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1. Introduction

The Kac-van Moerbeke system is a prime example of an integrable system,

described by the differential equations
jﬁi :xi(l‘i+l —.’Eifl), (’i: 1,...,7’1,) 5 (1.1)

where g = 41 = 0. It was first introduced and studied, together with some of its

generalizations, by Lotka to model oscillating chemical reactions and by Volterra

to describe population evolution in a hierarchical system of competing species (see
2010 Mathematics Subject Classification. 37J35, 39A22.
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[12, 18]). By now, many generalizations of (1.1) have been introduced and studied,
often from the point of (Liouville or algebraic) integrability [2, 8, 9] or Lie theory
[2, 5], but also in relation with other integrable systems [7, 13, 17]. In our recent
study [17], a natural generalization of (1.1) came up in the study of a class of

multi-sums of products: we considered the system

Bi=a (Y w—y x|, (i=1,...,n), (1.2)

J>i J<i
we showed its Liouville and superintegrability and we used it to show the Liouville
and superintegrability (or non-commutative integrability) of the Hamiltonian sys-
tem defined by the above-mentionned class of functions. The system (1.2) has a
Hamiltonian structure, described by the Hamiltonian function and Poisson struc-

ture, which are respectively given by
n
H = Zwl ) {zs, 2} =2y, (i<j). (1.3)
i=1
We consider in the present paper the case of a general linear Hamiltonian
n
H = Z a;T; (1.4)
i=1

with the Poisson structure still given by (1.3). The differential equations which

describe this Hamiltonian system are given by

= Zajxj—Zaja:j ) (i=1,...,n). (1.5)
J>i i<t

When all the parameters a; are different from zero, a trivial rescaling (which pre-
serves the Poisson structure) leads us back to (1.3), so the novelty of our study is
mainly concerned with the case where at least one (but not alll) of the parameters
a; is zero, though all results below are also valid in case all the parameters a; are
different from zero. By explicitly exhibiting a set of [(n 4 1)/2] involutive (Poisson
commuting) rational functions, which are shown to be functionally independent,
we show that (1.4) is Liouville integrable (Theorems 2.3 and 2.4). We also exhibit
n — 1 functionally independent first integrals, thereby showing that (1.5) is super-
integrable (Theorem 2.5). Finally, we construct for any initial conditions explicit

solutions of (1.5) (Proposition 2.6).

In Section 3 we study the Kahan discretization (see [4, 10, 14, 15] and the
references therein) of (1.5), which we explicitly describe (Proposition 3.1). We also
show that the map defined by the Kahan discretization is a Poisson map (Propo-
sition 3.2). Upon comparing the latter map with the solutions to the continuous
system (1.5), we prove that the Kahan map is a time advance map for this Hamil-

tonian system, and we derive from it that the discrete system is both Liouville and
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superintegrable, with the same first integrals as the continuous system (Proposition
3.4 and Corollary 3.3).

We finish the paper with some comments and perspectives for future work
(Section 4).

2. A generalized Lotka-Volterra system

Let n be an arbitrary positive integer. We consider on R™ the generalized

Lotka-Volterra system

n
.’E.i:.’EiZAijl'j, (izl,...,n), (21)
j=1
where A is the square matrix
0 as as ce Qp,
—a 0 as ... Qp
A= | @ —a2 0 s an | (2.2)
—a1 —az —asz ... 0

and (a1, ...,a,) € R"\{(0,...,0)}. Like most Lotka-Volterra system, it has a linear
function as Hamiltonian, to wit H := a1x1 + asxs + - - - + anxy; the corresponding
(quadratic) Poisson structure is defined by the brackets {z;,x;} := x;x;, for 1 <
i < j < n. The following elementary lemma, which will play a key role in the
proof of Theorem 2.3 below, shows that rescaling the parameters a; by non-zero

constants leads to isomorphic Hamiltonian systems.

