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Abstract. We use a strong version of the Painlevé property to discover and

characterize a new class of n–dimensional Hamiltonian Lotka-Volterra systems,
which turn out to be Liouville integrable as well as superintegrable. These

systems are in fact Nambu systems, they posses Lax equations and they can be
explicitly integrated in terms of elementary functions. We apply our analysis

to systems containing only quadratic nonlinearities of the form aijxixj , i 6= j,

and require that all variables diverge as t−1. We also require that the leading
terms depend on n − 2 free parameters. We thus discover a cocycle relation

among the coefficients aij of the equations of motion and by integrating the

cocycle equations we show that they are equivalent to the above strong version
of the Painlevé property. We also show that these systems remain explicitly

solvable even if a linear term bixi is added to the i-th equation, even though

this violates the Painlevé property, as logarithmic singularities are introduced
in the Laurent solutions, at the first terms following the leading order pole.

1. Introduction

Let m and n be arbitrary integers, with 1 < m 6 n. We consider on Cn the

Lotka-Volterra system

ẋi = xi

m∑
λ=1

aiλxλ , (i = 1, . . . , n) , (1.1)

where A = (aiλ) is an n×m matrix with complex entries, which is skew-symmetric

in the sense that aλµ = −aµλ for 1 6 λ, µ 6 m. The system (1.1) is a Hamiltonian

system, whose Hamiltonian is the linear function H = x1+x2+· · ·+xm with respect

to a family of compatible quadratic Poisson structures, defined by the following

brackets:

{xi, xj} := aijxixj , 1 6 i < j 6 n, (1.2)

where the constants aij with m < i < j 6 n can be picked arbitrarily (the other

constants aij are then determined by the skew-symmetry relation aij = −aji). As is

well-known, (1.2) defines a Poisson bracket (i.e., the Jacobi identity is automatically

satisfied). For more information on these Poisson structures, which are often called

diagonal or log-canonical, see [11, Section 8.2]. Of course many other choices for the

coefficients in eq. (1.1) are available and some are known to be integrable. This is

the case, for example, with the so-called Projective Riccati Equations, which have

been integrated through the use of superposition principles [4].
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In this paper, we wish to select those matrices A for which (1.1) satisfies a

“strong” Painlevé property, that will be described below. First, we recall that the

Painlevé (or P–) property for a system such as (1.1) amounts to the requirement

that all its solutions be single–valued and meromorphic in the sense that all movable

singularities are poles, about which the solutions can be expanded as (convergent)

Laurent series, depending on n − 1 free parameters (the n-th of them being the

location of the singularity t∗). These Laurent solutions are called principal balances,

while the Laurent solutions which depend on fewer free parameters are called lower

balances.

It was S. Kovalevskaya who first used this criterion to select from the class of

all tops the ones that ought to be integrable, leading to the discovery of a new

integrable case, which now bears her name (see [1, Section 10.1.2]). A little later,

in the early 1900’s, P. Painlevé developed this approach into a systematic theory

that enabled him to indentify all 50 second order ordinary differential equations

(ODEs) that possess what we call the P–property [3, 14]. 44 of them were found

to be integrable and solvable in terms of elementary functions, while 6 were shown

not to be reducible to first order ODEs and were solved by the so-called Painlevé

transcendental functions [10].

For a proof that the existence of principal balances is a necessary condition for

algebraic integrability, see [1, Section 6.2]. In this paper, we impose on (1.1) the

following two conditions, which constitute what we call the “strong” P–property:

(a) The system has principal balances where each variable is expressed as a Laurent

series that starts with a simple pole, and (b) n − 2 free parameters appear at the

leading order term of these balances.

We show in Proposition 2.2 that if (1.1) satisfies (a) and (b) above then the con-

stants aiλ can be written as aiλ = aλ − ai for some constants a1, . . . , an, implying

that (1.1) possesses several properties such as Liouville integrability and superin-

tegrability (Proposition 3.1), the fact that it is a Nambu system (Proposition 3.2),

that it can be integrated in terms of elementary functions (Proposition 3.3) and

that it is given by Lax equations (Proposition 3.4). Conversely, when the constants

aiλ are of the form aiλ = aλ − ai for some constants a1, . . . , an, then (1.1) satisfies

(a) and (b) above, hence the strong Painlevé property that we impose on (1.1) is

actually equivalent to a natural collection of cocycle conditions on the coefficients

aiλ, leading to a new integrable family of Lotka-Volterra systems, having many nice

features.
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2. Lotka-Volterra systems and the Painlevé property

