
A spe
ial 
ase of the Garnier system,

(1,4)-polarized Abelian surfa
es and their moduli

Pol Vanhae
ke

Abstra
t

In this paper we dis
uss some algebrai
-geometri
 aspe
ts of a (family of) integrable quarti


potential(s) in two degrees of freedom. It is a spe
ial 
ase of the so-
alled Garnier system, whi
h was

�rst introdu
ed by Garnier when studying isomonodromi
 deformations of di�erential equations.

We show that the 
omplex invariant manifolds of this integrable system 
omplete into Abelian

surfa
es of type (1; 4) and use the spe
i�
 geometry of these surfa
es to prove that the system is

algebrai
 
ompletely integrable. The limiting 
ase of the potential (q

2

1

+ q

2

2

)

2

will also be dis
ussed,

in parti
ular a Lax pair for this limiting potential will be found from the Lax pair we 
onstru
t for

the generi
 
ase.

We also show that every Abelian surfa
e of type (1; 4) o

urs as an invariant manifold for one

of these integrable potentials. This allows us (among other expli
it things) to 
ompute expli
itely

a 
anoni
al map between the moduli spa
e of Abelian surfa
es of type (1; 4) to the moduli spa
e

of Ja
obians of genus two 
urves.
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1. Introdu
tion

It is well-known that there is a ri
h intera
tion between algebrai
 geometry and algebrai



ompletely integrable systems (a.
.i. systems) both in the �nite-dimensional 
ase (e.g. Toda latti
es,

geodesi
 
ows on Lie groups, 
lassi
al tops) and the in�nite-dimensional 
ase (e.g. KdV and KP

equations, non-linear S
hr�odinger equation) (see [AvM1℄, [D℄, [M2℄, [Sh℄).

The main fa
t is that the generi
 integral 
urve of the Hamiltonian ve
tor �eld of su
h an

integrable system is dense in an Abelian variety, i.e., in a 
omplex algebrai
 torus (run with 
omplex

time). The di�erent Abelian varieties whi
h 
orrespond to the di�erent integral 
urves �ll up the

phase spa
e and are 
alled the (
omplex) invariant manifolds of the ve
tor �eld. Equations for

(an aÆne part of) these invariant manifolds are given by a maximal set of independent fun
tions,

invariant for the ve
tor �eld (often 
alled 
onstants of motion or �rst integrals) one of whi
h is the

Hamiltonian fun
tion de�ning the ve
tor �eld. It follows that knowing these 
onstants of motion

leads to expli
it equations for aÆne parts of Abelian surfa
es. On the one hand they yield by

dire
t methods some interesting results about the family of Abelian varieties whi
h appear in the

system, whi
h often des
ribe the full moduli of Abelian varieties of a given type (at least in small

dimensions). Remember that Abelian varieties (of dimension g) are des
ribed by means of a set of

dis
rete parameters (Æ

1

; : : : ; Æ

g

) giving the (polarization) type and by means of a Riemann matrix Z

(i.e., a symmetri
 g� g matrix with positive de�nite imaginary part). On the other hand algebrai


geometry 
an be used to study the integrable system, for example to linearize the 
ow of the ve
tor

�eld or to �nd transformations between di�erent systems (see [V1℄ and Se
tion 2.2 below).

The present paper deals with an integrable system de�ned by a quarti
 potential in two degrees

of freedom, whose generi
 invariant manifolds are Abelian surfa
es of polarization type (1; 4). In one

dire
tion, the spe
i�
 geometry of these Abelian surfa
es will be used to prove algebrai
 
omplete

integrability of the potential and in the other dire
tion the expli
it (aÆne) 
oordinates provided

by the system will be used to prove some new results and perform some expli
it 
onstru
tions for

Abelian surfa
es of type (1; 4). In this way we provide and exploit an essentially new 
ase of the

intera
tion between algebrai
 geometry and a.
.i. systems (the present potential is the �rst known

a.
.i. system leading to Abelian surfa
es of type (1; 4)).

The potential is a quadrati
 perturbation

V
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the latter being obviously integrable sin
e it is a 
entral potential. However, although V

00

as well as

V

��

are only Liouville integrable (but not a.
.i.) the perturbation V

��

be
omes a.
.i. for � 6= �. V

��


an be interpreted as a potential whi
h des
ribes an anisotropi
 harmoni
 os
illator in a 
entral

�eld; remark that the 
entral �eld V

00

is ex
eptional in the sense that an anisotropi
 harmoni


os
illator in a general 
entral �eld is not integrable.

Newton's equations of motion take the symmetri
 form
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and it is 
he
ked at on
e that
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onstant of motion, independent of the Hamiltonian
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It was pointed out to me by A. Perelomov that this potential was �rst studied by Garnier in

the beginning of this 
entury. In fa
t the Garnier system is a mu
h more general system whi
h


ontains a lot of integrable systems; the derivation of the potentials V

��

(and their generalizations

to higher dimensions) will be given in the Appendix (see [G℄, [P℄).

To prove that the potentials V

��

de�ne an a.
.i. system we use the result of [BLS℄ (explained in

Se
tion 2.1) whi
h states that the line bundle L whi
h de�nes the polarization on a generi
 Abelian

surfa
e of type (1; 4) indu
es a birational map �

L

:T

2

! IP

3

, whose image is an o
ti
 of a 
ertain

type; an equation for this o
ti
 is given with resp
t to well-
hosen 
oordinates for IP

3
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for some (�

0
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) 2 IP

3

nS where S is some divisor of IP

3

, whi
h we will determine. Moreover

ea
h o
ti
 of this type o

urs in that way. It will allow us to show that the invariant surfa
es of

the Hamiltonian ve
tor �eld asso
iated to the potential V

��

; (� 6= �), are Abelian surfa
es, and

we show that the 
ow of this ve
tor �eld is linear on the invariant tori. Combining these results

leads to the proof that the potentials V

��

de�ne an a.
.i. system for � 6= � and we derive a Lax

representation for it. Our proof of algebrai
 
omplete integrability is unusual in the sense that we

do not use the Laurent solutions to the di�erential equations (see [AvM3℄), nor the Lax equations

(whi
h often only 
ome up at the end) (see [Gr℄).

Do the Abelian surfa
es generated by the potentials (1) a

ount for all moduli of (1; 4)-polarized

Abelian surfa
es? The answer is yes. In order to state pre
isely this answer (as given in Se
tion

4), we �rst make a detailed study of the moduli spa
e A

(1;4)

of Abelian surfa
es of type (1,4) and

of some asso
iated moduli spa
es (Se
tion 4). We use some results from [BLS℄ to 
onstru
t a map

 from A

(1;4)

to an algebrai
 
one M

3

of dimension 3, whi
h lives in weighted proje
tive spa
e

IP

(1;2;2;3;4)

. The map is bije
tive on the dense subset

~

A

(1;4)

of Abelian surfa
es for whi
h the above

map �

L

is birational and the image is an aÆne varietyM

3

nD where D is some divisor inM

3

; the

two-dimensional subset A

(1;4)

n

~

A

(1;4)

whi
h 
onsists of those Abelian surfa
es (T

2

;L) for whi
h �

L

is 2: 1 however maps to a 
urve C (minus two points P;Q), whi
h itself is a divisor in D. It follows

that the image of the map  :A

(1;4)

! IP

(1;2;2;3;4)


onsists of the union

I = (M

3

nD) [ (C n fP;Qg);

and the 
one M

3


an be 
onsidered as a 
ompa
ti�
ation of A

(1;4)

. Equations for M

3

; D; C and


oordinates for the points P and Q will be expli
itly 
al
ulated. We prove that for every point in

the 
one M

3

(ex
ept for its vertex) there is at least one invariant surfa
e of some potential V

��


orresponding to it under  (Theorem 3).

We also de�ne a map from

~

A

(1;4)

onto the moduli spa
e of two-dimensional Ja
obians, or what

is the same the moduli spa
e of smooth 
urves of genus two. Namely we show (Se
tion 5) that for

2



every T

2

2

~

A

(1;4)

there exists exa
tly one Ja
obi surfa
e J = J(T

2

) (with 
urve � = �(T

2

)) su
h

that the map 2

J

(multipli
ation by 2 in J) fa
torizes over T

2

(hen
e also over its dual

^

T

2

,) i.e.,

there is a 
ommutative diagram

J

4:1

�!

^

T

2

?

?

y

4:1

2

J

&

?

?

y

4:1

T

2

4:1

�! J

(3)

We 
all this Ja
obian the 
anoni
al Ja
obian (of T

2

); it will also appear naturally in Se
tion 3

when linearizing the ve
tor �eld de�ned by the potentials V

��

. One sees from the diagram that T

2


annot be re
onstru
ted from J (or �); indeed T

2

indu
es a de
omposition � = �

1

� �

2

of any

latti
e � de�ning J = C

2

=� (and a partition W = W

1

[W

2

of the set of Weierstra� points of �)

and this extra datum suÆ
es to re
onstru
t T

2

from J (or �). This will be shown in Se
tion 5.

The problem arises to 
al
ulate this map expli
itely as well as the extra data. We know of no

dire
t algebrai
 way to do this. Instead we solve this problem (in Se
tion 6) by relying heavily on

the parti
ular 
oordinates provided by the potentials V

��

. Some geometri
al investigations then

lead to the following result: the 
urve �(T

2

) 
orresponding to T

2

is given by

y

2

= x(x� 1)
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when the 
oordinate x is 
hosen su
h that it sends the points of W

2

to 0; 1 and 1; W

1


ontains

the other 3 Weierstra� points on this 
urve. We obtain this result in two di�erent ways: one way

uses the 
over J ! T

2

and the other uses the 
over T

2

! J . It would be ni
e to 
al
ulate this

map in a dire
t way, i.e., without using the V

��

.

In the �nal se
tion (Se
tion 7) we study the degenerate 
ase V

��

as a limit of the generi



ase V

��

(� 6= �). Sin
e the potentials V

��

are 
entral they are obviously integrated using polar


oordinates; these 
oordinates will be obtained as a limit of the linearizing variables for the generi



ase (V

��

; � 6= �) as well as the Lax representation (with a spe
tral parameter). This shows that

the systemati
 te
hniques developped in [V1℄ to obtain linearizing variables and Lax equations for

generi
 two-dimensional a.
.i. systems 
an lead to these data for integrable systems whose invariant

manifolds are not Abelian varieties. We prove that in this degenerate 
ase the aÆne invariant

manifolds are C

�

-bundles over an ellipti
 
urve, whi
h itself is the spe
tral 
urve going with the

Lax pair. Also we show that the invariant manifolds of all 
entral potentials V

��


orresponds to

the spe
ial point P 2M

3

at the boundary of I.

3
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2. Preliminaries

In this se
tion we re
all some results about Abelian surfa
es of type (1,4) whi
h will be used

in this paper (see [BLS℄, [GH℄, [LB℄), as well as the basi
 te
hniques to study two-dimensional

(algebrai
) 
ompletely integrable systems (see [V1℄).

2.1. Abelian surfa
es of type (1,4)

Let � be a rank 4 latti
e in C

2

; and form the asso
iated 
omplex torus T

2

= C

2

=�. By a

theorem of Riemann, T

2

is an Abelian surfa
e (i.e., 
an be embedded in proje
tive spa
e) if and

only if there exists a 
omplex base fe

1

; e

2

g for C

2

and an integer base f�

1

; : : : ; �

4

g for � su
h that

the latter base 
an be written in terms of the former as

� =

�

Æ

1

0 a b

0 Æ

2

b 


�

(i.e., �

1

= Æ

1

e

1

; : : :) where Æ

1

j Æ

2

2 IN and =

�

a b

b 


�

> 0: The integers Æ

1

and Æ

2

are not invariants

for the Abelian surfa
e T

2

itself, but for T

2

equipped with some additional data: if L is an ample

line bundle on T

2

(i.e., a line bundle for whi
h the se
tions of some power of the line bundle embeds

the surfa
e in proje
tive spa
e) then a base �

1

; : : : ; �

4

for � 
an be 
hosen su
h that the �rst Chern


lass 


1

(L) is given in terms of 
oordinates x

1

; : : : ; x

4

; dual to �

1

; : : : ; �

4

; by




1

(L) = Æ

1

dx

1

^ dx

3

+ Æ

2

dx

2

^ dx

4

:




1

(L) is 
alled the polarization determined by L and depends only on L up to algebrai
 equivalen
e;

Æ

1

and Æ

2

are invariants of 


1

(L): The pair (Æ

1

; Æ

2

) is 
alled the type of L; (or the type of the

polarization 


1

(L)). Loosely speaking we often say that the Abelian surfa
e T

2

has type (Æ

1

; Æ

2

).

T

2

is said to be prin
ipal polarized if it has type (1; 1). A prin
ipal polarized Abelian surfa
e is

either isomorphi
 to a produ
t of ellipti
 
urves (ea
h taken with its prin
ipal polarization), or to

the Ja
obian of a smooth 
urve of genus two, polarized by its theta divisor �.

