < 2k + 1 and sends 2k + 1 to 1 (it is τ1, as defined in (3.1)).

The induced permutation on the variables xi is denoted by τ∗, so that τ∗x1 = x2,

for example. As we already recalled, τ∗ is a Poisson automorphism of {· , ·}; it is

also a Poisson isomorphism between {· , ·}b and {· , ·}τ∗b, where τ∗b is defined by

(τ∗b)i,j := bi+1,j+1. Indeed,

{τ∗xi, τ∗xj}b = {xi+1, xj+1}b = bi+1,j+1 = {xi, xj}τ∗b = τ∗ {xi, xj}τ∗b .

It follows that τ∗ is a Poisson automorphism between {· , ·}(k)b and {· , ·}(k)τ∗b. Ac-

cording to Lemma 3.2, τ∗C = C, so that

{x2, C}(k)b = {τ∗x1, τ∗C}(k)b = τ∗ {x1, C}(k)τ∗b ,

and we can conclude from {x1, C}(k)b = 0 for all b that {x2, C}(k)b = 0 for all b, and

similarly that {xj , C}(k)b = 0 for all j ∈ I and for all b.

In order to show that {x1, C}(k)b = 0, we decompose C as C =
∑k
`=0(C`,++C`,−),

where

C`,+ :=
∑

m∈S`,+

b′mxm , and C`,− :=
∑

m∈S`,−

b′mxm .

With this notation and in view of the definition (4.1) of {· , ·}(k)b , proving that

{x1, C}(k)b = 0 amounts to proving that

k∑
`=0

(
{x1, C`,+}+ {x1, C`,+}b + {x1, C`,−}+ {x1, C`,−}b

)
= 0 .
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We will do this by showing that

{x1, C`,+} = {x1, C`,+}b + {x1, Ci−1,−} = {x1, C`,−}b = 0 , (4.4)

for all ` > 0 (with the convention that C−1,− = 0). We start with the first term.

Let m ∈ S` with m = (m1,m2, . . . ,m2`+1). Recall that the sets S` are defined such

that m ∈ S` if and only if A′m = A(`) (see (2.8)). If m ∈ S`,+ then m1 = 1 and

{
x1, xm

}(k)
= x1xm

2`+1∑
j=1

A(k)
m1,mj

 = x1xm

2`+1∑
j=2

A
(`)
1,j

 = 0 .

This shows that {x1, C`,+} = 0. We next prove the last equality in (4.4). From the

definition of {· , ·}b it follows that for any function F

{x1, F}b = b1,k+1
∂F

∂xk+1
+ b1,k+2

∂F

∂xk+2
. (4.5)

Therefore

{x1, C`,−}b =
∑
m

{
x1, b

′
mxm

}
b
,

where the sum can be restricted to those m ∈ S`,− which contain k + 1 or k + 2.

Since 1 /∈ m, (3.14) implies that k + 1 and k + 2 cannot both belong to m. Also,

the inequalities in Proposition 3.1 imply that the vector ψ(m) whose effect is to

replace k + 1 in m by k + 2 leads to a new element of S`,− containing k + 2 (and

vice-versa). Therefore

{x1, C`,−}b =
∑

m∈S`,−
k+1∈m63k+2

{
x1, b

′
mxm

}
b

+
∑

m∈S`,−
k+16∈m3k+2

{
x1, b

′
mxm

}
b

=
∑

m∈S`,−
k+1∈m63k+2

({
x1, b

′
mxm

}
b

+
{
x1, b

′
ψ(m)xψ(m)

}
b

)

=
∑

m∈S`,−
k+1∈m63k+2

(
b1,k+1b

′
mxm

xk+1
+
b1,k+2b

′
ψ(m)xψ(m)

xk+2

)
= 0 ,

since xm/xk+1 = xψ(m)/xk+2 and b1,k+1b
′
m = b′1,k+1b

′
m = b′1,k+2b

′
ψ(m) = −b1,k+2b

′
ψ(m)

for all m ∈ S`,− with k + 1 ∈ m and k + 2 6∈ m.