LEMMA 2.1. Let ¢1,...,c, be arbitrary non-zero real constants. Then the lin-
ear change of coordinates x; — x;/c; transforms the generalized Lotka-Volterra
system with parameters ay,...,a, into the generalized Lotka-Volterra system with

parameters aicCi, ..., 0nCp-

TiTj

PROOF. Let y; := x;/c;. Then {y;,y;} = {zi,z;} /(cic;) = e = Yl for
any ¢ < j, which shows that the change of variables preserves the Poisson structure.
Clearly, in terms of the new variables, the Hamiltonian reads H = ajciy; + - +
GnCnYn, Which is the Hamiltonian of the generalized Lotka-Volterra system with

constants a;c;. O

As an application of the lemma, we have that when the parameters a; are all
non-zero, we can rescale them all to 1, and (2.1) becomes (1.2) (which is system
(3.5) in [17]). In this case, the matrix A is skew-symmetric and so (2.1) is a genuine
Lotka-Volterra system, whose Liouville and superintegrability have extensively been
studied in [17]. When some of the parameters a; are zero, we get new (non-
isomorphic) systems. As we will show in this section, all these systems are Liouville

and superintegrable.
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For the study of the general case, it is convenient to introduce the functions
v; = ai1x1 + -+ a;x;, for i = 1,...,n; we also set vy := 0. In terms of these

functions, H = v,, and the system (2.1) can equivalently be written as
I:iZ.Ti(H—Ui—’()i,l), (z’zl,...,n). (23)

For i < j, one has {v;,z;} = v;z;, and so the Poisson brackets of the functions v;
are given by

{Ui,’Uj} = Ui(’l}j — ’Ui) N (Z < ]) . (24)

In particular, remembering that H = v,

’[}i = {’Uz',H} = ’Ui(H — ’Ui) s (25)
fori=1,...,n. If a1as...a, # 0, the functions v; define new coordinates on R",
since then xy = (v — vg—1)/ay for k = 1,...,n; moreover, the system (2.1) totally

decouples in terms of these coordinates since it takes the simple form v; = v;(H—v;),
for i =1,...,n. However, the functions v; do not define coordinates when at least

one of the ay is zero, because if ar = 0 then vy = vi_1.

With a view to proving Liouville integrability, we define for k =1,..., [%] the
functions

T1T3...T2k—1
Jp 1= 8 Tkl (2.6)
To2X4g...T2k

and for k=1,..., ["TH] the functions

L2k +1L2k+3 - - - L . .
okt ™ if nis odd,

T2kT2k+2 - - Tn—1
Fk = (27)
L2k+2T2k+4 --- T . .
Vaok + + L if n is even.
L2k4+1T2k+3 - - - Tpn—1

V2k—1

Notice that Fj,41)/2) = v = H, the Hamiltonian (1.4). For odd n, we also

introduce the function

O .= P13 Tn
T2T4 ... Tp—1
PROPOSITION 2.2. For any k,l € {1,...,[2]},
{Jp, i} ={Fy, i} ={F,H} =0. (2.8)

Moreover, when n is odd, C is a Casimir function of the Poisson bracket {-,-}.

PROOF. First, we notice that for any k =1,..., [%]

0Jy, { (=)L, for 1 <i <2k,

Y Oy 0 for 2k <i<n.
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It follows that, for k <1 € {1,...,[%]}, we have
B 0Jy 01 0Jy 0,
i} = Titj Ox; Ox;  Oxj axi)

1<’L<j<’ﬂ

DI G VR A G VAR ACS Vaas/
1<i<j<2k
+ > ()T =0.

1<i<2h<j<2l

This shows the first equality of (2.8). We show the two other equalities of (2.8) for
even n. To do this, it suffices to show that {Fy, F1} =0 for 1 < k <1 < n/2 since
Foj2 = H. We set Fy, = vag Iy, i.e., we define I, by

T2k4+2T2k+4 - - - T
Ik o—

L2k+1L2k+3 - - - Tn—1 -
As in (2.9), we have that

%_ 0 for 1 <i<2k,
dz; | (=1)Iy for2k<i<n

from which it follows, as above, that {I;,[;} = 0 and that {Ij, J;} = 0 for all
k,le{l,...,n/2}. Also, for any j € {1,...,n}

{Ilmx]} Zafk {I'I?I]} Z 1‘77* Z 1'1

X

(2.10)

1<i<y j<igsn
and using (2.10) we derive that
_ 0 for 7 < 2k, 1 0 for 7 < 2k,
Uk, 2t = { —Iyx; for2k <j, and {1, v;} = { —I(vj; —var) for 2k < j.
(2.11)

It follows from (2.4) and (2.11) that, for any k <1 < n/2,
{Fy, F1} = Avordi,vali} = var i{Iy, var} + varlp{var, I} + I Di{var, var }
= —voplpli(va — var) + 0 + vor Ly (vay — vor) = 0.

