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Abstract

Consider N = n1 +n2 + · · ·+np non-intersecting Brownian motions
on the real line, starting from the origin at t = 0, with ni particles
forced to reach p distinct target points βi at time t = 1, with β1 < β2 <
· · · < βp. This can be viewed as a diffusion process in a sector of RN .
This work shows that the transition probability, that is the probability
for the particles to pass through windows Ẽk at times tk, satisfies, in
a new set of variables, a non-linear PDE which can be expressed as a
near-Wronskian; that is a determinant of a matrix of size p + 1, with
each row being a derivative of the previous, except for the last column.
It is an interesting open question to understand those equations from
a more probabilistic point of view.

As an application of these equations, let the number of particles
forced to the extreme points β1 and βp tend to infinity; keep the number
of particles forced to intermediate points fixed (inliers), but let the
target points themselves go to infinity according to a proper scale. A
new critical process appears at the point of bifurcation, where the bulk
of the particles forced to −

√
n depart from those going to

√
n. These

statistical fluctuations near that point of bifurcation are specified by
a kernel, which is a rational perturbation of the Pearcey kernel. This
work also shows that such equations are an essential tool in obtaining
certain asymptotic results. Finally, the paper contains a conjecture.
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1 Introduction

Consider N non-intersecting Brownian motions x1(t) < x2(t) < . . . < xN(t)
on R (Dyson’s Brownian motions), all starting at source points γ1 < γ2 <
· · · < γN at time t = 0 and forced to target points δ1 < δ2 < · · · < δN at
t = 1. According to the Karlin-McGregor formula [17], the probability that
the N particles pass through the subsets Ẽ1, Ẽ2, . . . , Ẽm ⊂ R respectively at
times 0 < t1 < t2 < · · · < tm < 1 is given by (setting t0 := 0 and tm+1 := 1),

P

(
m⋂
k=1

{
all xi(tk) ∈ Ẽk

} xj(0) = γj, xj(1) = δj,
for j = 1, . . . , N

)

=
1

ZN

∫
ẼN1

N∏
i=1

du
(1)
i

∫
ẼN2

N∏
i=1

du
(2)
i . . .

∫
ẼNm

N∏
i=1

du
(m)
i det(p(t1− t0; γi, u

(1)
j ))16i,j6N

× det(p(t2 − t1;u
(1)
i , u

(2)
j ))16i,j6N . . . det(p(tm+1 − tm;u

(m)
i , δj))16i,j6N (1.1)

where p(t, x, y) denotes the standard Brownian transition probability,

p(t, x, y) :=
1√
πt

e−
(y−x)2

t . (1.2)
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There has been a great deal of interest in non-intersecting Brownian motions
and especially in some critical infinite-dimensional diffusions arising when the
number of particles N → ∞. This in turn has been motivated by random
matrix theory and Dyson’s observation [14] that letting the entries of GUE
matrices run according to independent Ornstein-Uhlenbeck processes leads to
such non-intersecting Brownian motions for the random eigenvalues of the
matrix.

When some source points and some target points coincide, the formula
(1.1) for the probability must be adapted by taking appropriate limits; see
[17, 16, 10, 7]. In this paper, we consider the situation where the source
points all coincide with 0, while some target points may coincide. Consider
thus N = n1 + n2 + · · ·+ np non-intersecting Brownian motions starting from
the origin at t = 0, with ni particles forced to reach p distinct target points
βi at time t = 1, with β1 < β2 < · · · < βp in R; see Figure 1.

Given positive integers n = (n1, . . . , np), given m subsets Ẽ1, . . . , Ẽm ⊂ R
and times t0 = 0 < t1 < t2 < · · · < tm < tm+1 = 1, this paper deals with the

probability5 P(β)
n (t, Ẽ), as in (1.3) below (i.e., the probability for the particles to

pass through the windows Ẽk at times tk); as is well-known, (see [20, 10, 19, 7]),

P(β)
n (t, Ẽ) can also be viewed as the probability for the eigenvalues of a chain

of m coupled Hermitian random matrices, after some change of variables:

P(β)
n (t, Ẽ) := P

 m⋂
k=1

{
all xi(tk) ∈ Ẽk

}∣∣∣ all xi(0) = 0;
nj paths end up at βj at t = 1,
for 1 6 j 6 p


=

1

Z̃n

∫
spec(Mk)∈Ek

e
− 1

2
tr
„
mP
k=1

M2
k−2

m−1P
k=1

ckMkMk+1−2AMm

«
m∏
k=1

dMk

=: PAn (c,E). (1.3)

The change of variables is given by the following formulae6,

A := diag(

n1︷ ︸︸ ︷
b1, . . . , b1,

n2︷ ︸︸ ︷
b2, . . . , b2, . . . ,

np︷ ︸︸ ︷
bp, . . . , bp), with b` =

√
2(tm − tm−1)

(1−tm)(1−tm−1)
β`

Ek := Ẽk

√
2(tk+1 − tk−1)

(tk − tk−1)(tk+1 − tk)
, c2

k :=
(tk+2 − tk+1)(tk − tk−1)

(tk+2 − tk)(tk+1 − tk−1)
, (1.4)

for ` = 1, . . . , p and k = 1, . . . ,m. It is quite natural to impose a linear
constraint on the rescaled target points β1, . . . , βp, namely

p∑
`=1

κ`β` = 0, with

p∑
`=1

κ` = 1, set κ0 := −1. (1.5)

5Ẽ = Ẽ1 × . . .× Ẽm.
6For m = 1, the matrix integral above becomes a one-matrix integral with external

potential. The change of variables below becomes: b` =
√

2t
1−tβ`, E = Ẽ

√
2

t(1−t) .

3



Of course, the same relation holds for the bi’s. For instance, a typical situation
is to take β1 = −βp and have all the remaining target points in arbitrary
position between β1 and βp. This case will be discussed in Section 8.

The natural initial or rather “final condition” for the transition probability
(1.3) is given by what happens when tm → 1, keeping t1, . . . , tm−1, away from
0 or 1; namely,

lim
tm→1

P(β)
n (t, Ẽ) = 0, when Ẽm /⊃ {β1, . . . , βp}. (1.6)

It is also known (see ([19])) that the probability above P(β)
n (t1, . . . , tm, Ẽ1×

. . . × Ẽm) = det(1 − χ eEc
i

(x)H
(N)
titj (x, y)χ eEc

j

(y)) can be expressed as a matrix

Fredholm determinant of a matrix kernel 7

H
(N)
tk,t`

(x, y; β1, . . . , βp)dy = − dy

2π2
√

(1−tk)(1−t`)

∫
C
dV

∫
ΓL

dU
e
− tkV

2

1−tk
+ 2xV

1−tk

e
−t`U2

1−t`
+ 2yU

1−t`

×
p∏
r=1

(
U − βr
V − βr

)nr 1

U − V

−

 0, for tk > t`
dy√

π(t`−tk)
e
− (x−y)2

t`−tk e
x2

1−tk
− y2

1−t` , for tk < t`

(1.7)

where C is a closed contour enclosing all the points βr, which is to the left of
the line ΓL := L+ iR by picking L large enough, guaranteeing <e(U−V ) > 0.

These non-intersecting Brownian motions x1(t) < . . . < xN(t) describe a
diffusion process in a sector {x1 < x2 < . . . < xN} of RN and thus satisfy a
diffusion equation. When the number N of particles tends to∞, the transition

7 The Fredholm determinant of a matrix kernel Ĥtitj (x, y) := χEi(x)Htitj (x, y)χEj (y):

det
(
I − z(Ĥtitj )16i,j6m

)
=1+

∞∑
n=1

(−z)n
∑

06ri6nPm
1 ri=n

∫
R

r1∏
1

dα
(1)
i . . .

rm∏
1

dα
(m)
i det

((
Ĥtkt`(α(k)

i , α
(`)
j )
)

16i6rk
16j6r`

)
16k,`6m

,

where the n-fold integral in each term above is taken over the range

R =


−∞ < α

(1)
1 6 . . . 6 α

(1)
r1 <∞

...
−∞ < α

(m)
1 6 . . . 6 α

(m)
rm <∞

.
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Figure 1: Non-intersecting Brownian motions

probability would have to satisfy an “infinite-dimensional diffusion equation”,
which however would be very difficult to use. The main result of this paper
is to show that this transition probability PAn (c,E) satisfies a non-linear PDE
in the boundary points of E1, . . . , Em, the target points b1, . . . , bp, and the
couplings c1, . . . , cm−1. It is the determinant of a certain matrix of size p+ 1;
p being the number of target points; so, when the number of particles tends
to ∞, the form of this equation remains the same, which will be exploited in
the limit discussed in Theorem 1.3. Moreover, this determinant misses to be
a Wronskian by the last column only.

The PDE for the transition probability stems largely from integrable the-
ory; this at least is our approach in the present paper. The integrable theory
behind non-intersecting Brownian motions has been developed by us in [8];
the latter contains many different ingredients; among them, multi-component
KP hierarchies [18, 6] and multiple-orthogonal polynomials [4, 9, 10]. It is
– in our opinion – an interesting open question to understand the PDE from
a more probabilistic point of view and to use more conventional probabilistic
tools to derive them.

Throughout the paper, we shall use, without further warning, the following
notation: (i) The inverse of the following Jacobi matrix will play an important
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role:

J :=



−1 c1

. . . 0

c1 −1
. . .

. . . . . . . . .
. . . −1 cm−1

0
. . .

cm−1 −1



−1

. (1.8)

(ii) For any given vector u = (u1, . . . , uα), we denote by

∂u :=
α∑
i=1

∂

∂ui
, εu :=

α∑
i=1

ui
∂

∂ui
. (1.9)

In particular, given any interval or disjoint union of intervals E = ∪ri=1[z2i−1, z2i],
we denote by

∂E :=

{
sum of partials in the
boundary points of E

}
=
∑2r

i=1
∂
∂zi

εE :=

{
Euler operator in the
boundary points of E

}
=
∑2r

i=1 zi
∂
∂zi
.

(1.10)

(iii) In view of the Theorem below, given b = (b1, . . . , bp−1) and subsets Ei,
define the linear differential operators:

∂
(`)
b :=

p−1∑
i=1

(κ` − δ`,i)
∂

∂bi
, ∂

(0)
b := 0, implying

p∑
`=1

∂
(`)
b = 0,

∂` := ∂
(`)
b − κ`

m∑
i=1

∂
Ei
×
{
J1i for ` = 0,
Jmi for 1 6 ` 6 p,

εb :=

p−1∑
1

bi
∂

∂bi
,

ε0 := ε
E1
− δ1,mεb − c1

∂

∂c1

, εm := ε
Em
− ε

b
− cm−1

∂

∂cm−1

. (1.11)

For brevity in the statement of the Theorem, set ′ := ∂0 =
∑m

1 J1i∂Ei .

Theorem 1.1 The probability Pn := PAn (c,E), as in (1.3), with the linear
constraint (1.5) on the rescaled target points, satisfies a non-linear PDE in the
boundary points of the subsets E1, . . . , Em and in the target points b1, . . . , bp;
it is given by the determinant of a (p+1)×(p+1) matrix, nearly a Wronskian

6



for the operator ′ := ∂0,

det


F1 F2 F3 . . . Fp G0

F ′1 F ′2 F ′3 . . . F ′p G1

F ′′1 F ′′2 F ′′3 . . . F ′′p G2
...

...
...

...
...

F
(p)
1 F

(p)
2 F

(p)
3 . . . F

(p)
p Gp

 = 0, (1.12)

where the F` and G` are given by

F` = −∂0∂` ln Pn − n`J1m,

G`+1 := ∂0G` +

p∑
i=1

(∂0)`Fi

(
∂0
H

(1)
i

Fi
− ∂i

H
(2)
i

Fi

)
, G0 := 0,

H
(1)
` := (κ`(δ1,m − εm)∂0 + 2J1m∂

(`)
b ) ln Pn + C`, (1.13)

H
(2)
` := (δ1,m − ε0 + 2J1mb`∂0)∂` ln Pn,

with

C` := 2n`J1m

(
Jmmb` −

∑
i 6=`

ni
b` − bi

)
. (1.14)

The final condition (1.6) translates into an “ initial condition” near cm−1 → 0
and b` →∞, upon using the fact that

cm−1 '
√

1− tm, cm−1b` ' O(1).