It remains to be shown that {x1, C`,+}b + {x1, Ci−1,−} = 0. Using (4.5), we find

{x1, C`,+}b =
∑

n∈S`,+

k+1∈n

b1,k+1b
′
n

xn
xk+1

+
∑

n∈S`,+

k+2∈n

b1,k+2b
′
n

xn
xk+2

. (4.6)

For m ∈ S`−1,−, if m` 6 k + 1 then
{
x1, xm

}(k)
= x1xm

(∑2`−1
j=1 A1,mj

)
= x1xm,

and similarly if m` > k + 2 then
{
x1, xm

}(k)
= −x1xm. Therefore,

{x1, C`−1,−}(k) = −
∑

m∈S`−1,−
m`>k+1

b′mx1xm +
∑

m∈S`−1,−
m`6k+1

b′mx1xm . (4.7)
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Up to a minus sign, the first sum in (4.6) and the first sum in (4.7) are equal, and

similarly for the second sums. We show this for the first sum, using the bijection

φ2 from Lemma 3.3 (for the second sum, one uses φ1):

φ2 : {m ∈ S`−1,− | m` > k + 2} → {n ∈ S`,+ | k + 1 ∈ n}
m 7→ m⊕ (1, k + 1) .

For n := φ2(m) = m ⊕ (1, k + 1), with m ∈ {m ∈ S`−1,− | m` > k + 2}, we have

xn = xmx1xk+1 and b′n = b′m/b
′
1,k+1 = b′m/b1,k+1, so that∑

n∈S`,+

k+1∈n

b1,k+1b
′
n

xn
xk+1

=
∑

m∈S`−1,−
m`>k+1

b′mx1xm ,

as was to shown. �

5. Lax equation, first integrals and integrability

We now introduce a family of deformations of the Bogoyavlenskij-Itoh Lotka-

Volterra systems, which we will show to be Liouville integrable. Let c1, c2, . . . , c2k+1

be arbitrary constants, satisfying
∑2k+1
i=1 ci = 0. The deformed Bogoyavlenskij-Itoh

Lotka-Volterra system is the system defined by the following differential equations:

ẋi =

2k+1∑
j=1

Ai,jxixj + ci , i = 1, 2, . . . , 2k + 1 , (5.1)

where the constants Ai,j are given by (2.2). We first show that (5.1) is Hamiltonian

with respect to some of the Poisson structures {· , ·}(k)b , introduced in Section 4,

with H =
∑2k+1
i=1 xi as Hamiltonian function. Before doing this, notice that if (5.1)

admits H as a Hamiltonian function, then H is a constant of motion of (5.1), and

so
∑2k+1
i=1 ci = 0, which explains why we have imposed the latter condition on the

deformation constants ci. Let b be as in Proposition 4.1, i.e., b is skew-symmetric

and bi,j = 0 for all i and j such that |i− j| /∈ {k, k + 1}. Then the Hamiltonian

vector field {· , H}(k)b is given by

ẋi =

2k+1∑
j=1

Ai,jxixj + bi,i+k − bi−k,i , i = 1, 2, . . . , 2k + 1 , (5.2)

where, as above, all indices are taken modulo 2k + 1 and with values in I =

{1, 2, . . . , 2k + 1}. Comparing (5.1) and (5.2), we need to show that the follow-

ing linear system admits a solution:

bi,i+k − bi−k,i = ci , i ∈ I . (5.3)

Let b1−k,1 := c be arbitray. Then the solution to the equations (5.3) can be obtained

by solving them for the following values of i (in that order and, as always, modulo

2k+1): i = 1, k+1, 2k+1, . . . , yielding unique values for b1,1+k, b1+k,1+2k, b1+2k,1+3k =

b1+2k,k, . . . . The final formula is given by

bi,i+k = c1 + c1+k + c1+2k + · · ·+ ci−k + ci + c , for i ∈ I . (5.4)
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indeed, it follows from the latter formula at once that bi,i+k − bi,i−k = ci for all

i ∈ I and that

b1−k,1 = c1 + c1+k + c1+2k + · · ·+ c2 + c2+k + c =

2k+1∑
i=1

ci + c = c ,

since
∑2k+1
i=1 ci = 0. We have thereby proven the following proposition:

Proposition 5.1. The deformed Bogoyavlenskij-Itoh Lotka-Volterra system

ẋi =

2k+1∑
j=1

Ai,jxixj + ci , i = 1, 2, . . . , 2k + 1 ,

with
∑2k+1
i=1 ci = 0 is a Hamiltonian system with respect to a (non-unique) Poisson

structure {· , ·}(k)b , the non-zero entries of b being given by (5.4) and with H =∑2k+1
i=1 xi as Hamiltonian function.