For a generi
 Abelian surfa
e the line bundle L = [D℄ 
orresponding to any e�e
tive divisor D

is ample and one has the following useful string of identities:

g(D)� 1 = dimH

0

�

T

2

;O(L)

�

= Æ

1

Æ

2

; (4)

where g(D) is the virtual genus of D; whi
h 
an (for Abelian surfa
es) be de�ned in terms of

interse
tion of divisors by

g(D) =

D � D

2

+ 1; (5)

if D is non-singular, g(D) is just the topologi
al genus of D: To L there is asso
iated a rational map

�

L

:T

2

! IP

Æ

1

Æ

2

�1

whi
h is de�ned by means of the se
tions of the sheaf O(L), or equivalently by

means of the elements of L(D), where

L(D) = ff j f meromorphi
 on T

2

and (f) +D � 0g:

In this paper we 
on
entrate on Abelian surfa
es of type (1; 4): These Abelian surfa
es have

a very ri
h geometry, whi
h we des
ribe now (see [BLS℄). As in [BLS℄ we will without further

mention always restri
t ourselves to those Abelian surfa
es of type (1; 4) whi
h are not isomorphi


5



to a produ
t of ellipti
 
urves as polarized Abelian surfa
es. Let L be a line bundle of type (1; 4)

on an Abelian surfa
e T

2

: It follows from (4) that dimH

0

(T

2

;O(L)) = 4 and L indu
es a rational

map �

L

:T

2

! IP

3

:

� In the generi
 
ase, the image of this map O = �

L

(T

2

) � IP

3

is an o
ti
 and �

L

is birational

on its image. Let K(L) be the kernel of the isogeny

I

L

:T

2

!

^

T

2

a 7! t

a

L
 L

�1

between T

2

and its dual

^

T

2

(de�ned as the set of all line bundles on T

2

of degree 0; t

a

is translation

by a 2 T

2

), then K(L) is a group of translations, isomorphi
 to ZZ=4ZZ� ZZ=4ZZ. Pi
king any su
h

isomorphism, let � and � be generators of the subgroups 
orresponding to this de
omposition. Then

homogeneous 
oordinates (y

0

: y

1

: y

2

: y

3

) for IP

3


an be pi
ked, su
h that �; � and the (�1)-involution

{ on T

2

(de�ned as {(z

1

; z

2

) = (�z

1

;�z

2

) for (z

1

; z

2

) 2C

2

=�) a
t as follows (see [M1℄):
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0
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0
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: y
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: y

2
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3

);

(6)

(stri
tly speaking it may be ne
essary to repla
e � by 3� ; it is easily 
he
ked that these 
oordinates

exist only for (�; �) and (3�; 3�) or for (�; 3�) and (3�; �)). [BLS℄ show that the o
ti
 O is given in

these 
oordinates by
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for some (�

0

:�

1

:�

2

:�

3

) 2 IP

3

n S where S is some divisor of IP

3

whi
h we will determine later

(Se
tion 6.4). Remark that for any �

i

= �1; the 
oordinates (�

0

y

0

: �

1

y

1

: �

2

y

2

: �

0

�

1

�

2

y

3

) will also

satisfy (6) and these are the only 
oordinates with this property. It is also seen that, if (�; �) is

repla
ed by (3�; 3�), then the 
oordinates (y

0

: y

1

: y

2

: y

3

) are repla
ed by (y

0

: y

1

: y

2

:�y

3

): Sin
e the

equation of O depends only on y

2

i

these 
hoi
es do not a�e
t the equation (7), so there is asso
iated

to a de
omposition K(L) = K

1

� K

2

(where K

1

and K

2

are 
y
li
 of order 4) an equation for

O: [BLS℄ also show that the polarized Abelian surfa
e as well as the de
omposition of K(L) 
an

be re
overed from (7) and that every o
ti
 of the type (7) (with (�

0

:�

1

:�

2

:�

3

) =2 S) is the image

�

L

(T

2

) of some (1; 4)-polarized Abelian surfa
e (T

2

;L).

If we denote by

~

A

0

(1;4)

the moduli spa
e of (isomorphism 
lasses of) (1; 4)-polarized Abelian

surfa
es for whi
h �

L

is birational, equipped with a de
omposition of K(L) as above, then it follows

that

~

A

0

(1;4)

�

=

IP

3

n S

�

0

� ��

0

: (8)

Moreover, if we denote by K the subgroup of K(L) of two-torsion elements,

K = f0; 2�; 2�; 2� + 2�g;

6



then T

2

=K is a prin
ipal polarized Abelian surfa
e, whi
h is the Ja
obian of a 
urve of genus two;

we 
all T

2

=K the 
anoni
al Ja
obian asso
iated to T

2

: Re
all that for a two-dimensional Ja
obian

J its Kummer surfa
e is the image of �

[2�℄

� IP

3

, where � is the theta divisor of J . Then it

is seen from (6) that an equation for the Kummer surfa
e of T

2

=K is given by the quarti
 Q in

IP

3

, obtained by repla
ing y

2

i

by z

i

in the equation (7) for O and there is an obvious proje
tion

�p:O ! Q. In fa
t, 
hoosing the origin of T

2

su
h that L be
omes symmetri
, L is the pull-ba
k of

a line bundle N on T

2

=K of type (1,1) via the 
anoni
al proje
tion

p:T

2

! T

2

=K;

and �

N

2

indu
es the Kummer mapping; [BLS℄ prove that the following diagram 
ommutes

T

2

�

L

�! O

?

?

y

p

?

?

y

p

T

2

=K

�

N

2

�! Q

(9)

� If �

L

is not birational, then it is 2: 1 and �

L

(T

2

) is a quarti
 in IP

3

; given by one of the equations

�

1

(y

2

0

y

2

1

+ y

2

2

y

2

3

) + �

2

(y

2

1

y

2

3

� y

2

0

y

2

2

) = 0;

�

1

(y

2

2

y

2

3

� y

2

0

y

2

1

) + �

3

(y

2

1

y

2

2

� y

2

0

y

2

3

) = 0;

�

2

(y

2

1

y

2

3

+ y

2

0

y

2

2

) + �

3

(y

2

1

y

2

2

+ y

2

0

y

2

3

) = 0;

depending on the 
hoi
e of the de
omposition; in this 
ase the Abelian surfa
e as well as the

de
omposition of K(L) 
an only partly be re
overed from these equations and T

2

=K is a produ
t

of ellipti
 
urves (in parti
ular T

2

is isogeneous to a produ
t of ellipti
 
urves). Squaring ea
h of

these equations we �nd equation (7) respe
tively with

(

�

2

0

= 2(�

2

2

+ �

2

3

)

�

1

= 0

�

2

�

3

6= 0; �

2

2

� �

2

3

6= 0;

(

�

2

0

= �2(�

2

1

+ �

2

3

)

�

2

= 0

�

1

�

3

6= 0; �

2

1

� �

2

3

6= 0;

(

�

2

0

= 2(�

2

1

� �

2

2

)

�

3

= 0

�

1

�

2

6= 0; �

2

1

+ �

2

2

6= 0;

(10)

Summarizing, in the �rst 
ase (the generi
 
ase), �

L

(T

2

) is an o
ti
, T

2

=K is a Ja
obian and

T

2

as well as the de
omposition of K(L) 
an be re
onstru
ted from the o
ti
; in the other 
ase

�

L

(T

2

) is a quarti
, T

2

=K is a produ
t of ellipti
 
urves and T

2


annot be re
onstru
ted from the

quarti
. The rational map �

L

provides us with a natural surje
tive map

 

0

:A

0

(1;4)

!

�

�

IP

3

n S

�

[

(three rational 
urves in S, ea
h missing eight points)

�

Æ

(�

0

� ��

0

);

where A

0

(1;4)

denotes the moduli spa
e of (isomorphism 
lasses of) (1; 4)-polarized Abelian surfa
es

together with a de
omposition of K(L) (as above). The map  

0

extends the bije
tion (8) de�ned

7



on the dense subset

~

A

0

(1;4)

of A

0

(1;4)

and maps the (two-dimensional) 
omplement of

~

A

0

(1;4)

to the

three rational 
urves, whi
h are thought of as lying inside the boundary of  

0

(

~

A

0

(1;4)

), i.e., in S;

the generi
 point of S however does not 
orrespond to Abelian surfa
es, but to surfa
es whi
h 
an

be interpreted as degenerations of Abelian surfa
es (see [BLS℄).

2.2. Two-dimensional a.
.i. systems

We now re
all the basi
 tools to study two-dimensional a.
.i. systems (see [AvM1℄, [V1℄). At

�rst, an integrable system on (IR

2n

; !) (! may be any symple
ti
 stru
ture on IR

2n

but the 
ase

that ! is the standard symple
ti
 stru
ture will suÆ
e for this paper) 
onsists of a Hamiltonian

ve
tor �eld X

H

, de�ned as

!(X

H

; �) = dH(�);

for whi
h there exist n� 1 additional invariants, i.e., there are n independent, Poisson-
ommuting

fun
tions H

1

; : : : ;H

n

on IR

2n

; Poisson-
ommuting fun
tions F;G 2 C

1

(IR

2n

), are by de�nition

fun
tions for whi
h their Poisson bra
ket fF;Gg

!

= !(X

F

;X

G

) vanishes. The interse
tion

n

\

i=1

�

x 2 IR

2n

j H

i

(x) = 


i

	

is by Poisson-
ommutativity invariant for the 
ows of all X

H

i

and is smooth for generi
 values of


 = (


1

; : : : ; 


n

). By the well-known Arnold-Liouville Theorem, the 
ompa
t 
onne
ted 
omponents

of these invariant manifolds are di�eomorphi
 to real tori (the non-
ompa
t 
omponents being

di�eomorphi
 to 
ilindres, assuming that the 
ow of the ve
tor �elds X

H

i

is 
omplete on them);

moreover the 
ows of the ve
tor �elds X

H

i

are linear, when seen as 
ows on the tori (
ilindres)

using the di�eomorphism. n is 
alled the dimension of the system.

A notable 
ase | whi
h appears most often in both the 
lassi
al and re
ent, mathemati
al

and physi
s literature | is the 
ase that there exist 
oordinates q

1

; : : : ; q

2n

for IR

2n

, in whi
h

all H

i

; (i = 1; : : : ; n) as well as all bra
kets fq

i

; q

j

g

!

; (i; j = 1 : : : ; 2n) are polynomials (stri
tly

speaking, for the larger 
lass of these examples (IR

2n

; f�; �g

!

) is repla
ed by the more general Poisson

manifold (IR

m

; f�; �g), where f�; �g does not ne
essarily 
ome from a symple
ti
 stru
ture). Then

the symple
ti
 stru
ture and the ve
tor �eld are easily 
omplexi�ed, giving a Poisson 
ommuting

family of fun
tions on C

2n

and for generi
 
 = (


1

; : : : ; 


n

) (where the 


i

may now also take values

in C) the invariant manifolds

A




=

n

\

i=1

�

x 2C

2n

j H

i

(x) = 


i

	

are aÆne (algebrai
) varieties. In su
h a situation, the integrable system will be 
alled algebrai



ompletely integrable if these generi
 invariant manifolds A




are aÆne parts of an Abelian variety

T

n




, A




= T

n




n D




, where D




is the minimal divisor where the 
oordinate fun
tions (restri
ted to

the invariant manifolds) blow up, and if the (
omplex) 
ow of the ve
tor �elds on T




is linear (see

[AvM3℄).

In the two-dimensional 
ase (n = 2) the invariant manifolds 
omplete into Abelian surfa
es by

adding one or several (possibly singular) 
urves to the aÆne surfa
es A




. In this 
ase, the following

algorithm, proposed in [V1℄ leads to an expli
it linearization (i.e., integration) of the ve
tor �eld

X

H

(steps (1) and (2) are due to Adler and van Moerbeke, see [AvM1℄).
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(1) Compute the �rst few terms of the Laurent solutions to the di�erential equations, and use

these to 
onstru
t an embedding of the generi
 invariant manifolds in proje
tive spa
e (see

[AvM3℄, [V1℄ and [V2℄).

(2) Dedu
e from the embedding the stru
ture of the divisors D




to be adjoined to the (generi
)

aÆne invariant manifolds A




in order to 
omplete them into Abelian surfa
es. At this point

the type of polarization indu
ed by ea
h irredu
ible 
omponent of D





an also be determined.

(3) a) If one of the 
omponents of D




is a smooth 
urve �




of genus two, 
ompute the image of

the rational map

�

[2�




℄

:T

2




! IP

3

whi
h is a singular surfa
e in IP

3

, the Kummer surfa
e K




of Ja
(�




).

b) Otherwise, if one of the 
omponents of D




is a d: 1 unrami�ed 
over C




of a smooth 
urve

�




of genus two, p: C




! �




, the map p extends to a map �p:T

2




! Ja
(�




). In this 
ase, let

E




denote the (non-
omplete) linear system �p

�

j2�




j � j2C




j whi
h 
orresponds to the 
omplete

linear system j2�




j and 
ompute now the Kummer surfa
e K




of Ja
(�




) as the image of

�

E




:T

2




! IP

3

:


) Otherwise, 
hange the divisor at in�nity so as to arrive in 
ase a) or b). This 
an always be

done for a generi
 Abelian surfa
e (i.e., for an Abelian surfa
e whi
h has no automorphisms

ex
ept identity and the obvious (�1)-involution).

