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Abstract. We prove the action-angle theorem in the general, and most
natural, context of integrable systems on Poisson manifolds, thereby gen-
eralizing the classical proof, which is given in the context of symplectic
manifolds. The topological part of the proof parallels the proof of the
symplectic case, but the rest of the proof is quite different, since we are
naturally led to using the calculus of polyvector fields, rather than dif-
ferential forms; in particular, we use in the end a Poisson version of the
classical Carathéodory-Jacobi-Lie theorem, which we also prove. At the
end of the article, we generalize the action-angle theorem to the setting
of non-commutative integrable systems on Poisson manifolds.
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1. Introduction

The action-angle theorem is one of the basic theorems in the theory of
integrable systems. In this paper we prove this theorem in the general, and
most natural, context of integrable systems on Poisson manifolds.

We recall that a Poisson manifold (M,Π) is a smooth manifold M on
which there is given a bivector field Π, with the property that the bracket
on C∞(M), defined for arbitrary smooth functions f and g on M by

{f, g} := Π(df, dg)

is a Lie bracket, i.e., it satisfies the Jacobi identity. On a Poisson manifold
(M,Π), the Hamiltonian operator, which assigns to a function on M a vector
field on M , is defined naturally by contracting the bivector field with the
function (the “Hamiltonian”): for h ∈ C∞(M) its Hamiltonian vector field
is defined by

Xh := {· , h} = −ıdhΠ. (1.1)
Two important consequences of the Jacobi identity for {· , ·} are that the
(generalized distribution) on M , defined by the Hamiltonian vector fields
Xh is integrable, and that the Hamiltonian vector fields which are associ-
ated to Poisson commuting functions (usually called functions in involution)
are commuting vector fields. The main examples of Poisson manifolds are
symplectic manifolds and the dual of a (finite-dimensional) Lie algebra, but
there are many other examples, which come up naturally in deformation
theory, the theory of R-brackets, Lie-Poisson groups, and so on. Poisson’s
original bracket on C∞(R2r), given for smooth functions f and g by

{f, g} :=
r∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
, (1.2)

is still today of fundamental importance in classical and quantum mechanics,
and in other areas of mathematical physics. Many examples of integrable
Hamiltonian systems are known in the context of Poisson manifolds which
are not symplectic. For instance the Kepler problem [20], Toda lattices [1]
and the Gelfand-Cetlin systems [11, 10].

One of the main uses of the Poisson bracket is the integration of Hamil-
ton’s equations, which are the equations of motion which describe a clas-
sical mechanical system on the phase space R2r ' T ∗Rr, defined by a
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Hamiltonian h (the energy, viewed as a function on phase space); their so-
lutions are the integral curves of the Hamiltonian vector field Xh, defined
by (1.1) with respect to the Poisson bracket (1.2). The fundamental Liou-
ville theorem states that it suffices to have r independent functions in invo-
lution (f1 = h, f2, . . . , fr) to quite explicitly (i.e., by quadratures) integrate
the equations of motion for generic initial conditions. Moreover, assuming
that the so-called invariant manifolds, which are the (generic) submanifolds
traced out by the n commuting vector fields Xfi

, are compact, they are (dif-
feomorphic to) tori Tr = Rr/Λ, where Λ is a lattice in Rr; on these tori,
which are known as Liouville tori, the flow of each of the vector fields Xfi

is linear, so that the solutions of Hamilton’s equations are quasi-periodic.
The classical action-angle theorem goes one step further: under the above
topological assumption, there exist on a neighbourhood U of every Liouville
torus functions σ1, . . . , σr and R/Z-valued functions θ1, . . . , θr, having the
following properties:

(1) The map Φ, defined by Φ := (θ1, . . . , θr, σ1, . . . , σr) is a diffeomor-
phism from U onto the product Tr×Br, whereBr is an r-dimensional
ball;

(2) Φ is a canonical map: in terms of θ1, . . . , θr, σ1, . . . , σr the Poisson
structure takes the same form as in (1.2) (upon replacing qi by θi
and pi by σi);

(3) Under Φ, the Liouville tori in U correspond to the fibers of the
natural projection Tr ×Br → Br.

The proof of this theorem goes back to Mineur [13, 14, 15]. A proof in the
case of a Liouville integrable system on a symplectic manifold was given by
Arnold [2]; see also [4, 7, 12]. As established in [11], action-angle coordinates
also appear naturally in geometric quantization, for, when an integrable
system is interpreted as a polarization, action-angle coordinates determine
the so-called Bohr-Sommerfeld leaves: the latter are in particular explicitely
described for the Gelfand-Cetlin system in [11].

In the context of Poisson manifolds, the Liouville theorem still holds, up
to two adaptations: one needs to take into account the Casimirs (functions
whose Hamiltonian vector field are zero) and the singularities of the Poisson
structure (the points where the rank of the bivector field drops); for a precise
statement and a proof, see [1, Ch. 4.3]. As we show in this paper, the action-
angle theorem takes in the case of Poisson manifolds the following form1

Theorem 1.1. Let (M,Π) be a Poisson manifold of dimension n and (max-
imal) rank 2r. Suppose that F = (f1, . . . , fs) is an integrable system on
(M,Π), i.e., r + s = n and the components of F are independent and in
involution. Suppose that m ∈M is a point such that

(1) dmf1 ∧ . . . ∧ dmfs 6= 0;

1An equivalent statement, without proof, was given in [1, Ch. 4.3].
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(2) The rank of Π at m is 2r;
(3) The integral manifold Fm of Xf1 , . . . ,Xfs, passing through m, is com-

pact.

Then there exists R-valued smooth functions (σ1, . . . , σs) and R/Z-valued
smooth functions (θ1, . . . , θr), defined in a neighborhood U of Fm such that

(1) The functions (θ1, . . . , θr, σ1, . . . , σs) define an isomorphism U '
Tr ×Bs;

(2) The Poisson structure can be written in terms of these coordinates
as

Π =
r∑
i=1

∂

∂θi
∧ ∂

∂σi
,

in particular the functions σr+1, . . . , σs are Casimirs of Π (restricted
to U);

(3) The leaves of the surjective submersion F = (f1, . . . , fs) are given
by the projection onto the second component Tr ×Bs, in particular,
the functions σ1, . . . , σs depend on the functions f1, . . . , fs only.

The functions θ1, . . . , θr are called angle coordinates, the functions σ1,
. . . , σr are called action coordinates and the remaining functions σr+1, . . . , σs
are called transverse coordinates.

Our proof of theorem 1.1, consists of several conceptually different steps,
which are in 1-1 correspondence with the (a) topological, (b) group theo-
retical, (c) geometrical and (d) analytical aspects of the construction of the
coordinates. It parallels Duistermaat’s proof, which deals with the symplec-
tic case [7]; while (a) and (b) are direct generalizations of his proof, (c) and
(d) are however not.

(a) The topological part of the proof amounts to showing that in the
neighborhood of the invariant manifold Fm, we have locally trivial torus
fibration (Paragraph 3.2). Once we have shown that the compact invariant
manifolds are the connected components of the fibers of a submersive map
(the map F, restricted to some open subset), the proof of this part is similar
as in the symplectic case.

(b) The (commuting) Hamiltonian vector fields are tangent to the tori
of this fibration; integrating them we get an induced torus action (action
by Tr) on each of these tori, but in general these actions cannot be com-
bined into a single torus action. Taking appropriate linear combinations of
the vector fields, using F-basic functions as coefficients, by a procedure called
“uniformization of the periods”, one constructs new vector fields Y1, . . . , Yr
which are tangent to the fibration, and which now integrate into a single
torus action. This is the content of step 1 in the proof of proposition 3.6.
This step, which is an application of the implicit function theorem, is iden-
tical as in the symplectic case.
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(c) The newly constructed vector fields Yi are the fundamental vector
fields of a torus action. We first show that they are Poisson vector fields,
i.e., that they preserve the Poisson structure (step 2 in the proof of propo-
sition 3.6). The key (and non-trivial) point of the proof is the periodicity
of the vector fields Yi. We then prove (in step 3 of the proposition) the
stronger statement that these vector fields are Hamiltonian vector fields, at
least locally, by constructing quite explicitly their Hamiltonians, which will
in the end play the role of action coordinates.

(d) In the last step (theorem 3.8), we use the Carathéodory-Jacobi-Lie
theorem for Poisson manifolds to construct on the one hand coordinates
which are conjugate to the action coordinates (angle coordinates and trans-
verse coordinates) and on the other hand to extend these coordinates to a
neighborhood of the Liouville torus Fm. The Carathéodory-Jacobi-Lie the-
orem for Poisson manifolds, to which Section 2 is entirely devoted, provides
a set of canonical local coordinates for a Poisson structure Π, containing a
given set p1, . . . , pr of functions in involution. It generalizes both the classical
Carathéodory-Jacobi-Lie theorem for symplectic manifolds [12, Th. 13.4.1]
and Weinstein’s splitting theorem [19, Th. 2.1]. We are convinced that this
theorem, which is new, has other interesting applications, as in the study of
local forms and stability of integrable systems.

