
Liouville integrability and superintegrability of a generalized
Lotka-Volterra system and its Kahan discretization

Theodoros E. Kouloukas1,3, G. R. W. Quispel1 and P. Vanhaecke2

1 Department of Mathematics and Statistics,
La Trobe University, Bundoora VIC 3086, Australia
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86962 Futuroscope Chasseneuil Cedex, France
3 SMSAS, University of Kent, Canterbury, UK

Abstract. We prove the Liouville and superintegrability of a generalized

Lotka-Volterra system and its Kahan discretization.

Contents

1. Introduction 1

2. A generalized Lotka-Volterra system 3

3. The Kahan discretization 10

4. Conclusion 13

References 14

1. Introduction

The Kac-van Moerbeke system is a prime example of an integrable system,

described by the differential equations

ẋi = xi(xi+1 − xi−1) , (i = 1, . . . , n) , (1.1)

where x0 = xn+1 = 0. It was first introduced and studied, together with some of its

generalizations, by Lotka to model oscillating chemical reactions and by Volterra

to describe population evolution in a hierarchical system of competing species (see
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[12, 18]). By now, many generalizations of (1.1) have been introduced and studied,

often from the point of (Liouville or algebraic) integrability [2, 8, 9] or Lie theory

[2, 5], but also in relation with other integrable systems [7, 13, 17]. In our recent

study [17], a natural generalization of (1.1) came up in the study of a class of

multi-sums of products: we considered the system

ẋi = xi

∑
j>i

xj −
∑
j<i

xj

 , (i = 1, . . . , n) , (1.2)

we showed its Liouville and superintegrability and we used it to show the Liouville

and superintegrability (or non-commutative integrability) of the Hamiltonian sys-

tem defined by the above-mentionned class of functions. The system (1.2) has a

Hamiltonian structure, described by the Hamiltonian function and Poisson struc-

ture, which are respectively given by

H =

n∑
i=1

xi , {xi, xj} = xixj , (i < j) . (1.3)

We consider in the present paper the case of a general linear Hamiltonian

H =

n∑
i=1

aixi , (1.4)

with the Poisson structure still given by (1.3). The differential equations which

describe this Hamiltonian system are given by

ẋi = xi

∑
j>i

ajxj −
∑
j<i

ajxj

 , (i = 1, . . . , n) . (1.5)

When all the parameters ai are different from zero, a trivial rescaling (which pre-

serves the Poisson structure) leads us back to (1.3), so the novelty of our study is

mainly concerned with the case where at least one (but not all!) of the parameters

ai is zero, though all results below are also valid in case all the parameters ai are

different from zero. By explicitly exhibiting a set of [(n+ 1)/2] involutive (Poisson

commuting) rational functions, which are shown to be functionally independent,

we show that (1.4) is Liouville integrable (Theorems 2.3 and 2.4). We also exhibit

n− 1 functionally independent first integrals, thereby showing that (1.5) is super-

integrable (Theorem 2.5). Finally, we construct for any initial conditions explicit

solutions of (1.5) (Proposition 2.6).

In Section 3 we study the Kahan discretization (see [4, 10, 14, 15] and the

references therein) of (1.5), which we explicitly describe (Proposition 3.1). We also

show that the map defined by the Kahan discretization is a Poisson map (Propo-

sition 3.2). Upon comparing the latter map with the solutions to the continuous

system (1.5), we prove that the Kahan map is a time advance map for this Hamil-

tonian system, and we derive from it that the discrete system is both Liouville and
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superintegrable, with the same first integrals as the continuous system (Proposition

3.4 and Corollary 3.3).

We finish the paper with some comments and perspectives for future work

(Section 4).

2. A generalized Lotka-Volterra system

Let n be an arbitrary positive integer. We consider on Rn the generalized

Lotka-Volterra system

ẋi = xi

n∑
j=1

Aijxj , (i = 1, . . . , n) , (2.1)

where A is the square matrix

A =


0 a2 a3 . . . an
−a1 0 a3 . . . an
−a1 −a2 0 . . . an

...
...

...
. . .