This shows the second half of (2.8) for n even; for n odd, the proof is very similar
(in this case, H = F{;,41)/2 and one proves as above that {Fy, F1} =0 for 1 <k <
I < (n+1)/2). Finally we show that C is a Casimir function (when n is odd). For

ij=1...,n,
1
oC oC oC
i=1 1<i<y Jj<ign
= Y (-)*TCx - Y (-1 =0,
1<i<j j<i<n
which shows our claim. O

THEOREM 2.3. Suppose that n is even. Let ¢ denote the smallest integer such
that agy1 # 0 (in particular, £ = 0 when ay # 0) and let X := [g} The 5 functions
Ji, Jay s In Hy Faxya, Faga, .., Fz_q are pairwise in involution and functionally

independent, hence they define a Liouville integrable system on (R™, {-,-}).
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PROOF. We know already from Proposition 2.2 that the functions Jj are pair-
wise in involution, and also the functions Fj (recall that F}, /o, = H). We show that
{Jr,Fi} =0fork=1,...,Aand I = A+1,..., 5. To do this, we use the following
analog of (2.11), which is easily obtained from (2.9):

) Jkvy for g <2k,
{Jk’vj} a { Jrvop  for 2k < J -
It follows that, for the above values of k,I, which satisfy k& < A < [, one has
{Jk,v21} = Jgvor = 0 (the last equality follows from 2k < 2\ < ¢ and v; = 0 for

1 < 0), and so
{Je, 1} = {Jp, v L1} = va{Ji, i} + L{Jk, v} =0

in the last step we also used that the functions I; and J; are in involution (see the

proof of Proposition 2.2). This shows that the § functions
Ji,Jay ooy I Hy Fxpr, Faga, oo Feg (2.12)
are pairwise in involution.

We now show that these functions are functionally independent. We first do
this when all a; are zero, except for ayy; which we may suppose to be equal to 1;
then v; = xyy1 = H for i > £ and v; = 0 for ¢ < £. The Jacobian matrix of the
above functions (2.12) with respect to x1,...,x, (in that order) is easily seen to
have the following block form:

A

0 O
Jac=10 1 0],
0 ~ B
where A has size A x £ and B has size (5 — A —1) x (n — £ —1). We show that
this matrix has full rank n/2 (which is equal to the number of rows of Jac). To
do this, it is sufficient to show that A has full rank A and that B has full rank
n/2 — X\ — 1 (the value of the column vector x is irrelevant). Consider the square
submatrix A’ of A consisting only of its even-numbered columns. For k < [ we have
Al = Ap o = 0Ji/0x9 = 0, since Jy, only depends on z1,..., 9. It follows that
A’ is a lower triangular matrix. Moreover, A}, = A or = 0J/Oxa # 0, hence A’
is non-singular. This shows that rank (A4) = rank (A’) = A\. Similarly, we extract
from B a square submatrix B’ by selecting from B its even-numbered (respectively
odd-numbered) columns when £ is even (respectively odd). For k > I we have
By, = OF\y1/0xaxrt1420 = O(vartordatk)/0Tars1421 = O(@er1latk)/0Tory1421 =
Tpy10Inyp/Oxors1491 = 0, since Iny is independent of x1,...,xoryok. How-
ever, By, = x¢110I\y1/0Toxs142r # 0, because Inii does depend on @oxi12k.
This shows that B’ is a non-singular upper triangular matrix, hence rank (B) =
rank (B’) = n/2 — A — 1. We have thereby shown that if H = z¢;1, then the
n/2 functions in (2.12) are functionally independent; since the rank of the Poisson

structure {-,-} is n, we have shown Liouville integrability in this case.
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We now consider the general case, where several of the a; may be non-zero.

