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We announce some results which involve some new, evidently integrable sys-
tems of Toda type. More specifically we construct a large family of Hamiltonian
systems which interpolate between the classical Kostant–Toda lattice and the
full Kostant–Toda lattice and we discuss their integrability. There is one such
system for every nilpotent ideal I in a Borel subalgebra b+ of an arbitrary
simple Lie algebra g. The classical Kostant–Toda lattice corresponds to the
case of I = [n+, n+], where n+ is the unipotent ideal of b+, while the full
Kostant–Toda lattice corresponds to I = {0}. We mainly focus on the case of
g being of type A, B or C with I = [[n+, n+] , n+] which we call the height-2
Toda lattice. Complete proofs of the announced results will appear in a future
publication.

1 Introduction

The classical Toda lattice is the mechanical system with Hamiltonian function

H(q1, . . . , qN , p1, . . . , pN ) =
N∑
i=1

1
2
p2
i +

N−1∑
i=1

eqi−qi+1 .

It describes a system of N particles on a line connected by exponential springs.
The differential equations which govern this lattice can be transformed via a
change of variables due to Flaschka [9] to a Lax equation L̇ = [L+, L], where L is
the Jacobi matrix

L =



b1 a1 0 · · · · · · 0

a1 b2 a2 · · ·
...

0 a2 b3
. . .

...
. . . . . .

...
...

. . . . . . aN−1

0 · · · · · · aN−1 bN


, (1)
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and L+ is the skew-symmetric part of L in the Lie algebra decomposition lower
triangular plus skew-symmetric. Lax equations define isospectral deformations;
though the entries of L vary over time, the eigenvalues of L remain constant. It
follows that the functions Hi = 1

i TrLi are constants of motion. Moreover they
are in involution with respect to a Poisson structure associated to the above Lie
algebra decomposition.

There is a generalization due to Deift, Li, Nanda and Tomei [5] who showed
that the system remains integrable when L is replaced by a full symmetric N ×N
matrix. The resulting system is called the full symmetric Toda lattice. The
functions Hi := 1

i TrLi are still in involution, but they are not enough to ensure
integrability. It was shown in [5] that there are additional integrals, called chop
integrals, which are rational functions of the entries of L. They are constructed
as follows. For k = 0, . . . , [ (N−1)

2 ], denote by (L− λ IdN )k the result of removing
the first k rows and the last k columns from L− λ IdN and let

det(L− λ IdN )k = E0kλ
N−2k + · · ·+ EN−2k,k. (2)

Set

det (L− λ IdN )k
E0k

= λN−2k + I1kλ
N−2k−1 + · · ·+ IN−2k,k. (3)

The functions Irk, where r = 1, . . . , N − 2k and k = 0, . . . , [N−1
2 ], are indepen-

dent constants of motion, they are in involution and sufficient to account for the
integrability of the full Toda lattice.

1.1 Bogoyavlensky–Toda

The classical Toda lattice was generalized in another direction. One can define
a Toda-type system for each simple Lie algebra. The finite, nonperiodic Toda
lattice corresponds to a root system of type A`. This generalization is due to
Bogoyavlensky [3]. These systems were studied extensively in [10] in which the
solution of the system was connected intimately with the representation theory
of simple Lie groups. See also Olshanetsky–Perelomov [11] and Adler–van Moer-
beke [1]. We call these systems the Bogoyavlensky–Toda lattices. They can be
described as follows.

Let g be any simple Lie algebra equipped with its Killing form 〈· | ·〉. One
chooses a Cartan subalgebra, h of g, and a basis Π of simple roots for the root
system ∆ of h in g. The corresponding set of positive roots is denoted by ∆+. To
each positive root α one can associate a triple (Xα, X−α,Hα) of vectors in g which
generate a Lie subalgebra isomorphic to sl2(C). The set (Xα, X−α)α∈∆+∪(Hα)α∈Π

is basis of g and is called a root basis. To these data one associates the Lax
equation L̇ = [L+, L], where L and L+ are defined as follows:

L =
∑̀
i=1

biHαi +
∑̀
i=1

ai(Xαi +X−αi), L+ =
∑̀
i=1

ai(Xαi −X−αi).
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The affine space M of all elements L of g of the above form is the phase space
of the Bogoyavlensky–Toda lattice associated to g. The functions which yield the
integrability of the system are the Ad-invariant functions on gwhich are restricted
to M .