−a1 −a2 −a3 . . . 0

 , (2.2)

and (a1, . . . , an) ∈ Rn\{(0, . . . , 0)}. Like most Lotka-Volterra system, it has a linear

function as Hamiltonian, to wit H := a1x1 + a2x2 + · · ·+ anxn; the corresponding

(quadratic) Poisson structure is defined by the brackets {xi, xj} := xixj , for 1 6

i < j 6 n. The following elementary lemma, which will play a key rôle in the

proof of Theorem 2.3 below, shows that rescaling the parameters ai by non-zero

constants leads to isomorphic Hamiltonian systems.

Lemma 2.1. Let c1, . . . , cn be arbitrary non-zero real constants. Then the lin-

ear change of coordinates xi 7→ xi/ci transforms the generalized Lotka-Volterra

system with parameters a1, . . . , an into the generalized Lotka-Volterra system with

parameters a1c1, . . . , ancn.

Proof. Let yi := xi/ci. Then {yi, yj} = {xi, xj} /(cicj) =
xixj
cicj

= yiyj , for

any i < j, which shows that the change of variables preserves the Poisson structure.

Clearly, in terms of the new variables, the Hamiltonian reads H = a1c1y1 + · · · +
ancnyn, which is the Hamiltonian of the generalized Lotka-Volterra system with

constants aici. �

As an application of the lemma, we have that when the parameters ai are all

non-zero, we can rescale them all to 1, and (2.1) becomes (1.2) (which is system

(3.5) in [17]). In this case, the matrix A is skew-symmetric and so (2.1) is a genuine

Lotka-Volterra system, whose Liouville and superintegrability have extensively been

studied in [17]. When some of the parameters ai are zero, we get new (non-

isomorphic) systems. As we will show in this section, all these systems are Liouville

and superintegrable.
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For the study of the general case, it is convenient to introduce the functions

vi := a1x1 + · · · + aixi, for i = 1, . . . , n; we also set v0 := 0. In terms of these

functions, H = vn and the system (2.1) can equivalently be written as

ẋi = xi(H − vi − vi−1) , (i = 1, . . . , n) . (2.3)

For i < j, one has {vi, xj} = vixj , and so the Poisson brackets of the functions vi

are given by

{vi, vj} = vi(vj − vi) , (i < j) . (2.4)

In particular, remembering that H = vn,

v̇i = {vi, H} = vi(H − vi) , (2.5)

for i = 1, . . . , n. If a1a2 . . . an 6= 0, the functions vi define new coordinates on Rn,

since then xk = (vk − vk−1)/ak for k = 1, . . . , n; moreover, the system (2.1) totally

decouples in terms of these coordinates since it takes the simple form v̇i = vi(H−vi),
for i = 1, . . . , n. However, the functions vi do not define coordinates when at least

one of the ak is zero, because if ak = 0 then vk = vk−1.

With a view to proving Liouville integrability, we define for k = 1, . . . ,
[
n
2

]
the

functions

Jk :=
x1x3 . . . x2k−1
x2x4 . . . x2k

, (2.6)

and for k = 1, . . . ,
[
n+1
2

]
the functions

Fk :=


v2k−1

x2k+1x2k+3 . . . xn
x2kx2k+2 . . . xn−1

if n is odd,

v2k
x2k+2x2k+4 . . . xn
x2k+1x2k+3 . . . xn−1

if n is even.

(2.7)

Notice that F[(n+1)/2] = vn = H, the Hamiltonian (1.4). For odd n, we also

introduce the function

C :=
x1x3 . . . xn
x2x4 . . . xn−1

.

Proposition 2.2. For any k, l ∈ {1, . . . ,
[
n
2

]
},

{Jk, Jl} = {Fk, Fl} = {Fk, H} = 0 . (2.8)

Moreover, when n is odd, C is a Casimir function of the Poisson bracket {· , ·}.

Proof. First, we notice that for any k = 1, . . . ,
[
n
2

]
xi
∂Jk
∂xi

=

{
(−1)i+1Jk for 1 6 i 6 2k ,

0 for 2k < i 6 n .
(2.9)
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It follows that, for k < l ∈ {1, . . . ,
[
n
2

]
}, we have

{Jk, Jl} =
∑

16i<j6n

xixj

(
∂Jk
∂xi

∂Jl
∂xj
− ∂Jk
∂xj

∂Jl
∂xi

)
=

∑
16i<j62k

[(−1)i+1Jk(−1)j+1Jl − (−1)j+1Jk(−1)i+1Jl]

+
∑

16i62k<j62l

(−1)i+1Jk(−1)j+1Jl = 0 .