As a special case, we consider the one-time probability P(β)
n (t, Ẽ) for 0 <

t1 = t < 1. For this case, (1.3) becomes a one-matrix model with external
potential Pn := PAn (E), thus with no coupling. The expressions for (1.13)

can be replaced by simpler expressions; note that the H
(1)
` in (1.15) below

are not obtained from the H
(1)
` , as in (1.13), by setting m = 1; in fact, a

further simplification occurs in the equations; also the functions G` are only
specializations of the above G` up to a sign −(−1)` and ′ now denotes ∂E
instead of ∂0 = −∂E. In this statement, we use the operator ∂

(`)
b as in (1.11),

and we use the following simple operator, in accord with (1.9):

ε := εE − εb, with εb =

p−1∑
1

bi
∂

∂bi
.

Corollary 1.2 When m = 1 (the one-time case), then ln Pn = ln PAn (E) sat-
isfies the same non-linear PDE (1.12), but with simpler expressions F` and

7



H
(1)
` and with ′ = ∂

E
,

F` :=
(
∂

(`)
b + κ`∂E

)
∂
E

ln Pn + n`,

H̄
(1)
` :=

(
−κ`∂Eε+ (κ`(ε− 1) + 2)(∂

(`)
b + κ`∂E)

)
ln Pn + C̄`,

H
(2)
` := (1− ε+ 2b`∂E)

(
∂

(`)
b + κ`∂E

)
ln Pn, (1.15)

G`+1 := ∂
E
G` +

p∑
i=1

(∂
E

)`Fi

(
∂
E

H̄
(1)
i

Fi
− ∂(i)

b

H
(2)
i

Fi

)
, G0 = 0,

C̄` := −2n`

(
(1− κ`)b` +

∑
j 6=`

nj
b` − bj

)
.

In section 7, we shall work out two examples, immediate applications of
the equations in Theorem 1.1 and Corollary 1.2. In the first example, we
describe nonintersecting Brownian motions, leaving from 0 and forced back to
0. The second example deals with the situation of several target points with
the extreme ones being symmetric with regard to the origin. That model will
also be used later in Section 8.
Pearcey process with inliers: In section 8, we consider non-intersecting
Brownian motions leaving from 0 and forced to p target points at time t = 1,
with the only condition that the left-most and right-most target points are
symmetric with respect to the origin, with p − 2 intermediate target points
thrown in totally arbitrarily; it is convenient to rename the target points
β1 < . . . < βp, as follows:

ã < −c̃1 < . . . < −c̃p−2 < −ã

n+ n1 . . . np−2 n−

(1.16)

with the corresponding number of particles forced to those points at time
t = 1. The purpose of this section is to identify the critical process obtained
by letting n := n+ = n− → ∞ and by rescaling ã and the c̃i accordingly,
while keeping n1, . . . , np−2 fixed. We let ã go to −∞ like −

√
n and −ã to

∞ like
√
n. The target points −c̃1, . . . ,−c̃p−2 of the inliers move to ∞ as

well, but at a much slower rate, namely like −u`
(
n
2

)1/4
. A new process will

appear at the point of bifurcation, where the bulk of the particles forced to
−
√
n depart from those going to

√
n, namely the Pearcey process with inliers,

which generalizes the Pearcey process found by C. Tracy and H. Widom [19].
It describes the statistical fluctuations near that point of bifurcation; it will
be sensitive to the presence of inliers and will be different in the absence of
inliers (Pearcey process). We will compute the kernel governing the transition
probabilities and also apply the formulae obtained in Corollary 1.2 to compute
a PDE for the gap probability, which, to our surprise, appears to be an exact
p× p Wronskian. This is the content of Theorem 1.3.
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Theorem 1.3 Pick times τ1 < . . . < τm, subsets Ej ⊂ R for j = 1, . . . ,m and
parameters u` for ` = 1, . . . , p − 2. Consider 2n +

∑p−2
`=1 n` non-intersecting

Brownian motions, such that
(i) all particles leave from 0 at time t = 0,
(ii) n = n± particles are forced to ±

√
n at time t = 1,

(iii) n` paths are forced to points8 −u`
(
n
2

)1/4
at time t = 1 (1 6 ` 6 p).

Then the following Brownian motion limit holds for the gap probability, about
time t = 1/2, keeping n` fixed,

lim
n→∞

P

(
m⋂
j=1

{
all xi

(1

2
+

τj

4
√

2n

)
∈

Ec
j

4(n/2)1/4

})

= PP (u1,...,up−2)

(
m⋂
j=1

{P(τj) ∩ Ej = ∅}

)

= det

(
1−

(
χ
Ei
KPτiτj

χ
Ej

)
16i,j6m

)
, (1.17)

where this probability is given by the Fredholm determinant of the Pearcey
matrix kernel with inliers, which is a rational perturbation of the customary
Pearcey kernel 9, namely

KPs,t(X, Y ; u1, . . . , up−2)

= − 1

4π2

∫
X

dV

∫ i∞

−i∞
dU

1

U − V
e−

U4

4
+ tU2

2
−UY

e−
V 4

4
+ sV 2

2
−V X

p−2∏
`=1

(
U + u`
V + u`

)n`

−

 0 for t− s 6 0

1√
2π(t−s)

e−
(X−Y )2

2(t−s) for t− s > 0.
(1.18)

The log of the gap probability (E = E1 × · · · × Em)

Q(τ1, . . . , τm;u1, . . . , up−2; E) := ln PP (u1,...,up−2)

(
m⋂
j=1

{P(τj) ∩ Ej = ∅}

)

satisfies a partial differential equation, which is a p×p Wronskian with respect
to the operator ∂E =

∑m
i=1 ∂Ei :

Wp

[
∂2

E
∂τQ, ∂2

E

∂Q
∂u1

, . . . , ∂2
E

∂Q
∂up−2

, X
]
∂E

= 0, (1.19)

8Note that those points belong to the interval [−
√
n,
√
n] for large enough n.

9X stands for the contour
↖ ↙0↗ ↘

9



Figure 2: Pearcey process with inliers

where10

X := (εE−εu+2ετ−2)∂2
E
Q+4∂u∂E∂τQ+8∂3

τQ−4∂̃E∂E∂τQ+4
{
∂E∂τQ, ∂

2
E
Q
}
∂E
.

(1.20)
For one-time (m = 1), the expression X reads as follows:

X := (ε
E
−εu−2τ

∂

∂τ
−2)∂2

E
Q+4∂u∂E

∂Q
∂τ

+8
∂3Q
∂τ 3

+4

{
∂
E

∂Q
∂τ

, ∂2
E
Q
}
∂
E

. (1.21)

Remark: The term εu∂
2
E
Q could be omitted in the definition of X, since

it is a linear combination of (p − 1) columns in the matrix (1.19) (from the
second ×u1 to the (p − 1)st column ×up−2). We nevertheless keep this term
in the expression, in view of Conjecture 1.5.

In the absence of inliers, one obtains, in particular, the PDE for the tran-
sition probability of the Pearcey process: it is a 2 × 2 Wronskian with X
as in (1.20) and (1.21), but without the u-partials. In [3], it is shown that
the transition probability of the Pearcey process satisfies the simpler equation
X = 0.

Corollary 1.4 [3] In the absence of inliers (p = 2),

Q(τ1, . . . , τm; E) := ln PP
(

m⋂
j=1

{P(τj) ∩ Ej = ∅}

)
10Remember for u = (u1, . . . , up−2) and τ = (τ1, . . . , τm), one has ∂u =

∑p−2
1

∂
∂ui

,
εu =

∑p−2
1 ui

∂
∂ui

, ∂τ =
∑m

1
∂
∂τi

.One also needs εE :=
∑m

1 εEi and the mixed time-space
derivative ∂̃E :=

∑m
1 τi∂Ei

.

10



satisfies

(εE + 2ετ − 2)∂2
E
Q + 8∂3

τQ− 4∂̃E∂E∂τQ + 4
{
∂E∂τQ, ∂

2
E
Q
}
∂E

= 0,

and for the one-time case (m = 1),

(ε
E
− 2τ

∂

∂τ
− 2)∂2

E
Q + 8

∂3Q
∂τ 3

+ 4

{
∂
E

∂Q
∂τ

, ∂2
E
Q
}
∂
E

= 0.

We now formulate a conjecture, stating that, even with inliers, the equation
for the transition probability reads X = 0, where X is given by (1.20) and
(1.21):

Conjecture 1.5 Even with inliers (p > 2), we conjecture that the function

Q(τ1, . . . , τm;u1, . . . , up−2; E) := ln PP (u1,...,up−2)

(
m⋂
j=1

{P(τj) ∩ Ej = ∅}

)

satisfies

X = (εE−εu+2ετ−2)∂2
E
Q+4∂u∂E∂τQ+8∂3

τQ−4∂̃E∂E∂τQ+4
{
∂E∂τQ, ∂

2
E
Q
}
∂E

= 0,

(1.22)
and for the one-time case (m = 1),

X = (ε
E
− εu − 2τ

∂

∂τ
− 2)∂2

E
Q + 4∂u∂E

∂Q
∂τ

+ 8
∂3Q
∂τ 3

+ 4

{
∂
E

∂Q
∂τ

, ∂2
E
Q
}
∂
E

= 0.

(1.23)

The PDE’s play a prominent role in obtaining certain approximations
which would be very hard to obtain without that technology. An example
will be given here, without proof, for the Pearcey process without inliers. At
the point of bifurcation, mentioned above, there appears a cusp in the Pearcey
scale ξ = ± 2

27
(3τ)3/2, such that, roughly speaking, most Pearcey process paths

stay completely to the left or to the right of this cusp. Upon comparing the
Pearcey process with, say, the right branch of the cusp in the new (crude)
space-scale (3τ)1/6, and letting two different times τ1 and τ2 tend to ∞ in a
very specific way, one is led to the so-called Airy process A(t). The exact
approximation is given in the Theorem below taken from [1]:

Theorem 1.6 Let τ1, τ2 →∞, such that

τ2 − τ1

2(t2 − t1)
= (3τ1)1/3 +

t2 − t1
(3τ1)1/3

+
2t1t2
3τ1

+O
( 1

τ
5/3
1

)
;

11



this specifies two new times t1 and t2. The following approximation, far out
along the cusp, of the Pearcey process by the Airy process holds:

P

(
2⋂
i=1

{
P(τi)− 2

27
(3τi)

3/2

(3τi)1/6
∩ (−Ei) = ∅

})

= P

(
2⋂
i=1

{A(ti) ∩ (−Ei) = ∅}

)(
1 +O

( 1

τ
4/3
1

))
.

Remark: The O
(
τ
−4/3
1

)
-approximation, obtained via the PDE is much better

than any rough estimate one might predict. Also one expects that, in this
precise limit, the Pearcey process with inliers tends to the Airy process with
outliers; see [2].

2 Non-intersecting Brownian motions and a

chain of Coupled Random Matrices

Setting

τk := tk+1 − tk and
1

σk
:=

1

tk − tk−1

+
1

tk+1 − tk
, for 1 6 k 6 m,

and taking in (1.1) the limit γi → 0, for i = 1, . . . , N , leads to

P

(
m⋂
k=1

{
all xi(tk) ∈ Ẽk

} xj(0) = 0, xj(1) = δj,
for j = 1, . . . , N

)

=
1

Z ′n

∫
ẼN

∆N(u1)
m∏
k=1

[
det

(
e

2uk;iuk+1;j
τk

)
16i,j6N

∏
16i6N

e
−
u2
k;i
σk duk;i

]
, (2.1)

where ∆N(u1) stands for the Vandermonde determinant in the variables u1 =
(u1;1, . . . , u1;N). Notice that each of the sets of variables u1, . . . , um appears
in exactly two of the determinants in the above integrand and that the other
factors are insensitive to a permutation, for fixed k with 1 6 k 6 m, of the
variables uk = uk;1, . . . , uk;N . Therefore, taking the limit um+1;i = δi → βj,
for i = 1, . . . , N , with n` of the δi going to β`, namely um+1;1, . . . , um+1;n1 →
β1, and so on, making m synchronized changes of variables, and using the

12



symmetry of the integration ranges vis-à-vis these variables uk;1, . . . , uk;N ,

P


xj(0) = 0, (j = 1, . . . , N),
x1(1) = · · · = xn1(1) = β1,

m⋂
k=1

{
all xi(tk) ∈ Ẽk

} ...

xN−np+1(1) = · · · = xN(1) = βp


=

1

Z ′′n

∫
ẼN

∆N(u1)

p∏
`=1

∆n`(u
(`)
m )

n∏̀
i=1

e
−

mP
k=1

u
(`)
k;i

2

σk
+
m−1P
k=1

2u
(`)
k;i
u
(`)
k+1;i

τk
+

2β`u
(`)
m;i

τm

 ∏
16i6N
16k6m

duk;i,

=
1

Z ′′′n

∫
EN

∆N(v1)

p∏
`=1

(
∆n`(v

(`)
m )

n∏̀
i=1

e
−

mP
k=1

1
2
v
(`)
k;i

2
+
m−1P
k=1

ckv
(`)
k;iv

(`)
k+1;i+b`v

(`)
m;i

) ∏
16i6N
16k6m

dvk;i,

=:
1

Z ′′′n

∫
EN
In(v)

m∏
k=1

dvk, (2.2)

=
1

Z̃n

∫
spec(Mk)∈Ek

e
− 1

2
tr
„
mP
k=1

M2
k−2

m−1P
k=1

ckMkMk+1−2AMm

«
m∏
k=1

dMk, (2.3)

where the diagonal matrix A, ck, b̃` and Ẽk were defined in (1.4) or alter-
natively expressed below in terms of the σk’s and τk’s. The last integration
is taken over Hermitian matrices, with spec(Mk) ∈ Ek. Also the change of

integration variables u
(`)
k;i 7→ v

(`)
k;i above is given by

v
(`)
k;i =

√
2

σk
u

(`)
k;i, ck =

√
σkσk+1

τk
, b` =

√
2σm
τm

β`, Ek =

√
2

σk
Ẽk.

