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Abstrat

In this paper we study a generalised Kummer surfae assoiated to the Jaobian of those omplex

algebrai urves of genus two whih admit an automorphism of order three. Suh a urve an always been

written as y

2

= x

6

+2�x

3

+1 and �

2

6= 1 is the modular parameter. The automorphism extends linearly to

an automorphism of the Jaobian and we show that this extension has a 9

4

invariant on�guration, i.e., it

has 9 �xed points and 9 invariant theta urves, eah of these urves ontains 4 �xed points and 4 invariant

urves pass through eah �xed point. The quotient of the Jaobian by this automorphism has 9 singular

points of type A

2

and the 9

4

on�guration desends to a 9

4

on�guration of points and lines, reminisent to

the well-known 16

6

on�guration on the Kummer surfae. Our \generalised Kummer surfae" embeds in IP

4

and is a omplete intersetion of a quadri and a ubi hypersurfae. Equations for these hypersurfaes are

omputed and take a very symmetri form in well-hosen oordinates. This omputation is done by using

an integrable system, the \even master system".
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1. Introdution

Reently several studies were published on the geometri aspets of Hamiltonian systems whih are

algebraially ompletely integrable. For a general introdution, see [1℄. From the point of view of algebrai

geometry, these integrable systems lead to an original approah to study projetive embeddings of Abelian

varieties and their Kummer varieties, expliit equations for aÆne parts of these varieties, : : : It follows that

integrable systems may be used to study and solve some questions in algebrai geometry, espeially in urve

theory and the theory of Abelian varieties; the present paper is a partiular example of suh a question.

In order to state this question, let us reall from the lassial literature some basi fats about the

Kummer surfae of the Jaobian of a urve � of genus two. Suh a urve being always hyperellipti, it

arries an involution � with six �xed points (the Weierstrass points of �); this involution extends linearly

to the Jaobian of � where it has sixteen �xed points and sixteen invariant theta urves (i.e., translates of

the Riemann theta divisor), eah invariant urve ontains six �xed points and eah �xed point belongs to

six invariant urves, giving a so-alled 16

6

on�guration of urves and points. The quotient of the Jaobian

by this involution is a singular surfae, the Kummer surfae, and it embeds in IP

3

as a quarti surfae. An

equation for this surfae has lassially been obtained (in several forms) by purely algebrai methods (see

[7℄).

Something very analogous happens when the genus two urve � has an automorphism � of order three,

in whih ase the urve has an equation y

2

= x

6

+ 2�x

3

+ 1 (here �

2

6= 1 is the modular parameter as we

will show). The symmetry of order three extends to the Jaobian and leads now to a 9

4

on�guration as

we will prove both diretly and by using an analogue of the theta harateristi, whih expresses in general

the obstrution for a line bundle to desend to a quotient. In the present ase this harateristi turns out

to be a quadrati form whih takes values in IF

3

(the �eld of three elements). Suh a on�guration, whih

has essentially only one projetive realisation has been onsidered by Segre and Castelnuovo (see [12℄ and

[5℄). The singular surfae obtained as the quotient of the Jaobian of � by the order three automorphism

will be shown to embed now in IP

4

as the intersetion of a quadri and a ubi hypersurfae. The nine

singular points are of type A

2

and are part of a 9

4

on�guration of lines and points on this surfae whih,

after desingularisation, is a K-3 surfae.

The question now is to ompute expliit equations for the quadri and ubi hypersurfae. To this

aim we need to introdue well-adapted oordinates and this is where the integrable system omes in. The

system is hosen in suh a way that among its invariant surfaes we �nd the Jaobians orresponding to the

genus two urves with an automorphism of order three. Suh a system was �rst onstruted by the seond

author in [13℄ in analogy with a system introdued by Mumford (see [10℄). It gives on the one hand expliit

equations for aÆne parts of the Jaobians whih onern us here, on the other hand it allows us to onstrut

an expliit base for the funtions with a pole of order three at one of the invariant theta urves. Among

those funtions the ones whih are invariant by � are easily determined and the image of the Jaobian in IP

4

by these funtions is omputed from these expliit data. The �nal result is that in terms of an appropriate

base for IP

4

| formed by the �ve �xed points whih do not belong to one of the invariant theta urves |

the equation for the quadri hypersurfae is given by

(y

1

+ y

4

)(y

2

+ y

3

+ y

4

� y

0

) + �(y

2

+ y

3

)(y

1

+ y

3

+ y

4

� y

0

) = y

2

4

+ �y

2

3

;

while the equation for the ubi hypersurfae is given by



2

y

1

y

4

(y

2

+ y

3

� y

0

)� �

2

y

2

y

3

(y

1

+ y

4

� y

0

) = 0;

where  = �+ 1 and � = 1� �.