This shows the first equality of (2.8). We show the two other equalities of (2.8) for

even n. To do this, it suffices to show that {Fk, Fl} = 0 for 1 6 k < l 6 n/2 since

Fn/2 = H. We set Fk = v2kIk, i.e., we define Ik by

Ik :=
x2k+2x2k+4 . . . xn
x2k+1x2k+3 . . . xn−1

.

As in (2.9), we have that

xi
∂Ik
∂xi

=

{
0 for 1 6 i 6 2k ,

(−1)iIk for 2k < i 6 n ,
(2.10)

from which it follows, as above, that {Ik, Il} = 0 and that {Ik, Jl} = 0 for all

k, l ∈ {1, . . . , n/2}. Also, for any j ∈ {1, . . . , n}

{Ik, xj} =

n∑
i=1

∂Ik
∂xi
{xi, xj} =

 ∑
16i<j

xi
∂Ik
∂xi
−
∑
j<i6n

xi
∂Ik
∂xi

xj

and using (2.10) we derive that

{Ik, xj} =

{
0 for j 6 2k ,

−Ikxj for 2k < j ,
and {Ik, vj} =

{
0 for j 6 2k ,

−Ik(vj − v2k) for 2k < j .
(2.11)

It follows from (2.4) and (2.11) that, for any k < l 6 n/2,

{Fk, Fl} = {v2kIk, v2lIl} = v2kIl{Ik, v2l}+ v2lIk{v2k, Il}+ IkIl{v2k, v2l}

= −v2kIkIl(v2l − v2k) + 0 + v2kIkIl(v2l − v2k) = 0 .

This shows the second half of (2.8) for n even; for n odd, the proof is very similar

(in this case, H = F(n+1)/2 and one proves as above that {Fk, Fl} = 0 for 1 6 k <

l 6 (n+ 1)/2). Finally we show that C is a Casimir function (when n is odd). For

j = 1, . . . , n,

{C, xj} =

n∑
i=1

∂C

∂xi
{xi, xj} =

 ∑
16i<j

xi
∂C

∂xi
−
∑
j<i6n

xi
∂C

∂xi

xj

=
∑

16i<j

(−1)i+1Cxj −
∑
j<i6n

(−1)i+1Cxj = 0 ,

which shows our claim. �

Theorem 2.3. Suppose that n is even. Let ` denote the smallest integer such

that a`+1 6= 0 (in particular, ` = 0 when a1 6= 0) and let λ :=
[
`
2

]
. The n

2 functions

J1, J2, . . . , Jλ, H, Fλ+1, Fλ+2, . . . , Fn
2−1 are pairwise in involution and functionally

independent, hence they define a Liouville integrable system on (Rn, {· , ·}).
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Proof. We know already from Proposition 2.2 that the functions Jk are pair-

wise in involution, and also the functions Fl (recall that Fn/2 = H). We show that

{Jk, Fl} = 0 for k = 1, . . . , λ and l = λ+ 1, . . . , n2 . To do this, we use the following

analog of (2.11), which is easily obtained from (2.9):

{Jk, vj} =

{
Jkvj for j 6 2k ,
Jkv2k for 2k < j .

It follows that, for the above values of k, l, which satisfy k 6 λ < l, one has

{Jk, v2l} = Jkv2k = 0 (the last equality follows from 2k 6 2λ 6 ` and vi = 0 for

i 6 `), and so

{Jk, Fl} = {Jk, v2lIl} = v2k{Jk, Il}+ Il{Jk, v2l} = 0 ;

in the last step we also used that the functions Ii and Jj are in involution (see the

proof of Proposition 2.2). This shows that the n
2 functions

J1, J2, . . . , Jλ, H, Fλ+1, Fλ+2, . . . , Fn
2−1 (2.12)

are pairwise in involution.