1.2 Kostant form

Let D be the diagonal N ×N matrix with entries di :=
∏i−1
j=1 aj . In [10] Kostant

conjugates the matrix L, given by (1), by the matrix D to obtain a matrix of the
form

X =



b1 1 0 · · · · · · 0

c1 b2 1
. . .

...

0 c2 b3
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 cN−1 bN


. (4)

The Lax equation takes the form Ẋ = [X+, X], where X+ is the strictly lower
triangular part of X, according to the Lie algebra decomposition strictly lower
plus upper triangular. This form is convenient in applying Lie theoretic techniques
to describe the system. Note that the diagonal elements correspond to the Cartan
subalgebra while the subdiagonal elements correspond to the set Π of simple roots.
The full Kostant–Toda lattice is obtained by replacing Π with ∆+ in the sense
that one fills the lower triangular part of X in (4) with additional variables. It
leads on the affine space of all such matrices to the Lax equation

Ẋ = [X+, X], (5)

where X+ is again the projection to the strictly lower part of X.

1.3 Adapted sets in a root system

Generalizing the above procedure we can introduce the Lax pair (LΦ, BΦ), where
Φ is any subset of ∆+ containing Π. Thus we have

LΦ =
∑
α∈Π

bαHα +
∑
α∈Φ

aα(Xα +X−α), BΦ =
∑
α∈Φ

aα(Xα −X−α).

In order to have consistency in the Lax equation, since the Lax matrix is
symmetric, the bracket [BΦ, LΦ] should give an element of the form

∑
α∈Φ cαHα+∑

α∈Φ dα(Xα + X−α). In this case we say that Φ is adapted. A straightforward
computation leads to the following result:
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Proposition 1. The set Φ is adapted if and only if it satisfies the following
property:

∀α, β ∈ Φ, α− β or β − α ∈ Φ ∪ {0}.

Recall that α− β = 0 means that α− β is not a root.
Thus for each Φ which is adapted we obtain a corresponding Hamiltonian

system and the problem is to study this system and determine whether it is
integrable. We conjecture that in fact it is integrable. We prove this claim for a
particular class of such systems. Note that the special case Φ = Π corresponds to
the classical Toda lattice while the case Φ = ∆+ corresponds to the full symmetric
Toda of [5].

Example 1. We consider a Lie algebra of type B2. The set of positive roots
∆+ = {α, β, α+ β, β + 2α} which corresponds to the full symmetric Toda lattice
with Lax matrix

L =


b1 a1 a3 a4 0
a1 b2 a2 0 −a4

a3 a2 0 −a2 −a3

a4 0 −a2 −b2 −a1

0 −a4 −a3 −a1 −b1

 .

This system is completely integrable with integrals h2 = 1
2TrL2 which is the

Hamiltonian, h4 = 1
2TrL4 and a rational integral which is obtained by the method

of chopping as in [5].
Taking Φ = {α, β, α+β} we obtain another integrable system with Lax matrix

L =


b1 a1 a3 0 0
a1 b2 a2 0 0
a3 a2 0 −a2 −a3

0 0 −a2 −b2 −a1

0 0 −a3 −a1 −b1

 .

The matrix L+ is defined as above, i.e. the skew-symmetric part of L. Again there
is rational integral given by I11 = (a1a2 − a3b2)/a3. Defining the Poisson bracket
by {a1, a2} = a3, {ai, bi} = −ai, i = 1, 2, and {a1, b2} = a1 we verify easily that
h2 plays the role of the Hamiltonian and I11 is a Casimir. The set {h2, h4, I11} is
an independent set of functions in involution.