For k = 1, . . . ,m and for ` = 1, . . . , p, the vector u
(`)
k = (u

(`)
k;1, . . . , u

(`)
k;n`

) is
defined by

(uk;1, . . . , uk;N) = (u
(1)
k;1, . . . , u

(1)
k;n1

, u
(2)
k;1, . . . , u

(2)
k;n2

, . . . , u
(p)
k;1, . . . , u

(p)
k;np

).

Concerning the Jacobi matrix (1.8), one needs the following formulas for
derivatives of J; they can be shown by recurrence:

c1
∂

∂c1

Jmm = −2J 2
m1, cm−1

∂

∂cm−1

Jm1 = −Jm1(2Jmm + 1). (2.4)

3 Integrable deformations

In this section, we introduce a time deformation Ĩn(v) of the integrand In(v),
introduced in (2.3). The deformation is chosen such that the resulting integral

13



is on the one hand a solution to the multi-component KP hierarchy (see [8]
and Proposition 3.1 below) and satisfies on the other hand a set of Virasoro
constraints. We will impose on the rescaled target points b1, . . . , bp, which we

henceforth denote by b
(1)
1 , . . . , b

(p)
1 , a non-trivial linear constraint

p∑
`=1

κ`b
(`)
1 = 0. (3.1)

Without loss of generality, we may assume (upon reordering) that κp 6= 0
and impose if

∑p
1 κ` 6= 0 that

∑p
`=1 κ` = 1; also define κ0 := −1. Thus, the

non-deformed integral which we will consider is∫
EN

In(v)|Pp
1 κ`b

(`)
1,2=0

m∏
k=1

dvk. (3.2)

The integrand In(v) will be deformed by four sets of parameters: (i) A first

set, denoted by b
(1)
2 , . . . , b

(p)
2 , deforms the parameters b

(`)
1 . They are subjected

to the same constraint (3.1) as the parameters b
(`)
1 , namely11

p∑
`=1

κ`b
(`)
2 = 0. (3.3)

(ii) A second set of deformations consists of parameters corresponding to the

KP time variables; they are denoted by s
(0)
r (r ∈ Z>0) for the parameters

going with the starting point 0 of the Brownian motion and s
(`)
r (1 6 ` 6 p

and r ∈ Z>0) for the parameters going with the `-th end point of the Brownian

motion. (iii) There is furthermore a set of parameters γ
(k)
r (2 6 k 6 m − 1

and r ∈ Z>0) going with the intermediate times t2, . . . , tm−1 and (iv) a set of

parameters c
(k)
r,q (k = 1, . . . ,m−1 and12 (r, q) > (1, 1)), going with consecutive

times tk, tk+1.
For n = (n1, . . . , np) and E = E1 × E2 × · · · × Em, where each Ek is the

union of a finite number of intervals in R, define

τn(E) :=

∫
EN

Ĩn(v)
∣∣∣Pp

1 κ`b
(`)
1,2=0

m∏
k=1

dvk, (3.4)

11The combination of the two constraints (3.1) and (3.3) will in the formulas below be
denoted by

∑p
1 κ`b

(`)
1,2 = 0.

12The inequality (r, q) > (1, 1) means by definition that r > 1, q > 1 and (r, q) 6= (1, 1).
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where

Ĩn(v) = In(v)×
p∏
`=1

n∏̀
i=1

e
b
(`)
2 v

(`)
m;i

2
+
P
r>1

(s
(0)
r v

(`)
1;i

r
−s(`)r v

(`)
m;i

r
)+

m−1P
k=1

P
(r,q)>(1,1)

c
(k)
rq v

(`)
k;i

r
v
(`)
k+1;i

q
+
m−1P
k=2

P
r>1

γ
(k)
r v

(`)
k;i

r

,

with

In(v) =
∆N(v1)∏p
`=1 n`!

p∏
`=1

(
∆n`(v

(`)
m )

n∏̀
i=1

e

m−1P
k=1

ckv
(`)
k;iv

(`)
k+1;i−

1
2

mP
k=1

v
(`)
k;i

2
+b

(`)
1 v

(`)
m;i

)
.

We denote by L the locus corresponding to setting all deformation parameters

equal to zero, so that Ĩn

∣∣∣
L

= In,

L =


s

(0)
r , . . . , s

(p)
r = 0, r ∈ Z>0,

b
(1)
2 , . . . , b

(p)
2 = 0,

γ
(2)
r , . . . , γ

(m−1)
r = 0, r ∈ Z>0,

c
(1)
rq , . . . , c

(m−1)
rq = 0, (r, q) > (1, 1)

 . (3.5)

We list a number of operator identities, valid when acting on τn(E),

∂

∂b
(`)
h

= − ∂

∂s
(`)
h

+
κ`
κp

∂

∂s
(p)
h

, 1 6 ` 6 p− 1, h = 1, 2, (3.6)

p∑
`=1

b
(`)
j

∂

∂s
(`)
h

= −
p−1∑
`=1

b
(`)
j

∂

∂b
(`)
h

, h, j ∈ {1, 2}, (3.7)

∂

∂s
(`)
h

= −(1− δ`,p)
∂

∂b
(`)
h

+ κ`

(
p∑
i=1

∂

∂s
(i)
h

+

p−1∑
i=1

∂

∂b
(i)
h

)

= ∂
(`)
bh

+ κ`

p∑
i=1

∂

∂s
(i)
h

, h = 1, 2, 1 6 ` 6 p, (3.8)

where for h = 1, 2 and 1 6 ` 6 p we define

∂
(`)
bh

:= −(1− δ`,p)
∂

∂b
(`)
h

+ κ`

p−1∑
i=1

∂

∂b
(i)
h

=

p−1∑
i=1

(κ` − δ`,i)
∂

∂b
(i)
h

, (3.9)

implying
p∑
`=1

∂
(`)
bh

= 0. (3.10)

Using
∑p

`=1 κ`b
(`)
h = 0, one first establishes identity (3.6) and then (3.7), while

the first equality in (3.8) is obtained by computing
∑p−1

i=1
∂

∂b
(i)
h

from (3.6) and

by using
∑p

`=1 κ` = 1 and the identity (3.6).
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From section 7.3 in [8], it follows that τn(E) can be written as

τn(E) = det

 (〈yiϕ1(y) | xjψ(x)〉) 0 6 i < n1
0 6 j < N

...
(〈yiϕp(y) | xjψ(x)〉) 0 6 i < np

0 6 j < N

 , (3.11)

where

ψ(x) := exp

(
−1

2
x2 +

∑
r>1

s(0)
r xr

)
,

ϕ`(y) := exp

(
−1

2
y2 + b

(`)
1 y + b

(`)
2 y2 −

∑
r>1

s(`)
r y

r

)
,

for ` = 1, . . . , p, and where the inner product 〈· | ·〉 is defined by

〈f(y) | g(x)〉 :=

∫∫
E1×Em

f(y)g(x)µ(x, y) dx dy,

with

µ(x, y) :=

∫
Qm−1
k=2 Ek

exp
m−1∑
k=2

(
−1

2
w2
k +

∑
r>1

γ(k)
r wrk

)
×

exp
m−1∑
k=1

ckwkwk+1 +
∑

(r,q)>(1,1)

c(k)
rq w

r
kw

q
k+1

m−1∏
k=2

dwk,

w1 := x and wm := y. For m = 2 the latter formula for µ should be interpreted
as µ(x, y) := 1, while µ(x, y) := δ(x − y)ex

2/2 (the delta distribution) in the
case of m = 1.

The above representation (3.11) of τn implies, in view of [8, Prop. 6.2],
that τn is a tau function of the p + 1 component KP hierarchy, in particular
we have the following Proposition.

Proposition 3.1 The function τn = τn(E), as in (3.4), satisfies for 1 6 ` 6 p

∂

∂s
(0)
1

ln
τn+e`

τn−e`
=

∂2

∂s
(0)
2 ∂s

(`)
1

ln τn

∂2

∂s
(0)
1 ∂s

(`)
1

ln τn
,

∂

∂s
(`)
1

ln
τn+e`

τn−e`
= −

∂2

∂s
(0)
1 ∂s

(`)
2

ln τn

∂2

∂s
(0)
1 ∂s

(`)
1

ln τn
, (3.12)

where n± e` = (n1, . . . , np)± e` := (n1, . . . , n`−1, n` ± 1, n`+1, . . . , np).

Both equations will play an important role in Section 6 below.
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4 The Virasoro constraints

Remembering the definition (1.10) of the operators ∂E and εE and the defini-

tion (3.9) of the operators ∂
(`)
bk

, define for ` = 1, . . . , p the operators:

B(0)
1 :=

m∑
k=1

J1k∂Ek − 2J1m

p−1∑
i=1

b
(i)
2

∂

∂b
(i)
1

, (4.1)

B(`)
1 := ∂

(`)
b1
− κ`

(
m∑
k=1

Jmk∂Ek − 2Jmm
p−1∑
i=1

b
(i)
2

∂

∂b
(i)
1

)
, (4.2)

B(0)
2 := −εE1 + c1

∂

∂c1

+ δ1,m

(
p−1∑
i=1

b
(i)
1

∂

∂b
(i)
1

+ 2

p−1∑
i=1

b
(i)
2

∂

∂b
(i)
2

)
, (4.3)

B(`)
2 := ∂

(`)
b2
− κ`

(
−εEm + cm−1

∂

∂cm−1

+

p−1∑
i=1

b
(i)
1

∂

∂b
(i)
1

+ 2

p−1∑
i=1

b
(i)
2

∂

∂b
(i)
2

)
.(4.4)

We show in the following proposition, how the action of these operators on
the tau function can be represented by time derivatives.

Proposition 4.1 The integral τn(E), as in (3.4), satisfies13, for ` = 0, . . . , p
and h = 1, 2,

B(`)
h ln τn=

(
∂

∂s
(`)
h

+ κ`Σ
(`)
h

)
ln τn + κ`T

(`)
h , (4.5)

where

T
(α)
1 =


−J11Ns

(0)
1 − J1m

p∑
`=1

n`(b
(`)
1 − s

(`)
1 ) α = 0,

−J1mNs
(0)
1 − Jmm

p∑
`=1

n`(b
(`)
1 − s

(`)
1 ) α 6= 0,

(4.6)

T
(α)
2 =



∑
16i6j6p

ninj m = 1,

N(N + 1)/2 α = 0 and m > 1,
p∑
`=1

n`(n` + 1)/2 α 6= 0 and m > 1,

(4.7)

and each Σ
(α)
h is a homogeneous first order differential operator in all deforma-

tion parameters, except for the deformation parameters b
(`)
2 , so that Σ

(α)
k

∣∣∣
L

= 0,

and moreover, for k = 1, 2 and for ` = 1, . . . , p,[
∂

∂s
(`)
1

,Σ
(0)
h

]
= δh,2δ1,m

∂

∂s
(`)
1

,

[
∂

∂s
(0)
1

,Σ
(`)
2

]
= δ1,m

∂

∂s
(0)
1

. (4.8)

13Recall that κ0 = −1.

17



Proof: We give a detailed proof for the case of m = 2 (see remark 4.2 for
the case of m > 2 and see remark 4.3 for the special case of m = 1). Then
cm−1 = c1, which we simply write as c. Also, J is the 2× 2 matrix

J =

(
−1 c
c −1

)−1

=
−1

1− c2

(
1 c
c 1

)
.

In this case, referring to (3.4), there are two sets of variables v1 and v2, which

we denote by x and y, there are no deformation parameters γ
(k)
r and there is

a single set of deformation parameters c
(1)
rq , which we will denote by crq. For

E1, E2 ⊂ R, and taking into account the usual constraint
∑p

`=1 κ`b
(`)
1,2 = 0,

τn(E1, E2) :=
1∏p

`=1 n`!