We now show that these functions are functionally independent. We first do

this when all ai are zero, except for a`+1 which we may suppose to be equal to 1;

then vi = x`+1 = H for i > ` and vi = 0 for i 6 `. The Jacobian matrix of the

above functions (2.12) with respect to x1, . . . , xn (in that order) is easily seen to

have the following block form:

Jac =

A 0 0
0 1 0
0 ? B

 ,

where A has size λ × ` and B has size (n2 − λ − 1) × (n − ` − 1). We show that

this matrix has full rank n/2 (which is equal to the number of rows of Jac). To

do this, it is sufficient to show that A has full rank λ and that B has full rank

n/2 − λ − 1 (the value of the column vector ? is irrelevant). Consider the square

submatrix A′ of A consisting only of its even-numbered columns. For k < l we have

A′kl = Ak,2l = ∂Jk/∂x2l = 0, since Jk only depends on x1, . . . , x2k. It follows that

A′ is a lower triangular matrix. Moreover, A′kk = Ak,2k = ∂Jk/∂x2k 6= 0, hence A′

is non-singular. This shows that rank (A) = rank (A′) = λ. Similarly, we extract

from B a square submatrix B′ by selecting from B its even-numbered (respectively

odd-numbered) columns when ` is even (respectively odd). For k > l we have

B′kl = ∂Fλ+k/∂x2λ+1+2l = ∂(v2λ+2kIλ+k)/∂x2λ+1+2l = ∂(x`+1Iλ+k)/∂x2λ+1+2l =

x`+1∂Iλ+k/∂x2λ+1+2l = 0, since Iλ+k is independent of x1, . . . , x2λ+2k. How-

ever, B′kk = x`+1∂Iλ+k/∂x2λ+1+2k 6= 0, because Iλ+k does depend on x2λ+1+2k.

This shows that B′ is a non-singular upper triangular matrix, hence rank (B) =

rank (B′) = n/2 − λ − 1. We have thereby shown that if H = x`+1, then the

n/2 functions in (2.12) are functionally independent; since the rank of the Poisson

structure {· , ·} is n, we have shown Liouville integrability in this case.
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We now consider the general case, where several of the ai may be non-zero.

We may still suppose that a`+1 = 1; as above, a1 = · · · = a` = 0. Let us view

a`+2, . . . , an as arbitrary parameters and consider the matrix

Jac′ :=

A′ 0 0
0 1 0
0 ? B′

 ,

where A′ and B′ are square matrices which are constructed as in the previous

paragraph. It depends polynomially on the parameters a`+2, . . . , an and we have

shown that the determinant of Jac′ is non-zero when we set all the parameters

a`+2, . . . , an equal to zero. By continuity, the determinant remains non-zero when

the parameters a`+2, . . . , an are sufficiently close to zero, which proves that the n/2

functions in (2.12) are functionally independent for such values of the parameters.

In view of Lemma 2.1, any non-zero rescaling of the parameters leads to isomorphic

systems, so for any values of a`+2, . . . , an, the functions in (2.12) are functionally

independent. This shows Liouville integrability for any values of the parameters

a1, . . . , an. �

When n is odd, the rank of the Poisson structure {· , ·} is n− 1, so for Liouville

integrability we need (n + 1)/2 functionally independent functions in involution.

Recall from Proposition 2.2 that in this case C is a Casimir function. The Liouville

integrability is in this case given by the following theorem, whose proof is omitted

because it is very similar to the proof of Theorem 2.3.

Theorem 2.4. Suppose that n is odd. As before, let ` denote the smallest inte-

ger such that a`+1 6= 0 and let λ :=
[
`
2

]
. The n+1

2 functions J1, J2, . . . , Jλ, H, Fλ+2,

Fλ+3, . . . , Fn−1
2
, C are pairwise in involution and functionally independent, hence

define a Liouville integrable system on (Rn, {· , ·}).

We show in the following theorem that the Hamiltonian vector field defined by

H is also superintegrable.

Theorem 2.5. The Hamiltonian system (1.5) has n− 1 functionally indepen-

dent first integrals, hence is superintegrable.