2 Intermediate Toda lattices

We have defined some Hamiltonian systems associated to a subset Φ consisting
of positive roots (which we call adapted). The associated matrix is symmetric.
As in the case of classical and full Toda there is also an analogous system defined
by a Lax matrix which is lower triangular (the Kostant–Toda lattices). In this
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paper we restrict our attention to this version of the systems. In this section
we show that these Hamiltonian systems are associated to a nilpotent ideal of
a Borel subalgebra of a semisimple Lie algebra g. Since for particular (extreme)
choices of the ideal one finds the classical Kostant–Toda lattice or the full Kostant–
Toda lattice associated to g, we call these Hamiltonian systems intermediate Toda
lattices.

2.1 The phase space MI

Throughout this section g is an arbitrary complex semisimple Lie algebra, the
rank of which we denote by `. We fix a Cartan subalgebra h of g and a basis
Π = {α1, . . . , α`} of the root system ∆ of g with respect to h. The choice of
Π amounts to the choice of a Borel subalgebra b+ = h ⊕ n+ of g. It also leads
to a Borel subalgebra b− = h ⊕ n− corresponding to the negative roots. We
fix an element ε in n+, satisfying 〈ε | [n−, n−]〉 = 0, where 〈· | ·〉 stands for the
Killing form of g. One usually picks for ε a principal nilpotent element of n+. For
example, for g = slN (C), viewed as the Lie algebra of traceless N ×N matrices,
one can take for h and for b+ the subalgebras of diagonal, respectively upper
triangular, matrices and for ε one can choose

ε :=



0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

...
. . . 1

0 . . . . . . . . . 0


.

Let I be a nilpotent ideal of b+. The quotient map b+ → b+/I is denoted by PI .
Using the isomorphism b∗+ ' b− induced by the Killing form, we can think of the
orthogonal I⊥ of I in b∗+ as a vector subspace of b−. We consider the affine space
MI := ε+ I⊥. Explicitly

MI = {X + ε | X ∈ b− and 〈X | I〉 = 0}.

When I = {0}, MI = b− + ε, which is the phase space of the full Kostant–Toda
lattice. On the other extreme, taking I = [n+ , n+] the manifold MI is the phase
space of the classical Kostant–Toda lattice. We therefore call MI the intermediate
Kostant–Toda phase space. Notice that, if I ⊂ J , then MJ ⊂MI .

2.2 Hamiltonian structure

We show thatMI has a natural Poisson structure. To do this we prove thatMI is a
Poisson submanifold of g equipped with a Poisson structure {· , ·} the construction
of which1 we firstly recall. We use the theory of R-matrices (see [2, Chapter 4.4]

1See the appendix of [6] for an alternative construction using symplectic reduction to the
cotangent bundle T ∗G, where G is any Lie group integrating g.
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for the general theory of R-matrices). Write g = g+ ⊕ g− where g+ := b+ and
g− := n−. For X ∈ g its projection in g± is denoted by X±. The endomorphism
R : g → g, defined for all X ∈ g by R(X) := X+ − X−, is an R-matrix which
means that the bracket on g, defined by

[X,Y ]R :=
1
2
([R(X), Y ] + [X,R(Y )]) = [X+, Y+]− [X−, Y−]

for all X,Y ∈ g, is a (new) Lie bracket on g. The Lie–Poisson bracket on g, which
corresponds to [·, ·]R and which we denote simply by {· , ·} (since it is the only
Poisson bracket on g which we use), is given by

{F,G} (X) = 〈X | [(∇XF )+, (∇XG)+]〉 − 〈X | [(∇XF )−, (∇XG)−]〉 (6)

for every pair of functions, F and G, on g and for all X ∈ g. In this formula the
gradient ∇XF of F at X is the element of g defined by

〈∇XF | Y 〉 = 〈dXF, Y 〉 =
d
dt

∣∣∣∣
t=0

F (X + tY ). (7)

Proposition 2. Let I be a nilpotent ideal of b+.