It has been pointed out to us by I. Dolgaev that suh equations already appeared in the basi work of

Enriques and S�everi on hyperellipti surfaes. They proved that the assoiated Kummer surfae is hyper-

ellipti in their sense with the aid of results of Segre and Castelnuovo. The indiret arguments used there

seem not to be omplete. Our diret method shows also the preise relationship between the two parameters

and an be used in other similar situations.

The speial urves onsidered here are atually the hiral Potts N-state urves orresponding to N = 3

(see [11℄). The results and tehniques in this paper generalise to all hiral Potts urves. We hope to return

to this in the future.
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2. An equation for the urve �

We onsider a urve � of genus two, equipped with an automorphism of order three, denoted by �. By

the Riemann-Hurwitz formula the quotient �=� has genus zero and � has four �xed points. Sine � has

genus two it is also hyperellipti; the hyperellipti involution will be denoted by � and its �xed points are

the six Weierstrass points on �. We have the following diagram

�

�

�

�!

3:1

IP

1

�

�

?

?

y

2:1

IP

1

� neessarily maps Weierstrass points to Weierstrass points, hene the ommutator [�; � ℄ �xes all these points

and we see that �� = �� sine the only automorphisms whih �x all Weierstrass points are � and identity.

It follows on the one hand that � indues on IP

1

a frational linear transformation ~� of order three, and on

the other hand that the four �xed points of � onsist of two � -orbits. We may therefore suppose that ~� is

given by ~�(x) = �x; � = exp(

2�i

3

), by hosing a oordinate x on IP

1

suh that these two orbits orrespond

to x = 0 and x = 1. The images of the Weierstrass points form two orbits of three points under ~�, whih

orrespond to the roots of the equation x

3

= �

3

and x

3

= �

�3

, possibly after a resaling of x. Obviously

� 6= 0; sine both orbits are di�erent, �

3

6= �

�3

, i.e., �

6

6= 1. This shows that � has an equation

y

2

= (x

3

� �

3

)(x

3

� �

�3

);

= x

6

+ 2�x

3

+ 1;

(1)

with � 6= �1.

Clearly, every equation of the form (1) with � 6= �1, de�nes a smooth urve of genus two with an

automorphism (x; y) 7! (�x; y) of order three; also, if � in (1) is replaed by �� then an isomorphi urve

is obtained. Conversely, let there be given two isomorphi urves � and �

0

with respetive automorphisms

� and �

0

of order three. We may suppose that the isomorphism �: � ! �

0

respets the automorphism, i.e.,

�� = �

0

�: We laim that if � and �

0

are written as above as

� : y

2

= x

6

+ 2�x

3

+ 1;

�

0

: y

2

= x

6

+ 2�

0

x

3

+ 1;

then �

2

= �

02

. To see this, remark that � obviously ommutes with �; hene there is an indued linear

transformation

~

� whih satis�es

~

�(�x) = �

~

�(x), for all x 2 IP

1

. Thus

~

�(x) = �x and �(x; y) = (�x; y), giving

�

6

= 1. It follows that �

2

6= 1 an be taken as modular parameter.

The automorphism group of � ontains a subgroup whih is isomorphi to S

3

� ZZ=2ZZ, as is seen

immediately from (1); it atually oinides with this group, unless � = 0 (in whih ase the group of

automorphisms jumps to D

6

�ZZ=2ZZ). Namely, there is, apart from the hyperellipti involution � , an ation

of S

3

by means of whih the Weierstrass points belonging to one �-orbit an be at random permuted. For

future use we hoose an element � of order two in this symmetry group S

3

orresponding to a transposition

in S

3

, say �(x; y) = (x

�1

; yx

�3

) and remark that it ommutes with � but not with �. Its �xed points are

the two points in �

�1

�

f1g, hene �=� is an ellipti urve.

