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dued. It generalizes a well-known strati�ation, onsidered in algebrai geometry, in the ontext

of speial divisors. The strati�ation is shown to be related to a natural strati�ation on the Sato

Grassmannian, via an extension of Krihever's map. It is also related to the strati�ation asso-

iated to the Laurent solutions of ertain vetor �elds whih an both be seen as living on the

Grassmannian or on the Jaobian.

Address: Universit�e des Sienes et Tehnologies de Lille

U.R.A. G�eom�etrie - Analyse - Topologie

U.F.R. de Math�ematiques

59655 Villeneuve D'Asq Cedex

Frane

E-mail: Vanhaek�gat.Univ-Lille1.fr



Strati�ations of Jaobians and Grassmannians

1. Introdution

In this paper we introdue a one-dimensional family of strati�ations on the Jaobian of any

hyperellipti urve and show how it appears naturally in di�erent situations. Some strati�ations of

Abelian varieties, in partiular of Jaobians, have been used and studied in algebrai geometry, in

onnetion with linear systems of (speial) divisors on urves. For example, let � be a hyperellipti

urve with hyperellipti involution P 7! P

�

and let P be a Weierstra� point on it. Then Gunning

(see [Gu℄) onsiders, for m = 0; : : : ; g, the subsets J

m

(�; P ) of the Jaobian of �, Ja(�), de�ned

by

J

m

(�; P ) =

(

fDg j D =

g�m

X

i=1

(P

i

� P ); P

i

2 � n fPg; i 6= j ) P

i

6= {P

j

)

;

where fDg denotes the lass of all divisors linearly equivalent to D, viewed as a point of Ja(�).

He shows that they de�ne a strati�ation of the Jaobian of �:

This strati�ation generalizes in a natural way, spei� to hyperellipti Jaobians, to the ase

where P is any point on the urve �. If the point orresponding to P under the hyperellipti

involution is denoted by P

�

, then we de�ne for m and n positive, m + n � g = genus (�),

J

m;n

(�; P ) =

(

fDg j D =

g�m�n

X

i=1

P

i

+ mP + nP

�

� gP; P

i

2 � n fP; P

�

g and i 6= j ) P

i

6= P

�

j

)

:

Remark that in the ase P = P

�

onsidered by Gunning, one has J

m

(�; P ) = J

m�i;i

(�; P ) for any

i � m. In the opposite ase P 6= P

�

, however, all J

m;n

(�; P ) are disjoint and we show that they

stratify Ja(�), with i + 1 strata of odimension i, (in total

(g+1)(g+2)

2

strata) and it is shown how

they relate. If the hosen point P 2 � is replaed by P

�

, then one obviously obtains the same

strati�ation, up to a translation; therefore the family of strati�ations is essentially parametrized

by �=�, i.e., by IP

1

.

It is easily dedued from [SW℄ that the strati�ation onsidered by Gunning arizes in the on-

text of an in�nite-dimensional Grassmannian, Gr; introdued by Sato (see [SS℄). The Grassmannian

Gr an be de�ned as the set of all linear spaes of formal power series in one variable z (whih

should be thought of as being large) whih have an algebrai basis of the form

fw

0

(z); w

1

(z); w

2

(z); : : :g;

where

w

i

(z) =

s

i

X

j=�1

w

ij

z

j

; w

is

i

6= 0 and s

i

< s

i+1

;

with i = s

i

for i suÆiently large. To suh a linear spae W 2 Gr there is assoiated the (ordered)

subset S

W

= fs

0

; s

1

; : : : ; g of the integers, whih has the property that s

i

= i for i suÆiently large.

Eah suh sequene de�nes in a natural way a (nonempty) subset �

S

� Gr; de�ned as

�

S

= fW 2 Gr j S

W

= Sg:

These (noninterseting) subsets an be shown to be the strata of a strati�ation of Gr (see [PS℄). To

relate this strati�ation to Gunning's strati�ation, the Krihever map is used. Roughly speaking,

this map assoiates to a point in the Jaobian of �, that is, to a line bundle on �, the family of

all its setions, whih are holomorphi exept at the marked point P 2 �. This family is identi�ed
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with an element of Gr by using a trivialization of the line bundle. We remark that although this

element of Gr depends on the trivialization, the stratum it belongs to is independent of it, hene

we may use the Krihever map to relate both strati�ations: we show that (di�erent) strata are

mapped into (di�erent) strata so that we may think of the strati�ations onsidered by Gunning

as being indued by the natural strati�ation of Gr via the Krihever map.

The natural question arizes whether the strati�ations by the subsets J

m;n

(�; P ) an for every

P 2 � be obtained in this way by an appropriate generalization of the Krihever map. The answer

is aÆrmative and the generalized Krihever map whih we introdue, assoiates now to eah point

in Ja(�) two points in Gr, i.e., a point in the produt Gr�Gr, whih is equipped with the produt

strati�ation. In the speial ase that P = P

�

the map redues to a diagonal map (i.e., both

points are the same) giving the ordinary Krihever map on eah omponent. We also show that

the strati�ation on Gr � Gr an be weakened to a oarser strati�ation, whih still indues the

family of strati�ations. This oarser strati�ation shows up when onsidering the so-alled K-P

hierarhy on the Grassmannian (see [SS℄, [SW℄ and [DKJM℄).

This K-P hierarhy, in partiular a distinguished vetor �eld of it, determines a speial family

of vetor �elds on Ja(�), depending on the marked point P on �. As is well-known from the

theory of integrable systems, every meromorphi funtion on Ja(�) admits families of Laurent

solutions desribing the funtion on the integral urves of the vetor �eld (see [AvM3℄). Taking

one or several funtions a deomposition of Ja(�) is given by �xing the way these solutions blow

up. This deomposition may be a strati�ation. We will show that the hoie of the very speial

vetor �eld oming from the K-P hierarhy and a natural hoie of funtions oming from the

symmetri funtions on the urve, gives for eah hoie of the marked point P on the urve, indeed

a strati�ation whih oinides again with the strati�ation by the subset J

m;n

(�; P ), thereby

providing us with a very expliit desription of the former strati�ations; in partiular the leading

behaviour of the Laurent solutions to the di�erential equations whih desribe the vetor �eld will

be omputed expliitely by introduing a pair of tau funtions whih orresponds to the extended

Krihever map.

The text is organized as follows. In Setion 2 some preliminaries about hyperellipti urves

and their Jaobians are realled and our family of strati�ations is introdued. We give a detailed

desription of these strati�ations sine they are fundamental for the whole paper. Setion 3 deals

with the Sato Grassmannian, whih is also realled, together with its strati�ation. The Krihever

map is explained and extended as needed for our purposes, leading to the main result relating

the two strati�ations. In the end the oarser strati�ation is disussed in the ontext of the K-P

hierarhy. In the �nal Setion 4, we look at speial vetor �elds on the Jaobian, assoiated to a

point on the urve; the relation between Laurent solutions to the vetor �eld and strati�ations

of the Jaobian is explained and related to the strati�ation in Setion 2, relying heavily on some

results obtained in Setion 3.

I wish to take this opportunity to thank M. Adler, L. Haine and P. van Moerbeke for several

useful disussions on K-P theory, and for giving me aess to some unpublished results, whih were

indispensible for a lear understanding of the subjet. The hospitality of Brandeis University and

the Max-Plank Institut f�ur Mathematik is also greatly aknowledged.
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Strati�ations of Jaobians and Grassmannians

2. The algebrai desription of the strati�ation

In this setion we introdue a natural family of strati�ations on the Jaobian of a hyperellipti

urve, parametrized by a point on the urve. In the �rst paragraph we reall some basi results

about hyperellipti urves and their Jaobians (see [GH℄ or [H℄). The strati�ation is introdued in

the seond paragraph and its struture is desribed.

2.1. Preliminaries

Let � be a smooth (omplete, irreduible) omplex urve of genus g whih is hyperellipti,

i.e., � it admits a 2: 1 holomorphi over �: � ! IP

1

, whih by the Riemann-Hurwitz formula is

rami�ed over 2g + 2 points, the so-alled Weierstra� points of �. They are harateristi points of

� sine they are preisely the �xed points of the unique (independent of �) holomorphi involution

�: � ! �; Q 7! �(Q) = Q

�

; �

2

= Id whih interhanges the sheets of �, the so-alled hyperellipti

involution. The over � gives rise to an equation y

2

= f(x) for (an aÆne part of) �; the degree of

f is 2g + 1 or 2g + 2 aording to whether or not 1 2 IP

1

is the image of a Weierstra� point, i.e.,

aording to whether �

�1

(1) ontains one point (with multipliity two), or two points. These two

points orrespond under �, whih is given in terms of the oordinates x; y by (x; y) 7! (x;�y), in

partiular the Weierstra� points (lying in the aÆne part) have oordinates (x

i

; 0), where x

i

are the

roots of f .