(1) The affine space MI is a Poisson submanifold of (g, {· , ·});

(2) Equipped with the induced Poisson structure MI is isomorphic to (b+/I)∗,
which is equipped with the canonical Lie–Poisson bracket;

(3) A function F on MI is a Casimir function if and only if (∇X F̃ )+ ∈ I for
all X ∈MI , where F̃ is an arbitrary extension of F to g.

For a function H on MI we denote its Hamiltonian vector field by XH ; our sign
convention is that XH := {· ,H} so that XH [F ] = {F,H} for all F ∈ F(M). The
Hamiltonian of the intermediate Kostant–Toda lattice is the polynomial function
on MI given by

H :=
1
2
〈X |X〉 (8)

so that the vector field of the intermediate Kostant–Toda lattice is given by the
Lax equation (on MI)

Ẋ = [X+, X] . (9)

2.3 Height k Kostant–Toda lattices

In the sequel of this paper we mainly study the case for which I is an ideal of
height 2, a notion which we introduce in this paragraph. We firstly give some
information on the nilpotent ideals of b+ (see [4]). If I is a nilpotent ideal of
b+, then I is contained in n+. For example n+ itself is a nilpotent ideal of b+.
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For α ∈ ∆+ let Xa denote an arbitrary root vector corresponding to α, i.e.,
[H,Xα] = 〈α,H〉Xα for all H ∈ h. Consider a subset, Φ, of ∆+ which has the
property that, if α ∈ Φ, then every root of the form α + β with β ∈ ∆+ belongs
to Φ; we call such a set Φ an admissible set of roots. For such α and β the Jacobi
identity implies that [Xα, Xβ ] is a multiple of Xα+β. It follows that the (vector
space) span of {Xα | α ∈ Φ} is a nilpotent ideal of b+. Most importantly every
nilpotent ideal of b+ is of this form for a certain admissible set of roots Φ. Thus
the nilpotent ideals of a given Borel subalgebra b+ of g are parametrized by the
family of all subsets Φ of Π+, which have the property that, if α ∈ Φ, then every
root of the form α+ β with β ∈ ∆+ belongs to Φ.

Every positive root α ∈ ∆+ can be written as a linear combination of the
simple roots, α =

∑`
i=1 niαi, where all ni are nonnegative integers. The integer

ht(α) :=
∑`

i=1 ni is called the height of α. For k ∈ N, let Φk denote the set of
all roots of height larger than k. It is clear that Φk is an admissible set of roots.
We denote the corresponding ideal of b+ by Ik and we call it a height k ideal.
An alternative description of Ik is as adkn+

n+. For k = 1, I1 = [n+, n+] is the
ideal which leads to the classical Toda lattice. We consider in the sequel mainly
I2 = [n+, [n+, n+]] and the corresponding affine space MI2 .

Example 2. Consider a Lie algebra of type C4. Take Φ = {α1, α2, α3, α4, α1 +
α2, α2 + α3, α3 + α4}. It gives rise to a height 2 Toda system.

The Lax matrix is

L =



a1 1 0 0 0 0 0 0
b1 a2 1 0 0 0 0 0
c1 b2 a3 1 0 0 0 0
0 c2 b3 a4 1 0 0 0
0 0 c3 b4 −a4 −1 0 0
0 0 0 c3 −b3 −a3 −1 0
0 0 0 0 −c2 −b2 −a2 −1
0 0 0 0 0 −c1 −b1 −a1


.

The function

a1 − a2 + a3 − a4 +
2b1b2c3 + b1c2b4 + b3b4c1

c1c3

is a Casimir. We need five functions to establish integrability. Since det(L− λI)
is an even polynomial of the form λ8 +

∑3
i=0 fiλ

2i, we obtain four polynomial
integrals f0, f1, f2, f3. Using an one-chop we obtain a characteristic polynomial of
the form Aλ2 +B. The function f4 = B/A is the fifth integral.