(4) Choose a Weierstra� point W on the 
urve �




and 
oordinates (z

0

: z

1

: z

2

: z

3

) for IP

3

su
h that

�

[2�




℄

(W ) = (0: 0: 0: 1) in 
ase (3) a) and �

E




(W ) = (0: 0: 0: 1) in 
ase (3) b). Then this point

will be a singular point (node) for K




and K




has an equation

p

2

(z

0

; z

1

; z

2

)z

2

3

+ p

3

(z

0

; z

1

; z

2

)z

3

+ p

4

(z

0

; z

1

; z

2

) = 0;

where the p

i

are polynomials of degree i. After a proje
tive transformation whi
h �xes

(0: 0: 0: 1) we may assume that

p

2

(z

0

; z

1

; z

2

) = z

2

1

� 4z

0

z

2

:

(5) Finally, let x

1

and x

2

be the roots of the quadrati
 equation z

0

x

2

+z

1

x+z

2

= 0, whose dis
rim-

inant is p

2

(z

0

; z

1

; z

2

), with the z

i

expressed in terms of the original variables q

1

; : : : ; q

4

. Then

the di�erential equations des
ribing the ve
tor �eld X

H

are rewritten by dire
t 
omputation

in the 
lassi
al Weierstra� form

dx

1

p

f(x

1

)

+

dx

2

p

f(x

2

)

= �

1

dt;

x

1

dx

1

p

f(x

1

)

+

x

2

dx

2

p

f(x

2

)

= �

2

dt;

where �

1

and �

2

depend on 
 (i.e., on the torus) only. From it, the symmetri
 fun
tions

x

1

+ x

2

(= �z

1

=z

0

) and x

1

x

2

(= z

2

=z

0

) and hen
e also the original variables q

1

; : : : ; q

4


an be

written in terms of the Riemann theta fun
tion asso
iated to the 
urve y

2

= f(x).

The best way to see that this algorithm is very e�e
tive and easy to apply is to look at one or

several of the worked-out examples in [V1℄. In the present paper this algorithm will not be used as

it stands, sin
e we do not know in advan
e that our system is a.
.i.; instead we will see how it 
an

be helpful when proving algebrai
 
omplete integrability. We remark that it is shown in [V1℄ how

a Lax pair for the system derives from the above linearization.
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3. The quarti
 potential V

��

and its integrability

It is shown in [CC℄ that for any � = (�

1

; : : : ; �

n

); the potential

V

�

=

 

n

X

i=1

q

2

i

!

2

+

n

X

i=1

�

i

q

2

i

; (11)

de�nes an integrable system on IR

2n

= f(q

1

; : : : ; q

n

; p

1

; : : : ; p

n

) j q

i

; p

i

2 IRg; equipped with the

standard symple
ti
 stru
ture ! =

P

dq

i

^ dp

i

; when the Hamiltonian is taken as the total energy

H

�

= T + V

�

; T =

1

2

n

X

i=1

p

2

i

;

(T is the kineti
 energy). This result also follows immediately from the integrability of the Garnier

system, whi
h will be re
alled in the Appendix. We study here the 
ase n = 2 (two degrees of

freedom) writing

V

��

= (q

2

1

+ q

2

2

)

2

+ �q

2

1

+ �q

2

2

:

It would be interesting to study also the higher-dimensional potentials as well as other 
ases of the

Garnier system from the point of view of algebrai
 geometry.

Fixing arbitrary parameters � 6= �; let H = T + V

��

: Then the equations for the ve
tor �eld

X

H

; de�ned by !(X

H

; �) = dH(�) are given by

_q

1

= p

1

;

_q

2

= p

2

;

_p

1

= �2q

1

(2q

2

1

+ 2q

2

2

+ �);

_p

2

= �2q

2

(2q

2

1

+ 2q

2

2

+ �):

(12)

For any f; g 
onsider the aÆne surfa
e A

fg

de�ned by

F � (q

1

p

2

� q

2

p

1

)

2

+ (� � �)(p

2

1

+ 2q

4

1

+ 2q

2

1

q

2

2

+ 2�q

2

1

) = f;

G � (q

1

p

2

� q

2

p

1

)

2

+ (�� �)(p

2

2

+ 2q

4

2

+ 2q

2

1

q

2

2

+ 2�q

2

2

) = g;

(when the dependen
e on � and � is important we will denote this surfa
e by A




where 
 =

(�; �; f; g)). Then A

fg

is invariant under the 
ow of X

H

sin
e both F and G Poisson 
ommute

with H. Sin
e

F �G = 2(� � �)H

and � 6= �, any pair of fun
tions taken form fF;G;Hg 
an be taken as a maximal set of independent

Poisson 
ommuting fun
tions; in order t o simplify some of the formulas in the sequel we let, for

given f and g; the 
onstant h be determined by f � g = 2(� � �)h:

The surfa
e A

fg

has the following independent involutions:

{

1

(q

1

; q

2

; p

1

; p

2

) = (�q

1

; q

2

;�p

1

; p

2

);

{

2

(q

1

; q

2

; p

1

; p

2

) = (q

1

;�q

2

; p

1

;�p

2

);

whi
h both preserve the ve
tor �eld, and one other (independent) involution

|(q

1

; q

2

; p

1

; p

2

) = (q

1

; q

2

;�p

1

;�p

2

);
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whi
h reverses the dire
tion of the ve
tor �eld. These three involutions generate a group isomor-

phi
 to (ZZ=2ZZ)

3

. Moreover one sees that for �xed �; �; f and g all A

(��;��;�

3

f;�

3

g)

; � 2 C

�

are

isomorphi
. It is therefore natural to 
onsider (�; �; f; g) as belonging to the weighted proje
tive

spa
e

1

IP

(1;1;3;3)

. A trivial observation whi
h will turn out to be important is that also A

(�;�;f;g)

and A

(�;�;g;f)

are isomorphi
.

Remark that if � = � then F (= G) is just the square of the momentum

q = q

1

p

2

� q

2

p

1

; (13)

whi
h obviously Poisson-
ommutes with the energy 
orresponding to a 
entral potential. What is

remarkable however is that if � 6= � then the equations de�ning A

fg


an be rewritten (birationally)

in terms of q

1

; q

2

and the momentum q; giving pre
isely the equations (7) of the o
ti
 O with

�

2

0

= 4(�� �)

2

(�+ �)� 2(f + g);

�

2

1

= g;

�

2

2

= 2(�� �)

3

;

�

2

3

= f;

y

0

= 1;

y

1

= q

1

4

p

2(� � �)=f;

y

2

= q=

4

p

fg;

y

3

= q

2

4

p

2(� � �)=g:

(14)

It follows that for generi
 f; g the surfa
e A

fg

is birationally equivalent to the aÆne part O

0

=

O \ fy

0

6= 0g of the o
ti
 O whi
h is itself birationally equivalent to an Abelian surfa
e of type

(1; 4). We show in the following theorem that A

fg

a
tually is (isomorphi
 to) an aÆne part of an

Abelian surfa
e of type (1; 4).

Theorem 1 Fixing any � 6= � 2C, the aÆne surfa
e A

fg

�C

4

de�ned by

(q

1

p

2

� q

2

p

1

)

2

+ (� � �)(p

2

1

+ 2q

4

1

+ 2q

2

1

q

2

2

+ 2�q

2

1

) = f;

(q

1

p

2

� q

2

p

1

)

2

+ (�� �)(p

2

2

+ 2q

4

2

+ 2q

2

1

q

2

2

+ 2�q

2

2

) = g;

is for generi


2

f; g 2 C isomorphi
 to an aÆne part of an Abelian surfa
e T

2

fg

; of type (1; 4),

obtained by removing a smooth 
urve D

fg

of genus 5,

A

fg

= T

2

fg

n D

fg

;

and the ve
tor �eld X

H

extends to a linear ve
tor �eld on T

2

fg

:

Proof

(i) Let G be the group generated by the involutions {

1

; {

2

, and |. Our �rst aim is to show that

A

fg

=G is (isomorphi
 to) an aÆne part of a Kummer surfa
e. Sin
e f and g are generi
, we may

suppose that (�

0

:�

1

:�

2

:�

3

) given by (14) do not belong to S. For these �

i

, let Q be the quadri


(Kummer surfa
e)

�

2

0

z

0

z

1

z

2

z

3

+ �

2

1

(z

2

0

z

2

1

+ z

2

2

z

2

3

) + �

2

2

(z

2

0

z

2

2

+ z

2

1

z

2

3

) + �

2

3

(z

2

0

z

2

3

+ z

2

1

z

2

2

)+

2�

1

�

2

(z

0

z

1

+ z

2

z

3

)(z

1

z

3

� z

0

z

2

) + 2�

1

�

3

(z

0

z

3

� z

1

z

2

)(z

0

z

1

� z

2

z

3

)+

2�

2

�

3

(z

1

z

2

+ z

0

z

3

)(z

1

z

3

+ z

0

z

2

) = 0;

(15)

1

a qui
k introdu
tion to weighted proje
tive spa
es is given in an appendix to [AvM3℄

2

pre
ise 
onditions will be given later (Theorem 6)
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whi
h is obtained from (7) by setting z

i

= y

2

i

; i.e., there is an unrami�ed 8: 1 
over O ! Q; this

map restri
ts to a map �p

0

:O

0

! Q

0

; where Q

0

= Q\fz

0

6= 0g: Also the rational map �:A

fg

! O

0

given by (13) and (14) indu
es a birational map

~

�:A

fg

=G ! Q

0

; giving rise to a 
ommutative

diagram

A

fg

�

�! O

0

?

?

y

�

?

?

y

�p

0

A

fg

=G

~

�

�! Q

0

(16)

Sin
e Q

0

is normal, it suÆ
es to show that

~

� is bije
tive. Obviously

~

� is surje
tive: if (x

1

; x

2

; x

3

) 2

Q

0

; let (y

1

; y

2

; y

3

) be su
h that y

2

i

= x

i

and let q

1

; q

2

; q be determined from (14). Then these satisfy

the 
ondition under whi
h p

1

; p

2

exist su
h that (q

1

; q

2

; p

1

; p

2

) 2 A

fg

and q = q

1

p

2

� q

2

p

1

: Then

~

�(q

1

; q

2

; p

1

; p

2

) = (x

1

; x

2

; x

3

). At the other hand, if (

~

�Æ�)(q

1

; q

2

; p

1

; p

2

) = (

~

�Æ�)(q

0

1

; q

0

2

; p

0

1

; p

0

2

) then

q

1

= �

1

q

0

1

; q

2

= �

2

q

0

2

; q = �q

0

; (where q

0

= q

0

1

p

0

2

� q

0

2

p

0

1

) for �

1

; �

2

; � 2 f�1; 1g: Then one sees that

(q

1

; q

2

; p

1

; p

2

) = {

�

1

1

{

�

2

2

{

�

(q

0

1

; q

0

2

; p

0

1

; p

0

2

);

where i

�

k

k

means {

k

in 
ase �

k

= �1 and identity for �

k

= 1: It follows that �(q

1

; q

2

; p

1

; p

2

) =

�(q

0

1

; q

0

2

; p

0

1

; p

0

2

); and

~

� is inje
tive. This shows that

~

� is an isomorphism, hen
e A

fg

=G is isomorphi


to the (aÆne) Kummer surfa
e de�ned by Q

0

:

(ii) We pro
eed to show that A

fg

is isomorphi
 to an aÆne part of an Abelian surfa
e, more

pre
isely to the normalization A of O

0

(the o
ti
 is singular along the 
oordinate planes). This

normalization 
an be obtained via the birational map �

L

:T

2

! O: In parti
ular, by restri
tion of

(9) to an aÆne pie
e we get a 
ommutative diagram

A

�

L

�! O

0

?

?

y

p

0

?

?

y

�p

0

K

0

�

N

2

�! Q

0

(17)

where �

N

2

is an isomorphism. If we 
ombine both diagrams (16) and (17) we get

A

fg

'

�! A

?

?

y

8:1

?

?

y

8:1

A

fg

=G

~'

�! K

0

with ' the birational map �

�1

L

� and ~' the isomorphism �

�1

N

2

~

�. Now the two 
overs A

fg

! A

fg

=G

and A ! K

0

are only rami�ed in dis
rete points; the same holds true if A and A

fg

are repla
ed

by their 
losures: the 
losure of A is just T

2

and the 
losure of A

fg

is obtained from the expli
it

embedding whi
h will be given in 6.1. By Zariski's Main Theorem the normality of T

2

implies that

the lifting ' of ~' must also be an isomorphism and we get

A

fg

= T

2

fg

n D

fg

for some divisor D

fg

on a (1; 4)-polarized Abelian surfa
e T

2

fg

: It is seen that D

fg

is a 4: 1 unrami�ed


over of a translate of the Riemann theta divisor of the 
anoni
al Ja
obian, hen
e D

fg

is smooth

and has genus 5; an equation for D

fg

will be given in Se
tion 6.
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(iii) Finally we show that X

H

extends to a linear ve
tor �eld on T

2

fg

: Letting �

0

= 1; �

1

= q

2

1

and �

3

= q

2

; we have shown that an equation for the Kummer surfa
e of the 
anoni
al Ja
obian

asso
iated to A

fg

is a quarti
 in these variables. From (14) and (7) the leading term in �

2

3

is given

by ((� + �)�

0

+ �

1

+ �

2

)

2

� 4(���

0

+ ��

1

+ ��

2

); or, in terms of the original variables,

(q

2

1

+ q

2

2

+ �+ �)

2

� 4(�� + �q

2

2

+ �q

2

1

): (18)

We let x

1

and x

2

be the roots of the polynomial

x

2

+

�

q

2

1

+ q

2

2

+ �+ �

�

x+ �� + �q

2

2

+ �q

2

1

;

as suggested by the algorithm re
alled in Se
tion 2.2 (\suggested" be
ause we did not prove yet

that the system is a.
.i.). Expli
itely, let

x

1

+ x

2

= �(q

2

1

+ q

2

2

+ �+ �);

x

1

x

2

= �� + �q

2

2

+ �q

2

1

;

_x

1

+ _x

2

= �2(q

1

p

1

+ q

2

p

2

);

x

1

_x

2

+ _x

1

x

2

= 2(�q

1

p

1

+ �q

2

p

2

);

(19)

then it is not hard to rewrite the equations F = f; G = g; de�ning A

fg

; in terms of x

1

; x

2

; _x

1

; _x

2

:

This gives

_x

2

i

=

8(x

i

+ �)(x

i

+ �)

�

x

3

i

+ (�+ �)x

2

i

+ (�� � h)x

i

+ (�f � �g)=2(� � �)

�

(x

1

� x

2

)

2

so that

dx

1

p

f(x

1

)

+

dx

2

p

f(x

2

)

= 0;

x

1

dx

1

p

f(x

1

)

+

x

2

dx

2

p

f(x

2

)

= 2

p

2dt;

(20)

where

f(x) = (x+ �)(x+ �)

�

x

3

+ (�+ �)x

2

+ (�� � h)x+

�f � �g

2(�� �)

�

:

Integrating (20) we see that X

H

is a linear ve
tor �eld on A

fg

; whi
h obviously extends to a linear

ve
tor �eld on T

2

fg

: From this expression the symmetri
 fun
tions x

1

+ x

2

and x

1

x

2

; hen
e the

variables q

1

; q

2

; p

1

; p

2


an be written at on
e in terms of theta fun
tions (see [M2℄).