The group of divisors D =

P

�nite



i

P

i

(P

i

2 �) on � is denoted by Div(�) and � extends

linearly to Div(�) giving an involution D 7! D

�

. There is assoiated to eah meromorphi funtion

f 2 M(�) its divisor of zeroes minus its divisor of poles, denoted by (f); obviously the map

(�):M(�) ! Div(�) is a homomorphism. In the same way (!) is de�ned for any meromorphi

di�erential and one has (f!) = (f) + (!). For example, let P 2 � and let

y

2

= f(x) =

deg f

Y

i=1

(x� x(B

i

))

be an equation for � suh that x(P ) = 1. Then

(y) =

deg f

X

i=1

B

i

�

deg f

2

(P + P

�

) and (x) =

2

X

i=1

�

0; (�1)

i

p

f(0)

�

� (P + P

�

): (1)

Also

(dx) =

2g+1

X

i=1

B

i

� 3P or (dx) =

2g+2

X

i=1

B

i

� 2(P + P

�

); (2)

aording to whether P = P

�

or P 6= P

�

(in that order).

We introdue the spaes L(D) and 
(D) for D 2 Div(�) as

L(D) = ff j f meromorphi funtion on � and (f) + D � 0g;


(D) = f! j ! meromorphi di�erential on � and (!) + D � 0g:

Their dimensions are related by the Riemann-Roh formula whih states (for algebrai urves) that

for any D 2 Div(�),

dimL(D) = dim 
(�D)� g + 1 + deg(D); (3)
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the degree deg(D) of a divisor D being de�ned as deg(

P



i

P

i

) =

P



i

. In partiular, sine ev-

ery holomorphi funtion on � is onstant, the spae 
 = 
(0) of holomorphi di�erentials has

dimension g and by (1) and (2) has in the hyperellipti ase a basis

�

dx

y

;

xdx

y

; : : : ;

x

g�1

dx

y

�

; (4)

when y

2

= f(x) is an equation for � as above. Remark that it follows from (3) and (4) that if

P

i

(i = 1; : : : ; n � g) are suh that i 6= j ) P

i

6= P

�

j

then

dim 


 

n

X

i=1

P

i

!

= g � n: (5)

For their meromorphi analogues with poles at P and P

�

only we have

dim 
(kP + lP

�

) = g + k + l � 1 for k > 0; l � 0: (6)

To see this in ase P 6= P

�

, �rst remark that (1) and (2) imply that x

i

dx has a pole of order i + 2

at P and at P

�

(and no other poles), while x

g+i

dx=y has at these points poles of order i+ 1. This

gives one di�erential form with a single pole at P and P

�

and for any n > 1 two di�erential forms

with a pole of order n at these points. Sine the �rst set of forms is even with respet to � and

the other set is odd they are all independent (and independent from the holomorphi di�erentials).

They are maximal independent, sine having another independent form with poles only at P and

P

�

would result in having a meromorphi di�erential form with a single pole, whih ontradits

the fat that the sum of the residues of a di�erential form over all its singular points is always 0.

This leads to (6) in ase P 6= P

�

, the proof for the ase P = P

�

is very similar.

On the group Div(�) one introdues the notion of linear equivalene by D �

l

D

0

i� D�D

0

= (f)

for some meromorphi funtion f on � and the lass of D is written as fDg. The homomorphism

deg desends to a homomorphism

deg

l

:

Div(�)

�

l

! ZZ

and its kernel, ker deg

l

, is alled the Jaobian of �; Ja(�): In the present ase of hyperellipti urves

there is a very expliit desription of the linear equivalene relation as we state in the following

lemma (see [M℄).

Lemma 1 Let � be a hyperellipti urve of genus g with involution � and let P 2 � �xed. Then

1) D

1

+ D

�

1

�

l

D

2

+ D

�

2

for any D

1

; D

2

2 Div(�) of the same degree,

2) if

P

g

i=1

P

i

�

l

P

g

i=1

Q

i

, then

P

g

i=1

P

i

=

P

g

i=1

Q

i

or P

i

= P

�

j

for some i 6= j,

3) if degD = 0 then D �

l

P

g

i=1

(P

i

� P ) for some P

i

2 �.

The notion of linear equivalene is natural in view of the basi relation between divisors and

(holomorphi) line bundles on a smooth urve: if a divisor D has loal de�ning funtions (f

�

)

�2I

for some over (U

�

)

�2I

of the urve, then the transition funtions of a line bundle [D℄ are given by

f

�

=f

�

on U

�

\U

�

, and it is a fundamental fat that the line bundle [D℄ is determined by the (linear)

equivalene lass fDg; also every line bundle is the line bundle of a divisor. To a meromorphi

setion ' of [D℄ there is assoiated its divisor (') and there exists a setion ' for whih (') = D;

�xing suh a setion shows that L(D) is isomorphi to the vetor spae of holomorphi setions of

[D℄, in partiular these spaes have the same dimension.
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Let the degree of a line bundle be de�ned as the degree of its orresponding divisor and denote

for any d 2 ZZ the set of all line bundles of degree d by Pi

d

(�). Then it follows that for any d 2 ZZ,

Pi

d

(�) is isomorphi to Ja(�) via fDg 7! [D + D

d

℄ where D

d

is any �xed divisor of degree d.

Exept for d = 0 there is no anonial hoie for D

d

; if however | as in the present paper | the

urve has a marked point P then one is led to the natural hoie D

d

= dP , used exlusively in the

sequel.

2.2. The strati�ation

We now introdue a deomposition of Ja(�) with respet to an arbitrary �xed point P on the

(hyperellipti) urve �. Let I

g

denote the set

I

g

= f(m;n) 2 IN� IN j 0 � m + n � gg

whih we order by (m;n) � (m

0

; n

0

) i� m � m

0

and n � n

0

. Then for (m;n) 2 I

g

we de�ne a

subset Div

m;n

(�; P ) of Div(�) by

Div

m;n

(�; P ) =

(

g�m�n

X

i=1

P

i

+ mP + nP

�

� gP j P

i

2 � n fP; P

�

g and i 6= j ) P

i

6= P

�

j

)

;

the term gP is introdued here in order to make every element in Div

m;n

(�; P ) of degree 0. We

denote

Div

0

(�; P ) =

g

[

n=0

g�n

[

m=0

Div

m;n

(�; P ):

and show in the following lemma that �: ker deg ! Ja(�); D 7! fDg restrits to a bijetion

�: Div

0

(�; P ) ! Ja(�):

Lemma 2

1) For any (m;n) 2 I

g

the restrition of � to Div

m;n

(�; P ) is injetive.

2) If P 6= P

�

; then the subsets �(Div

m;n

(�; P )); (m;n) 2 I

g

are all disjoint.

3) If P = P

�

; then Div

m+1;n

(�; P ) = Div

m;n+1

(�; P ) if m + n + 1 � g: In this ase the g + 1

subsets �(Div

m;0

(�; P )); 0 � m � g are all disjoint.

4) �(Div

0

(�; P )) = Ja(�):

Proof

Let (k; l) � (m;n) in I

g

and suppose that �(D) = �(D

0

) where D 2 Div

m;n

(�; P ) and

D

0

2 Div

k;l

(�; P ); if P = P

�

we may suppose that n = l = 0 by using the obvious identity

Div

m+1;n

(�; P ) = Div

m;n+1

(�; P ) (valid for m + n + 1 � g). Then anelling k terms P it follows

that we are asked for a meromorphi funtion f on � with at most g poles P

i

, no two of whih

orrespond under the hyperellipti involution. Using (5) and the Riemann-Roh formula (3) the

funtion f must be onstant, hene D = D

0

: This proves 1) and 2), and sine the �rst part of 3) is

obvious, also 3).

To prove that �(Div

0

(�; P )) = Ja(�) we need to show that every divisor D of degree zero is

linearly equivalent to a divisor inside one of the sets Div

m;n

(�; P ). By Lemma 1, D �

l

P

g

i=1

(P

i

�P ),

for some points P

i

2 �, but by the same lemma every ourrene of Q + Q

�

an, up to linear

equivalene, be replaed by P + P

�

, hene is linearly equivalent to an element in one of the sets

Div

m;n

(�; P ).
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We now prove that the sets J

m;n

(�; P )

def

=�(Div

m;n

(�; P )) (or J

m

(�; P )

def

=�(Div

m;0

(�; P )) in

ase P = P

�

) de�ne a strati�ation of Ja(�); meaning that they are disjoint di�erentiable mani-

folds, whose boundary is a �nite union of lower-dimensional sets J

s;t

(�; P ) (resp. J

s

(�; P )). To this

aim we �rst need to explain the di�erential, or even omplex, struture of Ja(�); more details are

found in [GH℄. It is one of the oldest and most profound results in the theory of algebrai urves

that Ja(�) has the struture of a omplex (algebrai) torus C

g

=�, where � is a lattie of maximal

rank in C

g

. In fat, it was �rst de�ned as a omplex torus and shown (by Abel) to orrespond

to the above de�nition. We sketh the onstrution of the analyti objet. Choose a sympleti

basis A

1

; : : : ; A

g

; B

1

; : : : ; B

g

for H

1

(�;ZZ), i.e., a basis for whih the intersetion indies between

the yles obey A

i

�A

j

= B

i

�B

j

= 0 and A

i

�B

j

= Æ

ij

. Let f!