3 Computation of the rank

In this section we compute the index of the Lie algebra b+/I2 when b+ is a Borel
subalgebra of a simple Lie algebra of type A`, B` or C`. It yields the rank of the
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corresponding intermediate Kostant–Toda phase space (see Subsection 2.3). We
firstly recall a few basic facts about stable linear forms, the index of a Lie algebra
and the relation to the rank of the corresponding Lie–Poisson structure.

3.1 Stable linear forms

Let a be any complex algebraic Lie algebra and a∗ its dual vector space. The
stabilizer of a linear form ϕ ∈ a∗ is given by

aϕ := {x ∈ a | ad∗x ϕ = 0} = {x ∈ a | ∀y ∈ a, 〈ϕ, [x, y]〉 = 0}.

The integer min{dim aϕ | ϕ ∈ a∗} is called the index of a and is denoted by
Ind(a). Since the symplectic leaves of the canonical Lie–Poisson structure on a∗

are the coadjoint orbits, the codimension of the symplectic leaf through ϕ is the
dimension of aϕ. It follows that the index of a is the codimension of a symplectic
leaf of maximal dimension, i.e., the rank of the canonical Lie–Poisson structure on
a∗ is given by dim a− Ind(a); notice that, since the latter rank is always even, the
index of a and the dimension of a have the same parity. A linear form ϕ ∈ a∗ is said
to be regular if dim aϕ = Ind(a). Thus we can use regular linear forms to compute
the index of a and hence the rank of the canonical Lie–Poisson structure on a∗.

We use the following proposition to compute the index of b+/I2.

Proposition 3. Let a be a subalgebra of a semisimple complex Lie algebra g.
Suppose that ϕ is a linear form on a such that aϕ is a commutative Lie algebra
composed of semisimple elements. Then ϕ is regular so that the index of a is given
by dim aϕ.

Proof. A linear form ϕ ∈ a∗ is said to be stable if there exists a neighborhood
U of ϕ in a∗ such that for every ψ ∈ U the stabilizer aψ is conjugate to aϕ with
respect to the adjoint group of a. According to [8] every stable linear form is
regular. According to [7] and [8, Theorem 1.7, Corollary 1.8] ϕ is stable if and
only if [a, aϕ]∩ aϕ = {0}. The latter equality holds when aϕ is a commutative Lie
algebra composed of semisimple elements (see [8, Lemma 2.6]). Thus ϕ is stable,
hence regular. �

3.2 Computation of the index

In this paragraph we compute the index of b/I under the following assumption
on (the root system of) g:

(H) The roots of height 2 of g are given by {αk + αk+1 | 1 ≤ k ≤ `− 1}.
For classical Lie algebras the basis Π can be ordered such that this assumption
occurs when g is of type A`, B` or C`. Let g = h ⊕

∑
α∈∆+(gα + g−α) be the

decomposition of g according to the adjoint action of h. To each positive root α
there corresponds a triple (Xα, X−α,Hα) of elements of g, where Xα ∈ gα, X−α ∈
g−α,Hα ∈ h and (Xα, X−α,Hα) generates a subalgebra isomorphic to sl2(C). We
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recall shortly how such a triple can be constructed. Let hα be the unique element
in h such that 〈α,H〉 = 〈hα |H〉 for all H ∈ h. Define a scalar product on the real
vector-space h∗R by

〈α | β〉 := 〈hαhβ〉 = 〈β, hα〉 = 〈α, hβ〉

for all α and β ∈ ∆. We set Hα :=
2

〈α | α〉
hα. It is clear that 〈α,Hα〉 = 2. Choose

Xα ∈ gα, X−α ∈ g−α such that

〈Xα | X−α〉 =
2

〈α | α〉
.