∫∫
EN1 ×EN2

Ĩn(x, y) dx dy, (4.9)

where

Ĩn(x, y) = ∆N(x)

p∏
`=1

(
∆n`(y)

n∏̀
i=1

e−
1
2
x
(`)
i

2
− 1

2
y
(`)
i

2
+cx

(`)
i y

(`)
i +b

(`)
1 y

(`)
i × (4.10)

e
b
(`)
2 y

(`)
i

2
+
P
r>1

(s
(0)
r x

(`)
i

r
−s(`)r y

(`)
i

r
)+

P
(r,q)>(1,1)

crqx
(`)
i

r
y
(`)
i

q)
.

We first compute the action of the operators ∂Ek and εEk on the tau func-
tion (4.9). We start with ∂E2 . Using the fundamental theorem of calculus and
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the fact that
∑N

i=1
∂
∂yi

∆N(y) = 0, we compute from (4.10) that

∂E2τn =
∫∫

EN
1 ×EN

2

N∑
i=1

∂Ĩn
∂yi

(x, y) dx dy

=
∫∫

EN
1 ×EN

2

p∑
`=1

n∑̀
j=1

−y(`)
j + cx

(`)
j + b

(`)
1 −

∑
k>1

ks
(`)
k (y(`)

j )k−1 + 2b(`)2 y
(`)
j

+
∑

(r,q)>(1,1)

qcrq(x
(`)
j )r(y(`)

j )q−1

 Ĩn(x, y) dx dy

=
∫∫

EN
1 ×EN

2

 p∑
`=1

∂

∂s
(`)
1

+ c
∂

∂s
(0)
1

+
p∑
`=1

n`(b
(`)
1 − s

(`)
1 ) +

p∑
`=1

∑
k>2

ks
(`)
k

∂

∂s
(`)
k−1

−2
p∑
`=1

b
(`)
2

∂

∂s
(`)
1

+
∑
r>2

cr1
∂

∂s
(0)
r

+
∑

(r, q) > (1, 1)
q > 2

qcrq
∂

∂cr,q−1

 Ĩn(x, y) dx dy

=

 p∑
`=1

∂

∂s
(`)
1

+ c
∂

∂s
(0)
1

+
p∑
`=1

n`(b
(`)
1 − s

(`)
1 ) +

p∑
`=1

∑
k>2

ks
(`)
k

∂

∂s
(`)
k−1

+ 2
p−1∑
`=1

b
(`)
2

∂

∂b
(`)
1

+
∑
r>2

cr1
∂

∂s
(0)
r

+
∑

(r, q) > (1, 1)
q > 2

qcrq
∂

∂cr,q−1

 τn,

where we have used the identity (3.7), which follows from the constraint∑p
1 κ`b

(`)
1,2 = 0, in the last step. The computation for ∂E1 is similar, but simpler:

∂E1τn

=
∫∫

EN
1 ×EN

2

N∑
i=1

∂Ĩn
∂xi

(x, y) dx dy

=
∫∫

EN
1 ×EN

2

p∑
`=1

n∑̀
j=1

−x(`)
j + cy

(`)
j +

∑
k>1

ks
(0)
k (x(`)

j )k−1 +
∑

(r,q)>(1,1)

rcrq(x
(`)
j )r−1(y(`)

j )q

 Ĩn(x, y) dx dy

=

− ∂

∂s
(0)
1

− c
p∑
`=1

∂

∂s
(`)
1

+Ns
(0)
1 +

∑
k>2

ks
(0)
k

∂

∂s
(0)
k−1

−
p∑
`=1

∑
q>2

c1q
∂

∂s
(`)
q

+
∑

(r, q) > (1, 1)
r > 2

rcrq
∂

∂cr−1,q

 τn.

For the computation of the action of ε
E1

and ε
E2

on the tau function, note

N∑
i=1

∂

∂xi
(xif) = Nf +

N∑
i=1

xi
∂f

∂xi
,

N∑
i=1

xi
∂

∂xi
∆N(x) =

N(N − 1)

2
∆N(x),
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and so from (4.10), compute using (3.7) and the constraints
∑p

1 κ`b
(`)
1,2 = 0,

εE2τn =
∫∫

EN
1 ×EN

2

N∑
i=1

∂

∂yi
(yiĨn(x, y)) dx dy

=
∫∫

EN
1 ×EN

2

(
N +

p∑
`=1

n`(n` − 1)
2

+

p∑
`=1

n∑̀
j=1

−y(`)
j

2
+ cx

(`)
j y

(`)
j + b

(`)
1 y

(`)
j −

∑
k>1

ks
(`)
k (y(`)

j )k + 2b(`)2 y
(`)
j

2

+
∑

(r,q)>(1,1)

qcrq(x
(`)
j )r(y(`)

j )q

 Ĩn(x, y) dx dy

=
∫∫

EN
1 ×EN

2

 p∑
`=1

n`(n` + 1)
2

+
p∑
`=1

∂

∂s
(`)
2

+ c
∂

∂c
−

p∑
`=1

b
(`)
1

∂

∂s
(`)
1

+
p∑
`=1

∑
k>1

ks
(`)
k

∂

∂s
(`)
k

−2
p∑
`=1

b
(`)
2

∂

∂s
(`)
2

+
∑

(r,q)>(1,1)

qcrq
∂

∂crq

 Ĩn(x, y) dx dy

(4.11)

=

 p∑
`=1

n`(n` + 1)
2

+
p∑
`=1

∂

∂s
(`)
2

+ c
∂

∂c
+
p−1∑
`=1

b
(`)
1

∂

∂b
(`)
1

+
p∑
`=1

∑
k>1

ks
(`)
k

∂

∂s
(`)
k

+2
p−1∑
`=1

b
(`)
2

∂

∂b
(`)
2

+
∑

(r,q)>(1,1)

qcrq
∂

∂crq

 τn.

Similarly,

εE1τn =

∫∫
EN1 ×EN2

N∑
i=1

∂

∂xi
(xiĨn(x, y)) dx dy

=

N(N + 1)

2
− ∂

∂s
(0)
2

+ c
∂

∂c
+
∑
k>1

ks
(0)
k

∂

∂s
(0)
k

+
∑

(r,q)>(1,1)

rcrq
∂

∂crq

 τn.

In order to deduce (4.5) from these formulas it suffices, for h = 1, to substitute

in the first line the definitions (4.1), (4.2) for B(`)
1 and in the second line the

20



expressions for ∂E1τn and ∂E2τn in14(
B(0)

1

B(`)
1

)
τn =

{
−
(
κ0 0
0 κ`

)
J

(
∂E1

∂E2 − 2
∑p−1

i=1 b
(i)
2

∂

∂b
(i)
1

)
+

(
0

∂
(`)
b1

)}
τn

=


 ∂

∂s
(0)
1

∂
(`)
b1

+ κ`
p∑
i=1

∂

∂s
(i)
1

− (κ0 0
0 κ`

)
J

 Ns
(0)
1

p∑
i=1

ni(b
(i)
1 − s

(i)
1 )

+

(
κ0Σ

(0)
1

κ`Σ
(`)
1

) τn

=

{( ∂

∂s
(0)
1
∂

∂s
(`)
1

)
+

(
κ0(T

(0)
1 + Σ

(0)
1 )

κ`(T
(`)
1 + Σ

(`)
1 )

)}
τn,

where we used (3.8) (for k = 1) in the third line, and where we set(
Σ

(0)
1

Σ
(`)
1

)
:= −J

∑k>2 ks
(0)
k

∂

∂s
(0)
k−1

−
∑p

i=1

∑
q>2 c1q

∂

∂s
(`)
q

+
∑

(r, q) > (1, 1)
r > 2

rcrq
∂

∂cr−1,q∑p
`=1

∑
k>2 ks

(`)
k

∂

∂s
(`)
k−1

+
∑

r>2 cr1
∂

∂s
(0)
r

+
∑

(r, q) > (1, 1)
q > 2

qcrq
∂

∂cr,q−1

 .

(4.12)

Thus we see that Σ
(0)
1 and Σ

(`)
1 are homogeneous first order differential op-

erators in the deformation parameters, and that they are independent of
s

(1)
1 , . . . , s

(p)
1 , and of b

(1)
2 , . . . , b

(p)
2 , leading to the stated properties of Σ

(0)
1 and

Σ
(`)
1 . For k = 2, it suffices to substitute the found expressions for εE1 and εE2 ,

acting on τn, in the definitions (4.3) and (4.4) of B(0)
2 and B(`)

2 , to wit:

B(0)
2 τn =

(
−εE1 + c

∂

∂c

)
τn

=

 ∂

∂s
(0)
2

− N(N + 1)

2
−
∑
k>1

ks
(0)
k

∂

∂s
(0)
k

−
∑

(r,q)>(1,1)

rcrq
∂

∂crq

 τn,

=:

(
∂

∂s
(0)
2

+ κ0
N(N + 1)

2
+ κ0Σ

(0)
2

)
τn,

and

B(`)
2 τn =

(
∂

(`)
b2

+ κ`

(
εE2 − c

∂

∂c
−

p−1∑
i=1

b
(i)
1

∂

∂b
(i)
1

− 2

p−1∑
i=1

b
(i)
2

∂

∂b
(i)
2

))
τn

=

(
∂

(`)
b2

+ κ`

p∑
i=1

∂

∂s
(i)
2

+ (4.13)

κ`

 p∑
i=1

ni(ni + 1)

2
+

p∑
i=1

∑
k>1

ks
(i)
k

∂

∂s
(i)
k

+
∑

(r,q)>(1,1)

qcrq
∂

∂crq

 τn

=:

(
∂

∂s
(`)
2

+ κ`

p∑
i=1

ni(ni + 1)

2
+ κ`Σ

(`)
2

)
τn,

14Recall that m = 2 and that κ0 = −1.
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where15

Σ
(0)
2 =

∑
k>1

ks
(0)
k

∂

∂s
(0)
k

+
∑

(r,q)>(1,1)

rcrq
∂

∂crq
,

Σ
(`)
2 =

p∑
i=1

∑
k>1

ks
(i)
k

∂

∂s
(i)
k

+
∑

(r,q)>(1,1)

qcrq
∂

∂crq
. (4.14)

Remark 4.2 For m > 2 the proof goes along the same line, but it has extra
terms, coming from the deformation parameters γ

(k)
r . As it turns out,

∂

∂γ
(k)
1

τn =
m∑
i=1

Jki

(
∂Ei − δi,m

(
2

p−1∑
`=1

b
(`)
2

∂

∂b
(`)
1

+

p∑
`=1

n`b
(`)
1

))
τn +O(L),

(4.15)
while ∂

∂s
(i)
1

τn are as before, mod O(L), so the ∂

∂γ
(k)
1

τn are only needed to solve

for ∂

∂s
(i)
1

τn in terms of the (∂Ei − δi,m(?))τn, but they do not enter into the

actual solution of ∂

∂s
(i)
1

τn mod O(L).