1

; � � � ; !

g

g be the normalized basis of

holomorphi di�erentials for whih

R

A

i

!

j

= Æ

ij

. Then the 2g olumns of the matrix (I

g

Z), where

Z

ij

=

R

B

i

!

j

, de�ne a disrete subgroup � in C

g

, whih turns out to be of maximal rank. The

quotient C

g

=� is therefore a omplex torus, whih is up to isomorphism independent of the hoie

of basis for H

1

(�;ZZ). To link this torus with Ja(�) de�ned above, one introdues the Abel map

A: Ja(�) !C

g

=� by

A

(

X

i

(P

i

�Q

i

)

)

=

 

X

i

Z

P

i

Q

i

!

1

; : : : ;

X

i

Z

P

i

Q

i

!

g

!

(mod �)

and proves that it is a well-de�ned isomorphism (Abel's Theorem).

The subsets J

m;n

(�; P ) and J

m

(�; P ) introdued above an thus be seen as subsets of a omplex

torus under the Abel isomorphism and we will identify them with their image, writing J

m;n

(�; P )

for A(J

m;n

(�; P )) sine no onfusion an arise. We show that they are submanifolds of the torus

and �t together suh that they de�ne a strati�ation of it. We give separate theorems for the ases

P 6= P

�

and P = P

�

.

Theorem 3 If P 6= P

�

then Ja(�) is strati�ed by the (g �m � n)-dimensional submanifolds

J

m;n

(�; P ); whose losure is given by the (�nite) union

�

J

m;n

(�; P ) =

[

(k;l)�(m;n)

J

k;l

(�; P ): (7)

Eah stratum J

m;n

(�; P ) has two boundary omponents whih are translates of eah other by

~e = AfP

�

� Pg =

 

Z

P

�

P

!

1

; : : : ;

Z

P

�

P

!

g

!

(mod �):

More generally, all i + 1 strata of dimension g � i are translates of eah other by n~e for some

n 2 f1; : : : ; ig: The losures of the (g�1)-dimensional strata J

1;0

(�; P ) and J

0;1

(�; P ) are translates

of the theta divisor and are tangent along their intersetion

�

J

1;1

(�; P ):

Proof

We �rst show that eah J

m;n

(�; P ) is a submanifold of Ja(�) of dimension g �m � n. Let

d = g �m� n > 0 (otherwise there is nothing to prove) and onsider the d-fold symmetri produt

of � with itself, denoted Sym

d

�. This spae is known to have a (omplex) di�erential struture,

with oordinates whih derive from oordinates on �. Namely, on a neighbourhood of a generi

point hP

1

; : : : ; P

d

i 2 Sym

d

� for whih all P

i

are distint, the oordinates z

i

entered at P

i

serve as

oordinates; when two or more of the P

i

oinide however, their orresponding oordinates need

7
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to be replaed by the symmetri funtions of these oordinates, for example, if P

1

= P

2

then take

z

1

+ z

2

and z

1

z

2

instead of z

1

and z

2

. It is lear that as a subset of the torus, J

m;n

(�; P ) is given

by the image of the (Abel map-like) map A

s

de�ned by

A

s

hP

1

; : : : ; P

d

i = n~e +

 

d

X

i=1

Z

P

i

P

!

1

; : : : ;

d

X

i=1

Z

P

i

P

!

g

!

(mod �);

on the open set U

d

� Sym

d

� for whih all P

i

=2 fP; P

�

g and i 6= j ) P

i

6= P

�

j

. Therefore it

suÆes to show that the Jaobian of this map is nowhere singular on U

d

. If the g holomorphi

di�erentials !

i

are written as f(z

j

)dz

j

around P

j

, then the Jaobian matrix of A

s

has at the

generi point hP

1

; : : : ; P

d

i entries f

i

(P

j

) and its rank is maximal sine otherwise there would be at

least a (g � r + 1)-dimensional family of holomorphi di�erentials vanishing at the r points P

i

in

ontradition with (5) and the domain of A

s

. If some of the points P

i

oinide we arrive at the same

onlusion (inluding multipliities): if, say, P

1

ours n times then the ith olumn (1 � i � n) of

the matrix is to be replaed by the (i� 1)th derivative of f

i

, evaluated at P

j

; then the rank being

not maximal would mean that there is a (g� r+ 1)-dimensional family of holomorphi di�erentials

vanishing n times at P

1

and vanishing simply at the other points, again in ontradition with (5).

We now ompute the boundary

�

J

m;n

(�; P ) of the strata J

m;n

(�; P ). Sine Ja(�) is given under

the Abel isomorphism A the quotient topology oming from Sym

g

�, it is suÆient to ompute the

losure of eah subset J

m;n

(�; P ) for this topology (reall that we identi�ed J

m;n

(�; P ) with its

image A(J

m;n

(�; P ))). Let us de�ne the set

K

m;n

(�; P ) =

(

g�m�n

X

i=1

P

i

+ mP + nP

�

� gP j P

i

2 �

)

;

whih is ompat sine it is just Sym

g�m�n

�. By ontinuity of �, its image �(K

m;n

(�; P )) is also

ompat, hene losed; obviously it is ontained in

�

J

m;n

(�; P ) hene

�

J

m;n

(�; P ) = �(K

m;n

(�; P ));

moreover

�(K

m;n

(�; P )) =

[

(k;l)�(m;n)

J

k;l

(�; P ):

whih proves (7).

Thus the di�erent strata �t together as ditated by the partial order � on I

g

: if we represent

the di�erent spaes

�

J

m;n

(�; P ) by

�

J

m;n

, put those of equal dimension on the same horizontal line

and depit inlusions by arrows, then we �nd the following.

�

J

0;0

% -

�

J

1;0

�

J

0;1

% - % -

�

J

2;0

�

J

1;1

�

J

0;2

.

.

. .

.

. .

.

. .

.

.

�

J

g;0

�

J

g�1;1

� � �

�

J

1;g�1

�

J

0;g

Remark that the intersetion of two spaes

�

J

m;n

(�; P ) and

�

J

k;l

(�; P ) is given by the set

�

J

s;t

(�; P )

where (s; t) is the supremum of f(k; l) � (m;n)g (if it exists, otherwise the intersetion is empty).

Therefore it is read o� immediately from the diagram as follows: if say m � k, then draw on the

8
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diagram a diagonal line (of slope 1) through

�

J

m;n

and another one (of slope �1) through

�

J

k;l

; then

their intersetion point (if any) orresponds to the intersetion of these lines.

There is exatly one big stratum (i.e., a stratum of maximal dimension g) namely J

0;0

(�; P ); and

its boundary onsists of two strata of odimension one, namely

�

J

1;0

(�; P ) and

�

J

0;1

(�; P ); and so

on. Sine

Div

m+1;n

(�; P ) = Div

m;n+1

(�; P ) + P � P

�

if m+n+ 1 � g, the sets

�

J

1;0

(�; P ) and

�

J

0;1

(�; P ) are translates of eah other by ~e = AfP

�

�Pg,

namely

�

J

0;1

(�; P ) =

�

J

1;0

(�; P )+~e; and it an be shown that they are translates of the theta divisor

(see below). In general all strata J

m;n

(�; P ) (exept the zero-dimensional ones) have two boundary

omponents,

�

J

m+1;n

(�; P ) and

�

J

m;n+1

(�; P ); whih are obviously also translates of eah other by ~e:

Therefore all sets

�

J

m;n

(�; P ) of the same dimension g�m�n are translates of eah other by some

integer multiple of ~e; for example for the points

�

J

g;0

(�; P ) and

�

J

0;g

(�; P ) it follows immediately

that

�

J

0;g

(�; P ) =

�

J

g;0

(�; P ) + g~e:

In [Gu℄ (Chapter 4, p. 143) expliit formulas are found for alulating the intersetion of two

translates of the theta divisor. These show that in general the intersetion of two translates of

the Riemann theta divisor is reduible and has two omponents. Sine in our ase

�

J

1;0

(�; P ) \

�

J

0;1

(�; P ) =

�

J

1;1

(�; P ) is irreduible, these omponents oinide, hene

�

J

1;0

(�; P ) and

�

J

0;1

(�; P )

are tangent along

�

J

1;1

(�; P ):

The orresponding theorem for P = P

�

is stated as follows and proven in the same way.

Theorem 4 If P = P

�

then Ja(�) is strati�ed by the (g �m)-dimensional subsets J

m

(�; P );

whose losure is given by the (�nite) union

�

J

m

(�; P ) =

[

k�m

�

J

k

(�; P ):

and eah stratum

�

J

m

(�; P ) has just one boundary omponent. Here the strati�ation is simply

depited as

�

J

g

!