In the following proposition we give a Lax equation (with spectral parameter)

for the deformed Bogoyavlenskij-Itoh Lotka-Volterra system (5.1). Bogoyavlenskij’s

Lax equation (2.5) is obtained from it by putting all bi,j equal to zero.

Proposition 5.2. The system (5.1) can be written as the following Lax equation

(with spectral parameter λ)

(X + λ−1∆ + λM)· = [X + λ−1∆ + λM,B − λMk+1] (5.5)

where for i, j ∈ I the (i, j)-th entry of the matrices X, M and B is respectively

given by

Xi,j := δi,j+kxi , ∆i,j := bi+k,jδi,j , Mi,j := δi+1,j , (5.6)

Bi,j := biδi,j := −δi,j(xi + xi+1 + · · ·+ xi+k) . (5.7)

Proof. To check that (2.5) is equivalent to (5.2) it is sufficient to check that (5.2) is

equivalent with Ẋ = [X,B]−
[
∆,Mk+1

]
and (since M is constant) that [M,B]−

[X,Mk+1] = 0; indeed, [M,Mk+1] = 0 and [∆, B] = 0 because ∆ and B are

diagonal matrices. For the second equality, one finds at once from (5.6) that

([M,B]− [X,Mk+1])i,j = δi+1,j(bj − bi − xi + xj+k) = 0 .

Since B and ∆ are diagonal matrices, [X,B]i,j = Xi,j(bj−bi) and −
[
∆,Mk+1

]
i,j

=

(bi,i+k − bi−k,i)δi,j+k, with non-zero entries only when j = i− k; for these entries,

one has from the Lax equation

ẋi = Ẋi,i−k = [X,B]i,i−k −
[
∆,Mk+1

]
i,i−k = xi(bi−k − bi) + bi,i+k − bi−k,i ,

which is the right hand side of (5.2). �

Each coefficient of the characteristic polynomial of the Lax operator

Lb(λ) := X + λ−1∆ + λM (5.8)
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gives a first integral for the deformed Bogoyavlenskij-Itoh Lotka-Volterra system.

We know already one constant of motion: the Casimir Kb
k, introduced in Propo-

sition 4.2. Indeed, K̇b
k =

{
Kb
k, H

}(k)
b

= 0. We will show in the Proposition 5.4

that Kb
k appears as a coefficient of the characteristic polynomial of the Lax op-

erator Lb(λ) (namely the coefficient of λ0). But first we prove a basic lemma on

permutations, which will be used in the Proposition 5.4 and will clarify its proof.

Lemma 5.3. For a permutation σ of I, the following two conditions are equivalent:

(i) σ(i) ∈ {i, i+ k, i+ k + 1} for all i ∈ I;

(ii) σ is equal to one of the following:

(1) The (2k + 1)-cycle (1, 1 + k, 1 + 2k, . . . , 2, k + 2);

(2) The inverse of the (2k + 1)-cycle (1, 1 + k, 1 + 2k, . . . , 2, k + 2);

(3) A product of k − ` transpositions (rj , sj) with disjoint support, and

satisfying sj − rj ∈ {k, k + 1} for j = 1, . . . , k − `.

Proof. The implication (ii) =⇒ (i) is clear. We prove the other implication.

Suppose that σ(i) ∈ {i, i+ k, i+ k + 1} for all i ∈ I and that σ is not as stated in (3)

above. Then there exist j ∈ I such that σ2(j) 6= j. Since σ(j) ∈ {i, i+ k, i+ k + 1},
we have either σ(j) = j+k or σ(j) = j+k+1. By replacing σ with σ−1, if needed,

we may suppose that σ(j) = j + k. Since σ2(j) 6= j (= j + 2k + 1), we must have

σ2(j) = σ(j + k) = j + 2k. By recursion, σs(j) = j + sk for s = 0, 1, 2, . . . . Since k

and 2k + 1 are relatively prime,

σ = (j, j + k, j + 2k, . . . , j + 1, j + 1 + k) = (1, 1 + k, 1 + 2k, . . . , 2, 2 + k) .

This proves that σ is of the form (1). �

Proposition 5.4. The determinant of the Lax operator Lb(λ) is given by

detLb(λ) = λ2k+1 +
1

λ2k+1

2k+1∏
j=1

bj+k,j +Kb
k , (5.9)

where Kb
k is the Casimir (4.3) of {· , ·}(k)b .