Remark that as a by-produ
t we �nd an equation

y

2

= (x+ �)(x+ �)

�

x

3

+ (�+ �)x

2

+ (�� � h)x+

�f � �g

2(�� �)

�

: (21)

for the 
urve whose Ja
obian is the 
anoni
al Ja
obian asso
iated to T

2

fg

:

The theorem leads to the following important 
orollary:

Corollary 2 If � 6= � then the potential

V

��

=

�

q

2

1

+ q

2

2

�

2

+ �q

2

1

+ �q

2

2
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de�nes an a.
.i. system (in the sense of [AvM1℄) on IR

4

with the 
anoni
al symple
ti
 stru
ture. A

Lax representation of the ve
tor �eld X

H

, where H =

1

2

(p

2

1

+ p

2

2

) + V

��

, is given by

d

dt

�

v(x) u(x)

w(x) �v(x)

�

=

p

2

��

v(x) u(x)

w(x) �v(x)

�

;

�

0 1

x� 2(q

2

1

+ q

2

2

) 0

��

;

where

u(x) = x

2

+ (q

2

1

+ q

2

2

+ �+ �)x+ �� + �q

2

2

+ �q

2

1

;

v(x) =

1

p

2

[(q

1

p

1

+ q

2

p

2

)x+ (�q

1

p

1

+ �q

2

p

2

)℄ ;

w(x) = x

3

+ (�+ � � q

2

1

� q

2

2

)x

2

�

�

p

2

1

+ p

2

2

2

+ (�+ �)

�

q

2

1

+ q

2

2

�

� ��

�

x

� ��

�

p

2

1

2�

+

p

2

2

2�

+ q

2

1

+ q

2

2

�

:

Proof

The Liouville integrability is proven in [G℄ and [CC℄; it is in our 
ase proven easily by showing

that fF;Gg = 0 (F;G Poisson 
ommute) and that F and G are independent on a dense subset of

IR

4

: To show that for � 6= � the system is a.
.i. we need to prove in addition the following three


laims:

(i) the generi
 (
omplex) aÆne invariant surfa
e A

fg

is an aÆne part of an Abelian surfa
e

T

2

fg

; A

fg

= T

2

fg

n D

fg

; where D

fg

is some divisor on T

2

fg

,

(ii) D

fg

is the minimal divisor where the variables q

1

; q

2

; p

1

and p

2

blow up,

(iii) the ve
tor �elds X

F

and X

H

extend to holomorphi
 (= linear) ve
tor �elds on T

2

fg

:

(i) and half of (iii) are shown in Theorem 1. To show the other half of (iii), whi
h 
on
erns the

extension of X

F

, the linearizing variables are de�ned in the same way, but their derivatives are now


al
ulated using X

F

instead of X

H

: Finally, sin
e the variables q

1

; q

2

; p

1

and p

2

do not blow up on

A

fg

; and sin
e D

fg

is irredu
ible, they all blow up along D

fg

, showing (ii).

To 
onstru
t a Lax pair, note that if u(x) is de�ned as u(x) = (x� x

1

)(x� x

2

) and v(x) is its

derivative (suitable normalised), then

f(x)� v

2

(x) is divisible by u(x);

where f(x) is the polynomial introdu
ed in the proof of Theorem 1. The quotient

w(x) =

f(x)� v

2

(x)

u(x)

is easily 
al
ulated. The form of the Lax pair then follows from [V1℄.
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4. Some moduli spa
es of Abelian surfa
es of type (1,4)

In this se
tion we des
ribe a map  from the moduli spa
e A

(1;4)

of polarized Abelian surfa
es

of type (1; 4) into an algebrai
 
one M

3

in some weighted proje
tive spa
e. To be pre
ise we

re
all that (1; 4)-polarized Abelian surfa
es whi
h are produ
ts of ellipti
 
urves (with the produ
t

polarization) are ex
luded from A

(1;4)

. The map will be bije
tive on the dense subset

~

A

(1;4)

whi
h

is the moduli spa
e of polarized Abelian surfa
es (T

2

;L) for whi
h the rational map �

L

: T

2

! IP

3

is birational. An alternative way to 
onstru
t the map  and the 
one M

3

will 
ome up later.

Re
all from Se
tion 2 that A

0

(1;4)

maps onto

P =

IP

3

n S

�

0

� ��

0

[

(three rational 
urves in S, ea
h missing eight points),

bije
tively on the �rst 
omponent (whi
h is dense); the three rational 
urves are thought of as lying

in IP

3

=(�

0

� ��

0

) at the boundary of this 
omponent. A

0

(1;4)

is a 24: 1 (rami�ed) 
overing of A

(1;4)

:

let � and � be elements of order 4 su
h that K(L) = h�i � h�i, and de�ne

K

1

= f0; �; 2�; 3�g;

K

2

= f0; �; 2�; 3�g;

K

3

= f0; � + �; 2� + 2�; 3� + 3�g;

K

4

= f0; � + 2�; 2�; 3� + 2�g;

K

5

= f0; 2� + �; 2�; 2� + 3�g;

K

6

= f0; � + 3�; 2� + 2�; 3� + �g:

These are the only 
y
li
 subgroups of order 4 of K(L). It is easy to see that taking all possible

isomorphisms K(L)

�

=

ZZ=4ZZ� ZZ=4ZZ we �nd exa
tly the 24 de
ompositions

K(L) = K

i

�K

j

; (1 � i; j � 6; ji� jj 6= 0; 3):

We des
ribe the 
over

A

0

(1;4)

24:1

�! A

(1;4)

and 
onstru
t a 24: 1 
over P !M

3

and a map  :A

(1;4)

!M

3

, whereM

3

is an algebrai
 variety

(lying in weighted proje
tive spa
e IP

(1;2;2;3;4)

), su
h that there results a 
ommutative diagram

A

0

(1;4)

24:1

�! A

(1;4)

�

~

A

(1;4)

?

?

y

 

0

?

?

y

 

?

?

y

~

 

P

24:1

�! M

3

� M

3

nD

(22)

in whi
h the restri
tion

~

 of  to

~

A

(1;4)

is a bije
tion (D is a divisor onM

3

whi
h will be determined

expli
itely).

The main idea in this 
onstru
tion is to see how the Galois group of the 
over A

0

(1;4)

! A

(1;4)

a
ts on P and de�ne M

3

to be the quotient. This quotient will be easy to 
al
ulate sin
e it is a

quotient of (a Zariski open subset of) IP

3

by a group whi
h a
ts linearly. The fa
t that this a
tion is

so simple is surprizing and was suggested to us by the obvious observation that the aÆne invariant

surfa
es A




and A




0

, with 
 = (�; �; f; g) and 


0

= (�; �; g; f) are isomorphi
, showing by (14) that

�

1

and �

2


an (in some way) be inter
hanged.
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The group G = GL(2;ZZ=4ZZ) a
ts transitively on (ordered!) bases as follows: if �; � are su
h

that K(L) = h�i � h�i and

�

a b


 d

�

2 G then

�

a b


 d

�

� (�; �) = (a� + b�; 
� + d�);

giving a new de
omposition K(L) = ha� + b�i � h
� + d�i: We denote by H the normal subgroup

of G whi
h 
onsists of those elements of G whi
h are 
ongruent to the identity matrix, modulo

2. Then H a
ts on the set of de
ompositions of K(L), thus H a
ts on A

0

(1;4)

; to determine the


orresponding a
tion on the isomorphi
 spa
e P, it is suÆ
ient to take any element of H, a
t to

obtain a new base and determine the new 
oordinates (y

0

: y

1

: y

2

: y

3

) a

ording to (6). Substituting

these in (7) the new parameters (��

0

:�

1

:�

2

:�

3

) are found immediately. The result is 
ontained

in the following table (sin
e diagonal matri
es a
t trivially only one representative of ea
h 
oset

modulo diagonal matri
es is shown):

H base K(L) 
oo. for IP

3

moduli in P

�

1 0

0 1

�

(�; �) K

1

�K

2

(y

0

: y

1

: y

2

: y

3

) (��

0

:�

1

:�

2

:�

3

)

�

1 2

0 1

�

(� + 2�; �) K

4

�K

2

(y

0

: y

1

: iy

2

: iy

3

) (��

0

:��

1

:�

2

:�

3

)

�

1 0

2 1

�

(�; 2� + �) K

1

�K

5

(y

0

: iy

1

: y

2

: iy

3

) (��

0

:�

1

:��

2

:�

3

)

�

1 2

2 1

�

(� + 2�; 2� + �) K

4

�K

5

(y

0

: iy

1

: iy

2

:�y

3

) (��

0

:�

1

:�

2

:��

3

)

Table 1

The upshot of the table is that all (��

0

:��

1

:��

2

:��

3

) 
orrespond to the same Abelian

surfa
e. The quotient spa
e is given by

P

0

=

P

(��

0

:�

1

:�

2

:�

3

) � (��

0

:��

1

:��

2

:��

3

)

�

=

�

IP

3

n S

0

�

[

(three rational 
urves in S

0

, ea
h missing three points),

(23)

upon de�ning �

i

= �

2

i

as 
oordinates for the quotient IP

3

, from whi
h in parti
ular equations for

the three rational 
urves, as well as for the three points are immediately obtained (the fa
t that

there are three missing points instead of two is due to rami�
ation of the quotient map at two

of the three points). The divisors S and S

0

will be 
al
ulated later. We will also interpret this

\intermediate" moduli spa
e P

0

.

Remark that G=H is isomorphi
 to the permutation group S

3

; so we have an a
tion of S

3

on

P

0

(whi
h extends to all of IP

3

sin
e it is linear). Choosing six representatives for G=H we �nd as

above the following table:
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S

3

G=H base K(L) 
oo. for IP

3

moduli in P

0

()

�

1 0

0 1

�

(�; �) K

1

�K

2

(y

0

: y

1

: y

2

: y

3

) (�

0

:�

1

:�

2

:�

3

)

(12)

�

0 1

3 0

�

(�; 3�) K

2

�K

1

(y

0

: y

2

: y

1

: iy

3

) (��

0

:�

2

:�

1

:�

3

)

(13)

�

1 0

1 1

�

(�; �+�) K

1

�K

3

(

p

iy

2

: y

1

:

p

iy

0

: y

3

) (�

0

:�

3

:��

2

:�

1

)

(23)

�

1 1

0 1

�

(�+�; �) K

3

�K

2

(y

1

: y

0

:

p

iy

2

:

p

iy

3

) (�

0

:��

1

:�

3

:�

2

)

(123)

�

0 3

1 1

�

(3�; �+�) K

2

�K

3

(

p

iy

1

: iy

2

:

p

iy

0

: y

3

) (�

0

:��

3

:�

1

:��

2

)

(321)

�

1 1

3 0

�

(�+�; 3�) K

3

�K

1

(

p

iy

2

:

p

iy

0

:�y

1

:�iy

3

) (�

0

:�

2

:��

3

:��

1

)

Table 2

The tables 1 and 2 together show how to re
onstru
t expli
itly the de
omposition of K(L)

from the equation of the o
ti
. More important, it allows us to 
onstru
t the quotient spa
e M

3

as is shown in the following theorem.