The action-angle theorem has been proven by [17] in the general context of
non-commutative integrable systems on a symplectic manifold (see the Ap-
pendix for a comparison between this notion and some closely related notions
of integrability). Roughly speaking, a non-commutative integrable system
has more constants of motion than a Liouville integrable system, accounting
for linear motion on smaller tori, but not all these functions are in involu-
tion. This notion has a natural definition in the case of Poisson manifolds,
proposed here (definition 4.1); it generalizes both the notion of Liouville
integrability on a Poisson manifold and the notion of non-commutative inte-
grability on a symplectic manifold. We show in Section 4 that our proof can
be adapted (i.e., generalized) to provide a proof of the action-angle theorem
in this very general context.

The structure of the paper is as follows. We state and prove the Carathéo-
dory-Jacobi-Lie theorem for Poisson manifolds in Paragraph 2.1 and we give
in Paragraph 2.2 a counterexample which shows that a mild generalization
of the latter theorem does not hold in general. The action-angle theorem
for Liouville integrable systems on Poisson manifolds is given in Section
3. We show in Section 4 how this theorem can be adapted to the more
general case of non-commutative integrable systems on Poisson manifolds.
The appendix to the paper is devoted to the geometrical formulation of the
notion of a non-commutative integrable system on a Poisson manifold.

In this paper, all manifolds and objects considered on them are smooth
and we write {f, g} for Π(df,dg).
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2. The Carathéodory-Jacobi-Lie theorem for Poisson manifolds

In this section we prove a natural generalization of the classical Carathéo-
dory-Jacobi-Lie theorem [12, Th. 13.4.1] for an arbitrary Poisson manifold
(M,Π). It provides a set of canonical local coordinates for the Poisson
structure Π, which contains a given set p1, . . . , pr of functions in involution
(i.e., functions which pairwise commute for the Poisson bracket), whose
Hamiltonian vector fields are assumed to be independent at a point m ∈M
(theorem 2.1). This result, which is interesting in its own right, will be used
in our proof of the action-angle theorem. We show in Paragraph 2.2 by
giving a counterexample that canonical coordinates containing a given set
of functions in involution may fail to exist as soon as the Hamiltonian vector
fields Xp1 , . . . ,Xpr are dependent at m, even if they are independent at all
other points in a neighborhood of m.

2.1. The theorem. The main result of this section is the following theorem.

Theorem 2.1. Let m be a point of a Poisson manifold (M,Π) of dimen-
sion n. Let p1, . . . , pr be r functions in involution, defined on a neighbor-
hood of m, which vanish at m and whose Hamiltonian vector fields are lin-
early independent at m. There exist, on a neighborhood U of m, functions
q1, . . . , qr, z1, . . . , zn−2r, such that

(1) The n functions (p1, q1, . . . , pr, qr, z1, . . . , zn−2r) form a system of
coordinates on U , centered at m;

(2) The Poisson structure Π is given on U by

Π =
r∑
i=1

∂

∂qi
∧ ∂

∂pi
+
n−2r∑
i,j=1

gij(z)
∂

∂zi
∧ ∂

∂zj
, (2.1)

where each function gij(z) is a smooth function on U and is inde-
pendent of p1, . . . , pr, q1, . . . , qr.

The rank of Π at m is 2r if and only if all the functions gij(z) vanish for
z = 0.

Proof. We show the first part of the theorem by induction on r. For r = 0,
every system of coordinates z1, . . . , zn, centered at m, does the job. Assume
that the result holds true for every point in every Poisson manifold and every
(r − 1)-tuple of functions as above, with r > 1. We prove it for r. To do
this, we consider an arbitrary point m in an n-dimensional Poisson manifold
(M,Π), and we assume that we are given functions in involution p1, . . . , pr,
defined on a neighborhood of m, which vanish at m, and whose Hamiltonian
vector fields are linearly independent at m. On a neighbourhood of m, the
distribution D := 〈Xp1 , . . . ,Xpr〉 has constant rank r and is an involutive
distribution because [Xpi ,Xpj ] = −X{pi,pj} = 0. By the Frobenius theorem,
there exist local coordinates g1, . . . , gn, centered at m, such that Xpi = ∂

∂gi
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for i = 1, . . . , r, on a neighbourhood of m. Setting qr := gr we have

Xqr [pi] = −Xpi [qr] = −δi,r, i = 1, . . . , r, (2.2)

in particular (1) the r + 1 vectors dmp1, . . . ,dmpr and dmqr of T ∗mM are
linearly independent, and (2) the vector fields Xqr and Xpr are independent
at m. It follows that a distribution D′ (of rank 2) is defined by Xqr and Xpr .
It is an integrable distribution because [Xqr ,Xpr ] = −X{qr,pr} = 0. Applied to
D′, the Frobenius theorem yields the existence of local coordinates v1, . . . , vn,
centered at m, such that

Xpr =
∂

∂vn−1
and Xqr =

∂

∂vn
. (2.3)

Since the differentials dmv1, . . . ,dmvn−2 vanish on Xpr(m) and on Xqr(m), it
follows that (dmv1, . . . ,dmvn−2, dmpr, dmqr) is a basis of T ∗mM . Therefore,
the n functions (v1, . . . , vn−2, pr, qr) form a system of local coordinates, cen-
tered at m. It follows from (2.3) that the Poisson structure takes in terms
of these coordinates the following form:

Π =
∂

∂qr
∧ ∂

∂pr
+

n−2∑
i,j=1

hij(v1, . . . , vn−2, pr, qr)
∂

∂vi
∧ ∂

∂vj
.

The Jacobi identity, applied to the triplets (pr, vi, vj) and (qr, vi, vj), implies
that the functions hij do not depend on the variables pr, qr, so that

Π =
∂

∂qr
∧ ∂

∂pr
+

n−2∑
i,j=1

hij(v1, . . . , vn−2)
∂

∂vi
∧ ∂

∂vj
, (2.4)

which means that Π is, in a neighborhood of m, the product of a symplectic
structure (on a neighborhood of the origin in R2) and a Poisson structure
(on a neighborhood of the origin in Rn−2). In order to apply the recursion
hypothesis, we need to show in case r− 1 > 0 that p1, . . . , pr−1 depend only
on the coordinates v1, . . . , vn−2, i.e., are independent of pr and qr,

∂pi
∂pr

= 0 =
∂pi
∂qr

i = 1, . . . , r − 1. (2.5)

Both equalities in (2.5) follow from the fact that pi is in involution with pr
and qr, for i = 1, . . . , r − 1, combined with (2.4):

0 = {pi, pr} =
∂pi
∂qr

, 0 = {pi, qr} = − ∂pi
∂pr

.

We may now apply the recursion hypothesis on the second term in (2.4),
together with the functions p1, . . . , pr−1. It leads to a system of local coor-
dinates (p1, q1, . . . , pr, qr, z1, . . . , zn−2r) in which Π is given by (2.1). This
shows the first part of the theorem. The second part of the theorem is an
easy consequence of (2.1), since it implies that the rank of Π at m is 2r plus
the rank of the second term in the right hand side of (2.1), at z = 0. �
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Remark 2.2. The classical Carathéodory-Jacobi-Lie theorem corresponds to
the case dimM = 2r. Then Π is the Poisson structure associated to a
symplectic structure, in the neighborhood of m. Theorem 2.1 then says
that Π can be written in the simple form

Π =
r∑
i=1

∂

∂qi
∧ ∂

∂pi
, (2.6)

where we recall that the (involutive) set of functions p1, . . . , pr is prescribed.

Remark 2.3. Theorem 2.1 and their proof, as they are stated, do not yield the
existence of the involutive set of functions p1, . . . , pr, a fact which is plain
in Weinstein’s splitting theorem. However, if we forget in our proof that
these functions are prescribed, we can easily adapt the induction hypotheses,
adding the existence of r such functions, when the rank of the Poisson
structure at m is at least 2r. In this sense, our theorem is an amplification
of Weinstein’s splitting theorem.

Remark 2.4. Theorem 2.1 holds true for holomorphic Poisson manifolds; the
local coordinates are in this case holomorphic coordinates and the functions
gij(z) are holomorphic functions, independent from p1, . . . , pr, q1, . . . , qr. Up
to these substitutions, the given proof is valid word by word.

2.2. A counterexample. If we denote in theorem 2.1 the rank of Π at
m by 2r′, then 2r′ > 2r, because the involutive set of functions p1, . . . , pr
define a totally isotropic foliation in a neighborhood of m. It means that,
if 2r′ < 2r and one is given independent functions in involution p1, . . . , pr,
then their Hamiltonian vector fields Xp1 , . . . ,Xpr are dependent at m. In the
extremal case in which dim 〈Xp1(m), . . . ,Xpr(m)〉 = r′ one has2, according
to theorem 2.1, that there exist functions q1, . . . , qr′ and z1, . . . , zn−2r′ such
that Π takes the form

Π =
r′∑
i=1

∂

∂qi
∧ ∂

∂pi
+
n−2r′∑
k,l=1

φk,l(z1, . . . , zn−2r′)
∂

∂zk
∧ ∂

∂zl
.

A natural question is whether r − r′ of the functions zi can be chosen
as pr′+1, . . . , pr, or, more generally, as functions which depend only on
p1, . . . , pr. We show in the following (counter) example that this is not
possible, in general.