We will �nd it onvenient to denote the �xed points of �, whih are mapped by �

�

to 0 (resp. 1) by

o

1

and o

2

(resp. 1

1

and 1

2

). Then �(o

1

) = o

2

; �(1

1

) = 1

2

and we may suppose �(o

1

) = 1

1

giving

also �(o

2

) = 1

2

. In the same way we denote the Weierstrass points orresponding to the x

3

= �

3

-orbit

by �

i

; �(�

i

) = �

i+1

(indies are taken modulo 3) and the ones orresponding to the x

3

= �

�3

-orbit by

�

�

i

; �(�

i

) =

�

�

i

. Then the ation of S

3

� ZZ=2ZZ on these points is ontained in the following table.
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order o

1

o

2

1

1

1

2

�

i

�

�

i

� 3 o

1

o

2

1

1

1

2

�

i+1

�

�

i�1

� 2 o

2

o

1

1

2

1

1

�

i

�

�

i

� 2 1

1

1

2

o

1

o

2

�

�

i

�

i

Table 1
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3. The 9

4

on�guration on the Jaobian of �

Let J(�) denote the Jaobian of � and for a divisor D of degree 0, let [D℄ denote the orrespoding point

in J(�) (i.e., its linear equivalene lass). A useful fat about the Jaobian of a urve of genus two is the

following: for any �xed Q

1

; Q

2

2 �; every element ! 2 J(�) an be written as ! = [P

1

+ P

2

� Q

1

� Q

2

℄;

moreover this representation is unique i� P

1

6= �(P

2

), all P + �(P ) and Q+ �(Q) (P;Q 2 �) being linearly

equivalent, P + �(P ) �

l

Q+ �(Q). In the present ase of urves (1) whih have an automorphism � of order

three, the over �

�

assoiated to � provides in addition (using the notations of the previous setion for the

�xed points of �) the following linear equivalenes

3o

1

�

l

3o

2

�

l

31

1

�

l

31

2

: (2)

The automorphism � extends in a natural way to an automorphism on J(�), also denoted by �. It is given

and well-de�ned for ! = [P

1

+ P

2

�Q

1

�Q

2

℄ as follows: �(!) = [�(P

1

) + �(P

2

)� �(Q

1

)� �(Q

2

)℄.

Proposition 1. The automorphism � has nine �xed points and nine invariant theta urves on J(�).

Proof

The prinipal polarisation on J(�) is invariant under Aut(�), hene the isomorphism J(�)!

^

J(�) from

J(�) to its dual

^

J(�) is Aut(�)-invariant and the seond statement follows from the �rst one.

We ount the number of �xed points of � in two di�erent ways. At �rst we use the holomorphi Lefshetz

�xed point formula

X

p

(�1)

p

trae f

�

j

H

p;0

(M)

=

X

f(p

�

)=p

�

1

det(I �B

�

)

; (3)

for a holomorphi map f :M ! M , where B

�

is the linear part of f at the �xed point p

�

. We apply it for

f = � and M = J(�); in this ase H

p;0

(J(�)) may be identi�ed with the p-th anti-symmetri power of the

otangent bundle at any point of J(�). For the left-hand side in (3), the base of H

p;0

(J(�)) may thus be

taken in a point [P

1

+P

2

�Q

1

�Q

2

℄ as f


1

;


2

g = f!

1

(P

1

)+!

1

(P

2

); !

2

(P

1

)+!

2

(P

2

)g; where !

i

= x

i�1

dx=y

and 


1

^ 


2

is a generator for H

2;0

(J(�)). Sine �

�




i

= �

i




i

; (i = 1; 2), the left hand side in (3) gives

2

X

p=0

(�1)

p

trae�

�

j

H

p;0

(J(�))

= 1� trae

�

� 0

0 �

2

�

+ 1 = 3:

As for the right hand side, obviously all B

�

are equal, in fat

B

�

=

�

� 0

0 �

2

�

(4)

when loal oordinates dual to 


1

and 


2

are piked around the point P

�

. Therefore

det(I �B

�

) = (1� �)(1� �

2

) = 3;

and the number of �xed points of � is indeed nine.

A seond way to determine the number of �xed points of � is by writing down an expliit list: if we

write every point ! 2 J(�) as ! = [P

1

+P

2

�21

1

℄ then �! = ! i� �(P

1

)+�(P

2

) �

l

P

1

+P

2

, i.e., P

1

= �(P

2

)

or P

1

and P

2

are both �xed points for �. Using (2) we arrive at the following list

fO; o

1

� o

2

; o

2

� o

1

; 1

1

�1

2

; 1

2

�1

1

; o

1

�1

1

; o

2

�1

2

; o

1

�1

2

; o

2

�1

1

g: (5)