Then (Xα, X−α,Hα) is the required triple. Moreover[
X±αk

, X∓αk∓αk+1

]
= ε±kX∓αk+1

,
[
X±αk+1

, X∓αk∓αk+1

]
= η±k X∓αk

,

where each of the integers ε±k and η±k is equal to 1 or to −1 depending upon g.
For all α, β ∈ Π let

Cαβ := 〈β,Hα〉 = 2
〈α | β〉
〈α | α〉

.

The ` × `-matrix C := (Cij , 1 ≤ i, j ≤ `), where Cij := Cαiαj , is invertible. It is
called the Cartan matrix of g.

Proposition 4. Consider the linear form ϕ on b+ defined for Z ∈ b+ by 〈ϕ,Z〉 :=
〈X | Z〉, where X is defined by

X := δ`X−α`
+

`−1∑
i=1

X−αi−αi+1 (10)

with δ` := 1 if ` is odd and δ` := 0 otherwise. Denote by ϕ̄ the induced linear
form on b+/I2.

(1) ϕ̄ is a regular linear form on b+/I2;
(2) dim(b+/I2)ϕ̄ = 1− δ`;
(3) The index of b+/I2 is 1 if the rank ` of g is even and is 0 otherwise.

4 Integrability

We now get to the integrability of the intermediate Kostant–Toda lattice onMI2 ⊂
g for any semisimple Lie algebra g of type A`, B` or C`. Recall that this means
that the Hamiltonian is part of a family of s independent functions in involution,
where s is related to the dimension and the rank of the Poisson manifold MI2

by the formula dimMI2 = 1
2RkMI2 + s. Since dimMI2 = 3` − 1 and since the
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corank of MI2 is 1 if ` is even and 0 otherwise (see item (3) in Proposition 4), we
need s = [3`/2] such functions. According to the Adler–Kostant–Symes Theorem
the ` basic Ad-invariant polynomials provide already ` independent functions
in involution. Thus one needs [`/2] additional ones. As we see, they can be
constructed by restricting certain chop-type integrals, except for the case of C`
for which another integral (Casimir) is needed. We firstly recall from [5] the
construction of the chop integrals on M := ε + b− in the case that g = slN (C)
and explain why they are in involution. Since MI2 is a Poisson submanifold of M ,
their restrictions to MI2 are still in involution (but they may become trivial or
dependent).

We consider g = slN (C) with the standard choice of h and Π (see Subsec-
tion 2.1). Let k be an integer, 0 ≤ k ≤ [N−1

2 ]. For any matrix X we denote by
Xk the matrix obtained by removing the first k rows and last k columns from X.
We denote by Gk the subgroup of GLN (C) consisting of all N × N invertible
matrices of the form

g =

∆ A B
0 D C
0 0 ∆′

 , (11)

where ∆ and ∆′ are arbitrary upper triangular matrices of size k×k and A, B, C
andD are arbitrary2. The Lie algebra of Gk is denoted by gk. A first, fundamental
and nontrivial observation, due to [5], is that for all g ∈ Gk, decomposed as in (11),

det
(
gXg−1

)
k

=
det ∆′

det ∆
detXk. (12)

This leads to (rational) Gk-invariant functions on g (and hence on M) which
are constructed as follows. For X ∈ g and for an arbitrary scalar l consider the so-
called k-chop polynomial of X defined by Qk(X,λ) := det(X−λ IdN )k. In view of
(12) the coefficients of Qk (as a polynomial in l) define polynomial functions on g,
which transform under the action of g ∈ Gk with the same factor det ∆′/det ∆.
We write

Qk(X,λ) =
N−2k∑
i=0

Ei,k(X)λN−2k−i.