Example 2.5. On R4, with coordinates f1, f2, g1, g2, consider the bivector
field, given by

Π =
∂

∂g1
∧ ∂

∂f1
+ χ(g2)

∂

∂g2
∧ ∂

∂f2
+ ψ(g2)

∂

∂g1
∧ ∂

∂f2
, (2.7)

where χ(g2) and ψ(g2) are smooth functions that depend only on g2, and
which vanish for g2 = 0, so that the rank of Π at the origin is 2. A direct

2Possibly up to a relabelling of the pi, so that dim
〈
Xp1(m), . . . ,Xpr′ (m)

〉
= r′.
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computation shows that this bivector field is a Poisson bivector field and
that f1 and f2 are in involution. We show that for some choice of χ and ψ
there exists no system of coordinates p1, q1, z1, z2, centered at 0, with p1, z1

depending only on f1 and f2, such that

Π =
∂

∂q1
∧ ∂

∂p1
+ φ(z1, z2)

∂

∂z1
∧ ∂

∂z2
. (2.8)

To do this, let us assume that such a system of coordinates exists. Taking
the Poisson bracket of p1 = p1(f1, f2) and z1 = z1(f1, f2) with q1 yields, in
view of (2.8),

1 = {q1, p1} =
∂p1

∂f1
{q1, f1}+

∂p1

∂f2
{q1, f2} ,

0 = {q1, z1} =
∂z1

∂f1
{q1, f1}+

∂z1

∂f2
{q1, f2} . (2.9)

Let N denote the locus defined by f1 = f2 = 0, which is a smooth surface in
a neighborhood of the origin. Let q denote the restriction of q1 to N . Since
Xf1 and Xf2 are tangent to N , Xfi

[q] = {q1, fi}|N , so that (2.9), restricted
to N , becomes

1 = λ1Xf1 [q] + λ2Xf2 [q],
0 = λ3Xf1 [q] + λ4Xf2 [q], (2.10)

where λ1, . . . , λ4 are constants (because p1, z1 depend only on f1, f2), and
satisfy λ1λ4 − λ2λ3 6= 0, since p1 and z1 are part of a coordinate system
centered at the origin. It follows that

Xf1 [q] = c1 and Xf2 [q] = c2, (2.11)

where c1 and c2 are constants, which cannot be both equal to zero, in view
of (2.10). Writing Xf1 and Xf2 in terms of the original variables, using (2.7),
we find that q = q(g1, g2) must satisfy

∂q

∂g1
= c1, χ(g2)

∂q

∂g2
+ ψ(g2)

∂q

∂g1
= c2.

Evaluating the second equation at g1 = g2 = 0 gives c2 = 0, hence c1 6= 0
and q(g1, g2) = c1g1+r(g2) for some smooth function r(g2). Then the second
condition leads to the following differential equation for r,

χ(g2)r′(g2) = −ψ(g2)c1. (2.12)

But this equation does not admit a smooth solution, unless ψ(g2)/χ(g2) ad-
mits a smooth continuation at 0. If, for example, ψ(g2) = g2 and χ(g2) = g2

2,
then there is no solution r(g2) to (2.12), which is smooth in the neighbor-
hood of 0, hence a system of coordinates in which Π takes the form (2.8)
does not exist.
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3. Action-angle coordinates for Liouville integrable systems
on Poisson manifolds

In this section we prove the existence of action-angle coordinates in the
neighborhood of every standard Liouville torus of an integrable system on
an arbitrary Poisson manifold.

3.1. Standard Liouville tori of Liouville integrable systems. We first
recall the definition of a Liouville integrable system on a Poisson manifold.

Definition 3.1. Let (M,Π) be a Poisson manifold of (maximal) rank 2r
and of dimension n. An s-tuplet of functions F = (f1, . . . , fs) on M is said
to define a Liouville integrable system on (M,Π) if

(1) f1, . . . , fs are independent (i.e., their differentials are independent
on a dense open subset of M);

(2) f1, . . . , fs are in involution (pairwise);
(3) r + s = n.

Viewed as a map, F : M → Rs is called the momentum map of (M,Π,F).

We denote by Mr the open subset of M where the rank of Π is equal to 2r;
points of Mr are called regular points of M . We denote by UF the dense
open subset of M , which consists of all points of M where the differentials
of the elements of F are linearly independent,

UF := {m ∈M | dmf1 ∧ dmf2 ∧ . . . ∧ dmfs 6= 0} . (3.1)

On the non-empty open subset Mr ∩UF of M the Hamiltonian vector fields
Xf1 , . . . ,Xfs define a distribution D of rank r, since at each point m of Mr

the kernel of Πm has dimension n − 2r = s − r. The distribution D is
integrable because the vector fields Xf1 , . . . ,Xfs pairwise commute,[

Xfi
,Xfj

]
= −X{fi,fj} = 0,

for 1 6 i < j 6 s. The integral manifolds of D are the leaves of a regular
foliation, which we denote by F ; the leaf of F , passing through m, is denoted
by Fm, and is called the invariant manifold of F, through m. For what
follows, we will be uniquely interested in the case in which Fm is compact.
According to the classical Liouville theorem, adapted to the case of Poisson
manifolds (see [1, Sect. 4.3] for a proof in the Poisson manifold case), every
compact invariant manifold Fm is diffeomorphic to the torus Tr := (R/Z)r;
more precisely, the diffeomorphism can be chosen such that each of the
vector fields Xfi

is sent to a constant (i.e., translation invariant) vector field
on Tr. Such a torus is called a standard Liouville torus.

3.2. Foliation by standard Liouville tori. As a first step in establishing
the existence of action-angle coordinates, we prove that, in some neighbor-
hood of a standard Liouville torus, the invariant manifolds of an integrable
system (M,Π,F) form a trivial torus fibration.
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Proposition 3.2. Suppose that Fm is a standard Liouville torus of an in-
tegrable system (M,Π,F) of dimension n := dimM and rank 2r := Rk Π.
There exists an open subset U ⊂Mr∩UF, containing Fm, and there exists a
diffeomorphism φ : U ' Tr×Bn−r, which takes the foliation F to the folia-
tion, defined by the fibers of the canonical projection pB : Tr×Bn−r → Bn−r,
leading to the following commutative diagram.

Fm U Tr ×Bn−r

Bn−r

� � // //
φ

//
'

��

F|U

zztttttttttt

pB

Proof. We first show that the foliation F , which consists of the maximal
integral manifolds of the foliation D, defined by the integrable vector fields
Xf1 , . . . ,Xfs , where s := n−r, coincides with the foliation F̄ , defined by the
fibers of the submersion

F̄ = (f1, . . . , fs) : Mr ∩ UF → Rs,

which is the restriction of F : M → Rs to Mr ∩ UF. Since all leaves of F̄
and of F are r-dimensional, it suffices to show that the two leaves, which
pass through an arbitrary point m ∈Mr ∩UF, have the same tangent space
at m. Since f1, . . . , fs are pairwise in involution, each of the vector fields
Xf1 , . . . ,Xfs is tangent to the fibers of F̄, i.e., to the leaves of F̄ . Thus,
TmF ⊂ TmF̄ , which implies that both tangent spaces are equal, since they
have the same dimension r.

Suppose now that Fm is a standard Liouville torus. We show that there
exists a neighborhood U of Fm and a diffeomorphism φ : U → Fm × Bs,
which sends the foliation F̄ (= F), restricted to U , to the foliation defined
by pB on Fm×Bs. The proof of this fact depends only on the fact that Fm
is a compact component of a fiber of a submersion (namely F̄). Notice that
since F̄ is a submersion, every point m′ ∈ F̄m = Fm has a neighborhood
Um′ in M , which is diffeomorphic to the product of a neighborhood Vm′ of
m′ in Fm times an open ball Bs

m′ , centered at F̄(m′) = F̄(m) in Rs; such
a diffeomorphism φm′ , as provided by the implicit function theorem, is a
lifting of F̄, i.e., it leads to the following commutative diagram:

Um′ Vm′ ×Bs
m′

Bs
m′

//___
φm′

$$JJJJJJJJJJJ

F̄
��

pB

Since Fm is compact, it is covered by finitely many of the sets Vm′ , say
Vm1 , . . . , Vm`

. Thus, if every pair of the diffeomorphisms φm1 , . . . , φm`
agrees

on the intersection of their domain of definition (whenever non-empty), we
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can define a global diffeomorphism on a neighborhood U of Fm, whose image
is the intersection of the concentric balls Bs

m1
, . . . , Bs

m`
. In order to ensure

that these diffeomorphisms agree, we need to chose them in a more specific
way. This is done by choosing an arbitrary Riemannian metric on M . Using
the exponential map, defined by the metric, we can identify a neighborhood
of the zero section in the normal bundle of Fm, with a neighborhood of
Fm in M ; in particular, for every m′ ∈ Fm there exist neighborhoods Um′
of m′ in M and Vm′ of m′ in Fm, with smooth maps ψm′ : Um′ → Vm′ ,
which have the important virtue that they agree on the intersection of their
domains. Upon shrinking the open subsets Um′ , if necessary, the maps
φm′ := ψm′ × (f1, . . . , fs) are a choice of diffeomorphisms, defined on a
neighborhood U of Fm, with the required properties. �

Corollary 3.3. Suppose that Fm is a standard Liouville torus of an inte-
grable system (M,Π,F) of dimension n := dimM and rank 2r := Rk Π.
There exists an open subset U ⊂ Mr ∩ UF, containing Fm, and there exist
n− 2r functions z1, . . . , zn−2r on U which are Casimir functions of Π, and
whose differentials are independent at every point of U .