Proof. We denote, as before, by ` the smallest integer such that a`+1 6= 0

(in particular, ` = 0 when a1 6= 0). Suppose first that a`+1 is the only ai which

is different from zero; by a simple rescaling, we may assume a`+1 = 1, so that

H = x`+1. Then the equations of motion (1.5) take the following simple form:

ẋi =

 xiH i 6 ` ,
0 i = `+ 1 ,

−xiH i > `+ 1 .
(2.13)
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When ` = 0, a complete set of n−1 independent first integrals of (2.13) is given by

H = x1 and xi/x2, (i = 3, . . . , n). When ` 6= 0, we can take besides the Hamiltonian

H = x`+1 the functions xi/x1, (i = 2, . . . , `) and x1xi, (i = `+ 2, . . . , n).

In the general case, we partition the set {1, 2, . . . , n} into three subsets (A or

C may be empty):

A := {1, 2, . . . , `} ,

B := {i | ai 6= 0} ,

C := {i | i > `+ 1 and ai = 0} .

Since we have treated the case #B = 1, we may henceforth assume that #B > 2.

Notice that each function vi (and in particular H) depends only on the variables

xi with i ∈ B. It follows that the differential equations (2.3),

ẋi = xi(H − vi − vi−1) , (i ∈ B) ,

involve only the variables xj with j ∈ B, so they form a subsystem which is the same

as the original system, but now of dimension m := #B, and with all parameters

ai, i ∈ B different from zero. As explained above (see Lemma 2.1 and the remarks

which follow its proof) this subsystem is by a simple rescaling isomorphic to the

system (1.2), for which we know from [17] that it is superintegrable, with m − 1

first integrals which we denote here by G1, . . . , Gm−1. We do not need here the

precise formulas for these functions, but only the fact that they depend only on the

variables xj with j ∈ B; this obvious fact implies that the functions G1, . . . , Gm−1

are first integrals of the full system (1.5) as well. Consider, for i ∈ A ∪ C the

following rational function:

Ki :=


(H − a`+1x`+1)xi

x`+1
, i ∈ A ,

(H − a`+1x`+1)v2i
xix`+1

, i ∈ C .

Notice that H − a`+1x`+1 is different from zero, because #B > 2. For i ∈ A, we

have that

(lnKi)
· = (ln(H − a`+1x`+1))· + (ln(xi/x`+1))·

= − a`+1ẋ`+1

H − a`+1x`+1
+ a`+1x`+1 = 0 .

Indeed, ẋ`+1 = x`+1(H − v`+1 − v`) = x`+1(H − a`+1x`+1). Similarly, for i ∈ C,

we have from (2.3) and (2.5) that

(lnKi)
· = (ln(H − a`+1x`+1))· + 2(ln vi)

· − (ln(xix`+1))·

= −a`+1x`+1 + 2(H − vi)− (H − 2vi)− (H − a`+1x`+1) = 0 .

This shows that the n − 1 functions G1, . . . , Gm−1 and Ki, i ∈ A ∪ C, are first

integrals of (1.5). Recall that the functionally independent functions G1, . . . , Gm−1

depend on xi with i ∈ B only and notice that for i ∈ A∪C the variable xi appears
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only in Ki. It follows that these n − 1 first integrals of (1.5) are functionally

independent, hence (1.5) is superintegrable. �

Finally, we compute the solution x(t) of (2.1) which corresponds to any given

initial condition x(0) = (x
(0)
1 , . . . , x

(0)
n ). We also introduce the derived functions

vi(t) = a1x1(t) + · · · + aixi(t), for i = 1, . . . , n. We denote by h0 the value of the

Hamiltonian H at the initial condition x(0) and we denote v
(0)
i := vi(0). It follows

from (2.3) and (2.5) that we need to solve

dxi
dt

(t) = xi(t)(h0 − vi(t)− vi−1(t)) , (i = 1, . . . , n) , (2.14)

where
dvi
dt

(t) = vi(t)(h0 − vi(t)) , (i = 1, . . . , n) . (2.15)

When v
(0)
i = 0, the latter equation has vi(t) = 0 as its unique solution; otherwise

(2.15) is easily integrated by a separation of variables, giving

vi(t) =
1

1
h0

+ Cie−h0t
, or vi(t) =

1

t+ C ′i
, (2.16)

depending on whether h0 6= 0 or h0 = 0. The integrating constants Ci and C ′i are

computed from vi(0) = v
(0)
i , which leads to

Ci =
1

v
(0)
i

− 1

h0
, and C ′i =

1

v
(0)
i

.