Each of the rational functions Ei,k/Ej,k is Gk-invariant. By restriction to M this
yields Gk-invariant elements of F(M). They are called k-chop integrals because
they are integrals (constants of motion) for the full Kostant–Toda lattice. Notice
that the constants of motion Hi := 1

i TrXi are 0-chop integrals and that the Toda
Hamiltonian is expressible in terms of them as H = (H2

1 − 2H2)/2.
We show that all chop integrals are in involution. To do this we let F be a

k-chop integral and let F̃ denote its extension to a Gk-invariant rational function
2With the understanding that, since X is supposed invertible, ∆, ∆′ and D are invertible.
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on g. Similarly let G be a l-chop integral with G`-invariant extension G̃. We may
suppose that k ≤ `. Infinitesimally the fact that F̃ is Gk invariant yields that〈

X
[
∇X F̃ , Y

]〉
= 0 (13)

for all X ∈ g and for all Y ∈ gk. Since b+ ⊂ gk, it follows that〈
X
∣∣∣ [(∇X F̃ )+,∇XG̃

]〉
= 0 =

〈
X
∣∣∣ [∇X F̃ , (∇XG̃)+

]〉
so that (6) can be rewritten for X ∈M as

{F,G}(X) = −
〈
X |

[
∇X F̃ ,∇XG̃

]〉
. (14)

We claim that ∇XG̃ ∈ g`. This follows from the construction of the function
G̃ ∈ F(g): the rational function G̃(X) depends only upon X`, the `-chop of X,
while, if an element Z of g satisfies 〈g` | Z〉 = 0, then Z` is the zero matrix. Thus
∇XG̃ ∈ g` ⊂ gk so that (13) implies that the right hand side of (14) is zero for
all X ∈M . It follows that F and G have zero Poisson bracket.

Notice that in the case of the height 2 intermediate Kostant–Toda lattice all
k-chops with k > 1 vanish and that only a few 1-chops survive. In what follows
we consider separately the cases of A`, B` and C`.

4.1 The case of A`

We firstly consider g = sl`+1(C), the Lie algebra of traceless matrices of size
N = ` + 1, and take for h, Π and ε the standard choices as before. A general
element ofMI2 is then of the form

X =



a1 1 0 . . . . . . 0

b1 a2 1
. . .

...

c1 b2 a3 1
. . .

...

0 c2 b3
. . . . . . 0

...
. . . . . . . . . . . . 1

0 . . . 0 c`−1 b` a`+1


with

∑`+1
i=1 ai = 0. The 1-chop matrix of X is given by

(X − λ Id`+1)1 =



b1 aλ2 1 0 . . . 0

c1 b2 aλ3 1
. . .

...

0 c2 b3
. . . . . . 0

...
. . . c3 b4

. . . 1
...

. . . . . . . . . aλ`
0 . . . . . . 0 c`−1 b`


,
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where aλi is a shorthand for ai − λ. We also use the matrix X(λ, α), defined by

X(λ, α) =



b1 aλ2 α13 . . . . . . α1`

c1 b2 aλ3 α24
...

0 c2 b3
. . . . . .

...
...

. . . c3 b4
. . . α`−2,`

...
. . . . . . . . . aλ`

0 . . . . . . 0 c`−1 b`


.

Proposition 5. The polynomials det(X −λ Id`+1)1 and detX(λ, α) have degree
d := [ `2 ] in λ.

4.2 The case of B`

A Lie algebra of type B` can be realized as the Lie algebra g of all square matrices
of size N = 2` + 1, satisfying XJ + JXt = 0, where J is the matrix of size
2` + 1, all of whose entries are zero except for the entries on the antidiagonal,
which are all equal to one. Clearly X satisfies XJ + JXt = 0 if and only if X
is skew-symmetric with respect to its antidiagonal. It follows for such X that
det(X − λ Id`+1) = (−1)N det(X + λ Id`+1) so that the characteristic polynomial
is an odd polynomial in λ. The 1-chop matrix X1 satisfies the same relation
X1J + JXt

1 = 0 so that its determinant is an even polynomial in λ. As a Cartan
subalgebra of g one can take the diagonal matrices in g and one can take as a basis
for ∆+ the matrices Ei,i+1 − E2`−i,2`−i+1 for i = 1, . . . , `. If one finally chooses
ε to be the matrix

∑`
i=1(Ei,i+1 − E2`−i,2`−i+1), then the height 2 phase space is

given by all matrices of the form

a1 1

b1
. . . . . .

c1
. . . . . . 1
. . . bn−1 an 1

cn−1 bn 0 −1

0 −bn −an
. . .