Theorem 3 There is a bije
tive map

~

 :

~

A

(1;4)

!M

3

nD, where M

3

is the 
one de�ned by

f

2

4

= f

1

(4f

3

2

� 27f

2

3

)

in weighted proje
tive spa
e IP

(1;2;2;3;4)

(with 
oordinates (f

0

: � � � : f

4

)) and D = D

1

+ D

2

is the

divisor whose two irredu
ible 
omponents are 
ut o� from M

3

by the hypersurfa
es

D

1

: f

4

= f

1

(f

1

� 3f

2

);

D

2

: 512f

4

= �16

�

16f

2

2

+ 72f

1

f

2

� 27f

2

1

� 48f

0

f

3

�

+ 3f

2

0

�

f

2

0

+ 24f

1

� 32f

2

�

:

(24)

In parti
ular the moduli spa
e

~

A

(1;4)

has the stru
ture of an aÆne variety. The map

~

 extends in

a natural way to a map

 :A

(1;4)

!M

3

;

the image of the (two-dimensional) boundary A

(1;4)

n

~

A

(1;4)

being C nfP;Qg; where C is the rational


urve (inside D) given by

C: 3f

2

0

= 4(4f

2

� f

1

);

and P;Q 2 C are given by P = (4: 0: 3: 2: 0); and Q = (2: 1: 1: 0:�2): Moreover, apart from its top

(1: 0: 0: 0: 0), all points in the 
one M

3


orrespond to some invariant surfa
e A

(�;�;f;g)

for some

�; �; f and g, with � 6= �:

Proof

First we des
ribe the quotient of IP

3

by the a
tion of S

3

, and show that it is (isomorphi
 to)

the algebrai
 variety M

3

given by an equation f

2

4

= f

1

(4f

3

2

� 27f

2

3

) in weighted proje
tive spa
e

17



IP

(1;2;2;3;4)

. To do this we use the (indu
ed) a
tion of S

3

on C

3

whi
h is given in terms of aÆne


oordinates x

i

= �

i

=�

0

for C

3

by

(1; 2) � (x

1

; x

2

; x

3

) = (�x

2

;�x

1

;�x

3

);

(1; 2; 3) � (x

1

; x

2

; x

3

) = (�x

3

; x

1

;�x

2

):

Sin
e the a
tion is orthogonal, it must be redu
ible, having an invariant line and an invariant plane

orthogonal to it. Indeed let

u

1

= x

1

+ x

2

� x

3

;

u

2

= x

1

� x

2

;

u

3

= x

1

+ x

3

;

(25)

then u

1

is anti-invariant for (1; 2) and is invariant for (1; 2; 3); u

2

and u

3

are 
hosen orthogonal to

u

1

. Then invariants

f

2

= u

2

2

� u

2

u

3

+ u

2

3

;

f

3

= u

2

u

3

(u

2

� u

3

);

for the a
tion of S

3

are found. Also there is

� = u

2

2

(2u

2

� 3u

3

) + u

2

3

(2u

3

� 3u

2

)

whi
h is (1; 2)-anti-invariant and (1; 2; 3)-invariant, giving a new invariant f

4

= u

1

�. Sin
e f

2

and

f

3

generate the invariants depending on u

2

; u

3

the invariant �

2

is expressible in terms of f

2

and

f

3

;

�

2

= 4f

3

2

� 27f

2

3

;

i.e., �

2

is nothing else than the dis
riminant of the 
ubi
 polynomial x

3

� f

2

x+ f

3

: It follows that

f

2

4

= f

1

(4f

3

2

� 27f

2

3

); (26)

where f

1

= u

2

1

. Remark that (f

1

; f

2

; f

3

; f

4

) have degree (2; 2; 3; 4) so that the quotient of IP

3

by the

a
tion of S

3

is given by (26) viewed as an equation in weighted proje
tive spa
e IP

(1;2;2;3;4)

with

respe
t to 
oordinates (f

0

: f

1

: f

2

: f

3

: f

4

): In 
on
lusion we have established the 
over P !M

3

and

there is an indu
ed map  :A

(1;4)

!M

3

whi
h makes

A

0

(1;4)

24:1

�! A

(1;4)

?

?

y

 

0

?

?

y

 

P

24:1

�! M

3

(27)

into a 
ommutative diagram (sin
e the a
tions on A

0

(1;4)

are the same by 
onstru
tion).

The redu
ible divisor D is easily 
omputed on
e expli
it equtions for S (or S

0

) are known.

Sin
e we know of no easy dire
t way to determine S, we postpone the 
omputation of S to Se
tion

6.4, where the potentials will be used to 
ompute S in a straightforward way; we will show there

that S

0

breaks up in four irredu
ible pie
es �

1

= 0; �

2

= 0; �

3

= 0 and dis
(P

�

3

(x)) = 0 where P

3

is the polynomial

P

3

= 4�

2

x

3

� (�

0

+ 2�

1

+ 6�

2

+ 2�

3

)x

2

+ (�

0

� 2�

1

+ 2�

2

� 6�

3

)x� 4�

3

;

18



and dis
(P

�

3

(x)) = 0 denotes its dis
riminant (in x). Granted this, we take �

1

= 0; let x

1

= 0 and

eliminate x

2

and x

3

from f

1

; f

2

and f

4

. Then the relation

f

4

= f

1

(f

1

� 3f

2

);

is found at on
e; obviously the same equation is found for �

2

= 0; �

3

= 0: The 
omputation for

dis
(P

�

3

(x)) = 0 is longer but also straightforward. Namely, by a simple translation in x the moni


polynomial P

�

3

(x)=(4�

2

) 
an be written as x

3

� ax + b, with dis
riminant 4a

3

� 27b

2

. When this

dis
riminant (depending on �

i

) is written in terms of u

i

using the inverse of (25), the equation (24)

for D

2

is read o� immediately.

As for the 
urve to be added to

~

 (

~

A

(1;4)

) to obtain  (A

(1;4)

) remark that the a
tion of S

3

identi�es the three rational 
urves in (23), leading to a single 
urve. To 
ompute its equation (as a

subvariety of D

1

) in terms of the 
oordinates f

i

, let a

ording to (10), �

1

= 0 and �

0

= 2(�

2

+�

3

).

Then in terms of �

0

and �

2

we get

f

0

= �

0

;

f

1

= (2�

2

� �

0

=2)

2

;

f

2

= �

2

2

�

�

0

�

2

2

+

�

2

0

4

;

leading to

3f

2

0

= 4(4f

2

� f

1

);

by elimination of �

0

and �

2

. As for the two spe
ial points P and Q on this 
urve, it is easy to 
he
k

that pi
king �

1

= 0; �

2

= �

3

and �

0

= 2(�

2

+ �

3

) leads to the point (4: 0: 3: 2: 0) and alternatively

taking �

1

= �

2

= 0; �

0

= 2�

3

leads to the point (2: 1: 1: 0:�2). This gives expli
it equations for all

these spa
es and proves the announ
ed result in (22).

Finally, let (f

0

: � � � : f

4

) 2 M

3

be any point di�erent from the top (1: 0: 0: 0: 0) of this 
one.

Then �

2

6= 0 for at least one of the six points (�

0

:�

1

:�

2

:�

3

) lying over this point. De�ne �; �; f; g

by

� = �

0

+ 2�

1

+ 2�

2

+ 2�

3

;

� = �

0

+ 2�

1

� 2�

2

+ 2�

3

;

f = 128�

2

2

�

3

;

g = 128�

2

2

�

1

;

(28)

then � 6= � and �; �; f and g satisfy (14). This shows that, apart from the top, all points in the


one M

3


orrespond to some invariant surfa
e A

(�;�;f;g)

for some � 6= �; f and g. This �nishes

the proof of the theorem.
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5. The pre
ise relation with the 
anoni
al Ja
obian

In this se
tion we want to show that a (1; 4)-polarized Abelian surfa
e T

2

2

~

A

(1;4)

is intimely

related to its 
anoni
al Ja
obian, denoted by J(T

2

) (introdu
ed in Se
tion 2), hen
e also to some


urve of genus two, denoted �(T

2

). In fa
t there is more: at the level of the Ja
obian, let J(T

2

) be

represented as C

2

=�, then T

2

indu
es a non-degenerate de
omposition of the latti
e � and at the

level of the 
urve, T

2

indu
es a de
omposition of the set of Weierstra� points of �(T

2

) whi
h in turn


orresponds to an in
iden
e diagram for the 16

6


on�guration on its Kummer surfa
e; moreover,

the Abelian surfa
e 
an be re
onstru
ted from either of these data (Theorem 4).

Re
all that the 
anoni
al Ja
obian of a (1; 4)-polarized Abelian surfa
e T

2

= (T

2

;L) 2

~

A

(1;4)

is de�ned as the (irredu
ible prin
ipally polarized) Abelian surfa
e J(T

2

) = T

2

=K, where K is the

(unique) subgroup of two-torsion elements of K(L). As is well-known su
h an Abelian surfa
e is

the Ja
obian of a smooth 
urve � of genus two, i.e., it is given as C

2

=�, where � is the period latti
e

� =

�

I




~! j 
 2 H

1

(�;ZZ)

�


onsisting of all periods of ~! =

t

(!

1

; !

2

), the !

i

being (independent) holomorphi
 di�erentials on

�. The Abelian group H

1

(�;ZZ) has an (alternating) interse
tion form

℄

( � ) and H

1

(�;ZZ) 
an be

de
omposed into non-degenerate planes (in many di�erent ways),

H

1

(�;ZZ) = H

1

�H

2

;

℄

( � )

H

1

and

℄

( � )

H

2

non-degenerate:

Su
h a de
omposition leads to a de
omposition � = �

1

� �

2

upon de�ning

�

i

=

�

I




~! j 
 2 H

i

�

; (29)

both H

1

(�;ZZ) = H

1

�H

2

and � = �

1

��

2

will be 
alled non-degenerate de
ompositions. They are


alled in addition simple if ea
h H

i

is generated by 
y
les whi
h 
ome from simple 
losed 
urves

(Jordan 
urves) in IP

1

under some (hen
e any) double 
over �: �! IP

1

.

We also re
all from the 
lassi
al literature the 16

6


on�guration on the Kummer surfa
e of

Ja
(�), where � is a 
urve of genus two. Let W

1

; : : : ;W

6

be the Weierstra� points on �, then the

points

W

ij

=

Z

W

j

W

i

~! (mod �)

are half-periods of Ja
(�), sixteen in total sin
e W

ij

= W

ji

and W

ii

= W

jj

for all i; j = 1; : : : ; 6.

There are also sixteen genus two 
urves �

ij

in Ja
(�), the translates W

ij

+�

kk

of the single 
urve

�

11

= � � � = �

66

, whi
h have the property that �

11

, hen
e all �

ij

pass through six pointsW

kl

. Then

also ea
h point belongs to six lines �

ij

. This whole 
on�guration goes down to the Kummer surfa
e

in IP

3

and gives there a 16

6


on�guration, 
lassi
ally 
alled Kummer's 
on�guration. The sixteen

points are nodes (singular points) and the sixteen planes the lines belong to are tropes (singular

planes) of the Kummer surfa
e. The 16

6


on�guration is best visualized by the in
iden
e diagram,

whi
h 
onsists of a pair of square diagrams, su
h as

W

11

W

12

W

23

W

13

W

45

W

36

W

16

W

26

W

46

W

35

W

15

W

25

W

56

W

34

W

14

W

24

�

11

�

12

�

23

�

13

�

45

�

36

�

16

�

26

�

46

�

35

�

15

�

25

�

56

�

34

�

14

�

24
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Namely the points in
ident with a line at position (m;n) in the se
ond square diagram are those six

points in the m-th row and n-th 
olumn, but not in both, of the �rst square diagram. Dually, the

same applies for the lines in
ident with a point. The 24

2

in
iden
e diagrams obtained by permuting

the rows or 
olumns of both square diagrams in an in
iden
e diagram (in the same way) are de�ned

to be the same as the original in
iden
e diagram (we will see that there are 20 in
iden
e diagrams

whi
h are di�erent in this sense).

The relevan
e of simple, non-degenerate de
ompositions and in
iden
e diagrams for (1; 4)-

polarized Abelian surfa
es is seen from the following theorem.

Theorem 4 There is a natural 
orresponden
e between the following (isomorphism 
lasses) of

data:

(1) a (1; 4)-polarized Abelian surfa
e T

2

2

~

A

(1;4)

,

(2) a Ja
obi surfa
e J =C

2

=� + a simple, non-degenerate de
omposition � = �

1

� �

2

of �,

(3) a smooth genus two 
urve � + a de
omposition W = W

1

[W

2

; #W

1

= #W

2

= 3, of its

Weierstra� points.

(4) a smooth genus two 
urve � + an in
iden
e diagram for the 16

6


on�guration on its


orresponding Kummer surfa
e.

The 
orresponden
e (1)$ (2) is established in two ways, namely J may be taken as the quotient of

T

2

using �

2

or as a 
over of T

2

using �

1

(or W

1

). Moreover, inter
hanging the 
omponents of the

de
omposition in (2) amounts to taking the dual

^

T

2

of T

2

in (1). J is the Ja
obian of the 
urve

� whi
h appears in (3) and (4) and inter
hanging �

1

and �

2

in (2) amounts to inter
hanging W

1

and W

2

in (3) and taking the transpose of both square diagrams in the in
iden
e diagram in (4).

Summarizing we have the following 
ommutative diagram, determined by T

2

(only),

J

�

2

�!

^

T

2

?

?

y

�

1

2

J

&

?

?

y

�

1

T

2

�

2

�! J

(30)

where 2

J

denotes multipli
ation by 2 in J and a �

i

labeling an arrow means that a proje
tion is


onsidered on the quotient torus that is obtained by doubling the sublatti
e �

i

.

Proof

(3) ! (2) Given a genus two 
urve � and a de
omposition W = W

1

[ W

2

of its Weierstra�

points, with #W

i

= 3, let �: �! IP

1

be any two-sheeted 
over of IP

1

. It is well known that � has

bran
h points exa
tly atW; the points inW as well as their proje
tions under � will be denoted by

W

1

; : : : ;W

6

, also �(W

i

) will just be written as W

i

. If IP

1

is 
overed with 
onne
ted open subsets

U

1

and U

2

for whi
h W

i

� U

i

and U

1

\ U

2

\W = ; then H

1

(�;ZZ) de
omposes as H

1

�H

2

where

H

1

and H

2

are de�ned as

H

i

= f
 2 H

1

(�;ZZ) j �

�


 2 H

1

(U

i

n W

i

;ZZ)g:

Among the 
y
les in H

i

there are those whi
h 
ome from simple 
losed 
urves in U

i

nW

i

en
er
ling

two points inW

i

and these generate H

i

. Sin
e any (di�erent) of these interse
t (on
e) the restri
tion

℄

( � )

H

i

is non-degenerate, hen
e leads (upon using (29)) to a non-degenerate simple de
omposition

� = �

1

� �

2

for the period latti
e. Thus C

2

=� and � = �

1

� �

2

provide the 
orresponding data.