The nine invariant urves are then given by the nine translates over these points of the image of � in J(�)

by the map x 7! [x�1

1

℄: Sine this urve obviously ontains exatly the four �xed points

fO; 1

2

�1

1

; o

1

�1

1

; o

2

�1

1

g;
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eah of the nine invariant urves will ontain exatly four �xed points. Dually, every �xed point belongs to

four invariant urves sine the origin O belongs to the four urves

fx 7! [x�1

i

℄; x 7! [x� o

i

℄; i = 1; 2g

Note that the �xed points form a group F (isomorphi to ZZ=3ZZ�ZZ=3ZZ) whih is a subgroup of J

3

(�),

the three-torsion subgroup of J(�). On J

3

(�) there is a non-degenerated alternating form (� ; �) indued by

the Riemann form orresponding to the prinipal polarisation. The subgroup F � J

3

(�) has the following

property.

Proposition 2. The group F of �xed points of � on J(�) is a totally isotropi subgroup of J

3

(�) with

respet to the Riemann form (� ; �).

Proof

� is a sympleti automorphism of J

3

(�)

�

=

(ZZ=3ZZ)

4

, whih satis�es 1+�+�

2

= 0; also dimker(��1) =

2. It follows that F onsists exatly of the elements of the form �(x)�x where x 2 J

3

(�). Finally, if y 2 F ,

then obviously (y; �(x) � x) = 0.

Apart from the Riemann form, whih oinides on J

3

(�) with Weil's pairing e

3

(see [8℄) a funtion an

be de�ned on F with values in the group of ubi roots of unity. It is analogous to Mumford's quadrati form

(theta harateristi) on the two-torsion subgroup J

2

(�) of J(�) and an be de�ned in omplete generality

(see [4℄). It measures the obstrution for a line bundle to desend to the quotient J(�)=�. One an de�ne

it as follows. Choose a linearisation of L with respet to the yli group ZZ=3ZZ generated by �, i.e., an

isomorphism �:L

�

!�

�

(L) with �(0) = Id

L(0)

. When x is a �xed point of �, then � indues an isomorphism

of L(x) whih is multipliation by a root of unity e(x), and e:x 7! e(x) is the desired funtion. It depends on

the hoie of L itself and not only on the polarisation. If � is the (theta) divisor whih orresponds to L; i.e.,

L = [�℄; then the orresponding e = e

�

may be omputed as follows. Let f = 0 be a loal de�ning funtion

for � in x. Sine the divisor � is non-singular, the leading part h of f is linear and we have �

�

(h) = e(x)h.

Sine the singular points are of type A

2

, as is seen from (4), there exist loal oordinates fu; vg in x suh

that �

�

(u) = �u and �

�

(v) = �

2

v. Therefore we have either h = u and e(x) = �, or h = v and e(x) = �

2

: Also

if x =2 � then e(x) = 1. It follows that e

�

is expliitely given for all x 2 F by e

�

(x) = �

�jT

x

�

, or equivalently

e

�

(x)v = �

�

v for all v 2 T

x

�. (6)

The automorphisms � and � at on F as well as on the set of invariant theta urves. It is desirable to

have a \totally symmetri" theta urve, i.e., invariant by �; � and �. The main observation of this paragraph,

from whih the 9

4

-on�guration is a onsequene, is the following.

Proposition 3. There is a unique totally symmetri theta urve among the nine invariant theta urves.

The funtion e

�

assoiated to this urve � is a quadrati form on F ; it is given in a suitable base for F and

upon identi�ation of the group of ubi roots of 1 with IF

3

by e

�

(r; s) = r

2

� s

2

(mod 3).

Proof

The existene of the urve is lear: sine the polarisation is invariant by the group Aut(�), we may �nd

an invariant invertible sheaf whih gives this polarisation, hene also an invariant divisor. It is unique sine

if there are two Aut(�)-invariant urves, then their (two) intersetion points must be invariant under Aut(�)

whih is impossible by Table 1. It is easy to identify �: it is given by the image of P 7! [P +1

1

� 21

2

℄.

To see this, remark that this image an be written as

P 7! [P + S

1

+ �(S

1

)� 3S

2

℄;

independent of the hoie of S

1

; S

2

2 fo

1

; o

2

; 1

1

; 1

2

g. From this representation it is also lear that �

ontains the four points [�(S

1

)� S

1

℄; S

1

2 fo

1

; o

2

; 1

1

; 1

2

g.
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Let us determine e

�

in terms of the base f�

1

; �

2

g where �

1

= [1

2

� 1

1

℄ and �

2

= [o

2

� o

1

℄. Sine

� = ��� and �

2

= 1 it follows using the hain rule that if �(x) = x and v 2 T

�(x)

� then

e

�

(�(x))v = �

�

v = �

�

�

�

�

�

v = e

�

(x)�

�

�

�

v = e

�

(x)v;

hene e

�

(�(x)) = e

�

(x). In the same way it follows from � = ��

�1

� that e

�

(�(x)) = e

�

(x)

�1

. Therefore,

if we identify the group of ubi roots of unity with IF

3

by e

�

(�

1

) = 1 then e

�

is given by

e

�

(r�

1

+ s�

2

) = r

2

� s

2

(mod 3)):

The 9

4

on�guration is now desribed as follows. if ! and !