Remark 4.3 For m = 1 (one time) the proof of Proposition 4.1 is simpler,
but a few adjustments are needed. Denoting the subset E1 ⊂ R by E, setting
κ0 := −1 and ∂

(0)
b1

:= ∂
(0)
b2

:= 0, the operators B(`)
1 and B(`)

2 can for ` = 0, . . . , p,
be written as

B(`)
1 = ∂

(`)
b1

+ κ`

(
∂E − 2

p−1∑
i=1

b
(i)
2

∂

∂b
(i)
1

)
,

B(`)
2 = ∂

(`)
b2

+ κ`

(
εE −

p−1∑
i=1

b
(i)
1

∂

∂b
(i)
1

− 2

p−1∑
i=1

b
(i)
2

∂

∂b
(i)
2

)
, (4.16)

while Tk := T
(α)
k and Σk := Σ

(α)
k are independent of α and take the simple

form

T1 = Ns
(0)
1 +

p∑
`=1

n`(b
(`)
1 − s

(`)
1 ), T2 =

∑
16i6j6p

ninj, (4.17)

Σ1 =

p∑
`=0

∑
k>2

ks
(`)
k

∂

∂s
(`)
k−1

, Σ2 =

p∑
`=0

∑
k>1

ks
(`)
k

∂

∂s
(`)
k

. (4.18)

15Notice that Σ(`)
2 is independent of ` for 1 6 ` 6 p.
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5 Virasoro constraints, restricted to the locus

L
Restricting the operators Bi, Ti and Σi ((4.1) – (4.7)) to the locus L, defined
by setting all deformation parameters equal to zero (see (3.5)), yields new
operators for ` = 0, . . . , p,

B̂(`)
1 := ∂

(`)
b1
− κ`

m∑
i=1

∂Ei ×
{
J1i for ` = 0
Jmi for 1 6 ` 6 p

B̂(0)
2 := −εE1 + c1

∂

∂c1

+ δ1,m

p−1∑
i=1

b
(i)
1

∂

∂b
(i)
1

B̂(`)
2 := ∂

(`)
b2
− κ`

(
−εEm + cm−1

∂

∂cm−1

+

p−1∑
i=1

b
(i)
1

∂

∂b
(i)
1

)
, for ` > 1.(5.1)

while all Σ
(`)
k , defined in (4.12) and (4.14), restrict to zero, T̂

(`)
2 = T

(`)
2 for

0 6 ` 6 p and

T̂
(0)
1 = −J1mN(b1), T̂

(`)
1 = −JmmN(b1), for 1 6 ` 6 p, (5.2)

where N(b1) :=
∑p

`=1 n`b
(`)
1 . It leads, on the locus L, to the identities:

Proposition 5.1 For ` = 0 . . . , p and h = 1, 2, the following formulas hold
on the locus L:

∂

∂s
(`)
h

ln τn = B̂(`)
h ln τn − κ`T̂ (`)

h , (5.3)

while for second derivatives and ` = 1, . . . , p, also on the locus L,

∂2

∂s
(0)
1 ∂s

(`)
1

ln τn = B̂(0)
1 B̂

(`)
1 ln τn + n`J1m =: −F`,

∂2

∂s
(0)
2 ∂s

(`)
1

ln τn = (B̂(0)
2 + δ1,m)B̂(`)

1 ln τn − 2J 2
1mκ`N(b1), (5.4)

∂2

∂s
(0)
1 ∂s

(`)
2

ln τn = (B̂(`)
2 − κ`δ1,m)B̂(0)

1 ln τn − 2J1m(Jmmκ`N(b1) + ∂
(`)
b1

ln τn).

Proof: The first set of identities (5.3) follows at once from restricting the iden-

tities (4.5) of Proposition 4.1 to the locus L and using that ∂

∂s
(`)
k

and B(`)
k are

first order differential operators. The identities (5.4) involving second deriva-
tives are shown as follows. Concerning the first one, observe from Proposition
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4.1 that

B̂(0)
1 B̂

(`)
1 ln τn

∣∣∣
L

= B(0)
1 B

(`)
1 ln τn

∣∣∣
L

= B(0)
1

(
∂

∂s
(`)
1

+ κ`Σ
(`)
1

)
ln τn

∣∣∣
L

+ κ`B(0)
1 T

(`)
1

∣∣∣
L

=

(
∂

∂s
(`)
1

+ κ`Σ
(`)
1

)
B(0)

1 ln τn

∣∣∣
L

=
∂

∂s
(`)
1

B(0)
1 ln τn

∣∣∣
L

=
∂

∂s
(`)
1

(
(
∂

∂s
(0)
1

+ κ0Σ
(0)
1 ) ln τn + κ0T

(0)
1

)∣∣∣
L

=
∂2

∂s
(`)
1 ∂s

(0)
1

ln τn

∣∣∣
L
− J1mn`,

where we used in the last equality the relations ∂

∂s
(`)
1

T
(0)
1 = J1mn` (see (4.6))

and

[
∂

∂s
(`)
1

,Σ
(0)
1

]
= 0, (see (4.8)). This yields the first identity in (5.4). To

prove the third one, we use that

p−1∑
i=1

∂
(`)
b2

(b
(i)
2 )

∂

∂b
(i)
1

=

p−1∑
i=1

(κ` − δ`,i)
∂

∂b
(i)
1

= ∂
(`)
b1
,

as follows from (3.9), and

B(`)
2 T

(0)
1

∣∣∣
L

= κ`cm−1
∂J1m

∂cm−1

N(b1) + κ`J1m

p−1∑
i=1

b
(i)
1

∂

∂b
(i)
1

N(b1)

= −κ`J1m(2Jmm + 1)N(b1) + κ`J1mN(b1) = −2κ`J1mJmmN(b1),

by using (2.4), when m > 1, and B(`)
2 T

(0)
1

∣∣∣
L

= −κ`N(b1), by Remark 4.3 for

m = 1, so that

B(`)
2 T

(0)
1

∣∣∣
L

= −κ`N(b1)(2J1mJmm − δ1,m),
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for all m. Using these identities, (4.1), (4.4), Proposition 4.1, (4.8) and (5.3),
compute

B̂(`)
2 B̂

(0)
1 ln τn

∣∣∣
L

= B(`)
2 B

(0)
1 ln τn

∣∣∣
L

+ 2J1m

p−1∑
i=1

∂
(`)
b2

(b(i)2 )
∂

∂b
(i)
1

ln τn
∣∣∣
L

= B(`)
2

(
∂

∂s
(0)
1

+ κ0Σ(0)
1

)
ln τn

∣∣∣
L

+ κ0B(`)
2 T

(0)
1

∣∣∣
L

+ 2J1m∂
(`)
b1

ln τn
∣∣∣
L

=

(
∂

∂s
(0)
1

+ κ0Σ(0)
1

)
B(`)

2 ln τn
∣∣∣
L

+ κ`N(b1)(2J1mJmm − δ1,m) + 2J1m∂
(`)
b1

ln τn
∣∣∣
L

=
∂

∂s
(0)
1

((
∂

∂s
(`)
2

+ κ`Σ
(`)
2

)
ln τn + κ`T

(`)
2

)∣∣∣
L

+ κ`N(b1)(2J1mJmm − δ1,m) + 2J1m∂
(`)
b1

ln τn
∣∣∣
L

=
∂2

∂s
(0)
1 ∂s

(`)
2

ln τn
∣∣∣
L

+ κ`

[
∂

∂s
(0)
1

,Σ(`)
2

]
ln τn

∣∣∣
L

+ κ`N(b1)(2J1mJmm − δ1,m) + 2J1m∂
(`)
b1

ln τn
∣∣∣
L

=
∂2

∂s
(0)
1 ∂s

(`)
2

ln τn
∣∣∣
L

+ δ1,mκ`

(
∂

∂s
(0)
1

ln τn
∣∣∣
L
−N(b1)

)
+ 2J1m(κ`N(b1)Jmm + ∂

(`)
b1

ln τn
∣∣∣
L

)

=
∂2

∂s
(0)
1 ∂s

(`)
2

ln τn
∣∣∣
L

+ δ1,mκ`B̂(0)
1 ln τn

∣∣∣
L

+ 2J1m(κ`N(b1)Jmm + ∂
(`)
b1

ln τn
∣∣∣
L

),

which yields the third relation (5.4). Using B(0)
2 T

(`)
1

∣∣∣
L

= N(b1)(2J 2
1m − δ1,m),

which follows from (4.3), (4.6) and (2.4), the second identity in (5.4) is proven
in a similar fashion, using (4.8) and (5.3), namely

B̂(0)
2 B̂

(`)
1 ln τn

∣∣∣
L

= B(0)
2 B

(`)
1 ln τn

∣∣∣
L

= B(0)
2

(
∂

∂s
(`)
1

+ κ`Σ
(`)
1

)
ln τn

∣∣∣
L

+ κ`B(0)
2 T

(`)
1

∣∣∣
L

=

(
∂

∂s
(`)
1

+ κ`Σ
(`)
1

)
B(0)

2 ln τn

∣∣∣
L

+ κ`N(b1)(2J 2
1m − δ1,m)

=
∂

∂s
(`)
1

((
∂

∂s
(0)
2

+ κ0Σ
(0)
2

)
ln τn + κ0T

(0)
2

)∣∣∣
L

+ κ`N(b1)(2J 2
1m − δ1,m)

=
∂2

∂s
(`)
1 ∂s

(0)
2

ln τn

∣∣∣
L
−

[
∂

∂s
(`)
1

,Σ
(0)
2

]
ln τn

∣∣∣
L

+ κ`N(b1)(2J 2
1m − δ1,m)
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=
∂2

∂s
(`)
1 ∂s

(0)
2

ln τn

∣∣∣
L
− δ1,m

∂

∂s
(`)
1

ln τn

∣∣∣
L

+ κ`N(b1)(2J 2
1m − δ1,m)

=
∂2

∂s
(`)
1 ∂s

(0)
2

ln τn

∣∣∣
L

+ 2κ`N(b1)J 2
1m − δ1,mB̂(`)

1 ln τn

∣∣∣
L
.

6 A PDE for the transition probability

This section aims at proving Theorem 6.3, which leads at once to Theorem 1.1.
In order to do so, we shall need two propositions:

Proposition 6.1 For 1 6 ` 6 p, the function X` := ∂
(`)
b2
B̂(0)

1 ln τn

∣∣∣
L

satisfies

the equation

{X`, F`}B̂(0)
1

=
{
H

(1)
` , F`

}
B̂(0)

1

−
{
H

(2)
` , F`

}
B̂(`)

1

, (6.1)

where (n = (n1, . . . , np))

F` = −B̂(0)
1 B̂

(`)
1 ln Pn − n`J1m,

H
(1)
` := (κ`(δ1,m − εm)B̂(0)

1 + 2J1m∂
(`)
b1

) ln Pn + C`,

H
(2)
` := (B̂(0)

2 + δ1,m + 2J1mb
(`)
1 B̂

(0)
1 )B̂(`)

1 ln Pn,

εm = εEm − cm−1
∂

∂cm−1

−
p−1∑
`=1

b
(`)
1

∂

∂b
(`)
1

, (6.2)

C` := 2n`J1m

(
Jmmb(`)

1 −
∑
i 6=`

ni

b
(`)
1 − b

(i)
1

)
. (6.3)

Proof: From (5.3) and (5.2), one finds, along L, for ` = 1, . . . , p,

∂

∂s
(0)
1

ln
τn+e`

τn−e`
= B̂(0)

1 ln
τn+e`

τn−e`
− 2J1mb

(`)
1 , (6.4)

∂

∂s
(`)
1

ln
τn+e`

τn−e`
= B̂(`)

1 ln
τn+e`

τn−e`
+ 2κ`Jmmb(`)

1 . (6.5)

A direct substitution of these formulas, as well as the formulas (5.3) and (5.4),
in (3.12), leads, along L, for ` = 1, . . . , p, to

B̂(0)
1 ln

τn+e`

τn−e`
− 2J1mb

(`)
1 = − 1

F`

(
(B̂(0)

2 + δ1,m)B̂(`)
1 ln τn − 2J 2

1mκ`N(b1)
)
,

B̂(`)
1 ln

τn+e`

τn−e`
+ 2κ`Jmmb(`)

1 =
1

F`

(
(B̂(`)

2 − κ`δ1,m)B̂(0)
1 ln τn

−2J1m(Jmmκ`N(b1) + ∂
(`)
b1

ln τn)
)
,
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where F` := −B̂(0)
1 B̂

(`)
1 ln τn

∣∣∣
L
− n`J1m (see (5.4)). Eliminating from these

equations the term which contains
τn+e`

τn−e`
, which can be done by applying B̂(`)

1

to the first equation and B̂(0)
1 to the second equation, and using that these

operators commute, we get the single equation

B̂(`)
1

2J1mb
(`)
1 F` − (B̂(0)

2 + δ1,m)B̂(`)
1 ln τn

∣∣∣
L

+ 2J 2
1mκ`N(b1)

F`


= B̂(0)

1

(B̂(`)
2 − κ`δ1,m)B̂(0)

1 ln τn

∣∣∣
L
− 2J1m(Jmmκ`N(b1) + ∂

(`)
b1

ln τn

∣∣∣
L
)

F`

 .

Using the fact that the derivative of a ratio amounts to a Wronskian, by
clearing the denominator, and writing B̂(`)

2 as B̂(`)
2 = ∂

(`)
b2

+κ` εm (see (6.2) and
(5.1)) and using the formula for F`, one can rewrite the latter equation as

−
{
∂

(`)
b2
B̂(0)

1 ln τn

∣∣∣
L
, F`

}
B̂(0)

1

(6.6)

=
{

(B̂(0)
2 + δ1,m + 2J1mb

(`)
1 B̂

(0)
1 )B̂(`)

1 ln τn

∣∣∣
L

+ 2J 2
1m(n`b

(`)
1 − κ`N(b1)), F`

}
B̂(`)

1

+
{

(κ`(εm − δ1,m)B̂(0)
1 − 2J1m∂

(`)
b1

) ln τn

∣∣∣
L
− 2κ`J1mJmmN(b1), F`

}
B̂(0)

1

.