�

J

g�1

!

�

J

g�2

! � � � !

�

J

1

!

�

J

0

�

J

0

= Ja(�);

�

J

1

is a translate of the theta divisor and

�

J

g

is the origin in Ja(�):

In Theorems 3 and 4 we laimed that

�

J

1;0

(�; P ) and

�

J

1

were translates of the theta divisor; this is

the divisor of the lassial Riemann theta funtion for Ja(�), whih is the entire funtion on C

g

de�ned as

�(z) =

X

l2Z

g

e

�ihl;Ali

e

2�ihl;zi

(8)

when the lattie � of Ja(�)

�

=

C

g

=� is written as (I

g

A). Remark that although � is only de�ned

on C

g

, the theta divisor is well-de�ned as its zero lous on Ja(�). Riemann showed (see [M℄ or

[GH℄) that there is a onstant

~

� 2C

g

(alled Riemann's onstant) suh that

�(Z) = 0 () 9P

1

; : : : ; P

g�1

2 � : Z = A

(

g�1

X

i=1

(P

i

� P )

)

�

~

� (mod �): (9)

The important ondition in the right-hand side is that the sum runs over g�1 points only. Formula

(9) leads at one to the ited laims.

9
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3. The Sato Grassmannian

We show in this setion how the strati�ations from the preeding setion are indued by a

natural strati�ation of the Sato Grassmannian via an extension of the Krihever map. In the �rst

paragraph we reall from [SS℄, [SW℄ and [PS℄ the Sato Grassmannian, its strati�ation and the

Krihever map, whih relates the Grassmannian to algebrai urves. In the seond paragraph, we

introdue an extension of this map in the ase of hyperellipti urves and relate both strati�ations.

A oarser strati�ation of the Grassmannian is introdued in the last paragraph; it appears in a

natural way when the K-P hierarhy is introdued on the Grassmannian.

3.1. The Grassmannian and its strati�ation

In this paragraph � denotes any smooth urve of genus g (i.e., � needs not to be hyperellipti),

with a marked point P on it. We also �x a small oordinate neighbourhood (s;U) entered at

P , for whih s(U) is the unit disk in C. Then the boundary �U is di�eomorphi to a irle and

L

2

(�U ;C) is a Hilbert spae, with a basis

f: : : ; z

�2

; z

�1

; 1; z; z

2

; : : :g;

where z = s

�1

. The Hilbert spae deomposes as L

2

(�U ;C) = H

+

�H

�

, where

H

+

= f1; z; z

2

; : : :g and H

�

= fz

�1

; z

�2

; : : :g;

(the losure is here the L

2

-losure). Let Gr denote the set of all losed subspaes W � L

2

(�U ;C)

whih have an algebrai basis of the form ff

i

g

i2IN

, with

f

i

=

s

i

X

j=�1



k

z

k

0 6= 

s

i

2C; s

i

< s

i+1

; s

i

= i for i suÆiently large. (10)

We all Gr the (Sato) Grassmannian of L

2

(�U ;C); it is a onneted

y

Banah manifold, modelled

on the Hilbert spae of all Hilbert-Shmidt operators H

+

! H

�

. For f

i

as in (10) we de�ne its

order to be s

i

and we assoiate to W the (ordered) subset S

W

= fs

0

; s

1

; s

2

; : : :g. We all suh a

subset of ZZ with s

i

< s

i+1

and s

i

= i for i suÆiently large, a sequene. The set of all points in Gr

whih have as sequene S will be denoted by �

S

;

�

S

= fW 2 Gr j S

W

= Sg:

We de�ne a partial order on sequenes by S � S

0

if the entries s

i

and s

0

i

of S and S

0

satisfy s

i

� s

0

i

for all i 2 IN; and de�ne the length l(S) of a sequene S as the �nite sum l(S) =

P

i�0

(i � s

i

):

Then S � S

0

obviously implies l(S) � l(S

0

): Denoting by U

S

the set

U

S

=

n

W 2 Gr j proj

�

W ! fz

i

j i 2 Sg

�

is an isomorphism

o

;

the strati�ation of Gr is desribed as follows (see [PS℄).

y

by the last ondition in (10) we singled out the onneted omponent ontaining H

+

of what

[PS℄ and [SS℄ all the Grassmannian

10
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Theorem 5 For any sequene S, the set �

S

is a losed subspae of U

S

and the olletion of all

U

S

forms an open over of Gr: The big stratum is given by �

IN

and all �

S

are smooth manifolds

of odimension l(S): The losure in Gr of eah �

S

is the union of the strata �

S

0

for whih S

0

� S:

Sequenes are in bijetion with partitions. By a partition � we mean a �nite, noninreasing

sequene of positive integers �

0

� �

1

� � � � � �

r

� 0: The bijetion is simply given by �

i

= i � s

i

and we see that l(S) =

P

r

i=0

�

i

: The sequene orresponding to a partition � will be denoted by

S

�

: Also we de�ne l(�) = l(S

�

) and � � � i� S

�

� S

�

.

Partitions in turn are in bijetion with Young diagrams, by whih they are best visualized; a

Young diagram is a �nite (left aligned) arrangement of squares suh that eah row has at most as

many squares as the preeding row and the Young diagram orresponding to �

0

� �

1

� � � � � �

r

� 0

is given by drawing �

i

squares in the ith row. Then the number of squares in a Young diagram

(alled its weight) equals the length of its partition. For example, if � is the partition 3 � 2 � 2 � 0

then S

�

= f�3;�1; 0; 3; 4; : : :g and its Young diagram is drawn as follows.

We �nally reall the Krihever map. The urve �, the point P and a loal parameter s around

P being �xed, there is assoiated to a line bundle  L 2 Pi

g

(�) and a trivialization � of  L (say over

a neighbourhood V of the losure of the oordinate neighbourhood U of s), a point W ( L; �) in Gr

as follows. Using � we may think of setions of  L over V as funtions on V, in partiular suh a

setion determines an element of L

2

(�U ;C). Then W ( L; �) is de�ned as the losure of the set of all

elements of L

2

(�U ;C) obtained in this way from meromorphi setions of  L whih are holomorphi

away from P . Then the pole whih the setion has at P oinides with the order of the setion at P

and in partiular is independent of the trivialization �. It follows that, although W ( L; �) depends

on �, the stratum of Gr it belongs to is independent of �. Therefore the Krihever map indues a

deomposition (possibly a strati�ation) of Pi

g

(�), hene also of Ja(�). We will generalize the

Krihever map in the ase that � is hyperellipti to obtain a map whih indues the strati�ations

on Ja(�) whih we onsidered in the previous setion.

3.2. Relating the strati�ations

We now return to the ase for whih � is hyperellipti, s a loal parameter on a small neigh-

bourhood U of a �xed point P ; the Grassmannian built using these data is just denoted by Gr.

For a point fDg 2 Ja(�), let  L

+

be the orresponding element in Pi

g

(�) under our identi�ation

Ja(�)


[gP ℄

�! Pi

g

(�), i.e.,  L

+

= [D + gP ℄ and let  L

�

=  L

+


 [P � P

�

℄; also hoose a trivialization

�

+

of  L

+

over U and hoose a trivialization of  L

�

as �

�

= �

+

s if P 6= P

�

and �

�

= �

+

otherwise.

Then we obtain two points W

+

(D)

not

=W ( L

+

; �

+

) and W

�

(D)

not

=W ( L

�

; �

�

), eah belonging to a

stratum whih is independent of �

�

. Thus, �; P and (s;U) being �xed, there is assoiated to a

point in Ja(�) and a trivialization of its line bundle a point in Gr�Gr; if P is a Weierstra� point,

11
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then the image of this map is ontained in the diagonal of Gr�Gr and we get the Krihever map;

therefore we all our map an extension of the Krihever map. The two sequenes of these strata will

be denoted by S

+

(D) and S

�

(D), sine they depend on D only. We will show that the strati�ation

of Ja(�) with respet to P , as de�ned in Setion 2 is indued from the produt strati�ation on

Gr�Gr via this map.

Proposition 6 If degD = 0 then the sequenes S

+

(D) and S

�

(D) are omputed as follows:

S

+

(D) = fn 2 ZZ j dimL(D + (g + n)P ) > dimL(D + (g + n� 1)P )g;

S

�

(D) = fn 2 ZZ j dimL(D + (g + n + 1)P � P

�

) > dimL(D + (g + n)P � P

�

)g:

Proof

Sine degD = 0, fDg 2 J

k;l

(�; P ) for some k; l � 0; k + l � g. By Lemma 1, fDg is written

as fD

g

� gPg for a unique D

g

=

P

g�m�n

i=1

P

i

+ mP + nP

�

of degree g, with P

i

2 � n fP; P

�

g,

no two P

i

orresponding under �. Let ' be a holomorphi setion of [D

g

℄ for whih (') = D

g

.