Proof. Let Λ := Lb(λ)E, where E denotes the (2k + 1) × (2k + 1)-matrix with

entries Ej,j+k = 1 for all j ∈ I and all other entries equal to zero. Thus, Λ is just

the matrix Lb(λ) with its last k columns placed first. The nonzero entries of Λ are

the following (j ∈ I):

(1) Λi,i = xi;

(2) Λi,i+k =
bi+k,i

λ ;

(3) Λi,i+k+1 = λ.
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Also, det Λ = detLb(λ) since detE = 1. We compute this determinant by using

the Leibniz formula:

det(Λ) =
∑
σ∈SI

sgn(σ)

2k+1∏
i=1

Λi,σ(i) ,

where SI is the permutation group of I and sgn(σ) stands for the sign of a per-

mutation σ. Because of items (1) – (3) above,
∏
i Λi,σ(i) 6= 0 if and only if

σ(i) ∈ {i, i+ k, i+ k + 1} for every i ∈ I. According to Lemma 5.3, there are

three possibilities for a permutation σ satisfying these conditions. For the first

one, σ = (1, 1 + k, 1 + 2k, . . . , 2, k + 2). Since sgn(σ) = 1, it leads to the following

contribution in det Λ:
2k+1∏
i=1

Λi,i+k =
1

λ2k+1

∏
j∈I

bj+k,j .

For the second one, σ−1 = (1, 1 + k, 1 + 2k, . . . , 2, k + 2), leading to λ2k+1 since

again sgn(σ) = 1 and since Λi,i+k+1 = λ for all i. For the third and final one, σ is

the product of transpositions,

σ = (r1, s1)(r2, s2) · · · (rk−`, sk−`) ,

with sj − rj ∈ {k, k + 1} for j = 1, . . . , k − `. Let m ∈ S` be the element de-

fined by m′ = (r1, r2, . . . , rk−`, s1, s2, . . . , sk−`) ∈ S` (see Proposition 3.4). The

corresponding term in det(Λ) is1

sgn(σ)

k−∏̀
j=1

(Λrj ,sjΛsj ,rj )

2`+1∏
j=1

xmj
=

k−∏̀
j=1

b′rj ,sjxm = b′mxm .

Summing up all these contributions, we get in view of the definition (4.3) of Kb
k

precisely (5.9). �

We can obtain from the above formula (5.9) for the determinant of the Lax

operator Lb(λ) easily a formula for its characteristic polynomial det(Lb(λ)− µ Id)

by the following trick: since the j-th diagonal entry of Lb(λ) is bj+k,j/λ and since

the parameters bi,j appear nowhere else in the Lax matrix, it suffices to replace in

all formulas bj+k,j/λ by bj+k,j/λ − µ. This can be done by replacing every bj+k,j

by bj+k,j−λµ. Notice that when the constants bj+k,j are viewed as a vector b (with

2k + 1 entries), then this substitution amounts to replacing b with b− λµ1, where

1 = (1, 1, . . . , 1). This proves part of the following proposition:

Proposition 5.5. The characteristic polynomial of the Lax operator Lb(λ) is given by

χ(Lb(λ), µ) = det(Lb(λ)− µ Id) = λ2k+1 +
1

λ2k+1

2k+1∏
j=1

(bj+k,j − λµ) +Kb−λµ1
k .

(5.10)

1Something has to be said about the signs, which disappear thanks to the primes!
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The coefficients Kb
` in the expansion

Kb−λµ1
k =

k∑
`=0

(λµ)k−`Kb
` , (5.11)

are first integrals of the deformed Bogoyavlenskij-Itoh Lotka-Volterra system (5.2).

Also, each Kb
` is of total degree 2` + 1 (as a polynomial in x1, . . . , x2k+1), with

leading term K`.