Finally the integral τn (as in (3.4)), but integrated over the full range R, equals
(see the Appendix)

τn(Rm)
∣∣∣
L
= gn(c) e−

Jmm
2

Pp
`=1 n`b

(`)
1

2 ∏
16i<j6p

(b
(j)
1 − b

(i)
1 )ninj , (6.7)

with gn(c) a function, depending on c1, . . . , cm−1 and n only. Thus one has,
restricted to L,

ln τn(E)
∣∣∣
L

= ln Pn(E) + ln τn(Rm)
∣∣∣
L
, (6.8)

ln τn(Rm)
∣∣∣
L

= −Jmm
2

p∑
`=1

n`(b
(`)
1 )2 +

∑
16i<j6p

ninj ln(b
(j)
1 − b

(i)
1 ) + ln g(c).

When (6.8) is substituted in (6.6), a few terms will appear where ln τn(Rm) is
acted upon by a differential operator. We derive the formulas which will be

used. First, it is clear that B̂(0)
1 τn(Rm) = 0. Therefore, since

[
B̂(0)

1 , B̂(`)
1

]
= 0,

F` = −B̂(0)
1 B̂

(`)
1 ln τn(E)

∣∣∣
L
−n`J1m = −B̂(0)

1 B̂
(`)
1 ln Pn(E)− n`J1m. (6.9)
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Also, using ∂
(`)
b1
b

(i)
1 = κ` − δ`,i, valid for i = 1, . . . , p, one computes

∂
(`)
b1

ln τn(Rm)
∣∣∣
L

= Jmm(n`b
(`)
1 − κ`N(b1))− n`

∑
i 6=`

ni

b
(`)
1 − b

(i)
1

and therefore, since B̂(0)
1 ln τn(Rm) = 0, and by (5.1) and (2.4)

(B̂(0)
2 + δ1,m + 2J1mb

(`)
1 B̂

(0)
1 )B̂(`)

1 ln τn(Rm)
∣∣∣
L

=

(
c1

∂

∂c1

+ δ1,m + δ1,m

p−1∑
i=1

b
(i)
1

∂

∂b
(i)
1

)
∂

(`)
b1

ln τn(Rm)
∣∣∣
L

= 2J 2
1m(κ`N(b1)− n`b(`)

1 )

and

(κ`(εm − δ1,m)B̂(0)
1 − 2J1m∂

(`)
b1

) ln τn(Rm)
∣∣∣
L
= −2J1m∂

(`)
b1

ln τn(Rm)
∣∣∣
L

= −2J1m

(
Jmm(n`b

(`)
1 − κ`N(b1))− n`

∑
i 6=`

ni

b
(`)
1 − b

(i)
1

)
.

Substituted in (6.6), yields the identity

−
{
∂

(`)
b2
B̂(0)

1 ln τn

∣∣∣
L
, F`

}
B̂(0)

1

=
{

(B̂(0)
2 + δ1,m + 2J1mb

(`)
1 B̂

(0)
1 )B̂(`)

1 ln Pn, F`
}
B̂(`)

1

+
{

(κ`(εm − δ1,m)B̂(0)
1 − 2J1m∂

(`)
b1

) ln Pn − C`, F`
}
B̂(0)

1

. (6.10)

This ends the proof of Proposition 6.1.

For ` = 1, . . . , p, using the shorthand notation,

X` = ∂
(`)
b2
B̂(0)

1 ln τn

∣∣∣
L
, H` :=

{
H

(1)
` , F`

}
B̂(0)

1

−
{
H

(2)
` , F`

}
B̂(`)

1

(6.11)

and ′ := B̂(0)
1 , the equations (6.1) become (taking into account

∑p
`=1 ∂

(`)
b2

= 0)

{X`, F`} = H`, 1 6 ` 6 p, with

p∑
`=1

X` = 0.

Proposition 6.2 Given for ` = 1, . . . , p functions H` and F`, such that the
Wronskian of the derivatives F ′1, . . . , F

′
p is non-zero, the system of ODE’s

{X`, F`} = H`, 1 6 ` 6 p
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subjected to the condition
∑p

`=1 X` = 0, has a unique solution (X1, . . . , Xp),
where X` is given by

`

↓

X` =
F`
D

det


F ′1 F ′2 F ′3 · · · −G1 · · · F ′p
F ′′1 F ′′2 F ′′3 · · · −G2 · · · F ′′p
...

...
...

...
...

F
(p)
1 F

(p)
2 F

(p)
3 · · · −Gp · · · F

(p)
p

 . (6.12)

In this formula, D is the Wronskian of the functions F ′1, . . . , F
′
p,

D := det


F ′1 F ′2 F ′3 · · · F ′p
F ′′1 F ′′2 F ′′3 · · · F ′′p
...

...
...

...

F
(p)
1 F

(p)
2 F

(p)
3 · · · F

(p)
p

 6= 0

and the Gi’s are defined inductively as

Gi+1 = G′i +

p∑
`=1

H`F
(i)
`

F 2
`

, G0 = 0, G1 =

p∑
1

H`

F`
. (6.13)

Moreover

det


F1 F2 F3 . . . Fp G0

F ′1 F ′2 F ′3 . . . F ′p G1

F ′′1 F ′′2 F ′′3 . . . F ′′p G2
...

...
...

...
...

F
(p)
1 F

(p)
2 F

(p)
3 . . . F

(p)
p Gp

 = 0. (6.14)

Proof: If X` is a solution of the equation {X`, F`} = H`, subjected to the
condition

∑p
`=1 X` = 0, then its derivatives are given by

X
(i)
` = G`,i +X`

F
(i)
`

F`
, (6.15)

where for a fixed `, the G`,i are defined inductively as

G`,0 := 0, G`,1 :=
H`

F`
, . . . , G`,i+1 := G′`,i +

H`F
(i)
`

F 2
`

.

Indeed, starting with (6.15) and using X ′` = 1
F`

(H` + X`F
′
`), one computes

inductively

X
(i+1)
` = G′`,i +X ′`

F
(i)
`

F`
+X`

F
(i+1)
`

F`
−X`

F ′`F
(i)
`

F 2
`

=

(
G′`,i +

H`F
(i)
`

F 2
`

)
+X`

F
(i+1)
`

F`
= G`,i+1 +X`

F
(i+1)
`

F`
,
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establishing (6.15). Summing up (6.15) for ` from 1 to p, one finds

0 = Gi +

p∑
`=1

X`
F

(i)
`

F`
, where Gi :=

p∑
`=1

G`,i.

Then solving this linear system for the X`’s, one finds the ratio (6.12) above.
Then using that solution and expressing

∑p
`=1X` = 0 establishes (6.14) and

thus the proof of Proposition 6.2.

This enables us to make the following statement, remembering the opera-
tors B̂(`)

1 , with ′ = B̂(0)
1 =

∑m
i=1 J1i∂Ei , and ∂

(`)
b1

with
∑p

`=1 ∂
(`)
b1

= 0.

Theorem 6.3 The probability Pn = PAn (c,E) as in (1.3), with the linear con-

straint
∑p

`=1κ`b
(`)
1 = 0, with

∑p
`=1κ` = 1, satisfies a non-linear PDE in the

boundary points of the subsets E1, . . . , Em and in the target points b
(1)
1 , . . . , b

(p)
1 ,

given by the determinant of a (p+ 1)× (p+ 1) matrix

det


F1 F2 F3 . . . Fp G0

F ′1 F ′2 F ′3 . . . F ′p G1

F ′′1 F ′′2 F ′′3 . . . F ′′p G2
...

...
...

...
...

F
(p)
1 F

(p)
2 F

(p)
3 . . . F

(p)
p Gp

 = 0, (6.16)

where the F`, H
(i)
` and C` are given by in Proposition 6.1 and the G` inductively

by

G`+1 := G′` +

p∑
i=1

F
(`)
i

(
B̂(0)

1

H
(1)
i

Fi
− B̂(i)

1

H
(2)
i

Fi

)
, G0 := 0.

Proof of Theorem 1.1: It follows immediately from Theorem 6.3 by noticing
that in the notation of (1.11), the B̂(`)

i are expressed as

B̂(`)
1 = ∂`, B̂(0)

2 = −ε0.

Proof of Corollary 1.2: The simplification comes from the fact that for one-
time (i.e., m = 1) the operators ∂0 and ∂` differ by very little, namely:

∂0 = −∂
E
, ∂` = ∂

(`)
b + κ`∂E , ε = ε0 = εm.

This means that the expression in brackets in the definition of Gi+1 in (1.13)
can be re-expressed as follows,

∂0
H

(1)
`

F`
−∂`

H
(2)
`

F`
= ∂

E

−H(1)
` − κ`H

(2)
` + 2κ`b`F`
F`

−∂(`)
b

H
(2)
`

F`
= ∂

E

H̄
(1)
`

F`
−∂(`)

b

H
(2)
`

F`
,
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upon setting H̄
(1)
` := −H(1)

` − κ`H
(2)
` + 2κ`b`F`, which one checks16 to be the

expression H̄
(1)
` announced in (1.15) and one repeats the proof of Proposi-

tion 6.2 with ′ = ∂E (instead of ′ = ∂0 = −∂E) and X` 7→ −X`, ending the
proof of Corollary 1.2.

7 Examples

7.1 One target point at the origin

In this case, m = 2, p = 1 and the diagonal matrix A = 0. The matrix J
reads

J =
1

1− c2

(
−1 −c
−c −1

)
and one checks

κ0 = −1, b1 = 0, κ1 = 1, ∂
(0)
b = ∂

(1)
b = εb = 0, ε0 = ε

E1
−c ∂

∂c
, ε2 = ε

E2
−c ∂

∂c
,

∂0 = − 1

1− c2

(
∂
E1

+ c∂
E2

)
, ∂1 =

1

1− c2

(
c∂

E1
+ ∂

E2

)
, C` = 0 (7.1)

So, for ` = 1, one has

F1 = −∂0∂1 log Pn +
nc

1−c2
=

1

(1−c2)2

(
∂
E1

+c∂
E2

) (
c∂

E1
+∂

E2

)
log Pn +

nc

1−c2

H
(1)
1 = −ε2∂0 log Pn = (ε

E2
− c ∂

∂c
)

1

1− c2

(
∂
E1

+ c∂
E2

)
log Pn

H
(2)
1 = −ε0∂1 log Pn = −(ε

E1
− c ∂

∂c
)

1

1− c2

(
c∂

E1
+ ∂

E2

)
log Pn (7.2)

and thus

G0 = 0, G1 = F1

(
∂0
H

(1)
1

F1

− ∂1
H

(2)
1

F1

)
=

1

F1

({
H

(1)
1 , F1

}
∂0
−
{
H

(2)
1 , F1

}
∂1

)

leading to the PDE, with ∂0 and ∂1 as in (7.1) and H
(j)
1 and Fi as in (7.2):

(see [5] and [6])

det

(
F1 G0

∂0F1 G1

)
=
{
H

(1)
1 , F1

}
∂0
−
{
H

(2)
1 , F1

}
∂1

= 0

16Upon using the commutation relation [ε
E
, ∂

E
] = −∂

E
and ε = ε0 = εm.
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7.2 Target points with some symmetry

Consider non-intersecting Brownian motions leaving from 0 and forced to p
target points at time t = 1, with the only condition that the left-most and
right-most target points are symmetric with respect to the origin, with p− 2
intermediate target points thrown in totally arbitrarily; this example will be
used in section 8. It is convenient to rename the target points β1 < . . . < βp,
as follows:

ã < −c̃1 < . . . < −c̃p−2 < −ã

n+ n1 . . . np−2 n−

(7.3)

with the corresponding number of particles forced to those points at time
t = 1. Using the change of variables (1.4) from βi’s to

b = (b1, ..., bp) = (a,−c1,−c2, ...,−cp−2,−a), (7.4)

one is led to the diagonal matrix of the form17:

A := diag
( n+︷ ︸︸ ︷
a, . . . , a,

n1︷ ︸︸ ︷
−c1, . . . ,−c1, . . . ,

np−2︷ ︸︸ ︷
−cp−2, . . . ,−cp−2,

n−︷ ︸︸ ︷
−a, . . . ,−a

)
(7.5)

with the obvious constraint
∑p

1 κibi = 1
2
a+ 1

2
(−a) = 0, as in (1.5), and thus

κ1 = κp =
1

2
and κi = 0 for 2 6 i 6 p− 1.