Then the map f ! 'f determines an isomorphism between the meromorphi funtions on � with

(simple) poles on the points of D

g

and an arbitrary pole at P on the one hand, and meromorphi

setions of [D

g

℄, holomorphi away from P at the other hand. Consequently we will �nd a funtion

in W

+

(D) = W ([D + gP ℄; �) of order n exatly when there exists a meromorphi funtion with

poles on D

g

and a pole of order n at P , i.e.,

n 2 S

+

(D) i� dimL(D

g

+ nP ) > dimL(D

g

+ (n� 1)P ); (11)

whih shows that S

+

(D) an be read o� from the dimensions dimL(D

g

+ nP ). The formula for

S

�

(D) follows immediately from S

�

(D) = S

+

(D + P � P

�

).

The following lemma will give us neat formulas to ompute the sequenes S

+

(D) and S

�

(D).

Lemma 7 Suppose there are given n � g points P

1

; : : : ; P

n

2 � n fP; P

�

g suh that i 6= j )

P

i

6= P

�

j

: If P 6= P

�

; let D be a divisor of the form D =

P

n

i=1

P

i

+ kP + lP

�

(k; l 2 ZZ). Then

dimL(D) is given by

dimL(D) =

(

maxfg � n� k � l � 1; 0g + n + k + l + 1� g for k < 0 or l < 0;

maxfg � n�maxfk; lg; 0g + n + k + l + 1� g for k; l � 0.

If alternatively P = P

�

; then dimL(D) is given for any divisor of the form D =

P

n

i=1

P

i

+ kP

(k 2 ZZ) by

dimL(D) =

(

maxfg � n� k � 1; 0g + n + k + 1� g for k < 0,

maxfg � n� dk=2e ; 0g + n + k + 1� g for k � 0:

Proof

We �rst onsider the ase P 6= P

�

: Let D =

P

n

i=1

P

i

+ kP + lP

�

as above and suppose that

k < 0: Then by (6), dim 
(�kP ) = g � k� 1: If l is nonnegative, then the divisor

P

P

i

+ lP

�

is of

the form

P

n+l

i=1

Q

i

where i 6= j ) Q

i

6= Q

�

j

; whih amounts to n+ l linearly independent onditions.

If l is negative then by (6), dim 
(�kP � lP

�

) = g� k� l� 1 and there are n linearly independent

onditions oming from the points P

i

(i = 1; : : : ; n). It follows as in (5) that in both ases there are

12
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g � n� k � l � 1 independent di�erentials in 
(�D) as long as this number is positive, otherwise

there are no suh di�erentials. By Riemann-Roh,

dimL(D) = dim 
(�D) + n + k + l + 1� g;

= maxfg � n� k � l � 1; 0g + n + k + l + 1� g;

for k < 0. The ase l < 0 is dedued from the above ase by replaing D by D

�

:

It remains to prove the ase k; l � 0: Then we look for holomorphi di�erentials with zeroes at

n general points, with k zeroes at P and l zeroes at P

�

: These are n + k + l onditions, but sine

minfk; lg of them are the same, we arrive at n + k + l � minfk; lg = n + maxfk; lg independent

onditions. It follows from (5) that we end up with g�n�maxfk; lg di�erentials, as long this number

is positive, otherwise there are no suh di�erentials. Using Riemann-Roh again, we onlude

dimL(D) = maxfg � n�maxfk; lg; 0g + n + k + l + 1� g

for k; l � 0: This ompletes the proof in ase P 6= P

�

:

Suppose now P = P

�

and let D =

P

n

i=1

P

i

+ kP: If k < 0 then it follows from (6) that

dim 
(�kP ) = g � k � 1: The n points P

i

impose n independent onditions on these di�erentials,

giving dim 
(�

P

n

i=1

P

i

� kP ) = maxfg � n� k � 1; 0g: Using Riemann-Roh we �nd

dimL(D) = maxfg � n� k � 1; 0g + n + k + 1� g;

for k < 0: If k � 0 then there are g � dk=2e holomorphi di�erentials in 
(�kP ) (as long as this

number is positive), sine in this ase all the holomorphi di�erentials vanish to even order at P , as

is seen from (1), (2) and (4). Therefore the dimension of 
(�D) is given by maxfg�dk=2e�n; 0g

and L(D) is omputed from the Riemann-Roh theorem as

dimL(D) = maxfg � dk=2e � n; 0g+ n + k + 1� g

for k � 0:

We ombine Proposition 6 with the previous lemma to ompute the sequenes S

+

(D) and

S

�

(D) and their Young diagrams. The basi relation between the strati�ations of Ja(�) and

Gr�Gr will follow immediately from it.

Theorem 8 Suppose P 6= P

�

and fDg 2 J

m;n

(�; P ): Then S

+

(D) and S

�

(D) are sequenes

whih depend only on the stratum (i.e., on m and n) and are given by

S

+

(D) = f�m; 1�m; 2�m; : : : ; n�m;n + 1; n + 2; n + 3; : : :g;

S

�

(D) = f�m� 1;�m; 1 �m; : : : ; n�m� 2; n; n + 1; : : :g:

The orresponding Young diagrams are retangles with m olumns and n + 1 rows for S

+

(D) and

m+ 1 olumns and n rows for S

�

(D); and their weights are simply given by l(S

+

(D)) = m(n+ 1)

and l(S

�

(D)) = n(m + 1). They look as follows.

n+1

m

n

m+1

13
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Seondly, suppose that P = P

�

and fDg 2 J

m

(�; P ): Then S

+

(D) = S

�

(D) is a sequene

whih depends only on the stratum (i.e., on m) and is given by

S

+

(D) = f�m; 2�m; 4�m; : : : ;m� 2;m;m + 1;m + 2; : : :g:

The orresponding Young diagram is a rotated stairs of height m; i.e., the �rst row has m squares

and every other row has one square less then the preeding row, hene it has weight l(S

+

(D)) =

m(m+1)

2

and is depited as follows.

m

m

Proof

Suppose at �rst that P 6= P

�

. For D 2 Div

m;n

(�; P ) let D

g

= D + gP , then by Lemma 7,

dimL(D

g

+ kP ) = maxfminfk + m;ng; 0g + 1 + k;

if k +m � 0; otherwise this dimension is zero. Sine S

+

(D) = fk j dimL(D

g

+ kP ) > dimL(D

g

+

(k � 1)P )g we see that

S

+

(D) = f�m; 1 �m; 2�m; : : : ; n�m;n + 1; n + 2; n + 3; : : :g:

Also, sine S

�

(D) = S

+

(D + P � P

�

) and sine D + P � P

�

2 Div

m+1;n�1

(�; P ) if n � 1, the

formula for S

�

(D) is found in this ase by substituting m+ 1 for m and n� 1 for n in the formula

for S

+

(D): The proposed formula above for S

�

(D) gives for n = 0; when properly interpreted,

S

�

(D) = IN. To see its validity, remark that in this ase

D

g

+ P � P

�

=

g�m

X

i=1

P

i

+ mP + P � P

�

�

l

g

X

i=1

Q

i

for unique Q

i

, all di�erent from P; P

�

and no two of whih orrespond under the hyperellipti

involution (using Lemma 1 again), hene S

�

(D) = IN. The proof for P = P

�

goes exatly along

the same lines.

This theorem leads immediately to the main result of this setion.

Theorem 9 The natural strati�ation of Ja(�) given by the subsets J

m;n

(�; P ), (m;n) 2 I

g

, is

indued by the (produt) strati�ation on Gr �Gr given by the sets �

S

� �

T

(S; T sequenes) via

the \map"

F : Ja(�) ! Gr�Gr

fDg 7! (W

+

(D);W

�

(D)):

14
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Proof

From the previous theorem it follows that the strata J

m;n

(�; P ) are mapped into strata of the

strati�ed spae Gr�Gr: Also it follows from this theorem that no two di�erent strata J

m;n

(�; P )

and J

m

0

;n

0

(�; P ) are mapped in the same stratum. To prove this it suÆes to show that the

numbers (m;n) 2 I

g

an be reonstruted from S

+

(D) and S

�

(D) (or equivalently from their

Young diagrams). If both Young diagrams are empty then (m;n) = (0; 0): Otherwise m and n are

found by ounting rows and olumns in one of the nonempty diagrams. Remark that for m = 0 or

n = 0 it is essential to have both diagrams: the ordinary Krihever map is only able to distinguish

the strata inside one of the two translates of the theta divisor. In the ase P = P

�

both Young

diagrams are obviously the same (sine W

+

(D) = W

�

(D)) and the theorem an be simpli�ed using

only the subsets J

m

(�; P ) and the planes W

+

(D) 2 Gr:

3.3. The K-P hierarhy on Gr and another strati�ation

There is another strati�ation on Gr, (and on Gr�Gr) oarser than the previous one, whih

shows up when a ertain natural vetor �eld on Gr is onsidered. Its strata onsist of those points

in Gr for whih the assoiated Young diagrams have a given weight. To see that it is also a

strati�ation, remark that eah stratum is a �nite union of the strata of the original strati�ation,

and the boundary of a stratum now onsists of those strata whose Young diagram has more weight

than the Young diagram of the given stratum; we all it the oarser strati�ation (on Gr as well as

on Gr�Gr where again the produt strati�ation is onsidered). The following proposition follows

at one from Theorem 8.