We now show that the 
onstru
ted data only depend (up to isomorphism) on the isomorphism


lass of the data �; W = W

1

[ W

2

. Let �: � ! � be an automorphism whi
h permutes the

Weierstra� points (su
h an automorphism only exists for spe
ial 
urves �). Then � extends linearly
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to Ja
(�)

�

=

C

2

=�, hen
e also to the latti
e �, giving a new de
omposition � = ��

1

� ��

2

.

The latti
e ��

i


ontains the periods 
orresponding to the points �W

i

(w.r.t. the same basis of

holomorphi
 di�erential forms), hen
e � = ��

1

� ��

2


orresponds to the de
omposition W =

�W

1

[ �W

2

.

(2)! (3) By the 
lassi
al Torelli Theorem, � 
an be re
onstru
ted from its Ja
obian, a
tually in

dimension two, � is isomorphi
 to the theta divisor of Ja
(�). The latti
e � �C

2

is the period latti
e

of � with respe
t to some basis ~! = f!

1

; !

2

g of holomorphi
 di�erentials on �, whi
h determines

an isomorphism �: � ! H

1

(�;ZZ), whi
h in turn leads to a de
omposition H

1

(�;ZZ) = H

1

� H

2

upon de�ning H

i

= �(�

i

).

If we denote byW the set of Weierstra� points of � and by �: �! IP

1

any two-sheeted 
over as

above, then H

i

has generators �

i1

; �

i2

for whi
h �

�

�

ij

is a simple 
losed 
urve in IP

1

nW, en
ir
ling

an even number of bran
h points W

i

, whi
h redu
es to two in this 
ase (there are only six points

W

i

and en
ir
ling four points amounts to the same as en
ir
ling the other two points). Sin
e the

de
omposition is non-degenerate, �

�

�

i1

and �

�

�

i2

en
ir
le a 
ommon point, so we may take

W

i

= �

�1

fpoints in W en
ir
led by �

�

�

i1

or �

�

�

i2

g:

Then #W

1

= #W

2

= 3 and it is easy to see that W

1

\W

2

= ;:

We show again that the 
onstru
ted data are independent of the 
hoi
e of the base f!

1

; !

2

g

and are well-de�ned up to isomorphism. To do this remark �rst that when the 
hoi
e of base ~! =

t

(!

1

; !

2

) is not unique, say ~!

0

is another base produ
ing �, then ~! = A~!

0

for some A 2 GL(2;C),

hen
e

I




~! = A

I




~!

0

for any 
 2 H

1

(�;ZZ). We �nd that � = A�, i.e., � has a non-trivial symmetry group. Then

Ja
(�) = C

2

=� has a non-trivial automorphism group and the data (C

2

=�;� = �

1

� �

2

) and

(C

2

=�;� = A�

1

� A�

2

) are isomorphi
. Thus it suÆ
es to show that the 
onstru
ted data are

well-de�ned up to isomorphism. This follows (as in the �rst part of the proof) at on
e from the

property that if Ja
(�) has a non-trivial automorphism �, then it is indu
ed by an automorphism

on �. To see this property (whi
h is parti
ular for the 
ase in whi
h the genus of � is 2) let �

be a generi
 translate of the Riemann theta divisor passing through the origin O of Ja
(�). Then

�(�) is another translate passing through O (sin
e every 
urve in Ja
(�) whi
h is isomorphi
 to �

is a translate of �) hen
e 
omposing � with this translate determines an automorphism of �. This

shows the 
onstru
ted data are well-de�ned.

(2)! (1) Given J =C

2

=� and � = �

1

� �

2

we form the 
omplex torus

T

2

=C

2

=�

0

with �

0

=

1

2

�

1

� �

2

;

(i.e., the �rst latti
e is doubled in both dire
tions) and equip this torus with the polarization

indu
ed by the prin
ipal polarization on J . We 
laim that T

2

is a (1; 4)-polarized Abelian surfa
e

whi
h belongs to

~

A

(1;4)

: To show this, �rst noti
e that the 
y
les f�

11

; �

21

; �

12

; �

22

g introdu
ed

above, form a symple
ti
 base for H

1

(�;ZZ), i.e.,

℄

(�

1i

� �

2i

) = 0,

℄

(�

i1

� �

i2

) = 1, hen
e these 
y
les

lead to a period matrix of the form (see [GH℄)

�

1 0 a b

0 1 b 


�

22



satisfying the Riemann 
onditions. Sin
e H

1

is spanned by �

11

and �

12

(whi
h 
orrespond to the

�rst and third 
olumns of this matrix) �

0

has in terms of slightly di�erent 
oordinates the period

matrix

�

1 0 a 2b

0 4 2b 4


�

whi
h leads immediately to the result that T

2

is a (1; 4)-polarized Abelian surfa
e, 4: 1 isogeneous

to J (remark that the right blo
k of this matrix is positive de�nite). Sin
e the original J =C

2

=�

is the 
anoni
al Ja
obian of T

2

, we are in the generi
 
ase of Se
tion 2 whi
h implies T

2

2

~

A

(1;4)

.

Dually the surfa
e is (up to isomorphism) also 
onstru
ted by taking

T

2

=C

2

=�

00

with �

00

= �

1

� 2�

2

;

but this de
omposition indu
es a 4: 1 isogeny from J to (this) T

2

.

To show that the 
orresponden
e is well-de�ned, remark that

(C

2

=�; � = �

1

� �

2

)

�

=

(C

2

=�; � = �

0

1

� �

0

2

)

implies

C

2

.

�

1

2

�

1

� �

2

�

�

=

C

2

.

�

1

2

�

0

1

� �

0

2

�

and C

2

.

(�

1

� 2�

2

)

�

=

C

2

.

(�

0

1

� 2�

0

2

)

the last two isomorphisms being isomorphism of polarized Abelian surfa
es.

(1) ! (2) For given T

2

2 A

0

(1;4)

, let J be its 
anoni
al Ja
obian J(T

2

). Then T

2

! J is

part of the isogeny 2

J

:J ! J hen
e there is a unique 
omplementary isogeny J ! T

2

with

kernel ZZ=2ZZ � ZZ=2ZZ. Writing J as J = C

2

=�, the latter isogeny indu
es an inje
tive latti
e

homomorphism �: � ! � whose 
okernel is isomorphi
 to ZZ=2ZZ � ZZ=2ZZ. Then � determines a

unique de
omposition �

1

��

2

of � for whi
h �

j�

2

is an isomorphism and �

j�

1

is multipli
ation by

2. We have seen that su
h a de
omposition is simple. It is also non-degenerate, sin
e otherwise T

2

would not have an indu
ed (1; 4)-polarization (see Remark 1 below).

Observe that in the ex
eptional 
ase that T

2

! J is another part of the isogeny 2

J

, the two

isogenies 
ombine to an automorphism of J , leading to isomorphi
 data in (3).

(3) $ (4) This is 
lassi
al (see [Hu℄); we prove it as follows. Given a de
omposition of W; say

W = fW

1

;W

2

;W

3

g [ fW

4

;W

5

;W

6

g the 
orresponding in
iden
e diagram is taken as

W

11

W

12

W

23

W

13

W

45

W

36

W

16

W

26

W

46

W

35

W

15

W

25

W

56

W

34

W

14

W

24

�

11

�

12

�

23

�

13

�

45

�

36

�

16

�

26

�

46

�

35

�

15

�

25

�

56

�

34

�

14

�

24

and obviously the de
omposition ofW is re
onstru
ted from it at on
e. To show that every in
iden
e

diagram is of this form, remark at �rst that we have the freedom to permute the rows as well as

the 
olumns, so that we 
an put W

11

= : : : = W

66

in the upper left 
orner. The 
urves �

ij

this

point W

11

belongs to are the entries in the �rst row and the �rst 
olumn (ex
ept �

11

) of the square

diagram on the right. If the origin belongs to �

ij

\�jk; (j 6= k), then it also belongs to �

ik

. Then

�

11

is easily identi�ed as the image of the map �! Ja
(�) de�ned by

P 7!

Z

P

W

i

~! +

Z

W

k

W

j

~! (mod �);

23



and the other three 
urves are �

lm

;�

mn

and �ln with fi; j; k; l;m; ng = f1; 2; 3; 4; 5; 6g. Hen
e the

in
iden
e tabel takes the above form from whi
h the de
omposition of W 
an be read o�.

If the 
urve has non-trivial automorphisms, we de�ne diagrams whi
h 
orrespond to su
h

automorphisms as being isomorphi
, so as to obtain the equivalen
e (3) $ (4) at the level of

isomorphism 
lasses.

Finally we 
on
entrate on the dual

^

T

2

of T

2

and its relation with the 
anoni
al Ja
obian of

T

2

. At �rst re
all from [GH℄ that the period matri
es of T

2

and

~

T

2

relate as

T

2

�

�

1 0 a 2b

0 4 2b 4


�

^

T

2

�

�

4 0 4a 2b

0 1 2b 


�

�

�

1 0 
 2b

0 4 2b 4a

�

showing that

^

T

2

is 
onstru
ted from J by taking �

1

�

1

2

�

2

instead of taking

1

2

�

1

� �

2

when


onstru
ting T

2

from J . It follows that the isogeny 2

J

fa
torizes via

^

T

2

as well and that taking the

dual of T

2


orresponds to inter
hanging the 
omponents of the de
omposition of �. This �nishes

the proof of the theorem.

Remarks

1) If in (2) above one 
onsiders simple degenerate de
ompositions (instead of non-degenerate)

then the de
omposition in (3) is altered into W = W

1

[W

2

[W

3

; #W

i

= 2 and the order of the


omponents in the de
omposition of W is now irrelevant. The 
orresponding obje
t in (1) is then a

Ja
obi surfa
e (di�erent from the one in (2)) from whi
h the original Ja
obi surfa
e (or the 
urve)


annot be re
onstru
ted.

2) Sin
e

�

6

3

�

= 20; there are 20 di�erent in
iden
e diagrams and 20 possible de
ompositions

of the isogeny 2

J

:J ! J; some of whi
h are isomorphi
 if and only if J (hen
e �) has a non-

trivial automorphism group (i.e., di�erent from ZZ

2

). It follows from the above theorem that the

20 intermediate Abelian surfa
es appear in 10 groups of dual pairs.

3) Let C

(2)

denote the moduli spa
e of all smooth 
urves of genus two. Then we have the

following isomorphisms

~

A

(1;4)

�

=

�

(fW

1

;W

2

;W

3

g; fW

4

;W

5

;W

6

g) jW

i

2 IP

1

; i 6= j )W

i

6=W

j

	

.

mod IPGL(2;C);

C

(2)

�

=

�

fW

1

;W

2

;W

3

;W

4

;W

5

;W

6

g j W

i

2 IP

1

; i 6= j )W

i

6=W

j

	

.

mod IPGL(2;C);

and both spa
es are related by an obvious unrami�ed 
overing proje
tion

~

A

(1;4)

! C

(2)

. We have

seen that

~

A

(1;4)

has a natural stru
ture of an aÆne variety whi
h is 
ompa
ti�ed in a natural way

into its proje
tive 
losure, whi
h is the (singular) algebrai
 varietyM

3

: At the other hand, C

(2)

has

also a natural 
ompa
ti�
ation (the Mumford-Deligne 
ompa
ti�
ation). It would be interesting

to �gure out how both 
ompa
ti�
ations are related.

4) Among the di�erent ways to de�ne (and 
hara
terize) the 
anoni
al Ja
obian J(T

2

) of

T

2

, here is a �nal one. It is that J = J(T

2

) is the only Ja
obian for whi
h the diagram

T

2

?

?

y

4:1

2

T

&

J

4:1

�! T

2


ommutes (2

T

is multipli
ation by 2 on T

2

). The proof is easy using the ideas of the above proof.

Observe that this diagram is (30) with T

2

and J inter
hanged; we 
ould drop a super
uous triangle

sin
e

^

J = J .
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6. The relation with the 
anoni
al Ja
obian made expli
it

We have shown in Se
tion 5 that there is asso
iated to an Abelian surfa
e of type (1; 4) the

Ja
obi surfa
e of a genus two 
urve � and some additional data. Also we have seen (in Se
tion

3) that these Abelian surfa
es appear as invariant surfa
es of the Hamiltonian ve
tor �eld de�ned

by one of the potentials V

��

. This allows us to make this relation very expli
it (in two di�erent

ways) and to 
al
ulate pre
isely the lo
us S in IP

3

for whi
h the asso
iated quarti
 fails to be a

Kummer surfa
e (and hen
e the asso
iated (1; 4)-polarized Abelian surfa
e fails to be birational to

an o
ti
). We know of no dire
t method (i.e., without using integrable systems) to do this. We

refer to [Bu℄ for an alternative approa
h, under 
urrent investigation, whi
h uses another integrable

system (some geodesi
 
ow on SO(4)).