Proof. Let U ⊂Mr ∩UF and φ be as given by proposition 3.2. We consider,
besides D, another integrable distribution on U : the distribution D′ defined
by all Hamiltonian vector fields on U ; it has rank 2r and its leaves are
the symplectic leaves of (U,Π). Since D is the distribution, defined by the
Hamiltonian vector fields Xf1 , . . . ,Xfs , we have that D ⊂ D′. Consider
the submersive map pB ◦ φ : U → Tr × Bs → Bs, whose fibers are by
assumption the leaves of F , i.e., the integral manifolds of D (restricted
to U), so that the kernel of d(pB ◦ φ) is precisely D. The image of D′ by
d(pB ◦ φ) is therefore a (smooth) distribution D′′ of rank r on Bs, which
is integrable, since D′ is integrable. The foliation defined by the integral
manifolds of D′′ is, in the neighborhood of the point pB(φ(m)), defined by
s−r = n−2r independent functions z′1, . . . , z

′
n−2r. Pulling them back to M ,

we get functions z1, . . . , zn−2r on a neighborhood U of Fm, with independent
differentials on U , and they are Casimir functions because they are constant
on the leaves of D′, which are the symplectic leaves of (U,Π). �

For Liouville tori in an integrable system, which are not standard, there
may not exist a neighborhood on which the invariant manifolds of the inte-
grable system are locally trivial. We show this in the following example.

Example 3.4. Let M be the product of a Möbius band with an interval,
which is obtained by identifying on M0 := [−1, 1] × ]−1, 1[×R in pairs the
points (−1, y, z) and (1,−y, z), where y and z are arbitrary. On M0, consider
the vector field V0 := ∂/∂x, the Poisson structure

Π0 :=
∂

∂x
∧ ∂

∂z
,
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and the function F := z. The algebra of Casimir functions of Π0 consists of
all smooth functions on M0 that are independent of x and z (i.e., arbitrary
smooth functions in y). Clearly, both V0 and Π0 and z go down to M ,
yielding a vector field V, a Poisson structure Π = V ∧ ∂/∂z and a function
z on M . What does not go down to M is the function y. In fact, only
even functions in y go down and the algebra of Casimir functions of Π is the
algebra of even functions in y, viewed as functions on M . This remains true
if we restrict M to any neighborhood of the central circle y = z = 0, which
is a leaf of the foliation, defined by the fibers of F . Since the differential of
an even function in y vanishes at all points where y = 0, the central circle
is not a standard Liouville torus. Since every neighborhood of the central
circle contains leafs that spin around the Möbius band twice, the Liouville
tori do not form a locally trivial torus fibration in the neighborhood of the
central circle.

3.3. Standard Liouville tori and Hamiltonian actions. According to
proposition 3.2, the study of an integrable system (M,Π,F) in the neigh-
borhood of a standard Liouville torus amounts to the study of an integrable
system (Tr ×Bn−r,Π0, pB), where Π0 is a Poisson structure on Tr ×Bn−r

of constant rank 2r and the map pB : Tr ×Bn−r → Bn−r is the projection
on the second factor. We write the latter integrable system in the sequel
as (Tr × Bs,Π,F) and we denote the components of F by F = (f1, . . . , fs)
where s := n − r, as before. We show in the following lemma that we may
assume that the first r vector fields Xf1 , . . . ,Xfr are independent on Tr×Bs,
hence span the fibers of F at each point.

Lemma 3.5. Let (Tr × Bs,Π,F) be an integrable system, where Π has
constant rank 2r and F : Tr×Bs → Bs denotes the projection on the second
component. Let m ∈ Tr × {0} and suppose that the components of F =
(f1, . . . , fs) are ordered such that the Hamiltonian vector fields Xf1 , . . . ,Xfr

are independent at m. There exists a ball Bs
0 ⊂ Bs, centered at 0, such that

Xf1 , . . . ,Xfr are independent on Tr ×Bs
0.

Proof. We denote by LV the Lie derivative with respect to a vector field V.
Since the vector fields Xfi

pairwise commute,

LXfj
(Xf1 ∧ . . . ∧ Xfr) =

r∑
i=1

Xf1 ∧ . . . ∧
[
Xfj

,Xfi

]
∧ . . . ∧ Xfr = 0,

for j = 1, . . . , s. It means that Xf1 ∧ . . . ∧ Xfr is conserved by the flow
of each one of the vector fields Xf1 , . . . ,Xfs . In particular, if this r-vector
field is non-vanishing at m ∈ Tr × {0} then it is non-vanishing on the
entire integral manifold through m of the distribution D, defined by these
vector fields. Since this integral manifold, which is a torus, is compact, it is
actually non-vanishing on a neighborhood of the integral manifold, which we
can choose of the form Tr ×Bs

0, where Bs
0 ⊂ Bs is a ball, centered at 0. �
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Given an integrable system (Tr × Bs,Π,F), where Π has constant rank
and F = (f1, . . . , fs) is the projection on the second component, the Hamil-
tonian vector fields Xfi

need not be constant on the fibers of F (which are
tori), and even if they are, they may vary from one fiber to another in
the sense that they do not come from the single action of the torus Tr on
Tr × Bs. We show in the following proposition how this can be achieved,
upon replacing the Hamiltonian vector fields Xfi

by well-chosen linear com-
binations, with as coefficients F-basic functions, i.e., functions of the form
F ◦λ, where λ ∈ C∞(Bs); equivalently, smooth functions on Tr ×Bs which
are constant on the fibers of F.

Proposition 3.6. Let (Tr×Bs,Π,F) be an integrable system, where Π has
constant rank 2r and F = (f1, . . . , fs) is projection on the second component.
Suppose that the r vector fields Xf1 , . . . ,Xfr are independent at all points of
Tr ×Bs. There exists a ball Bs

0 ⊂ Bs, also centered at 0, and there exist F-
basic functions λji ∈ C∞(Bs

0), such that the r vector fields Yi :=
∑r

j=1 λ
j
iXfj

,
(i = 1, . . . , r), are the fundamental vector fields of a Hamiltonian torus
action of Tr on Tr ×Bs

0.

The proof uses the following lemma.

Lemma 3.7. Let Y be a Poisson vector field on a Poisson manifold (M,Π)
of dimension n and rank 2r. If Y is tangent to all symplectic leaves of M ,
then Y is Hamiltonian in the neighborhood of every point m ∈M where the
rank of Π is 2r.

Proof. If the rank of Π atm is 2r, so thatm is a regular point of Π, then there
exists local coordinates (p1, q1, . . . , pr, qr, z1, . . . , zn−2r) in a neighborhood U
of m with respect to which the Poisson structure P is given by:

Π =
r∑
i=1

∂

∂qi
∧ ∂

∂pi
.

The vector fields ∂
∂q1
, ∂
∂p1

, . . . , ∂
∂qr
, ∂
∂pr

span the symplectic leaves of Π on U .
Therefore, every vector field Y, which is tangent to the symplectic leaves of
Π, is of the form

Y =
r∑
i=1

ai
∂

∂pi
+

r∑
i=1

bi
∂

∂qi

for some smooth functions a1, . . . , ar, b1, . . . br, defined on U . The relation
[Y,Π] = 0 imposes the following set of equations to be satisfied for all
i, j = 1, . . . , r:

∂ai
∂qj

=
∂aj
∂qi

,
∂bi
∂pj

=
∂bj
∂pi

and
∂ai
∂pj

= − ∂bi
∂qj
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By the classical Poincaré lemma, there exists a function h, defined on U ,
which satisfies, for i = 1, . . . , r:

ai = − ∂h
∂qi

and bi =
∂h

∂pi
.

Hence,

Xh =
r∑
i=1

∂h

∂qi
Xqi +

r∑
i=1

∂h

∂pi
Xpi +

n−2r∑
k=1

∂h

∂zk
Xzk

= Y,

which shows that Y is a Hamiltonian vector field on U . �

Now, we can turn our attention to the proof of proposition 3.6.

Proof. The fibers of F = (f1, . . . , fs) are compact, so for i = 1, . . . , r, the
flow Φ(i)

ti
of the Hamiltonian vector field Xfi

is complete and we can define
a map,

Φ : Rr × (Tr ×Bs) → Tr ×Bs

((t1, . . . , tr),m) 7→ Φ(1)
t1
◦ · · · ◦ Φ(r)

tr (m).

Since the vector fields Xfi
are pairwise commuting, the flows Φ(i)

ti
pairwise

commute and Φ is an action of Rr on Tr × Bs. Since the vector fields
Xf1 , . . . ,Xfr are independent at all points, the fibers of F, which are r-
dimensional tori, are the orbits of the action. For c ∈ Bs, let Λc denote
the lattice of Rr, which is the isotropy group of any point in F−1(c); it is
the period lattice of the action Φ, restricted to F−1(c). Notice that if Λc is
independent of c ∈ Bs, the action Φ descends to an action of Tr = Rr/Λc on
Tr×Bs. We will show in Step 1 below that this independence can be assured
after applying a diffeomorphism of Tr × Bs

0 over Bs
0, where Bs

0 is a ball,
contained in Bs, and concentric with it. The proof of this step is essentially
the same as in the symplectic case; it is called uniformization of the periods.
Steps 2 and 3 below prove successively that the fundamental vector fields
of the obtained torus action are Poisson, respectively Hamiltonian vector
fields.