Throughout this paper, m and n are arbitrary integers, with 1 < m 6 n. We

consider on Cn the Lotka-Volterra system

ẋi = xi

m∑
λ=1

aiλxλ , (i = 1, . . . , n) , (2.1)

where A = (aiλ) is an n×m matrix with complex entries, which is skew-symmetric

in the sense that aλµ = −aµλ for 1 6 λ, µ 6 m. In these formulas, and in what

follows, we use latin letters i, j, . . . for indices which belong to the range 1, . . . , n,

while we use greek letters λ, µ, . . . for indices belonging to the range 1, . . . ,m. We

recall from the introduction the following two conditions, which we will impose on

the system (2.1):

(P1) The system has principal balances where each variable is expressed as a

Laurent series that starts with a simple pole.

(P2) n− 2 free parameters appear at the leading order term of these balances.

We analyze these conditions and translate them into conditions on the entries of

the matrix A. Condition (P1) means that there exists a collection of n complex

Laurent series of the form

xi(t) =
1

τ
(x

(0)
i + x

(1)
i τ + x

(2)
i τ2 + · · · ) , τ = t− t∗, (i = 1, . . . , n) , (2.2)

which is a solution to (2.1) and where all leading coefficients x
(0)
i are different from

zero. According to [1, Theorem 7.25] such a solution is always convergent (for

small non-zero τ). A direct substitution of (2.2) in (2.1) shows that the leading

coefficients x
(0)
i satisfy the quadratic equations

−x(0)
i = x

(0)
i

m∑
λ=1

aiλx
(0)
λ , (i = 1, . . . , n) . (2.3)

Since all x
(0)
i are non-zero, the latter equations are equivalent to the following linear

system:

−1 =

m∑
λ=1

aiλx
(0)
λ , (i = 1, . . . , n) . (2.4)

Notice that the n − m variables x
(0)
j with m < j 6 n are absent from the latter

equations. It follows that, if all free parameters in the principal balances, except

one, appear at this step, then the solution space of (2.4) is (m − 2)-dimensional,

so that A has rank 2. In the following proposition we give an explicit description

of all such n × m matrices A, having the additional property that (2.4) has an

(m− 2)-dimensional solution space.

Proposition 2.1. Let A = (aiλ) be an n × m matrix, where 1 < m 6 n, and

let b ∈ C∗. We assume that the upper square part of A is skew-symmetric, i.e.,
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aλµ = −aµλ for 1 6 λ, µ 6 m. Denote by B the column vector of size n whose

entries are all equal to b. The following conditions are equivalent:

(i) A has rank 2 and the equation AX = B has a solution;

(ii) The upper square part of A is non-zero and for every λ, µ, i with 1 6 λ <

µ 6 m and 1 6 i 6 n the cocycle condition aiµ = aiλ + aλµ holds;

(iii) There exist constants a1, . . . , an, with a1, . . . , am not all equal, such that

aiλ = aλ − ai for all λ, i with 1 6 i 6 n and 1 6 λ 6 m.

Proof. By homogeneity, we may assume that b = 1. We first show that (i) implies

(ii). Suppose that A has rank 2 and its upper square part is skew-symmetric. Let

us denote by [A,B] the concatenation of the matrix A and the column vector B.

The equation AX = B has a solution if and only if the rank of [A,B] is the same

as the rank of A, which is equal to 2. Let 1 6 λ < µ < ν 6 m and consider the

following submatrix of [A,B]:

Aλ,µ,ν :=

 0 aλµ aλν 1
−aλµ 0 aµν 1
−aλν −aµν 0 1

 .

The rank of the matrix Aλ,µ,ν is at most 2 if and only if all its 3× 3 minors vanish,

which is equivalent to the equations

aλµ(aλµ + aµν − aλν) = 0 ,

aµν(aλµ + aµν − aλν) = 0 ,

aλν(aλµ + aµν − aλν) = 0 .