0

are two �xed points, then

! 2 �+ !

0

i� e

�

(! � !

0

) 6= 0:

It follows that every invariant theta urve passes through four �xed points and that every �xed point belongs

to four invariant theta urves. Moreover we have seen that the funtion e

�

determines the diretion of the

tangent to � in the �xed points of �. Therefore, if !; !

0

2 F then �+! and �+!

0

are tangent in a ommon

point x 2 F if and only if

e

�+!

(x) = e

�+!

0

(x):

Sine e

�+!

(x) = e

�

(x� !), this ondition is rewritten as

e

�

(x� !) = e

�

(x � !

0

)

whih is satis�ed for !

0

= 2x � ! (only). We onlude that the four invariant urves running through

one �xed point ome in two pairs: sine any two theta urves always interset in two points (whih may

oinide), the urves of one pair are tangent in their unique intersetion point and the urves of opposite

pairs interset in two di�erent points (see Figure 1, whih also ontains the dual piture, equally present in

the 9

4

-on�guration).

dual

 ��!

Figure 1: The inidene of points and lines on the 9

4

-on�guration
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4. Equations for J(�)=� in IP

4

In this setion we will ompute expliit equations for the quotient S = J(�)=� as an algebrai surfae

in IP

4

. Sine � has nine �xed points, S has nine singular points and we have seen that they are of type A

2

.

The minimal resolution of these singularities of S leads to a K-3 surfae (a generalised Kummer surfae),

whih we will denote by X (see [3℄). Let �: J(�) ! S be the quotient and denote by � the unique divisor

given by Proposition 3.

Proposition 4. Let M be the divisor on S for whih �

�

(M) = [3�℄. Then M is very ample and allows to

embed S as the omplete intersetion of a quadri and a ubi threefold in IP

4

.

Proof

Sine most of the proof is standard, we only give few details. Using the quadrati form e

�

we see that

L


3

= [3�℄ desends to an invertible sheaf M on S, i.e., �

�

(M) = L


3

. Let us denote by N the line bundle

on X whih is the pull-bak of M by the anonial map from X to S. Then using L � L = 2 we �nd

18 = L


3

� L


3

= (deg �)M �M = 3M �M;

so thatM �M = 6; whih is also the self-intersetion of N . Therefore, we �nd by the Riemann-Roh Theorem

(for K-3 surfaes),

�(N) = �(O

X

) +

N �N

2

= 2 + 3 = 5:

It follows moreover from Serre duality and Kodaira vanishing (for K-3 surfaes) that dimH

i

(X;O(N)) = 0

for i > 0, so that dimH

0

(X;O(N)) = �(N) = 5.

The morphism �

N

orresponding to N fatorises via the blow-up p:X ! S and is shown to provide an

injetive morphism �:S ! IP

4

. More preisely, it an be seen by analysing theta urves on J that �

N

is one

to one away from the exeptional urves. If we onsider now the surjetive map

SymH

0

(X;N)! �

t�0

H

0

�

X;N


t

�

;

whose kernel leads to the de�ning equations for the image of S in IP

4

, we see by a dimension ount as above

that the kernel ontains a quadrati as well as an (independent) ubi form. Sine the degree of N equals

six, we see that the image is the omplete intersetion of a quadri and a ubi hypersurfae in IP

4

.

We will now use the so-alled even master system, introdued and studied by the seond author in [13℄.