The functions vi(t) in (2.16) have very simple primitives, to wit∫
vi(t)dt = ln

(
eh0t

h0
+ Ci

)
, or

∫
vi(t)dt = ln(t+ C ′i) . (2.17)

Substituted in (2.14), which we write now as d ln xi
dt (t) = h0 − vi(t) − vi−1(t), we

obtain by integration and by using the primitives (2.17) (or
∫
vi(t)dt = constant in

case v
(0)
i = 0) and the initial condition xi(0) = x

(0)
i , the following result:

Proposition 2.6. The solution x(t) of (2.1) which corresponds to the initial

condition x(0) = (x
(0)
1 , . . . , x

(0)
n ) is given by

xi(t) = x
(0)
i

(1− f(t)h0)(1 + f(t)h0)(
1− f(t)h0 + 2f(t)v

(0)
i−1

)(
1− f(t)h0 + 2f(t)v

(0)
i

) , (i = 1, . . . , n) ,

(2.18)

where f(t) = eh0t−1
(eh0t+1)h0

= 1
h0

tanh(h0t
2 ) when h0 (the value of H at x(0)) is different

from zero and f(t) = t/2 otherwise. Also, v
(0)
i = a1x

(0)
1 + · · ·+ aix

(0)
i .

Notice that when h0 6= 0, (2.18) can be rewritten as

xi(t) =
x
(0)
i eth0h20(

h0 + (eth0 − 1)v
(0)
i−1

)(
h0 + (eth0 − 1)v

(0)
i

) , (i = 1, . . . , n) .
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Remark 2.7. When several of the parameters ai in the Hamiltonian function

H are equal to zero, so that H is independent of the corresponding variables xi, the

vector field (1.5) is a Hamiltonian vector field with respect to a family of compatible

Poisson structures, always with the same Hamiltonian H. Indeed, suppose that

ai = aj = 0, with i < j. Then, in the computation of the vector field ẋk = {xk, H},
k = 1, . . . , n, the Poisson brackets {xi, xj} = −{xj , xi} are not used, so we may

replace {xi, xj} = −{xj , xi} by an arbitrary function fij of x1, . . . , xn without any

effect on the vector field. However, in order for the new bracket to be a Poisson

bracket, it has to satisfy the Jacobi identity, which puts several restrictions on the

function fij . One way to satisfy this restriction is to take fij := aijxixj , where aij

is an arbitrary constant. In fact, replacing {xi, xj} = xixj by {xi, xj} = aijxixj

for all i < j for which ai = aj = 0, the new brackets will still be of the general form

{xi, xj} = bijxixj , known in the literature as diagonal brackets; such brackets are

known to automatically satisfy the Jacobi identity [11, Example 8.14] so they are

Poisson brackets. Clearly, any linear combination of these diagonal Poisson brackets

is again a diagonal Poisson bracket, hence all these brackets are compatible. The

upshot is that when k > 2 parameters are equal to zero, then (1.5) has a multi-

Hamiltonian structure: it is Hamiltonian with respect to a
(
k
2

)
-dimensional family

of Poisson brackets.

3. The Kahan discretization

In this section we consider the Kahan discretization of the system (2.1). Let

us recall quickly the construction of the Kahan discretization of a quadratic vector

field ẋi = Qi(x) (see e.g. [4]). Let Φi(y, z) denote the symmetric bilinear form

which is associated to the quadratic form Qi and let ε denote a positive parameter,

which should be thought of as being small. Then the Kahan discretization with

step size ε is the map1 xi 7→ x̃i, implicitly defined by

x̃i − xi = εΦi(x, x̃) . (3.1)

We refer to this map as the Kahan map (associated to ẋi = Qi(x)). It is well

known that the Kahan map preserves the linear integrals of the initial continuous

system (quadratic vector field). So, in our case of the generalized Lotka-Volterra

system, its Hamiltonian function H = a1x1 + a2x2 + · · · + anxn is an invariant of

the Kahan map. As we are going to show in this section the Kahan map (of this

system) preserves the Poisson structure as well; we will also see in the next section

that all constants of motion, in particular the ones that appear in Theorems 2.3,

2.4 and 2.5, are also invariants of the Kahan map.