6.1. An embedding of the Abelian surfa
es in IP

15

Our 
al
ulations rely on the expli
it 
onstru
tion of an embedding for T

2

in proje
tive spa
e,

whi
h is found by using the Laurent solutions to the di�erential equations (12). Sin
e we know

that the potential V

��

is a.
.i. (for � 6= �), the ve
tor �eld X

H

has a 
oherent tree of Laurent

solutions (see [AvM1℄), in parti
ular it has Laurent solutions depending on dim IR

4

� 1 = 3 free

parameters (prin
ipal balan
es). Moreover, sin
e the divisor D

fg

to be adjoined to a (generi
)

invariant manifold A

fg

is irredu
ible, there is only one su
h family. Also q

1

; q

2

and q = q

1

p

2

� q

2

p

1

have a simple pole along D

fg

sin
e their squares des
end to Ja
(�) with a double pole along (some

translate of) its theta divisor. With this information the prin
ipal balan
e is given by

q

1

=

1

t

�

a+

2

3

((1 + a

2

� b

2

)�+ 2ab

2

�)t

2

+ b
t

3

+O(t

4

)

�

;

q

2

=

1

t

�

b+

2

3

((1 + b

2

� a

2

)� + 2ba

2

�)t

2

� a
t

3

+O(t

4

)

�

;

(31)

where 2a

2

+ 2b

2

+ 1 = 0; the series for p

1

and p

2

are found by di�erentiation. Using the Laurent

solutions it is easy to �nd an embedding of T

2

fg

in proje
tive spa
e: sin
e 2D

fg

indu
es a polarization

of type (2; 8), it is very ample and this 
an be done using the sixteen fun
tions with a double pole

along D

fg

, to wit,

z

0

= 1;

z

1

= q

1

;

z

2

= q

2

;

z

3

= q = q

1

p

2

� q

2

p

1

;

z

4

= p

1

;

z

5

= p

2

;

z

6

= q

2

1

;

z

7

= q

1

q

2

;

z

8

= q

2

2

;

z

9

= q

1

q;

z

10

= q

2

q;

z

11

= (q

2

1

+ q

2

2

)q + �q

1

p

2

+ �q

2

p

1

;

z

12

= fq

1

; qg;

z

13

= fq

2

; qg;

z

14

= 2q

1

q

2

(q

2

1

+ q

2

2

) + p

1

p

2

;

z

15

= q

2

;

where ff

1

; f

2

g =

_

f

1

f

2

� f

1

_

f

2

; the Wronskian of f

2

and f

1

:
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6.2. Abelian surfa
es of type (1,4) as quotients of their 
anoni
al Ja
obians

A �rst way to 
ompute the 
orresponden
e between the data is to use the 
over J ! T

2

; re
all

from Se
tion 5 that given T

2

2

~

A

(1;4)

there is a unique Ja
obian J = J(T

2

) su
h that

J

?

?

y

p

1

2

J

&

T

2

p

2

�! J

yields a fa
torization of the map 2

J

(multipli
ation by 2). This implies the existen
e of a singular

divisor in T

2

whose 
omponents are birational equivalent to � = �(T

2

) as is shown in the following

proposition.

Proposition 5 The image p

1

(K) of Kummer's 16

6


on�guration K 
onsists of four 
urves, all

passing through the half periods of T

2

; these points are the images of the sixteen points in the


on�guration and ea
h of the four image 
urves has an ordinary three-fold point at one of these

points, with tangents at this point, whi
h are di�erent from the tangents to the other 
urves. Ea
h


urve is birational equivalent to � and indu
es a (1; 4)-polarization on T

2

. The image p

2

(p

1

(K)) is

one single 
urve, birational equivalent to � with an ordinary six-fold point.

Proof

The map p

1

identi�es all half-periods whi
h appear in a row in the �rst square diagram of the

in
iden
e diagram whi
h 
orresponds to T

2

. Therefore p

1

also identi�es the 
urves whi
h appear

in a row in the se
ond square diagram of this in
iden
e diagram and we obtain four 
urves passing

through the four image points, every 
urve having a three-fold point at the image of the three

points in the same row (but not the same 
olumn) of the �rst square diagram. Sin
e K indu
es

a (16; 16)-polarization on J , p

1

(K) indu
es a (4; 16)-polarization on T

2

, hen
e ea
h 
omponent

indu
es a (1; 4)-polarization. The virtual genus of ea
h 
omponent is thus �ve, and sin
e ea
h

is obviously birational to � via p

1

, the threefold point must be ordinary and there are no other

singular points.

The interse
tion of two of these 
omponents is the self-interse
tion of one of them (sin
e they

are translates of ea
h other), hen
e is by (5) equal to 2(5 � 1) = 8; at the other hand, sin
e ea
h

passes through the three-fold point of the other and sin
e they have two simple points in 
ommon,

this gives already 3+3+1+1 = 8 so all tangents must be di�erent and there are no other interse
tion

points. The fa
t that p

2

(p

1

(K)) has an ordinary six-fold point and is birational equivalent to � is

shown in a similar way.

The image 2

J

(�) is a divisor � with a six-fold point, �rst studied in [V1℄ (where it was an

essential ingredient in the 
onstru
tion of linearizing variables for integrable systems) and p

1

(K) is

nothing but p

�

2

�. We have also shown there that this divisor is the zero lo
us of the leading term

in the equation of the Kummer surfa
e of J (when normalised as in the algorithm in Se
tion 2.2).

To apply this in the present 
ase, we use the leading term (18) of the equation of the Kummer

surfa
e of J(T

2

fg

) (whi
h is expressed in terms of the original variables), and investigate its zero

lo
us, i.e.,

(q

2

1

+ q

2

2

+ �+ �)

2

� 4(�� + �q

2

1

+ �q

2

2

) = 0:

This fa
torizes 
ompletely as

Y

�

i

=�1

h

q

2

� �

1

p

�� � � �

2

iq

1

i

= 0:
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re
e
ting the fa
t that p

�

2

� is redu
ible. In order to �nd an equation for �(T

2

fg

), let q

2

= �

1

p

�� �+

�

2

iq

1

in the equations for A

fg

: Eliminating p

2

one �nds an equation for the 
urve

�

�

1

�

2

: p

2

1

Q(q

1

)(q

1

� �

1

�

2

i

p

�� �)q

1

+ P

2

(q

1

) = 0;

where

Q(x) = �

1

�

2

i(�� �)

3=2

x

3

+ (�� �)(2� � �)x

2

+ �

1

�

2

i

p

�� �(h+ �(� � �))x�

f

2

;

P is some polynomial of degree 3: This 
urve is 
learly isomorphi
 to the 
urve

z

2

= x(x� i�

1

�

2

p

�� �)Q(x): (32)

In order to de
ide to whi
h de
omposition of the Weierstra� points this 
orresponds, let

P

1

; : : : ; P

4

be the following points in IP

15

P

1

= (0: � � � : 0:�i

p

�� �:�

p

�� �: 1:+i(� � �));

P

2

= (0: � � � : 0:+i

p

�� �: +

p

�� �: 1:+i(� � �));

P

3

= (0: � � � : 0:+i

p

�� �:�

p

�� �: 1:�i(� � �));

P

4

= (0: � � � : 0:�i

p

�� �: +

p

�� �: 1:�i(� � �));

and let q

Æ

denote the three roots of Q(x): Then it is easily 
he
ked by pi
king lo
al parameters

around the points at in�nity of �

�

1

�

2

that the in
iden
e relation of the P

i

on the �

�

1

�

2

is given by

the following table:

q

1

! 0 q

1

!1 q

1

! q

Æ

q

1

! �

1

�

2

i

p

�� �

�

+1;+1

P

1

P

4

3P

3

P

2

�

�1;+1

P

2

P

3

3P

4

P

1

�

+1;�1

P

3

P

2

3P

1

P

4

�

�1;�1

P

4

P

1

3P

2

P

3

Table 4

The table is in agreement with the fa
t that ea
h 
urve has a three-fold point and passes

through the other singularities. Moreover it shows that the three points q

Æ

were identi�ed under

the map p

1

when going from J to T

2

, hen
e these form the subset W

1

in Theorem 4 and W

2

=

f0;1; �

1

�

2

i

p

�� �g

If we substitute

x 7!

x+ �

p

�� �

i:

in the equation (33) for the 
urves Æ

�

1

�

2

then we �nd the equation (21),

y

2

= (x+ �)(x+ �)

�

x

3

+ (�+ �)x

2

+ (�� � h)x+

�f � �g

2(�� �)

�

: (33)

Then the de
omposition of W is given as follows: W

1


ontains the roots of x

3

+ (�+ �)x

2

+ (�� �

h)x+ (�f � �g)=(2� � 2�); and W

2

= f1;��;��g.
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6.3. Abelian surfa
es of type (1; 4) as 
overs of their 
anoni
al Ja
obians

An alternative way to 
ompute the data 
orresponding to T

2

fg

is by using the 
over T

2

! J .

First we 
al
ulate an equation for D

fg

by substituting (31) in the invariants. Eliminating one of

the free parameters from the resulting equations yields the following equations de�ning a 
urve:

D

fg

:

8

<

:

�

9

4




2

= 16(� � �)

3

a

6

+ 8(� � �)

2

(� � 2�)a

4

� 4(� � �)(h + �(� � �))a

2

� f;

�1 = 2a

2

+ 2b

2

:

(34)

Put

x = i

p

2(� � �)a; y =

p

2(�� �)b;

to �nd that this non-singular 
urve is isomorphi
 to the 
urve

C:

8

<

:

z

2

= x

6

+ (� � 2�)x

4

� (h+ �(� � �))x

2

�

f

2

;

y

2

= x

2

+ � � �:

(35)

To 
he
k that the genus of D

fg

equals 5 (as we saw in Se
tion 3), let C

0

denote the 
urve

C

0

: z

2

= x

6

+ (� � 2�)x

4

� (h+ �(� � �))x

2

�

f

2

;

whi
h has genus two. Then the obvious map �: C ! C

0

is a 2: 1 
overing map with four rami�
ation

points (the points where y = 0). By Riemann-Hurewi
z,

�(D

fg

) = 2�(C

0

)� rami�
ation(�); (36)

it follows that g(D

fg

) = 5:

Letting t = x

2

� �; (36) is obviously equivalent to

8

>

>

>

<

>

>

>

:

z

2

= t

3

+ t

2

(�+ �) + t(�� � h) +

�f � �g

2(�� �)

;

x

2

= �+ t;

y

2

= � + t

where we used f � g = 2(� ��)h in the �rst equation to write it in a symmetri
 form. De�ne now

u = xyz and �nd that D

fg

is expressed as a 4: 1 unrami�ed 
over

8

>

>

>

<

>

>

>

:

u

2

= (t+ �)(t+ �)

�

t

3

+ t

2

(�+ �) + t(�� � h) +

�f � �g

2(�� �)

�

;

x

2

= �+ t;

y

2

= � + t

of the hyperellipti
 
urve given by

z

2

= (t+ �)(t + �)

�

t

3

+ t

2

(�+ �) + t(�� � h) +

�f � �g

2(�� �)

�

;
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whi
h we found in (21) and (34). To see this, remark that if u

2

= f(t) is an equation of any

hyperellipti
 
urve � and f(t

1

) = f(t

2

) = f(t

3

) = 0 (i.e., t

1

; t

2

and t

3


orrespond to Weierstra�

points), then the 
urve

u

2

= f(t); x

2

=

t� t

1

t� t

2

; y

2

=

t� t

2

t� t

3

;

is a 4: 1 
over of � and has genus 5; in our 
ase ft

1

; t

2

; t

3

g = f1;��;��g: When this 4: 1 
over

is extended to the 
over T

2

! Ja
(�) the half-periods on T

2


orresponding to f��;��;1g are

identi�ed with the origin, hen
e W

2

= f��;��;1g and W

1


onsists of the other three Weierstra�

points, in agreement with our previous 
al
ulation.

6.4. The ex
eptional lo
us S � IP

3

Suppose that (T

2

;L) 2

~

A

(1;4)

and let the surfa
e be represented by a surfa
e A

(�;�;f;g)

; for

some � 6= � (using (28)). Then the 
urve �(T

2

) 
orresponding to it under the basi
 bije
tion

explained in Se
tion 5 must be smooth. Sin
e we know from Se
tion 6.2 (or equivalently 6.3) that

an equation for �(T

2

) is given by

y

2

= (x+ �)(x+ �)P

3

(x); P

3

(x) = x

3

+ (�+ �)x

2

+ (�� � h)x+

�f � �g

2(� � �)

: (37)

we 
on
lude that dis
(P

3

(x)) 6= 0 and P

3

(��) 6= 0; P

3

(��) 6= 0, the last 
ondition meaning just

that f 6= 0 and g 6= 0. Conversely, both 
onditions together are suÆ
ient to guaranty that the


urve is smooth and the 
orresponding Abelian surfa
e is in

~

A

(1;4)

. In order to state this result in

terms of the 
oordinates �

i

for IP

3

, use (28) to rewrite (38) in the simple form y

2

= x(x� 1)P

�

3

(x)

where

P

�

3

(x) = 4�

2

x

3

� (�

0

+ 2�

1

+ 6�

2

+ 2�

3

)x

2

+ (�

0

� 2�

1

+ 2�

2

+ 6�

3

)x� 4�

3

;

(x and y are slightly res
aled); in this representation W

2

= f0; 1;1g and W

1


ontains the roots of

P

�

3

(x). The 
ondition for (�

0

:�

1

:�

2

:�

3

) to 
orrespond to a surfa
e in

~

A

(1;4)

is now that �

1

�

2

�

3

6= 0

and dis
(P

�

3

(x)) 6= 0. It shows that the lo
us S

0

is given by the four divisors �

1

�

2

�

3

= 0 and

dis
(P

�

3

(x)) = 0 and the ex
eptional lo
us S is found immediately from it by substituting �

2

i

for

�

i

in these equations. (These equations for S 
an in prin
iple be found purely algebrai
, but the


al
ulations are very tedious and some 
ases are easily overlooked. In fa
t [BLS℄ 
laim (without

proof) in their paper that the only 
ondition is �

1

�

2

�

3

6= 0, thereby overlooking the more subtle


ondition dis
(P

�

3

(x)) 6= 0). Combining this with Theorem 1 we have shown the following theorem.