Let us shortly reall what is needed for our purposes. Let us denote by �

0

one of the four invariant theta

urves whih is tangent to �, say �

0

= � + [1

2

�1

1

℄. Then every point ! 2 J(�) n (� + �

0

) is written

uniquely as [P +Q� 21

2

℄ and P; Q =2 f1

1

;1

2

g. It follows that we may assoiate to ! three polynomials

u(x) = x

2

+ u

1

x+ u

2

, v(x) = v

1

x+ v

2

and w(x) = x

4

� u

1

x

3

+ w

0

x

2

+ w

1

x+ w

2

by

y

u

1

= �x(P )� x(Q); u

2

= x(P )x(Q);

v

1

=

y(P )� y(Q)

x(P )� x(Q)

; v

2

=

x(P )y(Q)� x(Q)y(P )

x(P )� x(Q)

and w(x) is de�ned by the fundamental relation u(x)w(x) + v

2

(x) = f(x), where f(x) is the right hand side

of our equation y

2

= x

6

+ 2�x

3

+ 1 for the urve �. The oeÆients of this fundamental equation atually

lead to aÆne equations for the aÆne part J(�) n (� +�

0

) and are easily written out as

w

0

� u

2

1

+ u

2

= 0;

w

1

+ w

0

u

1

� u

1

u

2

= 2�;

w

2

+ w

1

u

1

+ u

2

w

0

+ v

2

1

= 0;

w

1

u

2

+ w

2

u

1

+ 2v

1

v

2

= 0;

u

2

w

2

+ v

2

2

= 1:

(7)

y

if x(P ) = x(Q) then the de�nitions of v

1

and v

2

are adjusted in an appropriate way

7



Note that the ation of � on these oordinates is very simple: the ation is diagonal and, if we assign to

(u

1

; u

2

; v

1

; v

2

; w

0

; w

1

; w

2

) the weights (1; 2; 2; 3; 2; 3; 4), then all equations in (7) are weight homogenous and

eah variable is multiplied by � as often as given by its weight. Clearly the ation leaves the equations (7)

invariant.

A seond ingredient whih we need from [13℄ is that we may �nd expliitely in terms of these variables

(a base for) the funtions whih have a pole of order three along � and are holomorphi elsewhere. This

is done by using a vetor �eld on J(�) and its Laurent solutions whih are written down there (we refer to

[13℄ Set. 6.b for more details). Obviously a weight homogeneous base for these funtions an be hosen and

funtions whih are invariant by � are the ones whose weight is a multiple of three. The list is the following.

z

0

= 1;

z

1

= u

1

u

2

� v

2

;

z

2

= 2u

1

(u

2

+ v

1

� u

2

1

);

z

3

= 2u

2

v

2

1

+ 2v

2

2

+ 2u

2

v

1

(2u

2

� u

2

1

) + 2u

1

v

2

(u

2

1

� v

1

� 3u

2

) + 2u

3

2

;

z

4

= 2v

3

1

� 2(u

2

1

+ 4u

2

)v

2

1

+ 10v

2

(u

1

v

1

� v

2

) + 2v

1

(7u

2

u

2

1

� u

4

1

� 11u

2

2

)

+ 2v

2

(2�+ 15u

1

u

2

� 5u

3

1

) + 2(u

2

1

� u

2

)

3

� 10u

3

2

� 4�u

1

u

2

:

(8)

To �nd the image of J(�) in IP

4

it suÆes to eliminate the variables u

i

; v

i

and w

i

from (7) and (8). In fat,

from the �rst three equations of (7) the variables w

i

are eliminated linearly and the other equations redue

to

2�(u

2

� u

2

1

) + 3u

1

u

2

2

� u

1

v

2

1

� 4u

2

u

3

1

+ 2v

1

v

2

+ u

5

1

= 0;

�2�u

1

u

2

+ u

2

u

4

1

� u

2

v

2

1

� 3u

2

1

u

2

2

+ u

3

2

+ v

2

2

= 1;

(9)

so it suÆes to eliminate u

1

; u

2

; v

1

and v

2

from (9) and (8) (we have already eliminated the w

i

-variables in

(8)). In the latter z

1

and z

2

are solved linearly for v

1

and v

2

,

v

1

= u

2

1

� u

2

+

z

2

2u

1

;

v

2

= u

1

u

2

� z

1

;

(10)

and the new equation for z

3

, obtained by substituting (10) in (8) is then solved linearly for u

2

as

u

2

=

2u

2

1

z

2

2

�

z

3

� z

1

z

2

� 2z

2

1

�

: (11)

After substitution of (10) and (11) in the last equation of (8) and in the equations of (9), we are left with

three linear equations in u

3

1

, whih reets the fat that J(�) will be a 3: 1 over of its image in IP

4

. If we

eliminate u

3

1

we arrive at the following two equations:

8z

3

1

� 24�z

2

1

� 4 (2�z

2

+ 6z

3

+ z

4

) z

1

+ 4�z

3

� 2�z

2

2

� 3z

2

z

3

� z

2

z

4

= 0;