1When the map which is defined by the discretization is iterated, one often writes it as

x
(m)
i 7→ x

(m+1)
i .
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We begin with a lemma which provides an explicit formula for the Kahan

discretization of the generalized Lotka-Volterra system.

Proposition 3.1. The Kahan discretization with step size 2ε of the system

(2.1) is the rational map K : (x1, . . . , xn) 7→ (x̃1, . . . , x̃n), given by

x̃i = xi
(1− εH)(1 + εH)

(1− εH + 2εvi−1)(1− εH + 2εvi)
, (i = 1, . . . , n) . (3.2)

Proof. Let us write ṽj = a1x̃1 + · · ·+ aj x̃j , in analogy with the functions vj .

According to (3.1), the Kahan discretization of (2.3) (which is equivalent to (2.1))

is given by

x̃i − xi = εxi(H − ṽi − ṽi−1) + εx̃i(H − vi − vi−1) , (i = 1, . . . , n) , (3.3)

where we have used that H is invariant (H̃ = H). Summing up these equations,

multiplied by ai, for i = 1, . . . , j, we get

ṽj − vj = ε(vjH + ṽjH − δj) , (3.4)

where δj is given by

δj :=

j∑
i=1

aixi(ṽi + ṽi−1) +

j∑
i=1

aix̃i(vi + vi−1) = 2vj ṽj .

The last equality can be proven by an easy recursion on j: on the one hand,

δ1 = a1x1ṽ1 + a1x̃1v1 = 2v1ṽ1, while on the other hand

δj+1 − δj = aj+1xj+1(ṽj+1 + ṽj) + aj+1x̃j+1(vj+1 + vj)

= 2aj+1xj+1ṽj + 2aj+1x̃j+1vj + 2a2j+1xj+1x̃j+1 ,

and so

δj+1 = 2aj+1xj+1ṽj + 2aj+1x̃j+1vj + 2a2j+1xj+1x̃j+1 + 2vj ṽj

= 2(vj + aj+1xj+1)(ṽj + aj+1x̃j+1) = 2vj+1ṽj+1 .

Solving (3.4) (with δj = 2vj ṽj) linearly for ṽj we get

ṽj = vj
1 + εH

1− εH + 2εvj
. (3.5)

Substituting this into (3.3) leads to

x̃i−xi = εxi

(
H − vi

1 + εH

1− εH + 2εvi
− vi−1

1 + εH

1− εH + 2εvi−1

)
+ εx̃i(H−vi−vi−1) ,

which can be solved linearly for x̃i. It yields the formula (3.2). �

Proposition 3.2. The Kahan map K, given by (3.2), is a Poisson map with

respect to the Poisson bracket {· , ·}.
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Proof. Recall that the Poisson bracket {· , ·} is given by {xi, xj} = xixj , for

1 6 i < j 6 n. Therefore, we need to show that {x̃i, x̃j} = x̃ix̃j , for 1 6 i < j 6 n.

We set, for k = 1, . . . , n,

Ak = xk(1− εH)(1 + εH), Bk = (1− εH + 2εvk−1)(1− εH + 2εvk) ,

so that x̃k = Ak/Bk. Then

{x̃i, x̃j} =
AiAj {Bi, Bj} −AiBj {Bi, Aj} −BiAj {Ai, Bj}+BiBj {Ai, Aj}

B2
iB

2
j

.

The Poisson brackets in the right-hand side of this equation can be computed using

besides (2.4) the following formulas:

{xi, H} = xi(H − vi − vi−1) , {xi, vj} =

{
xi(vj − vi − vi−1) for i 6 j ,
−xivj for i > j .

After some computation, it leads to

{x̃i, x̃j} =
(1− ε2H2)2xixj

(1− εH + 2εvi−1)(1− εH + 2εvi)(1− εH + 2εvj−1)(1− εH + 2εvj)

= x̃ix̃j ,

as was to be shown.