Proof. Formula (5.10) was proven above. In order to prove the other statements, we

first point out that if we attribute the weight 2 to every bj+k,j and the weight 1 to all

variables xi, to λ and to µ then every entry of the matrix Lb(λ)−µ Id is homogeneous

of degree 1, and so the characteristic polynomial (5.10) is weight homogeneous of

degree 2k + 1 with respect to these weights. It follows that Kb−λµ1
k can indeed be

expanded as in (5.11) and that every coefficient Kb
` is weight homogeneous of degree

2`+1 (depending polynomially on the variables xi and the constants bj+k,j). Since

these polynomials are (possibly up to a constant) coefficients of the characteristic

polynomial of the Lax operator, they are constants of motion. Setting b = 0 in

(5.10) and in (5.11) we have

χ(L(λ), µ) = λ2k+1 − µ2k+1 +K−λµ1k = λ2k+1 − µ2k+1 +

k∑
`=0

(λµ)k−`K0
` ,

which, compared with (2.7), to wit,

χ(L(λ), µ) = λ2k+1 − µ2k+1 +

k∑
`=0

(λµ)k−`K` ,

shows that K` is obtained from Kb
` by putting all constants in b equal to zero; since

the constants in b are of weight 2 and both K` and Kb
` are weight homogeneous

of degree 2` + 1, it follows that Kb
` is of total degree 2` + 1 (as a polynomial in

x1, . . . , x2k+1), with leading term K`, as asserted. �

We have constructed k + 1 polynomial first integrals Kb
0,K

b
1, . . . ,K

b
k for the

deformed Bogoyavlenskij-Itoh Lotka-Volterra system (5.1), which is a Hamiltonian

system on the Poisson manifold (R2k+1, {· , ·}(k)b ). We now prove the Liouville

integrability of this system.

Theorem 5.6. The deformed Bogoyavlenskij-Itoh Lotka-Volterra system (5.1) is

Liouville integrable, with independent first integrals Kb
0,K

b
1, . . . ,K

b
k which are pair-

wise in involution with respect to {· , ·}(k)b .

Proof. According to Proposition 5.5, the k + 1 polynomials Kb
` , defined by

Kb−ν1
k =

k∑
`=0

νk−`Kb
` (5.12)



18 C. A. EVRIPIDOU, P. KASSOTAKIS AND P. VANHAECKE

are first integrals of (5.1). By the same proposition, the leading term of Kb
` (as

a polynomial in x1, . . . , x2k+1) is K`; since the polynomials K0,K1, . . . ,Kk are

(functionally) independent, the latter fact implies that the same is true for the

deformed polynomials Kb
0,K

b
1, . . . ,K

b
k. It remains to be shown that the latter

polynomials are in involution with respect to {· , ·}(k)b . To do this, we use the

Lenard-Magri scheme in the context of Poisson pencils (see [10]). Recall from

Proposition 4.2 that Kb
k is a Casimir for {· , ·}(k)b . It follows that for any ν, Kb−ν1

k

is a Casimir of {· , ·}(k)b−ν1 = {· , ·}(k)b − ν {· , ·}1. Said differently, Kb−ν1
k is a Casimir

for the Poisson pencil {· , ·}(k)b − ν {· , ·}1. Its expansion (5.12) implies according to

the Lenard-Magri scheme the following facts:

(1) The polynomials Kb
` are in involution with respect to {· , ·}(k)b ;

(2) They are also in involution with respect to {· , ·}1;

(3) Each of the integrable vector fields is bi-Hamiltonian:
{
· ,Kb

`

}(k)
b

=
{
· ,Kb

`+1

}
1
;

(4) Kb
k is a Casimir of {· , ·}(k)b (as we already know) and Kb

0, which is just H,

is a Casimir of {· , ·}1 (which is quite obvious).

In particular, the first integrals are in involution with respect to {· , ·}(k)b , as was to

be shown. �

Remark 5.7. The proof shows that the functions Kb
` , ` = 0, 1, . . . , k are also in

involution with respect to the bracket {· , ·}1.

Remark 5.8. For b = 0, we get that the functions K`, ` = 0, 1, . . . , k are in involution

with respect to the brackets {· , ·}(k), which provides an alternative proof to Itoh’s

combinatorial proof of this fact.

6. Relation with the Veselov-Shabat system

In this section we will give a recursive formula for constructing the first inte-

grals Kb
` which shows that the combinatorial argument of Itoh can be used for

their definition as in the case of the polynomials K0
` , the first integrals of the

Bogoyavlenskij-Itoh system (see [5]). We will also show that the system (5.2) and

the Veselov-Shabat system constructed in [13] are isomorphic by constructing a

Poisson isomorphism between (R2k+1, {· , ·}(k)b ) and (R2k+1, {· , ·}v) where {· , ·}v is

the Poisson structure constructed in [13] as part of the Hamiltonian formalism of

the Veselov-Shabat system.