In turn, this is equivalent to the single condition

aλµ + aµν + aνλ = 0 , (2.5)

(recall that the upper square part of A is skew-symmetric). This shows that (i)

implies aνµ = aνλ+aλµ, for 1 6 λ, µ, ν 6 m (i.e., for the entries of the upper square

part of A). If m = n this shows that (i) implies the second part of (ii). Suppose

therefore that m < n and let λ, µ, i be such that 1 6 λ < µ 6 m < i 6 n. If aλµ 6= 0

then, as above (considering the matrix Aλ,µ,i) we get that aλµ − aiµ + aiλ = 0, as

wanted. If aλµ = 0, then there exists a ν with 1 6 ν 6 m such that aλν 6= 0

(and hence, aµν 6= 0, thanks to the cocycle relation (2.5). Indeed, if aλµ = 0 then

aλν = aµν): indeed, for a fixed λ not all aλν can be zero, because otherwise AX = B

would not have a solution. As above, the fact that aλν 6= 0 and aµν 6= 0 implies

that

aλν − aiν + aiλ = 0 ,

aµν − aiν + aiµ = 0 .

Subtracting these two equations and using the cocycle condition (2.5), we find that

aiλ = aiµ + aµλ. This shows that (i) implies the second part of (ii); the first part
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of (ii) is an immediate consequence of (i) because if AX = B has a solution then

every line of A is non-zero. Suppose now that the entries of A satisfy the cocycle

conditions aiµ = aiλ + aλµ, where 1 6 λ < µ 6 m and 1 6 i 6 n. Choose a1

arbitrarily and define ai for 1 < i 6 n by ai := a1 − ai1. Then we have, for

1 6 i 6 n and 1 6 λ 6 m,

aiλ = ai1 + a1λ = a1 − ai + aλ − a1 = aλ − ai ,

which shows the existence of the constants a1, . . . , an, announced in (iii). Notice

that these constants are uniquely determined, once one of the constants (a1, for

example) has been fixed. Since the upper square part of A is non-zero, there exist

λ, µ with 1 6 λ, µ 6 m, such that aλµ = aµ−aλ 6= 0, which implies that a1, . . . , am

are not all equal. This shows that (ii) implies (iii). It remains to be shown that (iii)

implies (i): suppose that the entries of the matrix A are of the form aiλ = aλ − ai
(1 6 i 6 n and 1 6 λ 6 m) and that a1, . . . , am are not all equal (so that the upper

square part of A is non-zero). We first show that the rank of A is equal to 2. To

do this, it suffices to show that all 3× 3 minors of A vanish. Any 3× 3 submatrix

of A is of the form

Aλ,µ,νi,j,k :=

aλ − ai aµ − ai aν − ai
aλ − aj aµ − aj aν − aj
aλ − ak aµ − ak aν − ak


for some 1 6 i < j < k 6 n and 1 6 λ < µ < ν 6 m. It can be checked by direct

computation that the determinant of Aλ,µ,νi,j,k is zero; for a quicker proof, observe

that when one subtracts the first row of Aλ,µ,νi,j,k from its second and third rows, the

new second and third rows are proportional. This shows that all 3× 3 minors of A

vanish, so that A is of rank two (recall that the upper square part of A is non-zero

and skew-symmetric). For an alternative proof that A is of rank two, observe that

A is the difference of two n×m matrices of rank one:

A =


1
1
...
1

(a1 a2 . . . am
)
−


a1

a2

...
an

(1 1 . . . 1
)
.

This shows the first part of (i). In order to show that the equation AX = B has

a solution (still taking b = 1), pick λ, µ such that 1 6 λ < µ 6 m and such that

aλµ 6= 0. Then a particular solution of AX = B is given by

xλ = −xµ =
1

aλµ
, xν = 0 for ν ∈ {1, . . . ,m} \ {λ, µ} . (2.6)

For future use, notice that for any ν ∈ {1, . . . ,m} \ {λ, µ} a solution to the homo-

geneous equation AX = 0 is given by

xλ = aµν , xµ = aνλ , xν = aλµ , (2.7)

xρ = 0 for ρ ∈ {1, . . . ,m} \ {λ, µ, ν} . (2.8)
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Indeed, with this choice of X, the i-th entry of the vector AX is given by

aiλaµν + aiµaνλ + aiνaλµ = (aiλ − aiν)aµν + (aiµ − aiν)aνλ = 0 .