Proposition 10 The natural strati�ation of Ja(�) given by the subsets J

m;n

(�; P ) is also

indued by the oarser strati�ation on Gr�Gr via our extension of Krihever's map.

Proof

Clearly we only need to prove that no two strata are mapped in the same stratum. If P = P

�

,

then the stratum whih orresponds to J

m

(�; P ) has weight

m(m+1)

2

, whih is di�erent for all

m 2 IN. If P 6= P

�

, then we need to reonstrut m and n from w

1

= m(n+ 1) and w

2

= n(m+ 1).

However, given w

1

and w

2

there are only two solutions to this, namely (m;n) and (�n�1;�m�1),

only one of whih is positive.

The group C

1

ats on Gr in an obvious way by W 7! e

�t

n

z

n

W; (t

n

2 C), and its in�nitimal

ation determines an in�nite number of ommuting vetor �elds �=�t

n

on Gr, alled the K-P

hierarhy (this hierarhy an be written down in many equivalent forms, see [DKJM℄, [SS℄ and

[SW℄). The point e

�

P

1

j=1

t

j

z

j

W is denoted by W

t

, in partiular W = W

0

. It leads to the so-alled

tau funtion, also introdued by Sato (see [SS℄ and [SW℄), whih is de�ned for a generi point

W 2 Gr by

�

W

(t) =

�(W

t

)

e

�

P

1

j=1

t

j

z

j

�(W )

=

�(e

�

P

1

j=1

t

j

z

j

W )

e

�

P

1

j=1

t

j

z

j

�(W )

:

Here �(W ) is a anonial global setion of the dual Det

?

of the determinant bundle Det over

Gr, whih an be de�ned | with some are | as one de�nes the determinant bundle over a

�nite dimensional manifold. For a point for whih �(W ) = 0; this setion is replaed by another

(nonvanishing) setion of Det

?

. It is a fundamental fat that in the ase W = W ( L; �) as in the

previous paragraph, one has W

t

( L; �) = W ( L 
 �

t

; �

t

) where �

t

is the line bundle de�ned by the

transition funtion e

P

1

j=1

t

j

s

�j

on the overlap of W = � n fPg and U ; moreover, t 7! �

t

de�nes

a surjetive homomorphism (see [Sh℄). It follows that C

1

ats on the set Pi

g

(�) by tensoring

15
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with �

t

, hene the vetor �elds �=�t

n

give linear vetor �elds on any Jaobian Ja(�) under our

identi�ation with Pi

g

(�) by fDg $ [D + gP ℄:

We apply this to our ase in whih � is hyperellipti, and we onentrate on the vetor �eld

�=�t

1

. As before, s is a loal parameter around P 2 �. Consider the inlusion

{

P

: � ! Ja(�) :Q 7! fQ� Pg:

Then �=�t

1

, as a vetor �eld on Ja(�) has the following property.

Proposition 11 The �rst K-P vetor �eld �=�t

1

, onsidered as a vetor �eld on Ja(�), is

tangent to the urve {

P

(�) at the origin of Ja(�).

Proof

Let t = (t

1

; 0; 0; : : :) with t

1

small. The line bundle in Pi

g

(�) orresponding to the origin of

Ja(�) is  L = [gP ℄, with transition funtions g

UW

= s

g

(W = � n fPg), hene  L

t

= [gP ℄ 
 �

t

has

transition funtions

g

t

UW

= s

g

exp(�t

1

=s) = s

g�1

(s� t

1

) +O(t

2

1

);

and sine t

1

is small, the divisor orresponding to it (up to O(t

2

1

)) is (g � 1)P + P

t

1

, where P

t

1

is the point in U for whih s = t

1

. As a point in the Jaobian this is the point fP

t

1

� Pg on the

embedded urve {

P

(�). Therefore, around P , {

P

(�) oinides with the integral urve (whih is just

a straight line in the torus) of �=�t

1

at least to �rst order, hene they are tangent. The omponents

of this vetor in the diretion of the holomorphi di�erentials x

k

dx=y; (k = 0; : : : ; g � 1) are easily

omputed; take for example P = P

�

then x = s

�2

; y = s

�2g�1

+O(s

�2g

) hene,

lim

t

1

!0

1

t

1

Z

P

t

1

P

x

k

dx

y

= �2 lim

s!0

1

s

Z

s

0

s

2(g�k�1)

(1 +O(s))ds = �2Æ

k;g�1

: (12)

Of interest to us is also how the tau funtion, assoiated to W 2 Gr, vanishes in the t

1

-diretion.

This is given by the following proposition, due to [SW℄.

Proposition 12 For any W 2 Gr,

�

W

(t

1

; 0; 0; : : :) = t

l

1

+O(t

l+1

1

);

where  6= 0 and l is the odimension of the stratum of Gr ontaining W , i.e., it is the weight l(S

W

)

of the Young diagram of W .

Having assoiated two points W

+

(D) and W

�

(D) to a point fDg, we have also two orre-

sponding tau funtions �

W

+

(D)

and �

W

�

(D)

. They relate to the theta funtion as follows.

Theorem 13 Let A be the g�1-matrix with entries A

ij

de�ned by expanding the holomorphi

di�erential forms !

i

in terms of s (around P ), !

i

=

P

1

j=1

A

ij

s

j�1

ds: Then for any divisor D of

degree 0,

�

W

+

(D)

(t) = exp(Q(t))�

�

~

��At�A(D)

�

;

�

W

�

(D)

(t) = exp(Q(t))�

�

~

� + ~e�At�A(D)

�

;

where Q(t) is a quadrati form in t whih is independent of t

1

.

16
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Proof

The proof is essentially due to Krihever (see [K℄), who shows that if  L is a line bundle of

degree g, then

�

W ( L;�)

(t) = exp(Q(t))�(At + Z( L));

for some vetor Z whih depends \linear" on  L in the sense that

Z( L
 [D℄) = Z( L) +A(D); (13)

for any divisor D of degree 0 (see also [Sh℄). We determine Z. By the preeding proposition and

Theorem 8, �

W

+

(D)

(0) = 0 i� l(S

+

(D)) 6= 0 i� fDg =2 J

0;0

(�; P ). On the other hand, by (9)

(Riemann's theorem), �(Z) vanishes for the points A(D)�

~

� for whih A(D) = fDg =2 J

0;0

(�; P ):

Using (13), Z( L) = A(D)�

~

� for all D of degree 0, leading to the �rst formula. The seond formula

follows at one form the �rst one.

17
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4. The master systems

4.1. The master systems

Consider for a �xed hyperellipti urve � (of genus g), P 2 � and s a loal parameter around

P the map

�

P

: � ! Ja(�):Q 7! fQ� Pg:

Then d�

P

�

�

�s

�

s=0

is a tangent vetor at the origin of Ja(�), tangent to the embedded urve

�

P

(�), and we have seen in Proposition 11 that it determines the unique holomorphi vetor �eld

on this torus, whih oinides with the �rst K-P vetor �eld, under the identi�ation of Ja(�)

with Pi

g

(�), given by fDg $ [D + gP ℄. Natural oordinates an be piked for (an aÆne part of)

Ja(�) in whih the di�erential equations desribing the vetor �eld take a nie form. This was

done by Mumford in ase P is a Weierstra� point on � (see [M℄), and by us in the opposite ase

(see [V℄). The result an be written in a ompat form as a so-alled Lax pair

dA

dt

= [A;B℄; A =

�

v(x) u(x)

w(x) �v(x)

�

; B =

�

0 1

b 0

�

; (14)

where

u(x) = x

g

+

g

X

i=1

u

i

x

g�i

; v(x) =

g

X

i=1

v

i

x

g�i

; w(x) =

g

X

i

w

i

x

g�i

:

The sum in w(x) starts from �1 if P is a Weierstra� point and from �2 in the other ase; in any

ase w(x) is taken moni. Moreover, w

�1

di�ers from �u

1

only by a onstant, whih is normalized

to zero by a shift in x. With this normalization the entry b in B is given by

b = x� 2u

1

; or b = x

2

� 2u

1

x + 2u

2

1

� u

2

+ w

0

;

again aording to whether P is, or is not, a Weierstra� point of �. In [V℄ we alled the vetor �eld

(14) the odd master system in ase P = P

�

and the even master system otherwise.