The Poisson structure {· , ·}v is defined by the formulas {gi, gj}v = (−1)j−i+1gigj

if j > i + 1 and {gi, gi+1}v = gigi+1 + βi+1 and the Veselov-Shabat system is the

Hamiltonian system with Poisson structure {· , ·}v and Hamiltonian the sum of

the variables
∑n
j=1 gj . We define a permutation ρ of I by setting ρ(`) := ρ` =

(`−1)k+1 for all ` ∈ Z. Then, one defines the Poisson map g : (R2k+1, {· , ·}(k)b )→
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(R2k+1, {· , ·}v) by

(x1, x2, . . . , x2k+1) 7→ (g1, g2, . . . , g2k+1) := (xρ1 , xρ2 , . . . , xρ2k+1
)

which is easily checked to be a Poisson isomorphism. The parameters bi,i+k of

the first Poisson structure are related to the parameters βi of the second Poisson

structure by βi+1 = bρi,ρi+k for all i = 1, 2, . . . , 2k + 1. Since the Hamiltonian∑n
j=1 xj of the system (5.2) is mapped under g to the Hamiltonian

∑n
j=1 gj of the

Veselov-Shabat system, the two systems are isomorphic.

Following [13] we define new variables fi which are related to the gi by the formu-

las gi = fi+fi+1 or equivalently by fi = 1
2

∑2k+1
j=1 (−1)j+1gi+j−1, i = 1, 2, . . . , 2k+1.

Then the system of Veselov and Shabat in the fi variables reads

ḟi + ḟi+1 = f2i+1 − f2i + βi+1 − βi, i = 1, 2, . . . , 2k + 1 (6.1)

and the matrix equation L̇i = Li · Ui+1 − Ui · Li where

Li =

(
fi 1

f2i + βi − λ fi

)
, Ui =

(
0 1

ḟi + f2i + βi − λ 0

)
gives the i-th equation of the system (6.1). Notice that U2k+2 = U1 and therefore

if we write L =
∏n
i=1 Li we have that

L̇ =

2k+1∑
i=1

L1L2 · · · L̇i · · ·L2k+1

=

2k+1∑
i=1

L1L2 · · ·LiUi+1 · · ·L2k+1 −
2k+1∑
i=1

L1L2 · · ·UiLi · · ·L2k+1

= LU2k+2 − U1L = [L,U1]

a Lax equation for the system (6.1). The simple form of the matrices Li allows

us to compute easily the trace of L and as it turns out the trace is equal to the

Casimir Kb−ν
k . If Ri is the matrix Ri = (βi − λ)

(
0 0
1 0

)
then one can show that

the following formulas on the matrices Li, Ri and Ui hold

∏̀
i=j

(Li −Ri) =

`−1∏
i=j

gi

(
f` 1
fjf` fj

)
, RiRj = 0,(

f` 1
fjf` fj

)(
0 0
1 0

)(
f2k+1 1

f`+2f2k+1 f`+2

)
=

(
f2k+1 1
fjf2k+1 fj

)
.

As a consequence we get the following formula for the trace of L

tr(L) =

2k+1∏
i=1

Li =

2k+1∏
i=1

(Li−Ri+Ri) =

2k+1∏
i=1

(1+(βi+1−λ)
∂2

∂gi∂gi+1
)

2k+1∏
j=1

gi. (6.2)
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The trace of L, written in the variables xi, becomes

tr(L) =

2k+1∏
i=1

(1 + (bρi,ρi+k − λ)
∂2

∂xρi∂xρi+1

)

2k+1∏
j=1

xρi

=

2k+1∏
i=1

(1 + (bi,i+k − λ)
∂2

∂xi∂xi+k
)

2k+1∏
j=1

xi.

The coefficients of the thace of L (viewed as a polynomial in λ) are first integrals

of (5.2). We will show that the previous formula for the trace of L is exactly the

polynomial Kb−λ
k and we will also give a recursive formula for explicitly producing

the polynomials Kb
j . To do this, we first define the following constant coefficient

linear operators

di =
∂

∂xi
, Di,j = didj , D =

2k+1∑
i=1

Di,i+k

and also the

Db
i,j = bi,jdidj , Db =

2k+1∑
i=1

Db
i,i+k.

Since they have constant coefficients, all these operators commute with each other

(at least when applied on polynomials, which is the case which we consider here).

In the following lemma we show that the first integrals Ki of (5.2) can be defined

recursively using the operator D.