Moreover, setting c = (c1, . . . , cp−2), formulae (1.11) become

∂
(1)
b =

1

2

(
− ∂

∂a
− ∂c

)
, ∂

(p)
b =

1

2

(
∂

∂a
− ∂c

)
, ∂

(`)
b =

∂

∂c`−1

, 2 6 ` 6 p− 1,

(7.6)
and ε = εE−a ∂

∂a
−εc; also set ′ = ∂E. Besides the renaming n1 = n+, np = n−

and nk 7→ nk−1 for 2 6 k 6 p − 1, already mentioned, one also has, referring
to formulae (1.15), the following renaming:

F1 7→ F+, Fp 7→ F−, Fk 7→ Fk−1, for 2 6 k 6 p− 1,

H̄
(1)
1 7→ H

(1)
+ , H̄(1)

p 7→ H
(1)
− , H

(2)
1 7→ H

(2)
+ , H(2)

p 7→ H
(2)
− ,

H̄
(1)
` 7→ H

(1)
`−1, H

(2)
` 7→ H

(2)
`−1, for 2 6 ` 6 p− 1.

17Note the ci have nothing to do with the couplings ci appearing in (1.3).

32



Then, one checks from Corollary 1.2, formulae (1.15), that18 for 1 6 ` 6 p− 2
and for P := PAn (E), with ε = εE − a ∂

∂a
− εc (as in (1.3) for m = 1)

F± =
1
2

(∓ ∂

∂a
− ∂c + ∂

E
)∂

E
ln P + n±, F` =

∂

∂c`
∂

E
ln P+n`,

H
(1)
± =

1
4

(
−2∂

E
ε+ (ε+ 3)

(
∓ ∂

∂a
− ∂c + ∂

E

))
ln P + C±, H

(1)
` = 2

∂

∂c`
ln P+C`,

H
(2)
± =

1
2

(1− ε± 2a∂
E

)(∓ ∂

∂a
− ∂c + ∂

E
) ln P, H

(2)
` = (1−ε−2c`∂E

)
∂

∂c`
ln P. (7.7)

In accordance with formulae (6.11), adapted to the case m = 1, one defines
for later use:

H± := {H(1)
± , F±}∂E − {H

(2)
± , F±}1

2
(∓ ∂

∂a
−∂c)

H` := {H(1)
` , F`}∂E − {H

(2)
` , F`} ∂

∂c`

(7.8)

and one checks that, with this notation (7.8) and upon decoding formula (1.15)
for the Gk’s,

Gk+1 = ∂EGk +
H+F

(k)
+

F 2
+

+
H−F

(k)
−

F 2
−

+

p−2∑
`=1

H`F
(k)
`

F 2
`

,

where F (k) is a shorthand for (∂E)kF . With these expressions in mind, P :=
PAn (E) satisfies the (near-Wronskian) PDE (1.12), i.e.,

det


F+ F− F1 . . . Fp−2 G0

F ′+ F ′− F ′1 . . . F ′p−2 G1

F ′′+ F ′′− F ′′1 . . . F ′′p−2 G2
...

...
...

...
...

F
(p)
+ F

(p)
− F

(p)
1 . . . F

(p)
p−2 Gp

 = 0, (7.9)

Special case: For Brownian motions forced to a and −a, without the
intermediate points, the formula (7.9) turns into the following determinant,

with F± and H
(i)
± as in (7.7), but with all c-partials removed:

F+F− det

 F+ F− G0

F ′+ F ′− G1

F ′′+ F ′′− G2


= F+F− det

 F+ F− 0
F ′+ F ′−

H+
F+

+ H−
F−

F ′′+ F ′′−
H′+
F+

+ H′−
F−


= (H+F− +H−F+){F+, F−}′ − (H ′+F− +H ′−F+){F+, F−} = 0.

18In the formulae below (7.7), the constants C± and C` have the value:

C± = −n±

(
±a± n∓

a
+ 2

p−2∑
r=1

nr
±a+ cr

)
and C` = 2n`

c` +
n+

c`+a
+

n−
c`−a

+
p−2∑
r=1
r 6=`

nr
c`−cr
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8 Pearcey process with inliers

In this section, we consider non-intersecting Brownian motions leaving from
0 and forced to p target points at time t = 1, with the only condition that
the left-most and right-most target points are symmetric with respect to the
origin, with p − 2 intermediate target points thrown in totally arbitrarily,
exactly as in section 7.1. The purpose of this section is to identify the critical
process obtained by letting n := n+ = n− →∞ and by rescaling ã and the c̃i
accordingly, while keeping n1, . . . , np−2 fixed. This is the content of Theorem
1.3.

Proof of Theorem 1.3: The proof consists of letting n = n+ = n− → ∞ in
the kernel (1.7) and in the PDE (1.12). In the proof, which requires several
steps, we shall restrict ourselves to m = 1 (one-time), except for Step 2, which
deals with the kernel.
Step 1: The PDE. The probability P := PAn (E) satisfies the (near-Wronskian)
PDE (7.9); see section 7.2.
Step 2: The scaling limit of the Brownian kernel. Non-intersecting Brownian
motions leaving from 0, such that nr particles are forced to βr at time t = 1,
are given by the kernel (1.7), which is, in this instance, conveniently rewritten
as

H
(n)
tk,t`

(x, y; ã,−c̃1, . . . ,−c̃p−2,−ã)dy

= − dy

2π2
√

(1− tk)(1− t`)

∫
C
dV

∫
ΓL

dU
1

U − V

× e
− tkV

2

1−tk
+ 2xV

1−tk
−n+ ln(V−ã)−n− ln(V+ã)

e
−t`U2

1−t`
+ 2yU

1−t`
−n+ ln(U−ã)−n− ln(U+ã)

p−2∏
r=1

(
U + c̃r
V + c̃r

)nr

−

 0, for tk > t`,

dy√
π(t`−tk)

e
− (x−y)2

t`−tk e
x2

1−tk
− y2

1−t` , for tk < t`.
(8.1)

One then uses the same steepest descent method as for the case without
inliers; the so-called steepest descent F -function is the one (depending on U
or V ) appearing in the exponential, with three consecutive derivatives being
= 0 at the origin; the change of integration variables U = U ′(n/2)1/4 and
V = V ′(n/2)1/4 then leads, in the limit for n = n+ = n− → ∞ about the
saddle point, to the kernel (1.18) (see for instance [19] and in the asymmetric
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case [3]). So, the limit is

lim
n→∞

H
(n)
ti,tj(x̃, ỹ; ã, c̃1, . . . , c̃p−2,−ã)dỹ

∣∣∣ tk = 1
2

+ τk
4
√

2n

x̃ = X
4(n/2)1/4

ỹ = Y
4(n/2)1/4

ã =
√
n

c̃` = u`
(
n
2

)1/4

= KPτi,τj(X, Y ; u1, . . . , up−2)dY,

(8.2)
where KPτi,τj(X, Y ; u1, . . . , up−2) is the Pearcey kernel with inliers (1.18).

Step 3: The scaling limit of the PDE. As mentioned, for the proof we limit
ourselves to the one-time case, i.e., m = 1. We now proceed in two steps:
(i) The change of variables (1.4) (especially footnote 6) from the non-intersecting
Brownian motion probability to the matrix model (1.3); this change of vari-
ables appears in the first column of the table (8.3) below. In other terms,
it is the time-dependent change from the variables (x̃, ã, c̃) to the variables
(x, a, c), yielding in particular the diagonal matrix A as in (7.5).
(ii) Subsequently apply the scaling given by (8.2) with z := n−1/4 and a
very small renaming s := τ/

√
8, vj := 21/4uj, ξ := X/25/4 for computational

convenience. This appears in the second column of table (8.3) below.

t = 1
2

+ τ
4
√

2n
= 1

2

(
1 +

(
τ√
8

)
z2
)

=: 1
2

(1 + skz
2)

x = x̃
√

2
t(1−t) x̃ = X

4(n/2)1/4
=
(
X

25/4

)
z√
2

=: ξz√
2

a = ã
√

2t
1−t ã =

√
n = 1

z2

c` = c̃`

√
2t

1−t c̃` = u`
(
n
2

)1/4
= (u`2

1/4)√
2z

=: v`√
2z

(8.3)

Concatenating these two scalings leads to the following; in the string of
equalities below, the change corresponding to (i) is indicated by

∗
=, whereas

the second change (ii) is indicated by
∗∗
=:

P (E, s, v) := ln P(ã,−c̃2,...,−c̃p−1,−ã)
n (all xi(t) ∈ Ẽ)

∣∣∣ t = 1
2
(1 + sz2)

ã = 1/z2

c̃i = vi/(
√

2z)

Ẽ = Ez/
√

2

35



∗
= ln PAn

Ẽ
√

2

t(1− t)
;

entries of diagonal matrix A︷ ︸︸ ︷√
2t

1− t
(ã, c̃,−ã)


∣∣∣ t = 1

2
(1 + sz2)

ã = 1/z2

c̃i = vi/(
√

2z)

Ẽ = Ez/
√

2

∗∗
= ln PAn

 2zE√
1−s2z4

;

entries of diagonal matrix A︷ ︸︸ ︷√
1+sz2

1−sz2

(√2

z2
,
vi
z
,−
√

2

z2

)


=: ln PAn (E ′; a, c,−a︸ ︷︷ ︸
entries of diagonal

matrix A

) =: Q(E ′; a, c). (8.4)

Note that in the rest of this section, E and E ′ refer to complement of compact
intervals; i.e., we shall be dealing with gap probabilities. The identity (8.4)
suggests the z-dependent map:

T−1
z : (E, s, vj) 7→ (E ′, a, cj), 1 6 j 6 p− 2,

given by

E ′ =
2zE√

1− s2z4
, a =

√
2

z2

√
1 + sz2

1− sz2
, cj =

vj
z

√
1 + sz2

1− sz2
, (8.5)

with inverse map

Tz : (E ′, a, c) 7→ (E, s, vj), 1 6 j 6 p− 2,

given by

E =

√
2azE ′

a2z4 + 2
, s =

a2z4 − 2

z2(a2z4 + 2)
, vj =

√
2cj
az

. (8.6)

Then summarizing the above, one has

Q(E ′; a, c) := log PAn (E ′; a, c,−a) = log PAn (T−1
z (E; s, vj)) =: P (E; s, v),

and thus

Q(E ′, a, c) = P

(√
2azE ′

a2z4 + 2
,

a2z4 − 2

z2(a2z4 + 2)
,

√
2cj
az

)
satisfies the PDE (1.12) in the variables E ′, a, c, in terms of the operators

specified in (7.6), with F±, F`, H
(i)
± , H

(i)
` given by (7.7). In order to express
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the PDE in terms of the function P (E; s, v), one must express all partials of
Q(E ′; a, c) in terms of partials of P (E; s, v) in E, s, v; e.g.,

∂E′Q(E ′; a, c)
∣∣∣
Tz

=

√
2azE ′

a2z4 + 2
∂EP

∣∣∣
Tz

=

√
1− s2z4

2z
∂EP (E; s, v)

and thus the operators ∂
E′

and ∂
E

, as acting on Q and P respectively, and
similarly for the others, are related by the following; we also indicate what the
relationship becomes for z → 0: 19

∂
E′

∣∣∣
Tz

=

√
1− s2z4

2z
∂
E

=

(
1

2z
− 1

4
s2z3 − 1

16
s4z7 +O(z9)

)
∂
E

ε
E′

∣∣∣
Tz

= ε
E

∂ci

∣∣∣
Tz

= z

√
1− sz2

1 + sz2
∂vi =

(
z − sz3 +

1

2
s2z5 +O(z7)

)
∂vi

√
2
∂

∂a

∣∣∣
Tz

= (1− sz2)2

√
1 + sz2

1− sz2

∂

∂s
− z2

√
1− sz2

1 + sz2
(εv + sz2ε

E
)

=
∂

∂s
− z2(εv + s

∂

∂s
)− sz4

(
1

2
s
∂

∂s
+ ε

E
− εv

)
+O(z6).(8.7)

For notational simplicity, derivatives will often be abbreviated in the ob-
vious way:

(∂
E′

)jFi 7→ F
(j)
i , (∂

E
)jP 7→ P (j),

∂

∂s
P 7→ Ṗ , . . . , (8.8)

while keeping in mind from (8.7) that ∂
E′

acting on functions of (E ′, a, c), as
F±, H` and G`, translates, to leading order, into ∂

E
/(2z) acting on functions

of (E, s, v); also notice the big gaps in the first few terms of the series for ∂
E′

.
In view of the PDE (1.12), one needs the series expansion in z of the F ’s, the
H’s and the G’s and their derivatives ∂E′ . This is the content of:

Lemma 8.1 Introducing the expression Y, with ε = εE−εv, and v = (v1, . . . , vp−2),

1

2
Y := 4(ε− 2s

∂

∂s
− 2)∂2

E
P + 16∂v∂E Ṗ + 8P˙˙˙ +

{
∂
E
Ṗ , ∂2

E
P
}
∂
E

, (8.9)

one checks, (remember from (7.8) the definition of H± and H`)

∂iE′F± =

(
∂E
2z

)i(
1

z4
+

1

8z2
∂2
EP ∓

1

4
√

2z
∂EṖ

)
+O(z−i)