This shows that (iii) implies (i). �

According to Proposition 2.1, the only systems (2.1) which satisfy (P1) and

(P2) are defined by n × m matrices A = (aiλ) satisfying the cocycle conditions

aiµ = aiλ + aλµ for 1 6 λ < µ 6 m and 1 6 i 6 n, and whose upper square part

is non-zero. Let us show that for any such matrix, (P1) and (P2) are satisfied. We

have already shown at the end of the proof of the proposition (see (2.6) — (2.8))

how to construct the complete solution to the equation AX = B, which gives the

following solution to the indicial equations (2.3):

x
(0)
λ =

1

aλµ
+
∑
ν 6=λ,µ

ανaµν ,

x(0)
µ =

1

aµλ
+
∑
ν 6=λ,µ

ανaνλ , (2.9)

x
(0)
i = αiaλµ , (i ∈ {1, . . . , n} \ {λ, µ}) ,

where αi is a free parameter, for i ∈ {1, . . . , n} \ {λ, µ}. The existence and unique-

ness of the subsequent terms in the series (2.2) is governed by the Kowalevski matrix

K, whose entries Kij are given by

Kij =

(
∂fi
∂xj

(x(0)) + δi,j

)
, (1 6 i, j 6 n) ,

where fi stands for the right hand side of (2.1), to wit

fi = xi

m∑
λ=1

aiλxλ ,

and δi,j is the Kronecker delta. Explicitly, the entries of K are given by

Ki,i =

m∑
λ=1

aiλx
(0)
λ + 1 = 0 , (i = 1, . . . , n) , (2.10)

Ki,λ = aiλx
(0)
i , (i = 1, . . . , n, λ = 1, . . . ,m, λ 6= i) , (2.11)

Ki,j = 0 , (i = 1, . . . , n, j = m+ 1, . . . , n, i 6= j) , (2.12)

where for the computation of Ki,i we have used (2.4). We claim that the character-

istic polynomial of K is given by χ(K,λ) = λn−2(λ2−1). To show this, first notice

that (2.10) — (2.12) can be combined in the single formula Ki,j = aijx
(0)
i , valid for

all i, j, if we define aij := 0 for 1 6 i 6 n and m < j 6 n. Since A has rank two, it

implies that K has at most rank two, and hence χ(K,λ) is divisible by λn−2. Since

(2.1) is homogeneous, −1 is a root of χ(K,λ) (see [1, Proposition 7.11]). Finally,

(2.10) trivially implies that K has trace zero, so the sum of all roots of χ(K,λ) is

zero, showing that the last root of χ(K,λ) is 1. This validates our claim.
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In order to complete the proof that our systems satsify (P1) and (P2), it remains

to be shown that the degenerate linear system which is obtained when determin-

ing x
(1)
i has a solution; then this solution will depend on a free parameter, so the

first two terms of the Laurent solution depend on n − 1 free parameters, and all

other terms are uniquely determined by these first two terms, leading to a prin-

cipal balance. By substituting the first two terms of the Laurent series (2.2) into

(2.1) we find that the equation that the variables x
(1)
i have to satisfy are actually

homogeneous: for i = 1, . . . , n they need to satisfy the linear equations

m∑
λ=1

aiλ(x
(0)
i x

(1)
λ + x

(1)
i x

(0)
λ ) = 0 . (2.13)

Obviously, this system has a solution, hence a free parameter appears at this step

and we are done. An alternative way to see this is to observe that the matrix of

the homogeneous system yielding the x
(1)
i has determinant zero, since adding all

its rows yields a row of zeros due to the relations satisfied by the x
(0)
i coefficients.

We summarize what we have proved in the following proposition:

Proposition 2.2. Let A = (aiλ) be a n ×m matrix with complex entries, where

1 < m 6 n. It is assumed that A is skew-symmetric in the sense that aλµ = −aµλ
for 1 6 λ, µ 6 m. . The Lotka-Volterra system

ẋi = xi

m∑
λ=1

aiλxλ , (i = 1, . . . , n) , (2.14)

satisfies the properties (P1) and (P2) if and only if the entries of A satisfy the

cocycle conditions aiµ = aiλ + aλµ, for 1 6 λ, µ 6 m and 1 6 i 6 n; in turn, these

conditions are equivalent to the existence of constants a1, . . . , an, with a1, . . . , am

not all equal, and such that aiλ = aλ − ai for all such i, λ.

For n = 2 (so that m = 2) the cocycle conditions are automatically satisfied and

so (P1) and (P2) always hold. For n = 3 (so that m = 2 or m = 3), the rank of

A is automatically equal to two, so that (P1) already implies the cocycle condition

a12 + a23 = a13; hence, in this case, (P2) is a consequence of (P1).