Lemma 6.1. The polynomials Ki, defined by (2.7) (which are the same thing as

Ki = K0
i ) satisfy the following recursive equation

DKi = (k − i+ 1)Ki−1.

Proof. Each element m′ ∈ S′i (and therefore each element m ∈ Si) is in one to one

correspondence with the i′-tubles consisting of elements b`,`+k, ` = 1, 2, . . . , n which

do not have any common indices (e.g. the choice b1,5, b5,9, . . . is not allowed). This

is evident from Proposition 3.4. Therefore there is a bijection Φ : Si → Bi′ where

Bi′ =
{{
br1,r1+k, br2,r2+k, . . . , bri′ ,ri′+k

}
: # {r1, r2, . . . , ri′ , r1 + k, r2 + k, . . . , ri′ + k} = 2i′

}
.

We can easily see that the map Φ is the complement, meaning that

Φ−1
({
br1,r1+k, br2,r2+k, . . . , bri′ ,ri′+k

})
= m ⇐⇒

m′ = (r1, r2, . . . , ri′ , r1 + k, r2 + k, . . . , ri′ + k).

Letm = (m1,m2, . . . ,m2i+1) ∈ Si such that Φ(m) =
{
br1,r1+k, br2,r2+k, . . . , bri′ ,ri′+k

}
.

Then xm =
(∏i′

`=1Dr`,r`+k

)
Kk and, using the combinatorial formulas (4.3) we get

Ki =
∑

{br1,r1+k,br2,r2+k,...,br
i′ ,ri′+k}∈Bi

 i′∏
`=1

Dr`,r`+k

Kk.
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Because the degree of the monomial Kk, viewed as a polynomial in one variable xi,

is one, it follows that d2jKk = 0 for any j ∈ I. The multinomial formula

Di′ =

 n∑
j=1

Dj,j+k

i′

=
∑

m1+m2+...,mk=i′

(
i′

m1,m2, . . . ,m`

) ∏̀
j=1

D
mj

j,j+k

gives that

Di′Kk =
∑

{br1,r1+k,br2,r2+k,...,br
i′ ,ri′+k}∈Bi

(
i′

1, 1, . . . , 1

) i′∏
j=1

Drj ,rj+k

Kk = i′!Ki

and we deduce that

Di′Kk = i′!Ki (6.3)

Therefore,

Ki−1 =
1

(i′ + 1)!
Di′+1Kk =

i′!

(i′ + 1)!
DKi =

1

i′ + 1
DKi.

�

We prove now a similar formula for the polynomials Kb
i which shows that the for-

mula (6.2) of Veselov and Shabat for the trace of the Lax operator L coincides with

the polynomial Kb−λ
k (item (1) of the next proposition) which is the characteristic

polynomial of the Lax operator we constructed in (5.5).

Proposition 6.2. (1) For each i = 0, 1, 2, . . . , k

Kb
i = Ki +DbKi +

1

2!
D2
bKi + . . .+

1

i!
Di
bKi

(2) For each i = 0, 1, 2, . . . , k − 1

Kb
i =

1

k − i
DKb

i+1.

Proof. First of all, note that (1) holds for i = k. This can be seen from the proof

of Lemma 6.1 and the definition of the polynomial Kb
k; in the polynomial Kb

k, for

each variable missing from xm there is one and only one constant b.,. associated to

it (see also Proposition 3.4).

We also notice that the operator Db satisfies the following formula

Db+λ1 = Db + λD ⇒ Dl
b+λ1 =

l∑
m=0

(
l

m

)
λmDl−m

b Dm.

Therefore for item (1) we have

Kb+λ1
k =

k∑
l=0

1

l!
Dl
b+λ1Kk =

k∑
l=0

1

l!

l∑
m=0

(
l

m

)
λmDl−m

b DmKk.

Since Kb
i is the coefficient of λk−i in the expansion of Kb+λ1

k it follows that

Kb
i =

k∑
l=0

1

l!

(
l

k − i

)
Dl−k+i
b Dk−iKk =

k∑
l=k−i

1

l!

(
l

k − i

)
Dl−k+i
b Dk−iKk.
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In view of the formula (6.3), the previous line can be re-written as

Kb
i =

k∑
l=k−i

1

l!

(
l

k − i

)
(k − i)!Dl−k+i

b Ki

which is exactly item (1).

Item (2) can be deduced by combining item (1) and Lemma 6.1. �
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