Step 1. The periods of Φ can be uniformized to obtain a torus action of
Tr on Tr ×Bs

0, whose orbits are the fibers of F (restricted to Tr ×Bs
0).

Letm0 be an arbitrary point of F−1(0) and choose a basis (λ1(0), . . . , λr(0))
for the lattice Λ0. For a fixed i, with 1 6 i 6 r, for m in a neighborhood
of m0 in Tr × Bs and for L in a neighborhood of λi(0) in Rr, consider the
equation Φ(L,m) = m. Since F(Φ(L,m)) = F(m) for all L and m, it is
meaningful to write Φ(L,m) − m and solving the equation Φ(L,m) = m
locally for L amounts to applying the implicit function theorem to the map

Rr × (Tr ×Bs) Tr ×Bs Tr.//
Φ(L,m)−m

//

Since the action is locally free, the Jacobian condition is satisfied and we get
by solving for L around λi(0) a smooth Rr-valued function λi(m), defined
for m in a neighborhood Wi of m0. Doing this for i = 1, . . . , r and setting
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W := ∩ri=1Wi, we have that W is a neighborhood of m0, and on W we have
functions λ1(m), . . . , λr(m), with the property that Φ(λi(m),m) = m for all
m ∈ W and for all 1 6 i 6 r. Thus, λ1(m), . . . , λr(m) belong to the lattice
ΛF(m) for all m ∈ W and they form a basis when m = m0; by continuity,
they form a basis for ΛF(m) for all m ∈W .

The functions λi can be extended to a neighborhood of the torus F−1(0).
In fact, the functions λi are F-basic, hence extend uniquely to F-basic func-
tions on F−1(F(W )). We will use in the sequel the same notation λi for these
extensions and we write F−1(F(W )) simply as W . Using these functions we
define the following smooth map:

Φ̃ : Rr ×W → W

((t1, . . . , tr),m) 7→ Φ

(
r∑
i=1

tiλi(m),m

)
.

(3.2)

Since the functions λi are F-basic, the fact that Φ is an action implies that
Φ̃ is an action. The new action has the extra feature that the stabilizer of
every point in W is Zr. Thus, Φ̃ induces an action of Tr on W , which we
still denote by Φ̃. By shrinking W , if necessary, we may assume that W
is of the form F−1(Bs

0), where Bs
0 is an open ball, concentric with Bs, and

contained in it. Thus we have a torus action

Φ̃ : Tr ×W → W

((t1, . . . , tr),m) 7→ Φ

(
r∑
i=1

tiλi(m),m

)
.

Step 2. The fundamental vector fields of the torus action Φ̃ are Poisson
vector fields.

We denote by Y1, . . . ,Yr the fundamental vector fields of the torus ac-
tion Φ̃, constructed in step 1. We need to show that LYiΠ = 0, or in terms
of the Schouten bracket, that [Yi,Π] = 0, for i = 1, . . . , r. To do this, we first
expand Yi in terms of the Hamiltonian vector fields Xf1 , . . . ,Xfr : since the
action Φ̃ leaves the fibers of F invariant and since the Hamiltonian vector
fields Xf1 , . . . ,Xfr span the tangent space to these fibers at every point, we
can write

Yi =
r∑
j=1

λjiXfj
. (3.3)

Since all Hamiltonian vector fields leave Π invariant,

LYiΠ = [Yi,Π] =
r∑
j=1

[
λjiXfj

,Π
]

=
r∑
j=1

X
λj

i
∧ Xfj

, (3.4)

which we need to show to be equal to zero. Notice that since the coefficients
λi in the definition of Φ̃ are F-basic, the coefficients λji are also F-basic, so
they are pairwise in involution, and their Hamiltonian vector fields commute
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with all Hamiltonian vector fields Xfk
. In particular it follows from (3.4)

that [Xfk
, [Yi,Π]] = 0 for k = 1, . . . , r. We derive from it and from (3.3),

that [Yi, [Yi,Π]] = 0, i.e., that the flow of Yi preserves LYiΠ:

[Yi, [Yi,Π]] =

[
r∑

k=1

λkiXfk
, [Yi,Π]

]
=

r∑
k=1

[
λki , [Yi,Π]

]
∧ Xfk

=
r∑

j,k=1

Xfj

[
λki

]
Xfk
∧ X

λj
i

+
r∑

j,k=1

X
λj

i

[
λki

]
Xfk
∧ Xfj

= 0, (3.5)

since any two F-basic functions are in involution. Hence, L2
Yi

Π = 0. Since Yi
is a complete vector field, and has period 1, we can conclude that LYiΠ = 0
using the following:

Claim. If Y is a complete vector field of period 1 and P is a bivector
field for which L2

YP = 0, then LYP = 0.
In order to prove this claim, we let Q := LYP and we denote the flow

of Y by Φt. We pick an arbitrary point m and we show that3 Qm = 0. We
have for all t that

d

dt

(
(Φt)∗PΦ−t(m)

)
= (Φt)∗(LYP )Φ−t(m) = (Φt)∗QΦ−t(m) = Qm, (3.6)

where we used in the last step that the bivector field Q satisfies LYQ = 0.
By integrating (3.6),

(Φt)∗PΦ−t(m) = Pm + tQm.

Evaluated at t = 1 this yields Qm = 0, since Φ1 = Id, as Y has period 1.

Step 3. The vector fields Y1, . . . ,Yr are Hamiltonian vector fields (with
respect to commuting Hamiltonian functions).

According to Step 2, the vector fields Y1, . . . ,Yr are Poisson vector fields.
Since they are tangent to the symplectic leaves, according to lemma 3.7,
there is a neighborhood of m ∈ Fm in W that we can assume to be of the
form Ωr×Ws, with Ωr ⊂ Tr,Ws ⊂ Bs, on which the vector fields Y1, . . . ,Yr
are Hamiltonian vector fields. In other words, there exists functions that we
shall denote by h1, . . . , hr, defined on Ws, satisfying the relation Yi = Xhi

for all i = 1, . . . , r. It shall be convenient to denote by W again the open
subset F−1(Ws).

Let dµ be a Haar measure on Tr. For all m′ ∈W , we set:

Um′ := {t ∈ Tr | Φ̃t(m′) ∈W}

3As before, Qm denotes the bivector Q at the point m.
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where, for all t = (t1, . . . , tr) ∈ Tr, Φ̃t is a shorthand for the map m′ 7→
Φ̃(t1, . . . , tr,m′). We then define functions pi, i = 1, . . . , r on W by:

pi(m′) :=
1

vol(Um′)

∫
t∈Um′

hi
(
Φ̃t(m′)

)
dµ

where vol(Um′) stands for the volume with respect to the Haar measure.
Their Hamiltonian vector fields can be computed as follows,:

Xpi(m
′) =

1
vol(Um′)

∫
t∈Um′

Xhi◦Φ̃t
(m′)dµ

=
1

vol(Um′)

∫
t∈Um′

dΦ̃−1
t

(
Xhi

(Φ̃t(m′))
)
dµ

=
1

vol(Um′)

∫
t∈Um′

dΦ̃−1
t

(
Yi(Φ̃t(m′))

)
dµ

=
1

vol(Um′)

∫
t∈Um′

Yi(m′)dµ (3.7)

= Yi(m′),
(3.8)

where the fact that Yi is invariant under Φ̃t has been used to go from the
third to the fourth line. The relation UΦ̃t′ (m

′) = Φ̃t′(Um′) for all t′ ∈ Tr,
and the invariance property of the Haar measure, imply that the functions
p1, . . . , pr are invariant under the Tr-action. In particular, they are in invo-
lution for all i, j = 1, . . . , r, since

{pi, pj} = Yj [pi] = 0.

In conclusion, on the open subset W , the vector fields Y1, . . . ,Yr are the
Hamiltonian vector fields of the commuting functions p1, . . . , pr. �

3.4. The existence of action-angle coordinates. We are now ready to
formulate and prove the action-angle theorem, for standard Liouville tori in
Poisson manifolds.

Theorem 3.8. Let (M,Π,F) be an integrable system, where (M,Π) is a
Poisson manifold of dimension n and rank 2r. Suppose that Fm is a stan-
dard Liouville torus, where m ∈Mr∩UF. Then there exists R-valued smooth
functions (p1, . . . , pn−r) and R/Z-valued smooth functions (θ1, . . . , θr), de-
fined in a neighborhood U of Fm such that

(1) The functions (θ1, . . . , θr, p1, . . . , pn−r) define an isomorphism U '
Tr ×Bn−r;

(2) The Poisson structure can be written in terms of these coordinates
as

Π =
r∑
i=1

∂

∂θi
∧ ∂

∂pi
,
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in particular the functions pr+1, . . . , pn−r are Casimirs of Π (re-
stricted to U);

(3) The leaves of the surjective submersion F = (f1, . . . , fn−r) are given
by the projection onto the second component Tr×Bn−r, in particular,
the functions p1, . . . , pn−r depend on the functions f1, . . . , fn−r only.