8z

4

1

� 16�z

3

1

� 4 (2 + 2�z

2

+ 6z

3

+ z

4

) z

2

1

+

�

8�+ 4�z

3

� 2�z

2

2

� 4z

2

� 3z

2

z

3

� z

2

z

4

�

z

1

+ 2�z

2

z

3

+ 14z

3

+ 2z

4

� 2z

2

2

+ z

3

z

4

+ 5z

2

3

= 0:

Using the �rst equation, the seond equation an be replaed by

8

�

1� 3�

2

�

z

2

1

+ 4

�

�2�+

�

1� 2�

2

�

z

2

� 6�z

3

� �z

4

�

z

1

+ 2

�

1� �

2

�

z

2

2

� 5z

2

3

� �z

2

(5z

3

+ z

4

) + 2z

3

�

2�

2

� 7

�

� z

3

z

4

� 2z

4

= 0;

8



or equivalently by

t

ZAZ = 0, where

A =

0

B

B

B

B

B

B

B

�

0 �8� 0 2(2�

2

� 7) �2

�8� 16(1� 3�

2

) 4(1� 2�

2

) �24� �4�

0 4(1� 2�

2

) 4(1� �

2

) �5� ��

2(2�

2

� 7) �24� �5� �10 �1

�2 �4� �� �1 0

1

C

C

C

C

C

C

C

A

:

Although at this point these equations for the quadri and ubi hypersurfaes whih de�ne S as a subset

of IP

4

(whih we will identify in the sequel with S) may not seem very attrative, we will see that natural

oordinates an be piked for IP

4

in whih these equations take a very symmetri form. Indeed, the base we

used for IP

4

is rather arbitrary: for example, the oordinates of the nine �xed points for � do not possess

speial oordinates in terms of the present base. The �rst interesting observation is here that if the �ve �xed

points for � whih do not lie on � are taken as base points for IP

4

then the four �xed points on � take a

simple form and are independent of �. To see this, let � =1

1

�1

2

and � = o

1

� o

2

and remark that the

points

fO; ��� �; ��+ �; �� �; �+ �g

are the �ve poins whih do not lie on �. To �nd their oordinates, use a loal parameter t and take x = t,

y = �

�

1 + �t

3

�

+O

�

t

6

�

;

piking either sign around o

1

or o

2

, and in the same way, x = t

�1

and

y = �

�

t

�3

+ �+

1� 2�

2

2

t

3

�

+O

�

t

4

�

for 1

1

and 1

2

. Then a areful omputation yields the following oordinates:

O : (0: 0: 0: 0: 1);

�� � : (0: 0: 1:�1:�3� 2�);

��� � : (1:�1:�2� 2�:�2�: 4�

2

� 14�+ 4):

We take the points

fO; ��� �; ��+ �; �� �; �+ �g

as base points for IP

4

(in that order), i.e., O = (1: 0: 0: 0: 0), et., with assoiated oordinates y

0

; : : : ; y

4

.

Then the four �xed points on � have as oordinates

� = (1: 1: 1: 0: 0); �� = (1: 0: 0: 1: 1);

� = (1: 1: 0: 1: 0); �� = (1: 0: 1: 0: 1);

and we see that they lie on the (2-dimensional!) plane

y

0

= y

2

+ y

3

= y

1

+ y

4

;

and it is easy to see that in fat � is ontained in this plane. The translations �

�

and �

�

orrespond to

projetive transformations of the surfae and take in terms of these oordinates the simple form

t

�

=

0

B

B

B

�

�1 1 1 0 0

�1 0 1 1 0

�1 1 0 0 1

0 0 1 0 0

0 1 0 0 0

1

C

C

C

A

and t

�

=

0

B

B

B

�

�1 1 0 1 0

�1 0 1 1 0

0 0 0 1 0

�1 1 0 0 1

0 1 0 0 0

1

C

C

C

A

9



from whih the equations for the planes to whih the other invariant urves belong, are obtained at one.

This on�guration of nine points in IP

4

is haraterised by the fat that there exist nine planes with the

property that eah of these planes ontains four of the nine points and every point belongs to four of the

planes. Thus we have reovered in a diret way a on�guration that has been studied in the work of Segre

and Castelnuovo on nets of ubi hypersurfaes in IP

4

(see [5℄ and [12℄).

The equations of the quadri and ubi hypersurfaes Q and C take in terms of the new oordinates the

following symmetri form.