19Since ∂c =
∑p−2

1 ∂ci
and ∂v =

∑p−2
1 ∂vi

, the third relation is valid for ∂c and ∂v as
well.
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∂iE′F` =

(
∂E
2z

)i(
1

2
∂v`∂EP + n` −

sz2

2
∂v`∂EP

)
+O(z3−i)

H+

F+

+
H−
F−

+

p−2∑
`=1

H`

F`

∗
=

1

64z2

(
Y− 3(∂2

EP )(∂2
EṖ )

)
+O(1)

H+∂
i
E′F+

F 2
+

+
H−∂

i
E′F−
F 2
−

+

p−2∑
`=1

H`∂
i
E′F`
F 2
`

∗
=

3

32z

(
∂3
EP
)(∂E

2z

)1+i

Ṗ +O(z−i−1)

(8.10)
and also, for k = 0, 1, . . . , one has

Gk+1 +
3
√

2

16
(F− − F+)(k+1)P ′′ =

Y(k)

16(2z)k+2
+O(z−k−1). (8.11)

Proof: The formulae (8.10) are straightforward computations; one of them in-
volves the expression Y introduced in (8.9). The big gaps in the series (8.7) of
∂
E′

is responsible for the mere action of (∂E/2z)i, in computing higher deriva-

tives. Moreover, in the third formula, one notices that the sums
∑p−2

`=1 H`/F`
on the left hand side of

∗
= actually do not play any role in the leading terms,

because H` and F` both are O(1). Formula (8.11) is shown by induction;
namely for k = 0, one checks, using the formulae (8.10),

G1 +
3
√

2

16
(F− − F+)′P ′′

=

p∑
`=1

H`

F`
+

3
√

2

16
(F− − F+)′P ′′

=
1

64z2
(Y− 3P ′′Ṗ ′′) +

3
√

2

16z2

(
1

4
√

2
Ṗ ′′P ′′

)
+ O(1) =

Y
64z2

+ O(1).

Assume inductively

Gi +
3
√

2

16
(F− − F+)(i)P ′′ =

Y(i−1)

16(2z)i+1
+O(z−i) for 1 6 i 6 k, (8.12)

and prove it for i = k + 1. Then, using the general definition (1.15) of Gk+1

in terms of Gk, formula (8.12), the derivatives ∂E′ of F± as in (8.10) and the
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last formula of (8.10), one checks

Gk+1 +
3
√

2

16
(F− − F+)(k+1)P ′′

= ∂E′Gk +
H+F

(k)
+

F 2
+

+
H−F

(k)
−

F 2
−

+

p−2∑
`=1

H`F
(k)
`

F 2
`

+
3
√

2

16
(F− − F+)(k+1)P ′′

=
∂E
2z

(
Y(k−1)

16(2z)k+1
− 3
√

2

16
(F− − F+)(k)P ′′ +O(z−k)

)

+
H+F

(k)
+

F 2
+

+
H−F

(k)
−

F 2
−

+

p−2∑
`=1

H`F
(k)
`

F 2
`

+
3
√

2

16
(F− − F+)(k+1)P ′′

=
Y(k)

16(2z)k+2
+O(z−k−1),

establishing Lemma 8.1.

By Corollary 1.2, Q(E ′; a, c) = ln PAn (E ′; a, c) satisfies the PDE (7.9), which
induces a PDE for P (E; s, v) = ln PAn (T−1

z (E; s, vj)), remembering (8.4) and
(8.5). As pointed out, the PDE for Q(E ′; a, c) misses to be a Wronskian by the
last column. It is appropriate to do some column operations; e.g., subtracting
the first from the second and then adding the second, multiplied with P ′′, to
the last one; also it is convenient to multiply the columns with 2’s and

√
2’s.

This gives us the determinant below, which vanishes according to Corollary
1.2. The second equality

∗
= uses in a straightforward way the series expansion

of Lemma 8.1 above,

0 = det


2F+

√
2(F−−F+) 2F1 . . . 2Fp−2 G0 + 3

√
2

16 (F− − F+)P ′′

2F ′+
√

2(F−−F+)′ 2F ′1 . . . 2F ′p−2 G1 + 3
√

2
16 (F−−F+)′P ′′

2F ′′+
√

2(F−−F+)′′ 2F ′′1 . . . 2F ′′p−2 G2 + 3
√

2
16 (F−−F+)′′P ′′

...
...

...
...

...
2F (p)

+

√
2(F−−F+)(p) 2F (p)

1 . . . 2F (p)
p−2 Gp + 3

√
2

16 (F−−F+)(p)P ′′

 ,

∗= det



2
z4 + P ′′

(2z)2 +O( 1
z ) Ṗ ′

(2z) +O(z) ∂P ′

∂v1
+ 2n1 +O(z2) . . .

P ′′′

(2z)3 +O( 1
z2 ) Ṗ ′′

(2z)2 +O(1) 1
(2z)

∂P ′′

∂v1
+O(z) . . .

P iv

(2z)4 +O( 1
z3 ) Ṗ ′′′

(2z)3 +O( 1
z ) 1

(2z)2
∂P ′′′n

∂v1
+O(1) . . .

...
...

...
P (p+2)

(2z)p+2 +O( 1
zp+1 ) Ṗ (p+1)

(2z)p+1 +O( 1
zp−1 ) 1

(2z)p
∂P (p+1)

∂v1
+O( 1

zp−2 ) . . .
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. . . ∂P ′

∂vp−2
+2np−2 +O(z2) 3

16(2z)
Ṗ ′P ′′ +O(z)

. . . 1
(2z)

∂P ′′

∂vp−2
+O(z) Y

16(2z)2
+O(1)

. . . 1
(2z)2

∂P ′′′

∂vp−2
+O(1) Y′

16(2z)3
+O(1

z
)

...
...

. . . 1
(2z)p

∂P (p+1)

∂vp−2
+O( 1

zp−2 ) Y(p−1)

16(2z)p+1 +O( 1
zp−1 )



∗∗
=

C

z6+p(p+1)/2
Wp

(
∂2
E

∂

∂s
P,

∂

∂v1

∂2
EP, . . . ,

∂

∂vp−2

∂2
EP,Y

)
+O(

1

z4+p(p+1)/2
).

The last equality
∗∗
= stems from the fact that the matrix consists of columns

with increasing powers in 1/z, except for the element (1, 1), whose leading
term is 2/z4. Therefore the leading contribution of the determinant of the
matrix will be given by

2

z4
× the determinant of the (1, 1)- minor,

which indeed leads to equality
∗∗
=. Also the term −8s∂2

EṖn could be removed
by adding 8s× (the first column); but we prefer not to do this, in view of
the conjecture 1.5. Taking the limit, when n → ∞, leads to the PDE for
P = lim log Pn. In the end, one must undo the slight renaming (8.3) of the
variables s = τ/

√
8, vj = 21/4uj, xi = ξi/2

5/4 and go back to the (τ, uj, ξ)-
variables, yielding 1

2
Y = 83/2X, with X as defined in (1.20). This yields PDE

(1.19), which ends the proof of Theorem 1.3.

Very sketchy Proof of Corollary 1.4: A detailed proof appears in Adler-
Orantin-van Moerbeke [3]. In the absence of inliers (p = 2), the Wronskian
(1.19) is the determinant of a 2× 2 matrix:

0 =W2

[
∂2
E
∂τ ln PP , X

]
∂
E

=
{
∂2
E
∂τ ln PP , X

}
∂
E

. (8.13)

Performing the same scaling limit on an asymmetric situation, with 2nq par-
ticles forced to −

√
n and 2n(1− q) particles forced to

√
n for 0 < q < 1, with

q 6= 1/2, leads to a PDE for the leading term having the form{
∂3
E

ln PP , X
}
∂
E

= 0. (8.14)

Thus ln PP satisfies two different PDE’s, (8.13) and (8.14), given by two Wron-
skians of X with ∂2

E
∂τ ln PP and ∂3

E
ln PP . Then a functional-theoretical argu-

ment explained in [3] implies X = 0.

For inliers, we further conjecture -in analogy with the result in Corollary
1.4- the validity of equations (1.22) and (1.23), as stated in Conjecture 1.5.
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9 Appendix: evaluation of the integral over

the full range

In this section we prove formula (6.7), i.e., we show that∫
RmN

∆N(v1)

p∏
`=1

(
∆n`(v

(`)
m )

n`!

n∏̀
i=1

e
− 1

2

mP
k=1

v
(`)
k;i

2
+
m−1P
k=1

ckv
(`)
k;iv

(`)
k+1;i+b

(`)
1 v

(`)
m;i

)
m∏
k=1

dvk

= gn(c) e−
Jmm

2

Pp
`=1 n`b

(`)
1

2 ∏
16i<j6p

(b
(j)
1 − b

(i)
1 )ninj ,

with gn(c) a function, depending on c1, . . . , cm−1 and n only, computed below.
In view of the representation of the above integral as the determinant of a
moment matrix, as in (3.11), it suffices to prove that

det

M
(1)

...
M (p)

 = gn(c) e−
Jmm

2

Pp
`=1 n`b

(`)
1

2 ∏
16i<j6p

(b
(j)
1 − b

(i)
1 )ninj , (9.1)

where, for ` = 1, . . . , p, the n` ×N matrix M (`) is defined by

M (`) :=

(∫
Rm

wj1w
i
me
− 1

2

Pm
k=1 w

2
k+
Pm−1
k=1 ckwkwk+1+b

(`)
1 wm

m∏
k=1

dwk

)
0 6 i < n`
0 6 j < N

.

Introducing for a, b ∈ R the zero moment20

m(a, b) :=

∫
Rm

e−
1
2

(
Pm
k=1 w

2
k−2

Pm−1
k=1 ckwkwk+1)+aw1+bwm

m∏
k=1

dwk

= (2π)m/2
√
− detJ e−

1
2

(J11a2+2J1mab+Jmmb2), (9.2)

we can express all the entries of M (`) as

M
(`)
ij =

∂j

∂aj
∂i

∂bi
m(0, b

(`)
1 ). (9.3)

Let us first prove (9.1) in the case in which all n` are equal to 1 (so that
p = N). Then, it follows from (9.2) and (9.3) that, for ` = 1, . . . , p, the vector
M (`) is, modulo a constant which depends on c1, . . . , cm−1 and N , but not on
`, of the form

M (`) ∼ e−
Jmm

2
b
(`)
1

2 (
1, α1(b

(`)
1 ), . . . , αN−1(b

(`)
1 )
)
,

20Using ∫
Rm

e−
1
2 〈Qw,w〉+〈`,w〉dw1 . . . dwm =

(2π)m/2√
detQ

e
1
2 〈Q

−1`,`〉,

for Q := −J−1 and ` := (a, 0, . . . , 0, b).
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where αj(b
(`)
1 ) is a polynomial in b

(`)
1 of degree j, with leading term

(
−J1mb

(`)
1

)j
,

and whose coefficients are independent of `, but depend on c. It follows that,
if all n` are equal to 1, then21

det

M
(1)

...
M (p)

 = gN(c) e−
Jmm

2

Pp
`=1 b

(`)
1

2 ∏
16i<j6p

(b
(j)
1 − b

(i)
1 ), (9.4)

proving (9.1) in that case. Let us show how the other extreme case, where
there is only one n` (so that p = 1 and n1 = N), is derived from it. Let
f : R→ RN be a smooth function and let β ∈ R. Then

det


f(β)
f ′(β)

...
f (N−1)(β)

 = lim
β1,...,βN→β

∏N−1
k=1 k!∏

16i<j6N(βj − βi)
det


f(β1)
f(β2)

...
f(βN)

 , (9.5)

as follows by writing each f(βk) as a Taylor series around f(β). Applied to

f(β) := e−
Jmm

2
β2

(1, α1(β), . . . , αN−1(β)) ,

and β1, . . . , βN = b
(`)
1 , . . . , b

(`)
N we conclude using (9.3) and (9.4) that, when

p = 1, then

det
(
M (1)

)
= lim

β1,...,βN→b
(1)
1

N−1∏
k=1

k! gN(c)e−
Jmm

2

PN
`=1 β

2
` = gn(c)e−

Jmm
2

Nb
(1)
1

2

,

proving (9.1) in this case. The proof of formula (9.1) in the intermediate case,
when there are several n`, which are not equal to 1, follows in a similar way
from (9.4), taking the limit βi → b

(j)
1 , for i = 1, . . . , N , with n` of the βi going

to b
(`)
1 , namely β1, . . . , βn1 → b

(1)
1 , and βn1+1, . . . , βn1+n2 → b

(2)
1 , and so on,

where now one divides by a product of p Vandermonde determinants, each
going with a collapsing group.
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