The functions θ1, . . . , θr are called angle coordinates, the functions p1, . . . , pr
are called action coordinates and the remaining coordinates pr+1, . . . , pn−r
are called transverse coordinates.

Proof. We denote s := n − r, as before. Since Fm is a standard Liouville
torus, proposition 3.2 and corollary 3.3 imply that there exist on a neigh-
borhood U ′ of Fm in M on the one hand Casimir functions pr+1, . . . , ps and
on the other hand F-basic functions p1, . . . , pr, such that p := (p1, . . . , ps)
and F define the same foliation on U ′, and such that the Hamiltonian vector
fields Xp1 , . . . ,Xpr are the fundamental vector fields of a Tr-action on U ′,
where each of the vector fields has period 1; the orbits of this torus action
are the leaves of the latter foliation. In view of the Carathéodory-Jacobi-Lie
theorem (theorem 2.1), there exist on a neighborhood U ′′ ⊂ U ′ of m in M ,
R-valued functions θ1, . . . , θr such that

Π =
r∑
j=1

∂

∂θj
∧ ∂

∂pj
. (3.9)

On U ′′, Xpj = ∂
∂θj

, for j = 1, . . . , r; since each of these vector fields has pe-
riod 1 on U ′, it is natural to view these functions as R/Z-valued functions,
which we will do without changing the notation. Notice that the functions
θ1, . . . , θr are independent and pairwise in involution on U ′′, as a trivial con-
sequence of (3.9). In particular, θ1, . . . , θr, p1, . . . , ps define local coordinates
on U ′′. In these coordinates, the action of Tr is given by

(t1, . . . , tr) · (θ1, . . . , θr, p1, . . . , ps) = (θ1 + t1, . . . , θr + tr, p1, . . . , ps), (3.10)

so that the functions θi uniquely extend to smooth R/Z-valued functions
satisfying (3.10), on U := F−1(F(U ′′)), which is an open subset of Fm in M ;
the extended functions are still denoted by θi. It is clear that {θi, pj} = δji
on U , for all i, j = 1, . . . , r. Combined with the Jacobi identity, this leads to

Xpk
[{θi, θj}] = {{θi, θj} , pk} =

{
θi, δ

k
j

}
−
{
θj , δ

k
i

}
= 0,

which shows that the Poisson brackets {θi, θj} are invariant under the T-
action; but the latter vanish on U ′′, hence these brackets vanish on all of U ,
and we may conclude that on U , the functions (θ1, . . . , θr, p1, . . . , ps) have
independent differentials, so they define a diffeomorphism to Tr×Bs where
Bs is a (small) ball with center 0, and that the Poisson structure takes in
terms of these coordinates the canonical form (3.9), as required. �
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The results of the present section can be applied in particular for a well-
known integrable system constructed on a regular coadjoint orbit O of u(n)∗,
namely the Gelfand-Cetlin integrable system, for which action-angle coor-
dinates are computed explicitly in [11] and [10]. This system can be seen
in the Poisson setting, as follows. Dualizing the increasing sequence of Lie
algebra inclusions:

u(1) ⊂ · · · ⊂ u(n− 1) ⊂ u(n)

(where u(k) is considered as the left-upper diagonal block of u(k + 1) for
k = 1, . . . , n− 1), we get a sequence of surjective Poisson maps:

u(n)∗ u(n− 1)∗ · · · u(1)∗// // // // // //

The family of functions on u(n)∗ obtained by pulling-back generators of the
Casimir algebras of all the u(k)∗ for k = 1, . . . , n yields a Liouville integrable
system on u(n)∗. For particular generators, its restriction to an open subset
of O gives the Gelfand-Cetlin system. The invariant manifold is compact, so
that theorem 3.8 can be applied and gives the existence of action-angle coor-
dinates, defined not only in a neighborhood of the invariant manifold in O,
but in a neighborhood of the invariant manifold in the ambient space u(n).
The restriction of these action and angle coordinates to one symplectic leafO
will give action-angle coordinates on O, as in [11] or [10].

4. Action-angle coordinates for non-commutative integrable
systems on Poisson manifolds

In this section, we prove the existence of action-angle coordinates in a
neighborhood of a compact invariant manifold in the very general context
of non-commutative integrable systems.

4.1. Non-commutative integrable systems. We first define precisely
what we mean by a non-commutative integrable system on a Poisson mani-
fold, since the definitions in the literature [3, 9, 8] are only given in the case
of a symplectic manifold. See the appendix for a more intrinsic version of
this definition.

Definition 4.1. Let (M,Π) be a Poisson manifold. An s-tuple of functions
F = (f1, . . . , fs) is said to be a non-commutative integrable system of rank
r on (M,Π) if

(1) f1, . . . , fs are independent (i.e. their differentials are independent on
a dense open subset of M);

(2) The functions f1, . . . , fr are in involution with the functions f1, . . . , fs;
(3) r + s = dimM ;
(4) The Hamiltonian vector fields of the functions f1, . . . , fr are linearly

independent at some point of M .



ACTION-ANGLE COORDINATES 21

We denote the subset of M where the differentials df1, . . . ,dfs (resp. where
the Hamiltonian vector fields Xf1 , . . . ,Xfr) are independent by UF (resp. by
MF,r). Notice that 2r 6 Rk Π, as a consequence of (4).

If (M,Π,F) is a Liouville integrable system (definition 3.1), then it is clear
that the components (f1, . . . , fs) of F can be ordered such that F is a non-
commutative integrable system of rank 1

2Rk Π. Thus, the notion of a non-
commutative integrable system on a Poisson manifold (M,Π) generalizes
the notion of a Liouville integrable system on (M,Π). For simplicity, we
often refer in this section to the case of a Liouville integrable system as the
commutative case.

4.2. Standard Liouville tori for non-commutative integrable sys-
tems. Let F be a non-commutative integrable system of rank r on a Pois-
son manifold (M,Π) of dimension n. The open subsets UF and MF,r are
preserved by the flow of each of the vector fields Xf1 , . . . ,Xfr since each
of the functions f1, . . . , fr is in involution with all the functions f1, . . . , fs.
On the non-empty open subset MF,r ∩ UF of M , the Hamiltonian vector
fields Xf1 , . . . ,Xfr define a (regular) distribution D of rank r. Since the vec-
tor fields Xf1 , . . . ,Xfr commute pairwise, the distribution D is integrable,
and its integral manifolds are the leaves of a (regular) foliation F . The
leaf through m ∈ M is denoted by Fm, and called the invariant manifold
through m of F. As in the commutative case, we are only interested in
the case where Fm is compact. Under this assumption, Fm is a compact r-
dimensional manifold, equipped with r independent commuting vector fields,
hence it is diffeomorphic to an r-dimensional torus Tr; then Fm is called a
standard Liouville torus of F. Proposition 3.2 takes in the general situation
of a non-commutative integrable system formally the same form, but with
the understanding that r now stands for the rank of F (rather than half the
rank of the Poisson structure), as stated in the following proposition4.

Proposition 4.2. Suppose that Fm is a standard Liouville torus of a non-
commutative integrable system F of rank r on an n-dimensional Poisson
manifold (M,Π). There exists an open subset U ⊂ MF,r ∩ UF, containing
Fm, and there exists a diffeomorphism φ : U ' Tr ×Bn−r, which takes the
foliation F to the foliation, defined by the fibers of the canonical projection
pB : Tr ×Bn−r → Bn−r, leading to the following commutative diagram.

Fm U Tr ×Bn−r

Bn−r

� � // //
φ

//
'

��

F|U

zztttttttttt

pB

4Recall that Bn−r is a ball of dimension n− r.
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4.3. Standard Liouville tori and Hamiltonian actions. According to
proposition 4.2, the study of a non-commutative integrable system (M,Π,F)
of rank r in the neighborhood of a standard Liouville torus amounts to
the study of the non-commutative integrable system (Tr × Bn−r,Π0, pB)
of rank r, where Π0 is a Poisson structure on Tr × Bn−r and the map
pB : Tr ×Bn−r → Bn−r is the projection onto the second factor. We write
the latter integrable system in the sequel as (Tr ×Bs,Π,F) and we denote
the components of F by F = (f1, . . . , fs) where s := n − r, as before. We
may assume that the first r vector fields Xf1 , . . . ,Xfr are independent on
Tr × Bs, as shown in the following lemma, the proof of which goes along
the same lines as the proof of lemma 3.5.

Lemma 4.3. Let (Tr × Bs,Π,F) be a non-commutative integrable system
of rank r, where F : Tr × Bs → Bs denotes the projection onto the second
component. Let m ∈ Tr × {0} and suppose that the Hamiltonian vector
fields Xf1 , . . . ,Xfr are independent at m. There exists a ball Bs

0 ⊂ Bs,
centered at 0, such that Xf1 , . . . ,Xfr are linearly independent at every point
of Tr ×Bs

0.

One useful consequence of the fact that the Hamiltonian vector fields
Xf1 , . . . ,Xfr are independent on M := Tr×Bs is that a function g ∈ C∞(M)
is F-basic if and only if Xfi

[g] = 0 for i = 1, . . . , r. Indeed, g is F-basic if
and only g is constant on all fibers of F, and all tangent spaces to these
fibers are spanned by the vector fields Xf1 , . . . ,Xfr .