�

An easy comparison of the solution (2.18) to the continuous system and the

Kahan map (3.2) shows that the Kahan map is a time advance map for the con-

tinuous system, hence preserves all integral curves of the continuous system and

so all constants of motion of the continuous system are invariants for the Kahan

map. Precisely, let x(0) = (x
(0)
1 , . . . , x

(0)
n ) be any point of Rn and let ε ∈ R be small

but positive. As above, the value of H at x(0) is denoted by h0. Let tε denote

the unique solution to the equation f(tε) = ε, where f(t) is the function given in

Proposition 2.6. With these notations, (2.18) and (3.2) imply that xi(tε) = x̃
(0)
i . It

leads, in view of Theorems 2.3 and 2.4, to the following corollary:

Corollary 3.3. The Kahan discretization (3.2) is Liouville integrable, with

invariants given in Theorem 2.3 (resp. Theorem 2.4) when n is even (resp. when n

is odd). It is also superintegrable, with invariants given in Theorem 2.5.

Let us denote the k-th iterate of the Kahan map (3.2) starting from the initial

condition x(0) = (x
(0)
1 , . . . , x

(0)
n ) by x(k). Then the relation between the solutions

to the continuous system and the Kahan map can be written as xi(tε) = x
(1)
i . Now

notice that tε depends only on x(0) through h0; this implies that the restriction of

K to the integral curve through x(0) is the time tε flow of the continuous system

(restricted to the integral curve through x(0)). Thus, x(2) is obtained from x(1) by

the time tε flow, and hence from x(0) by the time 2tε flow, x(2) = x(2tε); more

generally, x(m) is obtained from x(0) by the time mtε flow, x(m) = x(mtε). It leads

to the following proposition.
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Proposition 3.4. The solution of the discrete system

x̃i = xi
(1− εH)(1 + εH)

(1− εH + 2εvi−1)(1− εH + 2εvi)
, (i = 1, . . . , n) (3.6)

with H =
∑
aixi and initial condition x(0) is given by

x
(m)
i = x

(0)
i

( 1+εh0

1−εh0
)mh20(

h0 + v
(0)
i−1(( 1+εh0

1−εh0
)m − 1)

)(
h0 + v

(0)
i (( 1+εh0

1−εh0
)m − 1)

) . (3.7)

when h0 (the value of H at x(0)) is different from zero. When h0 = 0,

x
(m)
i = x

(0)
i

1(
1 + 2mεv

(0)
i−1

)(
1 + 2mεv

(0)
i

) . (3.8)

Proof. In view of Proposition 2.6,

x
(m)
i = xi(mtε)

= x
(0)
i

(1− f(mtε)h0)(1 + f(mtε)h0)(
1− f(mtε)h0 + 2f(mtε)v

(0)
i−1

)(
1− f(mtε)h0 + 2f(mtε)v

(0)
i

) .
(3.9)

When h0 6= 0, it follows easily from f(t) = eth0−1
(eth0+1)h0

and f(tε) = ε that etεh0 =
1+h0ε
1−h0ε

. In turn, we can compute f(mtε) from it, namely

f(mtε) =
1

h0

emtεh0 − 1

emtεh0 + 1
=

1

h0

(
1+h0ε
1−h0ε

)m
− 1(

1+h0ε
1−h0ε

)m
+ 1

. (3.10)

It now suffices to substitute (3.10) in (3.9) and to simplify the resulting expression

to obtain (3.7). When h0 = 0, we have that f(mtε) = mε, since f(t) = t/2.

Substituted in (3.9) (with h0 = 0), we get at once (3.8). �

4. Conclusion

We presented a new class of generalized Lotka-Volterra systems which are, to-

gether with their Kahan discretizations, Liouville integrable and superintegrable,

and we provided their explicit solutions. Since linear Hamiltonians are always pre-

served under Kahan discretization and since the Poisson structure that we used is

quadratic, it is natural to ask which quadratic Poisson structures on Rn are pre-

served by the Kahan discretization of every Hamiltonian vector field with linear

Hamiltonian; in view of what we have shown, the Poisson structure defined by de-

fined by the brackets {xi, xj} := xixj , for 1 6 i < j 6 n, belongs to this class. The

Hamiltonian systems which are defined by them would then be good candidates

for being Liouville integrable and/or superintegrable. In view of the recent devel-

opments in discretization of polynomial vector fields by polarization ([3]), similar

questions can also be considered for higher degree polynomial Hamiltonian vector

fields.
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