In what follows, we will call a Lotka-Volterra system, satisfying the conditions

of Proposition 2.2, a Lotka-Volterra-Painlevé system.

3. Integrability and explicit solutions

We show in this section that every Lotka-Volterra-Painlevé system, as defined in

the previous section, is Liouville integrable and superintegrable. We show that these

systems are Nambu systems, have Lax equations and can be explicitly integrated

in terms of elementary functions.
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Proposition 3.1. Suppose that

ẋi = xi

m∑
λ=1

aiλxλ , (i = 1, . . . , n) , (3.1)

is a Lotka-Volterra-Painlevé system. Then (3.1) is Hamiltonian with respect to a

Poisson structure {· , ·} of rank 2, with H = x1+· · ·+xm as Hamiltonian. Moreover,

this Poisson structure has n−2 functionally independent Casimir functions, defined

on an open dense subset of Cn, so that (3.1) is both Liouville and superintegrable.

Proof. In view of Proposition 2.1 there exist constants a1, . . . , an such that aiλ =

aλ − ai for 1 6 i 6 n and 1 6 λ 6 m. We extend A to a skew-symmetric n × n
matrix Π by setting πij := aj − ai for 1 6 i, j 6 n. According to Proposition 2.1,

Π has rank 2. The entries of Π satisfy the cocylce relations

πij + πjk + πki = 0 , (1 6 i, j, k 6 n) , (3.2)

which extend the cocycle relations (2.5) satisfied by the entries of A. The Pois-

son structure, defined by {xi, xj} := πijxixj for all 1 6 i, j 6 n is a diagonal

Poisson structure, hence its rank is the same rank as the rank of Π (see [11,

Example 8.14]), i.e., the Poisson structure has rank 2. The vector field (3.1) is

Hamiltonian with respect to this Poisson structure, with H = x1 + · · · + xm as a

Hamiltonian, hence it suffices to exhibit n − 2 functionally independent Casimirs

to show that (3.1) is both Liouville and superintegrable. We construct these from

the null vectors of Π; indeed, if (s1, s2, . . . , sn) is a null vector of Π then the prod-

uct C = xs1xs2 . . . xsn is a Casimir of the Poisson structure defined by Π, because

{xi, C} = {xi, xs11 x
s2
2 . . . xsnn } =

(∑n
j=1 πijsj

)
C = 0 for i = 1, . . . , n. In order to

construct a basis for the null vectors of Π, choose λ, µ with 1 6 λ, µ 6 m such that

πλµ 6= 0 and consider for k ∈ {1, . . . , n} \ {λ, µ} the vector X whose components

are defined by

xλ = πµk , xµ = πkλ , xk = πλµ , (3.3)

x` = 0 for ` ∈ {1, . . . , n} \ {λ, µ, k} . (3.4)

Indeed, with this choice of X, the vanishing of the `-th entry of the vector ΠX can

be computed using the cocycle relations (3.2) as follows:

π`λπµk + π`µπkλ + π`kπλµ = (π`λ − π`k)πµk + (π`µ − π`k)πkλ = 0 . (3.5)

By the above procedure, it leads to the Casimirs x
aµk
λ xakλµ x

aλµ
k , where k ∈ {1, . . . , n}\

{λ, µ}; these n − 2 Casimirs are indeed independent because the latter Casimir is

the only one that depends on xk (recall that λ and µ are chosen such that aλµ 6= 0,

so that the latter Casimir does indeed depend on xk). �

When n > m + 1, there are other Poisson structures with respect to which

(3.1) is Hamiltonian, with the same Hamiltonian H = x1 + · · · + xm. Indeed,
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given any skew-symmetric n × n matrix (aij), a Poisson bracket on Cn is defined

by {xi, xj} := aijxixj (see [11, Section 8.2]). Thus, given any n × m matrix

A, whose upper square part is skew-symmetric, any extension of A to a skew-

symmetric n × n matrix will lead to a Poisson structure on Cn, making (3.1) a

Hamiltonian vector field (with Hamiltonian H), and all these Poisson structures

are compatible. In general, these Poisson structures are of rank higher than two;

so, another choice of Poisson structure may have a negative impact on some of

the above properties and some of the properties that we will establish next, such

as Liouville integrability and a formulation in terms of Nambu-Poisson brackets.

However, regarding superintegrability, solvability and Lax equations, the choice of

Poisson structure does not play a rôle.