Q : (y

1

+ y

4

)(y

2

+ y

3

+ y

4

� y

0

) + �(y

2

+ y

3

)(y

1

+ y

3

+ y

4

� y

0

) = y

2

4

+ �y

2

3

;

C : �

3

y

2

2

(y

1

+ y

3

+ y

4

� y

0

) + �

2

y

2

((y

1

+ y

4

)(y

2

� y

0

) + y

0

y

3

+ y

1

y

4

)�



3

y

2

1

(y

2

+ y

3

+ y

4

� y

0

)� �

2

y

1

((y

2

+ y

3

)(y

1

� y

0

) + y

0

y

4

+ y

2

y

3

) = 0;

where  = �+1 and � = 1��. The ubi equation an be simpli�ed in a signi�ant way by adding to it the

equation for Q multiplied with 

2

y

1

� �

2

y

2

. The result is



2

y

1

y

4

(y

2

+ y

3

� y

0

)� �

2

y

2

y

3

(y

1

+ y

4

� y

0

) = 0:

If we de�ne

x

1

= �y

1

;

x

2

= �y

4

;

x

3

= y

0

� y

2

� y

3

;

x

4

= y

2

;

x

5

= y

1

+ y

4

� y

0

;

x

6

= y

3

;

then S is given as an algebrai variety in IP

5

by

C : 

2

x

1

x

2

x

3

+ �

2

x

4

x

5

x

6

= 0;

Q : (x

1

x

2

+ x

2

x

3

+ x

1

x

3

) + �(x

4

x

5

+ x

5

x

6

+ x

4

x

6

) = 0;

H :x

1

+ x

2

+ x

3

+ x

4

+ x

5

+ x

6

= 0;

(12)

and the 9

4

on�guration is presented in the form used by Segre and Castelnuovo. Namely, the singular points

of S are now the points �

ij

(i; j = 1; : : : ; 3) with a 1 on the i-th plae, a �1 on position 3 + j and zeroes

elsewhere; the nine planes they belong to are given by H \ (x

i

= x

j+3

= 0) for i; j = 1; : : : ; 3. Moreover

the theta urves are mapped to the nine onis C

ij

; (1 � i; j � 3), given by H

ij

= 3C

ij

For example, C

16

is

given as

x

2

x

3

+ �x

4

x

5

= 0;

x

2

+ x

3

+ x

4

+ x

5

= 0:

Note that if one hanges the sign of � in the equations (12) then an isomorphi surfae is obtained (interhange

$ � and x

i

$ x

i+3

for i = 1; : : : ; 3), in agreement with the fat that �

2

is the modular parameter.

10



Referenes

[1℄ M. Adler and P. van Moerbeke. Algebrai ompletely integrable systems: a systemati approah. Per-

spetives in Mathematis (Aademi Press, to appear).

[2℄ M. Adler and P. van Moerbeke. The omplex geometry of the Kowalewski-Painlev�e analysis. Invent.

Math. 97 (1987), 3{51.

[3℄ A. Beauville. Complex Algebrai Surfaes. London Math. So. Leture Note Series 68 (Cambridge

University Press, 1982).

[4℄ J. Bertin and G. Elenwajg. Manusript.

[5℄ G. Castelnuovo. Sulle ongruenze del 3

Æ

ordine del spazio a 4 dimensioni. Memoria Atti Istituto Venoto

VI (1888).

[6℄ P. Griffiths and J. Harris. Priniples of Algebrai Geometry. Pure & Applied Mathematis (Wiley-

Intersiene, 1978).

[7℄ R.W.H. Hudson. Kummer's quarti surfae. Cambridge Mathematial Library (Cambridge University

Press, 1990; �rst published in 1905).

[8℄ H. Lange and C. Birkenhake. Complex Abelian Varieties. Grundlehren der mathematishen Wis-

senshaften (Springer-Verlag,1992).

[9℄ D. Mumford. On the equations de�ning Abelian varieties I. Invent. Math. 1 (1966), 287{354.

[10℄ D. Mumford. Tata letures on Theta 2. Progress in Mathematis, (Birkh�auser, 1984).

[11℄ S. Roan. A Charaterization of \Rapidity" Curve in the Chiral Potts Model. Commun. Math. Phys.

145 (1992), 605{634.

[12℄ Segre. Sulle variata ubihe dello spazio a 4 dimensioni. Memorie Aad. Torino II 39 (1888).

[13℄ P. Vanhaeke. Linearising two-dimensional integrable systems and the onstrution of ation-angle

variables. Math. Z. 211 (1992), 265{313.

11