We may still suppose that apy; = 1; as above, a; = --- = ay = 0. Let us view
Ggt2,...,a0, as arbitrary parameters and consider the matrix
A0 0
Jacd =0 1 0],
0 %« B

where A’ and B’ are square matrices which are constructed as in the previous
paragraph. It depends polynomially on the parameters ag42,...,a, and we have
shown that the determinant of Jac' is non-zero when we set all the parameters
ag42,- .-, 0, equal to zero. By continuity, the determinant remains non-zero when
the parameters agio, ..., a, are sufficiently close to zero, which proves that the n/2
functions in (2.12) are functionally independent for such values of the parameters.
In view of Lemma 2.1, any non-zero rescaling of the parameters leads to isomorphic
systems, so for any values of agia,...,a,, the functions in (2.12) are functionally
independent. This shows Liouville integrability for any values of the parameters

A1y ooy Q. U

When n is odd, the rank of the Poisson structure {-,-} is n — 1, so for Liouville
integrability we need (n + 1)/2 functionally independent functions in involution.
Recall from Proposition 2.2 that in this case C is a Casimir function. The Liouville
integrability is in this case given by the following theorem, whose proof is omitted

because it is very similar to the proof of Theorem 2.3.

THEOREM 2.4. Suppose that n is odd. As before, let £ denote the smallest inte-
ger such that ag11 # 0 and let X := [%] The ”TH functions J1, Jo, ..., Iz, H, Fy12,
Fyis, ... ,FnT—l,C are pairwise in involution and functionally independent, hence

define a Liouwville integrable system on (R™,{-,-}).

We show in the following theorem that the Hamiltonian vector field defined by

H is also superintegrable.

THEOREM 2.5. The Hamiltonian system (1.5) has n — 1 functionally indepen-

dent first integrals, hence is superintegrable.

PrOOF. We denote, as before, by ¢ the smallest integer such that as11 # 0
(in particular, £ = 0 when a; # 0). Suppose first that agq1 is the only a; which
is different from zero; by a simple rescaling, we may assume apy; = 1, so that
H = x441. Then the equations of motion (1.5) take the following simple form:
xiH ) < / 5

ii={ 0 i=0+1, (2.13)
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When ¢ = 0, a complete set of n — 1 independent first integrals of (2.13) is given by
H =zyand x;/x2, (i =3,...,n). When ¢ # 0, we can take besides the Hamiltonian
H = x414 the functions z;/x1, (i =2,...,¢) and x12;, (i=L+2,...,n).

In the general case, we partition the set {1,2,...,n} into three subsets (A or

C may be empty):

A = {1,2,...,¢},
B := {i]a; #0},
C = {i|i>{+1anda; =0}.

Since we have treated the case #B = 1, we may henceforth assume that #B > 2.
Notice that each function v; (and in particular H) depends only on the variables

x; with ¢ € B. Tt follows that the differential equations (2.3),
ZC.Z':SUi(Hf”Uifvi_l), (’LGB),

involve only the variables z; with j € B, so they form a subsystem which is the same
as the original system, but now of dimension m := #B, and with all parameters
a;, i € B different from zero. As explained above (see Lemma 2.1 and the remarks
which follow its proof) this subsystem is by a simple rescaling isomorphic to the
system (1.2), for which we know from [17] that it is superintegrable, with m — 1
first integrals which we denote here by G1,...,G_1. We do not need here the
precise formulas for these functions, but only the fact that they depend only on the
variables x; with j € B; this obvious fact implies that the functions G1,...,Gpn—1
are first integrals of the full system (1.5) as well. Consider, for i € AU C the
following rational function:

(H — agg1o41)x;

, 1€A,
Le41
Ki':
' H — apprzo41)0?
( + +)z’ ieC.
TiTe41

Notice that H — agr1x¢y1 is different from zero, because #B > 2. For i € A, we
have that

(nK;) = (In(H = app12041)) + (0@ /@e41))

Ap41Tpy1
= HEEL e =0
H —app1mo41

Indeed, @p11 = @pr1(H — vpr1 — vg) = xpr1(H — agr1@e41). Similarly, for ¢ € C,
we have from (2.3) and (2.5) that
(InK;) = (In(H —apr1me41)) + 2(Inv;) — (In(x;xe41))
= —app1To41 +2(H —v;) — (H — 2v;) — (H — apy12041) = 0.
This shows that the n — 1 functions G1,...,Gn_1 and K;, i € AU C, are first

integrals of (1.5). Recall that the functionally independent functions Gy, ..., Gp—1
depend on z; with ¢ € B only and notice that for : € AUC the variable x; appears
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only in K;. It follows that these n — 1 first integrals of (1.5) are functionally
independent, hence (1.5) is superintegrable. O