In the following proposition, we identify (3.1) as a Nambu system. Recall from

[11, Section 8.3] that a Poisson structure of rank 2 on Cn is obtained as follows: let

C3, C4, . . . , Cn and χ be n− 1 functions on Cn. For functions F,G on Cn let

{F,G}NP := χ

∣∣∣∣∂ (F,G,C3, . . . , Cn)

∂ (x1, . . . , xn)

∣∣∣∣ . (3.6)

This defines a Poisson structure on Cn for which the given functions C3, . . . , Cn

are Casimir functions. It is called a Nambu-Poisson structure. Its rank is 2 at

every point, except at the zeros of χ and the points p ∈ Cn where the differentials

dpC3, . . . ,dpCn are linearly dependent (at those points the rank is zero).

Proposition 3.2. Consider the Lotka-Volterra-Painlevé system (3.1), where we

recall that at least one of the aλµ (= πλµ) is non-zero, with 1 6 λ, µ 6 m; in

order to simplify the formulas, we assume that a12 6= 0. Then the Poisson structure

{· , ·} defined in Proposition 3.1 is a Nambu-Poisson structure, with Casimirs Ck :=

xπ2k
1 xπk12 xπ12

k and with multiplier

χ :=

∏n
k=1 xk

πn−3
12

∏n
k=3 Ck

.

Proof. We need to check that {xi, xj}NP = πijxixj for all 1 6 i < j 6 n. First, let

i = 1 and j = 2. Then, according to (3.6), we find

{x1, x2}NP = χ

n∏
k=3

∂Ck
∂xk

= χ

n∏
k=3

(
π12

Ck
xk

)
= π12x1x2 .

For j > 2, one obtains

{x1, xj}NP = −χ∂Cj
∂x2

∏
k 6=j

∂Ck
∂xk

= −χπj1Cj
x2

∏
k 6=j

(
π12Ck
xk

)
= π1jx1xj ,
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and similarly, {x2, xj}NP = π2jx2xj . Finally, let 2 < i < j. Then

{xi, xj}NP = χ
∏
k 6=i,j

∂Ck
∂xk

∣∣∣∣∣∂Ci∂x1

∂Cj
∂x1

∂Ci
∂x2

∂Cj
∂x2

∣∣∣∣∣
= χ

∏
k 6=i,j

(
π12Ck
xk

)
CiCj
x1x2

(π2iπj1 − π2jπi1)

=
xixj
π12

(π2iπj1 − π2jπi1) = πijxixj ,

where we used in the last equality the relation (3.5). �

Proposition 3.3. Consider an arbitrary initial condition x(0) = (x
(0)
1 , . . . , x

(0)
n ) for

the Lotka-Volterra system

ẋi = xi

m∑
λ=1

aiλxλ , (i = 1, . . . , n) , (3.7)

and denote the value of the Hamiltonian H at x(0) by h, so h :=
∑m
λ=1 x

(0)
λ . If

h 6= 0 then the solution x(t) of (3.7) with initial condition x(0) = x(0) is given by

xµ(t) = x(0)
µ

h− x(0)
µ∑

λ6=µ x
(0)
λ exp(−aµλht)

, (i = 1, . . . ,m) , (3.8)

xi(t) = x
(0)
i

h∑m
λ=1 x

(0)
λ exp(−aiλht)

, (i = m+ 1, . . . , n) . (3.9)

Otherwise, the solution is given by

xi(t) = x
(0)
i

1

1− t
∑
λ 6=i aiλx

(0)
λ

, (i = 1, . . . , n) . (3.10)

Proof. When x
(0)
i = 0 the formulas (3.8) — (3.10) yield xi(t) = 0, which is correct,

so we only need to consider the case when x
(0)
i 6= 0. From (3.7) and using the

cocycle condition we find for λ = 1, . . . ,m that

ẋλ
xλ
− ẋi
xi

=

m∑
µ=1

(aλµ − aiµ)xµ = −aiλ
m∑
µ=1

xµ = −aiλH . (3.11)

By integration and upon using the initial condition,

xλ(t) =
x

(0)
λ

x
(0)
i

xi(t) exp(−aiλht) .