−cn−1 −bn−1
. . . . . .

. . . . . . −1
−c1 −b1 −a1



.

In this case N = 2` + 1, the 1-chop polynomial is even and so the 1-chop
polynomial is degree ` when ` is even and of degree ` − 1 when ` is odd. This
yields `

2 integrals when ` is even and `−1
2 when ` is odd. Therefore the number of

integrals is correct in each case.
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4.3 The case of C`

A Lie algebra of type C` can be realized as the Lie algebra g of all square matrices
of size N = 2`, satisfying XJ + JXt = 0, where J is the matrix of size 2`, given
by

J =
(

0 Il
−Il 0

)
.

It follows for such X that det(X − λ Id`+1) = (−1)2l det(X + λ Id`+1) so that
the characteristic polynomial is an even polynomial in λ. The 1-chop matrix X1

satisfies the same relation X1J + JXt
1 = 0 so that its determinant is an even

polynomial in λ. As a Cartan subalgebra of g one can take the diagonal matrices
in g and one can take as a basis for ∆+ the matrices Ei,i+1 − E2`−1−i,2`−i for
i = 1, . . . , `. The height 2 phase space for C` is given by all matrices of the form

a1 1

b1 a2
. . .

c1 b2
. . . 1

. . . . . . an 1
cn−1 bn −an −1

cn−1 −bn−1
. . . . . .

−cn−2
. . . . . . . . .
. . . . . . −1
−c1 −b1 −a1



.

In this case, N = 2`, the 1-chop polynomial is even so that we get l
2−1 integrals

from the 1-chop when l is even and l−2
2 integrals when l is odd. Therefore the odd

case gives the correct number of integrals. For the even case there exists a Casimir
function which does not arise from the method of chopping and we describe it as
follows:

The Casimir f has the form f = A+B/C, where

A =
`−1∑
i=1

(ai − ai+1), B =
∑
i,j

dijmij , and C =
`−1∏
i=1

c2i−1.

The term mij in B is determined as follows: We associate the variables b1, b2,
. . . , bl to the simple roots α1, α2, . . . , αl and the variables c1, c2, . . . , cl−1 to the
height 2 roots α1 + α2, α2 + α3, . . . , αl−1 + αl.

Take simple roots αi and αj (with corresponding variables bi, bj) such that i
is odd and j is even. The remaining variables correspond to the height two roots
αk + αk+1, where k 6= i, i − 1, k 6= j, j − 1. The term mij is a product of bi, bj
and l−1

2 c variables.
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The coefficient dij is 2 if mij includes the term cl−1 (corresponding to the root
αl−1 + αl) and is equal to 1 otherwise.

Example 3. l = 6.

f = a1 − a2 + a3 − a4 + a5 − a6

+
b5b6c1c3 + 2b1b4c2c5 + b3b6c1c4 + 2b1b2c3c5 + 2b3b4c1c5 + b1b6c2c4

c1c3c5
.

4.4 The case of D`

We conclude with some comments on the case of D`. A Lie algebra of type D`

can be realized as the Lie algebra g of all square matrices of size N = 2` satisfying
XJ + JXt = 0, where J is the matrix of size 2`, given by

J =
(

0 Il
Il 0

)
.

As in the case of C` the characteristic polynomial is an even polynomial. On
the other hand the 1-chop polynomial is odd so that the degree of this polynomial
is `−1 when ` is even. However, when ` is odd the degree of the 1-chop polynomial
is again `. This gives `

2 − 1 integrals when ` is even and `−1
2 integrals when ` is

odd. In the even case we need an additional function, i.e. a Casimir, but at this
point we do not have an explicit formula. There is no stable form in this case,
but we can produce a form which gives a lower bound for the rank and this lower
bound is good enough, once we have the Casimir.
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