The oeÆients of u(x); v(x) and w(x) are meromorphi funtions on Ja(�), whih serve

as (a omplete set of) oordinates for an aÆne part of Ja(�); for example the polynomial u(x)

assoiated to a generi

y

point fDg = f

P

g

i=1

P

i

� gPg 2 Ja(�), is just u(x) =

Q

(x�x(P

i

)), hene

its oeÆients are symmetri funtions on the urve; also v(x) is the unique polynomial of degree

g � 1 whih reords the y-values of the points P

i

, i.e., v(x(P

i

)) = y(P

i

) for i = 1; : : : ; g. It follows

that f(x) � v

2

(x) is divisible by u(x) and w(x) is by de�nition the quotient. Remark that, in

partiular, an equation for the urve � is given by

y

2

= f(x) = u(x)w(x) + v

2

(x) (15)

and the oeÆients of u(x)w(x) + v

2

(x) are onstants. Also the points P and P

�

are points at

in�nity with respet to this equation. It is easy to dedue from this that the vetor �eld (14)

oinides with the vetor �eld given by d�

P

�

�

�s

�

js=0

, hene with the �rst K-P vetor �eld, as we

show now.

Proposition 14 The vetor �eld (14) whih desribes the master systems oinides with the �rst

K-P vetor �eld �=�t

1

.

y

generi means here that the point lies in J

0;0

(�; P )

18
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Proof

Take a generi divisor P

1

+ � � �+P

g

; P

i

= (x

i

; y

i

) and let u(x); v(x) and w(x) be its assoiated

polynomials. Using (14),

y

i

= v(x

i

) =

1

2

du

dt

(x

i

) = �

1

2

Y

j 6=i

(x

i

� x

j

)

dx

i

dt

;

hene

g

X

i=1

x

k

i

dx

i

y

i

= �2

g

X

i=1

x

k

i

dt

Q

j 6=i

(x

i

� x

j

)

= �2Æ

k;g�1

dt:

It follows that the vetor �eld vanishes in the diretion of dx=y; : : : ; x

g�2

dx=y and takes the value

�2 for x

g�1

dx=y exatly as in (12).

4.2. The Laurent solutions for the master systems

The di�erential equations desribing a vetor �eld suh as (14) are known to possess families

of Laurent solutions (see [AvM3℄). We explain this by realling the argument. Let Z be any

point on Ja(�) and let us denote for simpliity the funtions u

i

; v

i

and w

i

by z

1

; : : : ; z

m

; (m =

3g + 1 or m = 3g + 2). If all funtions z

i

are holomorphi in this point then the solution z

i

(t) is

obviously given by power series; therefore suppose that one or more funtions z

i

blow up at Z, say

the blow-up lous of z

1

ontains Z. We write the divisor of z

1

as

(z

1

) =

k

X

i=1

n

i

D

i

�

l

X

i=1

m

i

D

0

i

(m

i

; n

i

2 IN n f0g);

where all D

i

and D

0

i

are di�erent and irreduible. Then Z belongs to one or more D

0

i

, but may

belong as well to some of the D

i

. In any ase, if we pik for eah divisor a loal de�ning funtion

around Z, say f

i

for D

i

and g

i

for D

0

i

(if Z does not belong to some divisor then the loal de�ning

funtion may be taken as the onstant funtion 1), then z

1

is written around Z as

z

1

= f

f

n

1

1

f

n

2

2

� � � f

n

k

k

g

m

1

1

g

m

2

2

� � � g

m

l

l

:

We may take linear oordinates x

1

= t; x

2

; : : : ; x

n

for the torus, and think of the loal de�ning

funtions as being expressed in terms of these. If the t-axis is not ontained in any of the divisors

D

i

or D

0

i

then all these funtions an (again up to a nonvanishing holomorphi funtion) be written

as a (Weierstra�) polynomial in t (by the Weierstra� Preparation Theorem) and we see that the

zero or pole z

1

has in Z depends on the omponents of the divisor of z

1

to whih Z belongs but

also on the singularity these divisors have in Z (sine then the �rst few terms in the series vanish)

and on the ontat the vetor �eld d=dt has with these divisors (for the same reason). Proeeding

in this way for all funtions z

i

we �nd a Laurent solution to the di�erential equations, whih starts

from Z. The ase in whih the t-axis is ontained in the divisor of one of the funtions orresponds

to the exeptional ase that both the torus is reduible and one of the funtions blows up on a

subtorus, a ase whih will not be enountered here.

The Laurent series organize themselves naturally in families as follows: for every z

i

, �x an

intersetion of some divisors (ontained in the divisor of poles of (z

i

)), �x an order of singularity

and an order of tangeny of the vetor �eld. On this set all z

i

are written as Laurent series

depending on a number of free parameters, equal to the dimension of this set (orresponding to the
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starting point of the series whih an be hosen in it) and in a dense subset the order of pole eah

expansion experienes is �xed. The pole may however beome less severe in an analyti subset,

obtained from the intersetion with one of the divisors on whih z

i

has a zero; in suh a ase the

leading oeÆient of the Laurent series must be (dependent on) a free parameter, so that it an in

partiular take the value 0. The di�erent sets obtained in this way do not give a strati�ation of

the torus in general; indeed, if, for example, z

1

and z

2

both have a pole on some smooth divisor and

the intersetion of these divisors is singular, then this singularity will not be seen by the Laurent

series.

Finding all Laurent solutions in a diret way is in general a hard problem. At �rst it is not

lear when looking at the di�erential equations where to start with the solution. For a given hoie

one needs to solve a nonlinear system of algebrai equations for the leading term (whih may be

very diÆult, espeially in the present ase where the number of variables is inde�nite; here this

number is 3g+1 or 3g+2); the presene of free parameters (giving information about the dimension

of the orresponding subset) an in favourable ases be deteted by omputing the eigenvalues of

a matrix, depending on these leading terms, but this is again very diÆult when the number of

variables, hene the size of the matrix, is inde�nite. One also has to show onvergene of all Laurent

solutions and to see how the di�erent sets they orrespond to are related (see [AvM3℄).

Our method to �nd the Laurent solutions for the master systems does not use this sheme.

Instead we ombine Theorem 12 with the following theorem whih expresses the symmetri fun-

tions u

i

in terms of the Riemann theta funtion. The result is most easily expressed in terms

of alternative symmetri funtions U

i

(on the urve, given by (15), de�ned for a generi point

fDg = f

P

g

i=1

P

i

� gPg 2 Ja(�), as

U

i

= U

D

i

=

g

X

j=1

x

i

(P

j

) (i = 1; : : : ; g):

Remark that u

i

is a weight homogeneous polynomial in U

1

; : : : ; U

i

when U

k

is given weight k. We

also introdue the Shur polynomials p

i

(x); x = (x

1

; x

2

; : : :) de�ned by

exp

 

1

X

i=1

x

i

�

i

!

=

1

X

i=0

p

i

(x)�

i

:

In order to simplify the notation we will abbreviate

~

� =

�

�

�t

1

;

1

2

�

�t

2

;

1

3

�

�t

3

; : : :

�

:

Theorem 15 If P = P

�

then the symmetri funtions U

i

are expressed in terms of the Riemann

theta funtion by

U

D

i

= 

i

�

2i�1

X

j=0

�

�t

2i�j

p

j

(

~

�)(log �)(

~

��A(D)) (

i

2C): (16)

In partiular, sine the Shur polynomial p

j

(x) has degree j in x

1

, the Laurent expansion in t

1

for

U

i

(and hene also for u

i

) will have a leading behaviour whih is not worse than t

�2i

1

.
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Alternatively, if P 6= P

�

then the symmetri funtions U

i

are expressed in terms of the Riemann

theta funtion by

U

D

i

= 

i

�

i�1

X

j=0

�

�t

i�j

p

j

(

~

�)(log �)(

~

��A(D))�

�

�t

i�j

p

j

(�

~

�)(log �)(

~

��A(D) + ~e): (17)

so that in this ase any Laurent expansion in t

1

for U

i

(and, hene, also for u

n

) will have a leading

behaviour whih is not worse than t

�i

1

.

Proof

The formulas (16) and (17) generalize analogous formulas that have been obtained by several

methods for small n (see [D℄, [MvM℄); our proof is a residue alulation as in [D℄.

The fundamental formula used here is that, if Z = A(P

1

+ � � � + P

g

� gP ) with P

1

+ � � � + P

g

a generi divisor on �, then

�(A(Q� P )� Z +

~

�) = 0 i� Q 2 fP

1

; : : : ; P

g

g;

an easy onsequene of (9) (Riemann's Theorem). We start with the ase P = P

�

. Then it follows

from this formula that U

D

i

is given by

U

D

i

= 

i

�Res

Q=P

x

i

(Q)d log �(A(Q� P )�A(D) +

~

�);

= 

i

�Res

Q=P

x

i

(Q)

g

X

l=1

!

l

(Q)

�

�

�z

l

log �

�

�

A(Q� P )�A(D) +

~

�

�

;

(18)

for some 

i

2 C. As before, we expand !

i

and the omponents A

i

of the Abel map for Q lose to

P; say x(Q) = s

�2

in terms of s,

!

i

(Q) =

1

X

j=1

A

ij

s

j�1

ds A

i

(Q) =

1

X

j=1

1

j

A

ij

s

j

ds:

We use Taylor's Theorem,

F (~z +

~

h) = exp

 

g

X

i=1

h

i

�

�z

i

!