Notice that this formula is correct even when x
(0)
λ = 0. Substituted in (3.7) we get

ẋi
x2
i

(t) =

m∑
λ=1

aiλ
x

(0)
λ

x
(0)
i

exp(−aiλht) . (3.12)

When h 6= 0 a direct integration, taking into account the initial condition, yields

1

xi(t)
=

1

x
(0)
i

∑
λ 6=i x

(0)
λ

∑
λ6=i

x
(0)
λ exp(−aiλht) ,

which is (3.8) or (3.9), depending on whether i is smaller or strictly larger than m.

Otherwise, the right hand side of (3.12) is just a constant, to wit
∑
λ6=i aiλx

(0)
λ /x

(0)
i ,

and we obtain at once (3.10). �
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The above proposition can be generalized in case the right hand side of the i-th

equation of (3.7) has an additional linear term bixi, where bi ∈ C. In that case,

(3.11) becomes
ẋλ
xλ
− ẋi
xi

= −aiλH + bλ − bi ,

which is a constant, as before, and so these equations can again be integrated in

terms of elementary functions (it suffices to replace in the formulas aiλh by aiλh−
bλ + bi. However, the addition of these terms will in general destroy the Painlevé

property (P1) (and hence (P2)), because the right hand side of the degenerate linear

equations (2.13) gets replaced by −bix(0)
i , making them non-linear, hence without

solution, for general values of the constants bi.

To conclude, we also give a Lax equation for the Lotka-Volterra-Painlevé systems.

Proposition 3.4. The Lotka-Volterra-Painlevé system (3.1) admits the Lax form

L̇ = [L,M ], where L and M are the rank one matrices (with m non-zero columns),

defined by

L :=


x1 . . . x1 0 . . . 0
x2 . . . x2 0 . . . 0
...

...
...

...
xn . . . xn 0 . . . 0

 , M :=


a1x1 . . . a1x1 0 . . . 0
a2x2 . . . a2x2 0 . . . 0

...
...

...
...

anxn . . . anxn 0 . . . 0

 .

Proof. For any i = 1, . . . , n and µ = 1, . . . ,m, we compute the (i, µ)-th entry of the

Lax equation L̇ = [L,M ]. On the one hand, L̇iµ = ẋi. On the other hand,

[L,M ]iµ =

m∑
λ=1

(LiλMλµ −MiλLλµ) =

m∑
λ=1

(aλxixλ − aixλxi) = xi

m∑
λ=1

aiλxλ ,

so that the Lax equation is equivalent to ẋi = xi
∑m
λ=1 aiλxλ, (i = 1, . . . , n),

which is precisely (3.1). �

Notice that since L is of rank one, the only spectral invariant that we obtain

from it is the trace of L, which is the Hamiltonian H =
∑m
i=1 xi of (3.1). As is often

the case with Lax equations, we do not obtain the Casimirs as spectral invariants.

4. Conclusions

In this paper, we have studied Lotka–Volterra systems of the form

ẋi = xi

m∑
λ=1

aiλxλ , (i = 1, . . . , n) , (4.1)

where A = (aiλ) is an n ×m skew-symmetric matrix derived from a Hamiltonian

linear function H = x1 + x2 + · · · + xm through a family of compatible quadratic

Poisson structures. By imposing on (4.1) what we call the “strong” Painlevé (P–)

property, i.e that all variables can be expressed as Laurent series starting with a
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simple pole and n− 2 free parameters at their leading order terms, we establish a

set of cocycle relations through which we can integrate these systems completely.

More specifically, we have shown that, under the above conditions, the matrix

elements aiλ can be written in terms of n− 1 free constants as aiλ = aλ − ai, with

1 6 i 6 n, 1 6 λ 6 m and can be used to demonstrate that the equations (4.1)

are Liouville integrable, superintegrable, of Nambu type and can be written in Lax

pair form. Moreover, they can be completely integrated in terms of elementary

functions even if we add to the i-th equation a linear term of the form µixi with µi

arbitrary and 1 6 i 6 n.

It is possible, of course, to consider Laurent series solutions of (4.1) with leading

orders xi(t) ∼ τpi other than simple poles, i.e. with pi > −1 or pi < −1 for some

1 6 i 6 n. Indeed, such systems are known, for example the so-called periodic Kac-

van Moerbeke system, which corresponds in our notations to setting ai,j = δi+1,j

for i < j: it satisfies the Painlevé property and is actually algebraic completely

integrable (see [9]). It would therefore be interesting to weaken our strong Painlevé

property so as to capture also this class of systems. We plan to come back to this

question in a future publication.
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