Finally, we compute the solution x(¢) of (2.1) which corresponds to any given
initial condition z(©) = (x§0), . ,x%o )). We also introduce the derived functions
vi(t) = a1z1(t) + -+ - + a;zi(t), for i = 1,...,n. We denote by hgy the value of the
Hamiltonian H at the initial condition z(® and we denote v(” := v;(0). Tt follows

from (2.3) and (2.5) that we need to solve
dl’i

3 O =zi@®)ho —vit) —via®) . (I=1,000im), (2.14)
where
(Zf (t) = vi(t)(ho —vi(t)) ,  (i=1,...,n). (2.15)

When vgo) = 0, the latter equation has v;(t) = 0 as its unique solution; otherwise
(2.15) is easily integrated by a separation of variables, giving

1 1
it) = T——=——— i(t) = ——= >
vil?) or () t+Cj

= , 2.16
% + Ciehot ( )

depending on whether hg # 0 or hg = 0. The integrating constants C; and C/! are
computed from v;(0) = vl(o), which leads to

1 1
Ci=—=——, and Cj=—.
vi(o) hO vgo)

The functions v;(t) in (2.16) have very simple primitives, to wit

/vi(t)dt —n (e;:t +Ci> . o /vi(t)dt (i +C).  (217)

Substituted in (2.14), which we write now as 42 (¢) = hg — v;(t) — v;_1(t), we
obtain by integration and by using the primitives (2.17) (or [ v;(t)dt = constant in

case vgo) = 0) and the initial condition z;(0) = x§0)7 the following result:

PROPOSITION 2.6. The solution x(t) of (2.1) which corresponds to the initial

condition z(0) = (xgo), . ,fo’)) is given by
(1= F®ho +2£(0w) (1= ko + 2 (1))
(2.18)
where f(t) = (ef;;?%)lho = hio tanh(%) when hg (the value of H at (%)) is different

(0)

from zero and f(t) =t/2 otherwise. Also, UZ(O) =ax; +-+ aiz'”.

%

Notice that when hg # 0, (2.18) can be rewritten as
xgo)etho h3

(ho + (etho — 1)1}1@1) (ho + (etho — 1)1}2(0)) 7

zi(t) = (i=1,...,n).
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REMARK 2.7. When several of the parameters a; in the Hamiltonian function
H are equal to zero, so that H is independent of the corresponding variables x;, the
vector field (1.5) is a Hamiltonian vector field with respect to a family of compatible
Poisson structures, always with the same Hamiltonian H. Indeed, suppose that
a; = a; = 0, with ¢ < j. Then, in the computation of the vector field & = {zy, H},
k =1,...,n, the Poisson brackets {z;,2;} = —{z;,2;} are not used, so we may
replace {z;,z;} = — {z;, z;} by an arbitrary function f;; of x1,...,z, without any
effect on the vector field. However, in order for the new bracket to be a Poisson
bracket, it has to satisfy the Jacobi identity, which puts several restrictions on the
function f;;. One way to satisfy this restriction is to take f;; := a;;x;x;, where a;;
is an arbitrary constant. In fact, replacing {z;,z;} = x;x; by {z;,z;} = a;jz,2;
for all ¢ < j for which a; = a; = 0, the new brackets will still be of the general form
{z;,x;} = bijjx;z;, known in the literature as diagonal brackets; such brackets are
known to automatically satisfy the Jacobi identity [11, Example 8.14] so they are
Poisson brackets. Clearly, any linear combination of these diagonal Poisson brackets
is again a diagonal Poisson bracket, hence all these brackets are compatible. The
upshot is that when k > 2 parameters are equal to zero, then (1.5) has a multi-
Hamiltonian structure: it is Hamiltonian with respect to a (g)—dimensional family

of Poisson brackets.