We now come to an important difference between the commutative and
the non-commutative case, which is related to the nature of the map F. In
the commutative case, two F-basic functions on Tr × Bs are in involution,
{g ◦ F, h ◦ F} = 0 for all g, h ∈ C∞(Bs). Said differently,

F : (Tr ×Bs,Π)→ (Bs, 0),

is a Poisson map, where Bs is equipped with the trivial Poisson structure.
The generalization to the non-commutative case is that Bs admits a Poisson
structure (non-zero in general), such that F is a Poisson map. This Poisson
structure is constructed by the following (classical) trick: for every pair
of functions g, h ∈ C∞(Bs) we have in view of the Jacobi identify, for all
i = 1, . . . , r,

Xfi
[{g ◦ F, h ◦ F}] = {Xfi

[g ◦ F], h ◦ F}+ {g ◦ F,Xfi
[h ◦ F]} = 0,

so that {g ◦ F, h ◦ F} is F-basic, namely {g ◦ F, h ◦ F} = {g, h}B ◦ F for
some function {g, h}B ∈ C∞(Bs). It is clear that this defines a Poisson
structure ΠB = {· , ·}B on Bs and that

F : (Tr ×Bs,Π)→ (Bs,ΠB)

is a Poisson map. This Poisson structure leads to a special class of F-
basic functions, which play an important role in the non-commutative case,
defined as follows.
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Definition 4.4. A smooth function h on Tr × Bs is said to be a Casimir-
basic function, or simply a Cas-basic function if there exists a Casimir func-
tion g on (Bs,ΠB), such that h = g ◦ F.

A characterization and the main properties of Cas-basic functions are
given in the following proposition.

Proposition 4.5. Let F be a non-commutative integrable system on a Pois-
son manifold (M,Π), where M = Tr×Bs and F is projection on the second
component. It is assumed that the Hamiltonian vector fields Xf1 , . . . ,Xfr are
independent at every point of M .

(1) If g ∈ C∞(M), then g is Cas-basic if and only g is in involution with
every function which is constant on the fibers of F;

(2) Every pair of Cas-basic functions on M is in involution;
(3) If g is Cas-basic, then its Hamiltonian vector field Xg on M is of

the form XF =
∑r

i=1 ψiXfi
, where each ψi is a Cas-basic function

on M .

Proof. Suppose that g ∈ C∞(M) is in involution with every function which
is constant on all fibers of F. Then Xfi

[g] = {g, fi} = 0 for i = 1, . . . , r,
hence g is F-basic, g = h ◦ F for some function h on Bs. If k ∈ C∞(Bs),
then k ◦ F is constant on the fibers of F, so that

{h, k}B ◦ F = {g, k ◦ F} = 0,

where we have used that F is a Poisson map. It follows that {h, k}B = 0 for
all functions k on Bs, hence that g (= h ◦ F) is Cas-basic. This shows one
implication of (1), the other one is clear. (2) is an easy consequence of (1).
Consider now the Hamiltonian vector field Xg of a Cas-basic function g
on M . In view of (1), Xg[h] = {h, g} = 0 for every function h which is
constant on the fibers of F, hence Xg is tangent to the fibers of F. Since
the fibers of F are spanned at every point by the Hamiltonian vector fields
Xf1 , . . . ,Xfr , there exist smooth functions ψ1, . . . , ψr on M , such that

Xg =
r∑
i=1

ψiXfi
.

The functions ψi are F-basic, because Xh[ψi] = 0 for every function h which
is constant on the fibers of F. Indeed, for such a function h, we have that
{g, h} = 0 and {fi, h} = 0 for i = 1, . . . , r, so that

0 = X{g,h} = [Xh,Xg] =
r∑
i=1

(Xh[ψi]Xfi
+ ψi [Xh,Xfi

]) =
r∑
i=1

Xh[ψi]Xfi

and the result follows from the independence of Xf1 , . . . ,Xfr . �

Now, we can give a proposition that generalizes proposition 3.2 to the
non-commutative setting, which has formally the same shape up to the fact
that r, formerly half of the rank of the Poisson structure Π, stands now for
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rank of the non-commutative integrable system, and up to the fact that the
functions λji that appear below, are now proved to be Cas-basic, and not
simply F-basic.

Proposition 4.6. Let (Tr×Bs,Π,F) be an non-commutative integrable sys-
tem of rank r, where F = (f1, . . . , fs) is projection on the second component.
There exists a ball Bs

0 ⊂ Bs, also centered at 0, and there exist Cas-basic
functions λji , such that the r vector fields Yi :=

∑r
j=1 λ

j
iXfj

, (i = 1, . . . , r),
are the fundamental vector fields of a Hamiltonian torus action of Tr on
Tr ×Bs

0.

We can now turn our attention to the proof of proposition 4.6.

Proof. As in Step 1 of the proof of proposition 3.6,we obtain the existence
of a family of Rr-valued F-basic functions λ1, . . . , λr such that Φ̃, defined
as in (3.2), induces a Tr-action on Tr × Bs

0, where Bs
0 is an s-dimensional

ball, contained in Bs. As in Step 2, we expand the fundamental vector
fields Y1, . . . ,Yr of the action in terms of the Hamiltonian vector fields
Xf1 , . . . ,Xfr ,

Yi =
r∑
j=1

λjiXfj
.

The proof that the vector fields Yi are Poisson vector fields requires an extra
argument: we show that the relations Xfi

[λki ] = 0 = X
λj

i
[λki ] = 0 which were

used in (3.5) still hold, by showing that the functions λji are Cas-basic (recall
that Cas-basic functions are in involution). To do this, it suffices to show
that if a vector field on Tr × Bs

0 of the form Z =
∑r

i=1 ψiXfi
is periodic

of period 1, then each of the coefficients ψi is Cas-basic. Let Z be such a
vector field and consider

Z0 :=
r∑
i=1

ψi(m)Xfi
,

where m is an arbitrary point in Tr × Bs
0. Then the restriction of Z0 to

F−1(F(m)) is periodic of period 1. Let h be an F-basic function on Tr×Bs
0,

and let us denote the (local) flow of Xh by Φt. Since

[Xh, Z0] =
r∑
i=1

ψi(m) [Xh,Xfi
] = 0,

for |t| sufficiently small, the flow of Z0 starting from Φt(m) is also periodic
of period 1. Since the coefficients of Z are the unique continuous functions
such that Z = Z0 on F−1(F(m)) and such that the flow of Z from every
point has period 1, it follows that ψi(Φt(m)) = ψi(m) for |t| sufficiently
small. Taking the limit t 7→ 0 yields that Xh[ψi] = 0 for every F-basic
function on Tr × Bs

0. Thus, ψi is Cas-basic, for i = 1, . . . , r. so that the
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proof of Step 2 remains valid, amounting to the fact that the vector fields
Yi on W are Poisson vector fields, LYiΠ = 0, which leads in view of (3.4) to

r∑
j=1

X
λj

i
∧ Xfj

= 0. (4.1)

We show that these vector fields are Hamiltonian, where the Hamiltonians
can be taken as a F-basic functions. The key point is that all coordinates
which appear all along this step should now be taken with respect to coor-
dinates adapted to f1, . . . , fr. More precisely, we choose some m ∈ Tr ×Bs

0

in F−1(0), and we construct in some neighborhood W ′0 of m a system of
coordinates

(f1, g1, . . . , fr, gr, z1, . . . , zn−2r)

in which the Poisson structure takes the form given in equation (2.1). Of
course, the functions z1, . . . , zn−2r are F-basic again (and therefore depend
on f1, . . . , fs only), so that they can be defined in p−1(p(W ′0)), an open subset
which we also call W ′0 for the sake of simplicity. As before, we make no nota-
tional distinction between the functions f1, . . . , fr, z1, . . . , zn−2r, considered
as functions on p(W ′0) ⊂ Bn−r, and the functions f1, . . . , fr, z1, . . . , zn−2r

themselves, defined on W ′0.
In view of Proposition 4.5(3), in the previous system of coordinates, we

have that, since the functions λji are Cas-basic,

X
λj

i
=

r∑
k=1

(∂µji
∂fk
◦ F
)
Xfk

,

Hence, (4.1) gives∑
16j<k6r

((
∂µji
∂fk
− ∂µki
∂fj

)
◦ F

)
Xfj
∧ Xfk

= 0. (4.2)

where µji is defined by λji = µji ◦F. Since the vectors fields Xf1 , . . . ,Xfr are
linearly independent at all points of W , all coefficients above vanish and we
get, for every i, j, k ∈ {1, . . . , r}:

∂µji
∂fk

=
∂µki
∂fj

. (4.3)

As in the proof of the classical Poincaré lemma, the functions b1, . . . , br on
F(W ), defined by

bi = bi(f1, . . . , fs) :=
r∑
j=1

∫ 1

t=0
µji (tf1, . . . , tfr, z1, . . . , zs−r)fj (4.4)

satisfy

µji =
∂bi
∂fj

, (4.5)
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for all 1 6 i, j 6 r. It leads to the F-basic functions p1, . . . , pr, defined by
pi := bi ◦ F, for i = 1, . . . , r.