F (~z) (h small);

for

F =

�

�z

l

(log �); ~z =

~

��A(D);

~

h = A(Q� P ); Q near P:

This gives

�

�

�z

l

log �

�

�

A(Q� P )�A(D) +

~

�

�

= exp

2

4

1

X

j=1

 

g

X

i=1

1

j

A

ij

�

�z

i

!

s

j

3

5

�

�

�z

l

log �

�

�

~

��A(D)

�

;

= exp

2

4

1

X

j=1

1

j

�

�t

j

s

j

3

5

�

�

�z

l

log �

�

�

~

��A(D)

�

;

=

1

X

j=0

s

j

p

j

(

~

�)

�

�

�z

l

log �

�

�

~

��A(D)

�

:
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We have used that

P

g

i=1

A

ij

�

�z

i

=

�

�t

j

, whih follows from z = At + � in Theorem 13. We have

now expressed everything in terms of s and an ompute the residue:

U

D

i

= 

i

�Res s

�2i

1

X

j=0

p

j

(

~

�)s

j

�

�

�z

l

log �

�

�

~

��A(D)

�

1

X

k=1

A

lk

s

k�1

ds;

= 

i

�Res

1

X

j=0

1

X

k=1

s

j+k�2i

p

j

(

~

�)

�

�t

k

(log �)

�

~

��A(D)

�

ds

s

;

= 

i

�

2i�1

X

j=0

�

�t

2i�j

p

j

(

~

�)(log �)

�

~

��A(P )

�

:

The modi�ations for the ase P 6= P

�

are the following. In (18) there is an extra term orrespond-

ing to the residue in P

�

,

Res

Q

0

=P

x

i

(Q

0

)

g

X

l=1

!

l

(Q

0

)

�

�

�z

l

(log �)

�

�

A(Q

0

� P )�A(D) +

~

�

�

:

Letting Q

�

= Q

0

it is rewritten as a residue in P upon using x(Q

�

) = x(Q) and !(Q

�

) = �!(Q)

for all holomorphi di�erentials ! (hene also A(Q

�

� P

�

) = �A(Q� P )), giving:

�Res

Q=P

x

i

(Q)

g

X

l=1

!

l

(Q)

�

�

�z

l

log �

�

�

�A(Q� P )�A(D) +

~

� + ~e

�

:

A seond mayor di�erene with the ase P = P

�

is that now x(Q) = s

�1

in terms of the loal

parameter s. Taylor's Theorem gives the same result as above for the residue in P , while for the

extra residue term we �nd

�

�

�z

l

log �

�

�

�A(Q� P )�A(D) +

~

� + ~e

�

=

1

X

j=0

s

j

p

j

(�

~

�)

�

�

�z

l

log �

�

�

~

� + ~e�A(D)

�

;

so that �nally the sum of the two residue terms is given by

�Res

1

X

j=0

1

X

k=1

s

j+k�i

�

�

�t

k

p

j

(

~

�)(log �)

�

~

��A(D)

�

�

�

�t

k

p

j

(�

~

�)(log �)

�

~

� + ~e�A(D)

�

�

ds

s

;

= 

i

�

i�1

X

j=0

�

�

�t

i�j

p

j

(

~

�)(log �)

�

~

��A(D)

�

�

�

�t

i�j

p

j

(�

~

�)(log �)

�

~

� + ~e�A(D)

�

�

:

The above theorem is very helpful to determine the Laurent solutions for the master systems.

Sine t = t

1

, we may now make the ansatz

u

i

=

1

t

�(i)

1

X

j=1

u

ij

t

j

(19)
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where �(i) is given by the theorem, namely �(i) = 2i if P = P

�

and �(i) = i otherwise, and we

are sure to �nd all the Laurent solutions. We show that they lead indeed to the strati�ation of

Ja(�) whih oinides with the one by the subsets J

m;n

(�; P ). We give separate propositions for

the ases P = P

�

and P 6= P

�

.

Proposition 16 For the odd master system there are g + 1 families of Laurent solutions. The

mth family orresponds to the stratum J

m

(�; P ) and the funtions u

1

; : : : ; u

g

blow up as

u

i

= (�1)

i

(2i� 1)!!

2

i

i!

(m + i)!

(m� i)!

1

t

2i

+O(t

�2i+1

) (i = 1; : : : ;m);

u

i

= O(t

�2i+1

) (i = m + 1; : : : ; g);

(20)

In partiular, the odd master system indues a strati�ation on Ja(�) whih oinides with the

strati�ation by the subsets J

m

(�; P ).

Proof

Equations (14) are written out in the ase of the odd master system (orresponding to P = P

�

)

as

_u(x) = 2v(x);

_v(x) = �w(x) + (x� 2u

1

)u(x);

_w(x) = �2(x� 2u

1

)v(x);

or just as a third order equation,

:::

u

i

(x) = 4 ( _u

i+1

� 2u

1

_u

i

� _u

1

u

i

) (i = 1; : : : ; g; u

g+1

= 0): (21)

Then the ansatz (19) leads to the reursion relation

a

i+1

=

2i + 1

i + 1

�

i(i + 1)

2

+ a

1

�

a

i

: (22)

To solve this reursion relation, remark that if a

i

= 0 then a

i+1

= 0; sine a

i

= 0 for at least one

i � g + 1, we �nd that

a

1

= �

1

2

m(m + 1) (23)

for some m 2 f0; : : : ; gg whih leads by indution immediately to the formula

a

i

= (�1)

i

(2i � 1)!!

2

i

i!

(m + i)!

(m� i)!

(i = 1; : : : ;m);

and a

m+1

= � � � = a

g

= 0, hene also to (20). The series for v

i

and w

i

follow immediately from it

by di�erentiation, in partiular they do not give rise to separate families of Laurent solutions.

We now show that the mth solution orresponds to J

m

(�; P ). Take fDg 2 J

m

(�; P ) and

let fD

t

g be the integral urve of d=dt = �=�t

1

with D

0

= D. Denote by u

D

t

(x) and U

D

t

(x) the
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assoiated polynomials, as above. Sine it follows from the de�nition of A that At+A(D) = A(D

t

),

we may ompute, using Theorems 15, 13 and Proposition 12 (in that order),

u

D

t

1

= (log �)

::

�

~

��A(D

t

)

�

� 

1

;

= (log �)

::

�

~

��A(D)�At

�

� 

1

;

=

�

log �

W

+

(D)

�

::

(t)� 

1

;

=

d

2

dt

2

log

�

t

l(S

+

(D))

+O(t

l(S

+

(D))+1

)

�

� 

1

; ( 6= 0);

= �

l(S

+

(D))

t

2

+O(1):

If fDg 2 J

m

(�; P ); then we know from Theorem 8 that l(S

+

(D)) =

m(m+1)

2

, so we �nd by (23)

that the mth stratum orresponds to J

m

.

We will now formulate and prove the orresponding result for the even master system, i.e., for

the ase P 6= P

�

.

Proposition 17 For the even master system there are

(g+1)(g+2)

2

families of Laurent solutions

one for eah element of the set I

g

. The (m;n)th family orresponds to the stratum J

m;n

(�; P ) and

the funtions u

1

; : : : ; u

g

blow up as

u

1

=

m� n

t

+O(1);

u

i

= O(t

�i

); (i = m + 1; : : : ; g);

(24)

In partiular, the even master system indues a strati�ation on Ja(�) whih oinides with the

strati�ation by the subsets J

m;n

(�; P ).

Proof

The proof goes along the same lines as the proof of Proposition 16. However one �nds using

the ansatz in this ase a reursion relation

a

k+2

=

2k + 3

k + 2

a

1

a

k+1

+

k + 1

k + 2

�

(k + 2)k � (3a

2

1

� 2a

2

)

�

a

k

;

whih is solved at one for g = 1; 2; 3; : : :, but seems to be very hard to solve for general g. Therefore

we ompute as in the previous proposition for fDg 2 J

m;n

(�; P )(�; P ) with (m;n) 2 I

g

:

u

D

t

1

= (log �)

:

�

~

��A(D

t

)

�

� (log �)

:

�

~

��A(D

t

) + ~e

�

� 

1

;

=

�

log �

W

+

(D)

�

:

(t)�

�

log �

W

�

(D)

�

:

(t)� 

1

;

=

l(S

+

(D))� l(S

�

(D))

t

+O(1);

=

m� n

t

+O(1):

The formula for the other u

i

follows from Theorem 15.
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