3. The Kahan discretization

In this section we consider the Kahan discretization of the system (2.1). Let
us recall quickly the construction of the Kahan discretization of a quadratic vector
field #; = Q;(z) (see e.g. [4]). Let ®;(y,z) denote the symmetric bilinear form
which is associated to the quadratic form ); and let € denote a positive parameter,
which should be thought of as being small. Then the Kahan discretization with

step size € is the map' z; — &;, implicitly defined by

We refer to this map as the Kahan map (associated to &; = Q;(z)). It is well
known that the Kahan map preserves the linear integrals of the initial continuous
system (quadratic vector field). So, in our case of the generalized Lotka-Volterra
system, its Hamiltonian function H = a1x1 + asxs + - -+ + a, T, is an invariant of
the Kahan map. As we are going to show in this section the Kahan map (of this
system) preserves the Poisson structure as well; we will also see in the next section
that all constants of motion, in particular the ones that appear in Theorems 2.3,

2.4 and 2.5, are also invariants of the Kahan map.

YWhen the map which is defined by the discretization is iterated, one often writes it as
(m) (m+1)
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We begin with a lemma which provides an explicit formula for the Kahan

discretization of the generalized Lotka-Volterra system.

ProprosITION 3.1. The Kahan discretization with step size 2e of the system
(2.1) is the rational map K : (x1,...,25) = (Z1,...,Tn), given by

_ (1—€eH)(1+€H)
“(1—eH +2ev;_1)(1 — eH + 2ev;) ’

X, =T

(i=1,...,n). (3.2)

PRroor. Let us write 0; = a121 + - - - + a;%;, in analogy with the functions v;.
According to (3.1), the Kahan discretization of (2.3) (which is equivalent to (2.1))
is given by

:EZ-—a:i:exi(H—ﬁi—ﬁi,l)—i-ei‘i(H—vi—vi,l) R (i=1,...7n) R (33)

where we have used that H is invariant (H = H). Summing up these equations,
multiplied by a;, for i =1,...,7, we get

1~]j —V; = €(UjH + ﬁjH - 5]) s (34)
where §; is given by

J J
(Sj = Zaixi(ﬁi + ?71‘_1) + Zai:}?i(vi + 'Ui—l) = 2?]]'{)]* .

i=1 i=1
The last equality can be proven by an easy recursion on j: on the one hand,
01 = a1x101 + a1T1v1, = 20101, while on the other hand
Ojr1 =0 = ajnzin1(Oin +05) + & (Vi +vj)
~ ~ 2 ~
= 2aj+1xj+1vj + 2CL]'+1!EJ'+1’U]' + 2aj+1xj+1xj+1 s

and so
5j+1 = 2aj+1zj+1f)j + 2aj+1jj+1vj + 2a?+1xj+1:ij+1 + 2”0]‘{)]'
= 2(vj +aj12541) (05 + aj41T541) = 205410541 -
Solving (3.4) (with d; = 2v;7;) linearly for 7; we get

_ 14+eH
_Ujl—eH—&—Qevj'

Uj

(3.5)

Substituting this into (3.3) leads to

1+eH 1+eH

ri—x; =€ex; | H—vi—m——— —vj 1 ————————
T 6xl< Ull—eH-l-QEUi U111_€H+26vi*1

> +65¢(H—”Ui —Uz‘_l) s
which can be solved linearly for Z;. It yields the formula (3.2). O

PROPOSITION 3.2. The Kahan map X, given by (3.2), is a Poisson map with

respect to the Poisson bracket {-,-}.
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PROOF. Recall that the Poisson bracket {-,-} is given by {z;,z;} = z;x;, for
1 < ¢ < j < n. Therefore, we need to show that {%;,%,} = ;&;, for 1 <i < j < n.

We set, for k=1,...,n,
A =x(1—eH)(14+€eH), By = (1 —€H + 2evi_1)(1 — eH + 2evy,) ,

so that & = Ap/By. Then

(7,5} = AiAj{B;, Bj} — AiBj{Bi, Aj} — BiAj {Ai, Bj} + BB {Ai, Aj}
iy by — BlQBJQ .

The Poisson brackets in the right-hand side of this equation can be computed using

besides (2.4) the following formulas:

(o HY = 0i(H = v, —vii1), {i,v5} = {

After some computation, it leads to

{Z:,2;} =

zi(v; — v —vi—1) fori <y,
—Z;iVj fori>j.