Since the Poisson structure on Bs depends only on the variables z1, . . . , zs,
the map (f1, . . . , fr, z1, . . . , zs−r) 7→ (tf1, . . . , tfr, z1, . . . , zs−r) is Poisson for
all t ∈ [0, 1]. Therefore, the function µji (tf1, . . . , tfr, z1, . . . , zs−r) is a Casimir
function, and the functions b1, . . . , br, which are obtained by integration
(w.r.t. t) of these functions, are also Casimir functions. Hence, the func-
tions defined by pi := bi ◦ F are Cas-basic. The Hamiltonian vector field of
pi is, in view of in view of Proposition 4.5(3), (4.5) and (3.3), given by

Xpi = Xbi◦F =
r∑
j=1

(
∂bi
∂fj
◦ F
)
Xfj

=
r∑
j=1

(
µji ◦ F

)
Xfj

=
r∑
j=1

λjiXfj
= Yi.

(4.6)
This shows that each one of the vector fields Yi is a Hamiltonian vector field
on W . This completes the proof. �

4.4. The existence of action-angle coordinates. We finally get to the
action-angle theorem, for standard Liouville tori of a non-commutative in-
tegrable system.

Theorem 4.7. Let (M,Π) be a Poisson manifold of dimension n, equipped
with a non-commutative integrable system F = (f1, . . . , fs) of rank r, and
suppose that Fm is a standard Liouville torus, where m ∈MF,r ∩ UF. Then
there exist R-valued smooth functions (p1, . . . , pr, z1, . . . , zs−r) and R/Z-
valued smooth functions (θ1, . . . , θr), defined in a neighborhood U of Fm,
and functions such that

(1) The functions (θ1, . . . , θr, p1, . . . , pr, z1, . . . , zs−r) define an isomor-
phism U ' Tr ×Bs;

(2) The Poisson structure can be written in terms of these coordinates
as

Π =
r∑
i=1

∂

∂θi
∧ ∂

∂pi
+

s−r∑
k,l=1

φk,l(z)
∂

∂zk
∧ ∂

∂zl
;

(3) The leaves of the surjective submersion F = (f1, . . . , fs) are given by
the projection onto the second component Tr×Bs, in particular, the
functions p1, . . . , pr, z1, . . . , zs−r depend on the functions f1, . . . , fs
only.

The functions θ1, . . . , θr are called angle coordinates, the functions p1, . . . , pr
are called action coordinates and the remaining coordinates z1, . . . , zs−r are
called transverse coordinates.

Proof. Conditions (1) and (2), in view of lemma 3.5, propositions 4.2 and 3.6
imply that there exist on a neighborhood U ′ of Fm in M on the one hand
F-basic functions z1, . . . , zs−r and on the other hand Cas-basic functions
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p1, . . . , pr, such that

p := (p1, . . . , pr, z1, . . . , zs−r)

and F define the same foliation on U ′, and such that the Hamiltonian vector
fields Xp1 , . . . ,Xpr are the fundamental vector fields of a Tr-action on U ′,
where each has period 1; the orbits of this torus action are the leaves of
the latter foliation. In view of theorem 2.1, there exist on a neighborhood
U ′′ ⊂ U ′ of m in M , R-valued functions θ1, . . . , θr such that

Π =
r∑
j=1

∂

∂θj
∧ ∂

∂pj
+

s−r∑
k,l=1

φk,l(z)
∂

∂zk
∧ ∂

∂zl
.

The end of the proof goes along the same lines as the end of the proof of
theorem 3.8. �

5. Appendix: non-commutative integrability on Poisson
manifolds

In the symplectic context, the terms superintegrability, non-commutative
integrability, degenerate integrability, generalized Liouville integrability and
Mischenko-Fomenko integrability refer to the case when the Hamiltonian
flow admits more independent constants of motions than half the dimension
of the symplectic manifold [3, 8, 9, 17, 16]. All these names correspond to
notions which are equivalent, at least locally. Similarly, the definition of a
non-commutative integrable system on a Poisson manifold, which we have
given in section 4 (definition 4.1) admits different locally equivalent formula-
tions, which each have their own flavor. We illustrate this in this appendix,
by giving an abstract geometrical formulation in terms of foliations, and a
concrete geometrical formulation in terms of Poisson maps.

For both geometrical formulations, the notion of polarity in Poisson ge-
ometry is a key element. Let m be an arbitrary point of a Poisson manifold
(M,Π). The polar of a subspace Σ ⊂ T ∗mM is the subspace Σpol ⊂ T ∗mM ,
defined by

Σpol := {ξ ∈ T ∗mM | Πm(ξ,Σ) = 0}.
Notice that the polar of Σpol can be strictly larger than Σ, because Πm may
have a non-trivial kernel. When Σ = Σpol, we say that Σ is a Lagrangian
subspace.

Let F and G be two foliations on the same Poisson manifold (M,Π).
For m ∈ M we denote by T⊥mF the subspace of T ∗mM , consisting of all
covectors which annihilate TmF , the tangent space to the leaf of F , passing
through M . If F is defined around m by functions f1, . . . , fs, then T⊥mF is
spanned by dmf1, . . . ,dmfs. We say that F is polar to G if T⊥mF = (T⊥mG)pol,
for every m ∈ M ; also, F is said to be a Lagrangian foliation if F is polar
to F .
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Definition 5.1. Let (M,Π) be a Poisson manifold. An abstract non-
commutative integrable system of rank r is given by a pair (F ,G) of foliations
on M , satisfying

(1) F is of rank r and G is of corank r;
(2) F is contained in G (i.e., each leaf of F is contained in a leaf of G);
(3) F is polar to G.

This definition generalizes the definition of an abstract integrable system
on (M,Π), which is simply a Lagrangian foliation F on M .

In the following proposition we prove the precise relation between defini-
tions 4.1 and 5.1.

Proposition 5.2. Let (M,Π) be a Poisson manifold.

(1) If F = (f1, . . . , fs) is a non-commutative integrable system of rank r
on (M,Π), then on UF ∩MF,r the pair of foliations (F ,G), defined
by F := fol(f1, . . . , fs) and G := fol(f1, . . . , fr) is an abstract non-
commutative integrable system of rank r;

(2) Given (F ,G) an abstract non-commutative integrable system of rank r
on (M,Π), there exists for every m in M a neighborhood U in
M , and functions F = (f1, . . . , fs) on U , such that F is a non-
commutative integrable system of rank r on U .

Proof. (1) Recall from paragraph 4.1 that the open subsets UF and MF,r

of M are defined by

UF := {m ∈M | dmf1 ∧ dmf2 ∧ . . . ∧ dmfs 6= 0} ,
MF,r := {m ∈M | Xf1 ,Xf2 , . . . ,Xfr are independent at m} .

On UF ∩MF,r the functions f1, . . . , fr define a foliation G of corank r; sim-
ilarly, the functions f1, . . . , fs define a foliation F on it of rank r (since
r + s = dimM). Obviously, F is contained in G. The condition that
{fi, fj} = 0 for all 1 6 i 6 r and 1 6 j 6 s, implies that the Hamil-
tonian vector fields Xf1 , . . . ,Xfr are tangent to F at every point. For all
m ∈ UF ∩MF,r, the Hamiltonian vector fields Xf1 , . . . ,Xfr are independent
at m, hence they span TmF . It follows that

(T⊥mG)pol = {ξ ∈ T ∗mM | Πm(ξ,dmfi) = 0 for i = 1, . . . , r}
= {ξ ∈ T ∗mM | ξ (Xfi

(m)) = 0 for i = 1, . . . , r} = T⊥mF .

It follows that F is polar to G, hence (F ,G) is an abstract non-commutative
integrable system.
(2) Let m be an arbitrary point of M . In a neighborhood U of m, there
exist smooth functions f1, . . . , fs, such that the level sets of f1, . . . , fs and
of f1, . . . , fr define foliations, which coincide with F and G on U . Since F
is polar to G, the functions f1, . . . , fr are in involution with the functions
f1, . . . , fs and the Hamiltonian vector fields of the functions f1, . . . , fr are
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linearly independent at all points of U . It follows that F := (f1, . . . , fs) is a
non-commutative integrable system of rank r on U . �

When both foliations F and G are given by fibrations F : M → P and
G : M → L respectively, we have a commutative diagram of submersive
Poisson maps:

(M,Π) (L,ΠL)

(P,ΠP )

//G

��

F

zzttttttttttt

(5.1)

where ΠL is the zero Poisson structure on L. Moreover, item (3) in defini-
tion 5.1 amounts for every m ∈M to the equality:

F∗(T ∗F(m)P ) =
(
G∗(T ∗G(m)L)

)pol
. (5.2)

Conversely, it is clear that we have the following proposition:

Proposition 5.3. Suppose that (5.1) is a commutative diagram of submer-
sive Poisson maps, where L has dimension r and is equipped with the zero
Poisson structure ΠL, and P has dimension dimM − r. If (5.2) holds for
every m ∈ M , then the pair of foliations (F ,G) defined on M by F and G
is an abstract non-commutative integrable system of rank r on (M,Π).
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celona, E-08193 Bellaterra, Spain

E-mail address: miranda@mat.uab.cat

Pol Vanhaecke, Laboratoire de Mathématiques et Applications, UMR 6086
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