(1 - EQHQ)QZIJZ‘QJ]‘
1—eH 4 2ev;_1)(1 — eH + 2ev;)(1 — eH + 2ev;_1)(1 — eH + 2ev;)

ilj

(

as was to be shown.

O

An easy comparison of the solution (2.18) to the continuous system and the
Kahan map (3.2) shows that the Kahan map is a time advance map for the con-
tinuous system, hence preserves all integral curves of the continuous system and
so all constants of motion of the continuous system are invariants for the Kahan
map. Precisely, let z(0) = (argo), e ,xslo)) be any point of R™ and let € € R be small
but positive. As above, the value of H at () is denoted by hg. Let t. denote
the unique solution to the equation f(t.) = ¢, where f(¢) is the function given in
Proposition 2.6. With these notations, (2.18) and (3.2) imply that z;(t.) = fgo). It

leads, in view of Theorems 2.3 and 2.4, to the following corollary:

COROLLARY 3.3. The Kahan discretization (3.2) is Liouwville integrable, with
invariants given in Theorem 2.3 (resp. Theorem 2.4) when n is even (resp. when n

is odd). It is also superintegrable, with invariants given in Theorem 2.5.

Let us denote the k-th iterate of the Kahan map (3.2) starting from the initial
condition z(®) = (3350), e ,x%o)) by #(®). Then the relation between the solutions
to the continuous system and the Kahan map can be written as x;(t.) = xl(l). Now
notice that t. depends only on 2(?) through ho; this implies that the restriction of
K to the integral curve through z(?) is the time ¢, flow of the continuous system
(restricted to the integral curve through z(%)). Thus, z(?) is obtained from z(*) by
the time t. flow, and hence from z(® by the time 2t, flow, z(?) = x(2t); more
generally, (") is obtained from z(°) by the time mt, flow, (™) = z(mt.). It leads

to the following proposition.
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PROPOSITION 3.4. The solution of the discrete system
(1—€eH)(1+€eH)

T; = , (i=1,..., 3.6
i (1 —eH +2ev;-1)(1 — eH + 2ev;) (@ n) (36)
with H =Y a;x; and initial condition ) is given by
1+€hg th
2™ = 5 (I=eho) "o 52)

(ho + o (Lo ym 1)) (ho + o0 ((Ltehaym 1)) '

when hg (the value of H at 2(°)) is different from zero. When hg = 0,

1
A 40 : . 5
(1 + 2mev§_)1) (1 + QmE’UE ))
PROOF. In view of Proposition 2.6,
argm) = x;(mt.)
x(o) (1 = f(mtc)ho)(1 + f(mtc)ho)
(1= rmth + 27 mt ), ) (1= Fimthe + 27 (mt o)
(3.9

When hg # 0, it follows easily from f(t) = (ef,t::%)l}m and f(t.) = e that et<ho =
1+hge

e In turn, we can compute f(mte) from it, namely

1+hge m
1 emteho _ 1 1 (17h36> -1

T hoemtho + 1 hy (1thoe )" '
0 0 (fthe)” +1

flmt,)

(3.10)

It now suffices to substitute (3.10) in (3.9) and to simplify the resulting expression
to obtain (3.7). When hy = 0, we have that f(mt.) = me, since f(t) = t/2.
Substituted in (3.9) (with hg = 0), we get at once (3.8). O

4. Conclusion

We presented a new class of generalized Lotka-Volterra systems which are, to-
gether with their Kahan discretizations, Liouville integrable and superintegrable,
and we provided their explicit solutions. Since linear Hamiltonians are always pre-
served under Kahan discretization and since the Poisson structure that we used is
quadratic, it is natural to ask which quadratic Poisson structures on R™ are pre-
served by the Kahan discretization of every Hamiltonian vector field with linear
Hamiltonian; in view of what we have shown, the Poisson structure defined by de-
fined by the brackets {z;, z;} := x;x;, for 1 < i < j < n, belongs to this class. The
Hamiltonian systems which are defined by them would then be good candidates
for being Liouville integrable and/or superintegrable. In view of the recent devel-
opments in discretization of polynomial vector fields by polarization ([3]), similar

questions can also be considered for higher degree polynomial Hamiltonian vector
fields.
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