Theorem 6 The surfa
e A

(�;�;f;g)

is an aÆne part T

2

nD of an Abelian surfa
e (T

2

; [D℄) 2

~

A

(1;4)

if and only if � 6= �; f 6= 0; g 6= 0 and dis
(P

3

(x)) 6= 0. Equivalently (�

0

:�

1

:�

2

:�

3

) 2 IP

3

are moduli


oming from the birational map

3

�

L

:T

2

! IP

3

with (T

2

;L) 2

~

A

(1;4)

if and only if �

1

�

2

�

3

6= 0 and

dis
(P

�

3

(x)) 6= 0. The 
urve �(T

2

) 
orresponding to the 
anoni
al Ja
obian of T

2

is then written

as

y

2

= x(x� 1)

�

4�

2

x

3

� (�

0

+ 2�

1

+ 6�

2

+ 2�

3

)x

2

+ (�

0

� 2�

1

+ 2�

2

+ 6�

3

)x� 4�

3

�

;

3

re
all that �

i

= �

2

i

, where �

i

are taken from (7)
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when the 
oordinates x for IP

1

is taken su
h that W

2

= f0; 1;1g. Conversely the equation of the

o
ti
 (7) is written down at on
e when giving the equation of the genus two 
urve and a de
omposi-

tion W =W

1

[W

2

of its set of Weierstra� points: the 
oeÆ
ients of the o
ti
 are �

i

=

p

�

i

where

�

i

are essentially the symmetri
 fun
tions of W

2

when the 
oordinate x for IP

1

is taken su
h that

W

2

= f0; 1;1g.

Taking also the non-generi
 
ase into a

ount, there is an Abelian surfa
e A

(�;�;f;g)


orre-

sponding to ea
h point in the image  (A

(1;4)

) = (M

3

nD) [ (C n fP;Qg).

The following important 
orollary follows at on
e from this theorem.

Corollary 7 For any Abelian surfa
e (T

2

; [D℄) 2

~

A

(1;4)

the aÆne variety T

2

nD is (isomorphi


to) a 
omplete interse
tion of two quarti
s in C

4

.

Remarks

1) Re
alling the des
ription of

~

A

(1;4)

from Remark 5.2 one has the following des
ription of

the moduli spa
e

~

A

(1;4)

:

~

A

(1;4)

�

=

�

(fW

1

;W

2

;W

3

g; fW

4

;W

5

;W

6

g) jW

i

2 IP

1

; i 6= j )W

i

6=W

j

	

.

mod IPGL(2;C);

�

=

ffW

4

;W

5

;W

6

g j W

i

2C n f0; 1g; i 6= j ) W

i

6=W

j

g

.

S

3

;

where the a
tion of S

3


onsists of permuting 0; 1 and1 in the equation y

2

= x(x� 1)(x�W

4

)(x�

W

5

)(x�W

6

), i.e., it is generated by repla
ing x by 1=x and 1� x in this equation. Obviously the

ring of invariants of the symmetri
 fun
tions of W

4

;W

5

andW

6

is just the 
oneM

3

, whi
h explains

why

~

A

(1;4)

has su
h a ni
e stru
ture. Using Table 2, this leads to a geometri
 interpretation of the

\intermediate" moduli spa
e IP

3

n S

0

, namely

IP

3

n S

0

�

=

ffW

4

;W

5

;W

6

g j W

i

2C n f0; 1g; i 6= j )W

i

6=W

j

g :

To explain this, remark that taking the base ve
tors mod 2 in the third 
olumn of Table 2 determines

an ordering for the 4 half-periods on the 
anoni
al Ja
obian whi
h 
orrespond to the latti
e �

2

,

whi
h in turn indu
e an ordering in the points inW

2

; at the other hand, all elements in the se
ond


olumn of Table 1 are the same mod 2.

2) In the 
lassi
al literature one de�nes a Rosenhain tetrahedron for a Kummer surfa
e as a

tetrahedron in IP

3

with singular planes of the surfa
e as fa
es and singular points of it as verti
es.

In [Hu℄ the author shows that the equation for the Kummer surfa
e with respe
t to a Rosenhain

tetrahedron is written as the quarti
 (15). It then follows from Theorem 6 how to read o� from

the equation of a Kummer surfa
e with respe
t to a Rosenhain tetrahedron, an equation for the


urve 
orresponding to this Kummer surfa
e and vi
e versa. It seems that this result is not known

in the 
lassi
al or re
ent literature.
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7. The 
entral potentials V

��

In this �nal se
tion we 
on
entrate on the potentials V

��

whi
h were always ex
luded up to

now. It is interesting to 
ompare the 
lassi
al linearization of the 
entral potential V

��

whi
h uses

polar 
oordinates with the � = �-limit of the linearization of the perturbed potential V

��

(� 6= �):

they will be seen to 
oin
ide. We will also 
onstru
t a Lax pair for this limiting 
ase and dis
uss

the geometry of the invariant manifolds of the ve
tor �eld.

At �rst, 
onsider for generi
 values of h; k the invariant surfa
e A

hk

de�ned by

A

hk

:

8

<

:

h =

1

2

�

p

2

1

+ p

2

2

�

+

�

q

2

1

+ q

2

2

�

2

+ �

�

q

2

1

+ q

2

2

�

;

k = q

1

p

2

� q

2

p

1

;

whi
h in terms of polar 
oordinates (�; �) be
omes

h =

1

2

�

_�

2

+ �

2

_

�

2

�

+ �

4

+ ��

2

;

k = �

2

_

�;

leading to

�

1

2

�

2

_�

2

= �

6

+ ��

4

� h�

2

+

k

2

2

:

This suggests setting � = �

2

, yielding

�

_�

2

8

= �

3

+ ��

2

� h� +

k

2

2

: (38)

Se
ondly the transformation (19) redu
es for � = � to

x

1

+ x

2

= �

�

q

2

1

+ q

2

2

+ 2�

�

;

x

1

x

2

= �

2

+ �q

2

1

+ �q

2

2

;

(39)

and (20) be
omes

_x

2

i

=

8(x

i

+ �)

2

�

x

3

i

+ 2�x

2

i

+ (�

2

� h)x

i

� (h� + f=2)

�

(x

1

� x

2

)

2

(40)

The equivalen
e of (39) and (41) be
omes 
lear after the simple translation x

i

= x

i

+ � on the


urve; indeed (40) be
omes

s

1

+ s

2

= �

�

q

2

1

+ q

2

2

�

;

s

1

s

2

= 0;

so that only one of the s

i

di�ers from zero, say 0 6= s

1

= �(q

2

1

+ q

2

2

) = �s, (the last equality is a

de�nition), whi
h mat
hes the linearizing variable � introdu
ed above. In terms of s (41) is redu
ed

to one equation whi
h reads

�

_s

2

8

= s

3

+ �s

2

� hs+

f

2

;

whi
h is exa
tly (39) sin
e f = (q

1

p

2

� q

2

p

1

)

2

= k

2

.
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It is also interesting that the Lax pair gives in the limit � = � a Lax pair for the potential

V

��

: The polynomials u(x); v(x) and w(x) are now all divisible by (x+ �),

u(x) = (x+ �)

�

x+ q

2

1

+ q

2

2

+ �

�

;

v(x) =

1

p

2

(x+ �) (q

1

p

1

+ q

2

p

2

) ;

w(x) = (x+ �)

�

x

2

+

�

�� q

2

1

� q

2

2

�

x�

1

2

�

p

2

1

+ p

2

2

�

� �

�

q

2

1

+ q

2

2

�

�

;

whi
h leads to a simpler Lax pair by 
an
eling the fa
tor (x+ �).

Finally we des
ribe the aÆne invariant surfa
es for the 
entral potentials V

��

. These turn out

to be C

�

-bundles over the ellipti
 
urves (39), as des
ribed in the following theorem.

Theorem 8 For any k; h 2C, let A

hk

denote the aÆne surfa
e de�ned by

A

hk

:

8

<

:

h =

1

2

�

p

2

1

+ p

2

2

�

+

�

q

2

1

+ q

2

2

�

2

+ �

�

q

2

1

+ q

2

2

�

;

k = q

1

p

2

� q

2

p

1

:

(41)

If k 6= 0 then A

hk

is a C

�

-bundle over the ellipti
 
urve

E

hk

:�

�

2

2

= �

3

+ ��

2

� h� +

k

2

2

: (42)

Moreover the C

�

-a
tion on A

hk

is a Hamiltonian a
tion, the Hamiltonian fun
tion 
orresponding

to it being the momentum q

1

p

2

� q

2

p

1

.

Proof

The linearizing variables, 
al
ulated above suggest to 
onsider the map

�: C

4

!C

2

(q

1

; q

2

; p

1

; p

2

) 7! (�; �) =

�

q

2

1

+ q

2

2

; q

1

p

1

+ q

2

p

2

�

:

Our �rst aim is that the image �(A

hk

) is given by the plane ellipti
 
urve (43). Indeed, one easily

obtains for q

2

1

+ q

2

2

6= 0;

p

1

=

q

2

k � q

1

�

q

2

1

+ q

2

2

;

p

2

= �

q

1

k + q

2

�

q

2

1

+ q

2

2

;

whi
h leads by dire
t substitution in the �rst equation of (42) immediately to

�

�

2

2

= �

3

+ ��

2

� h� +

k

2

2

:

For q

2

1

+ q

2

2

= 0, i.e., q

2

= �iq

1

one gets

h =

1

2

(p

2

1

+ p

2

2

);

k = q

1

(p

2

� ip

1

);

� = q

1

(p

1

� ip

2

);
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from whi
h we dedu
e � = �ik, giving the point (�; �) = (0;�ik) on E

hk

, proving the �rst 
laim.

Se
ondly, we determine the �ber �

�1

(�; �) over ea
h point on E

hk

. To do this, observe that

the multipli
ative group of non-zero 
omplex numbers,

C

�

�

=

SO(2;C) =

��

a b

�b a

�

j a

2

+ b

2

= 1

�

a
ts on A

hk

by

�

a b

�b a

�

�

�

q

1

p

1

q

2

p

2

�

=

�

aq

1

+ bq

2

ap

1

+ bp

2

aq

2

� bq

1

ap

2

� bp

1

�

and the surje
tive map � is C

�

-invariant. It is proved by dire
t 
al
ulation that the a
tion is free,

hen
e ea
h �ber of � 
onsists of one or more 
ir
les. If (�; �) 2 E

hk

then p

1

and p

2

are determined

from q

1

and q

2

(at least if q

2

1

+ q

2

2

6= 0), whi
h themselves are determined (up to the a
tion of C

�

)

by q

2

1

+ q

2

2

= �, so exa
tly one 
ir
le lies over ea
h point (q

1

; q

2

; p

1

; p

2

) for whi
h q

2

1

+ q

2

2

6= 0; in the

spe
ial 
ase that q

2

1

+ q

2

2

= 0, the same is true, sin
e p

1

and p

2

are determined (up to the a
tion of

C

�

) by p

2

1

+ p

2

2

= 2h; and q

1

; q

2

are uniquely determined from p

1

and p

2

. It follows that A

hk

is a

C

�

-bundle over the ellipti
 
urve E

hk

.

Finally, remark that the Hamiltonian ve
tor �eld 
orresponding to the momentum q

1

p

2

� q

2

p

1

is given by

_q

1

= �q

2

;

_q

2

= q

1

;

_p

1

= �p

2

;

_p

2

= p

1

;

from whi
h it is seen that the 
omplex 
ow of this ve
tor �eld is given by the C

�

-a
tion, proving

the last 
laim in the theorem.

Let us de�ne (and 
al
ulate) the moduli (in IP

(1;2;2;3;4)

) 
orresponding to an invariant surfa
e

A

hk

of a 
entral potential for k 6= 0 as the limit

4

lim

�!�

~

 (T

2

(�;�;f;g)

); f = k

2

:

Then an easy 
omputation shows that this limit exists, is independent of f 6= 0; h and � = � and

moreover is exa
tly equal to the spe
ial point P at the boundary of  (A

(1;4)

) de�ned in Theorem

3. Namely for f ! g and �! � one �nds

(�

0

:�

1

:�

2

:�

3

) = (�4: 1: 0: 1)

so that

(f

0

; f

1

; f

2

; f

3

; f

4

) = (�4: 0: 3:�2: 0)

hen
e by weight homogeneity the asso
iated moduli 
orrespond to P . Remark that the point is

independent of � = � as well as of f = g, so the map  does not distinguish between any of the

invariant surfa
es of any 
entral potential V

��

.
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8. Appendix: The S
hlesinger system, the Garnier system and

the quarti
 potentials V

�

In this appendix we explain the origin of the quarti
 potentials V

�

, whi
h were �rst dis
overed

and studied in the beginning of this 
entury by Garnier in [G℄. Our exposition is along the lines of

that paper.

At �rst, 
onsider a linear di�erential equation of order m with n+ 3 regular singularities, say

at the points t

1

; : : : ; t

n

; t

n+1

= 0; t

n+2

= 1 in the plane and at in�nity (it is 
onvenient to put also

x = t

0

). The most general form of su
h an equation is given by

dy

k

dx

=

m

X

h=1

y

h

n+2

X

i=1

A

i

hk

x� t

i

(h = 1; : : : ;m);

the A

i

hk

being 
onstants. This 
an be written more 
ompa
tly in matrix-form as

dy

dx

= yA (43)

upon de�ning a matrix A with entries

A

hk

=

n+2

X

i=1

A

i

hk

x� t

i

;

it has m independent solutions y

1

(x); : : : ; y

m

(x) whi
h are multivalued fun
tions of x. Using m

fundamental solutions as rows in a matrix, an m �m-matrix Y is formed. When su
h a matrix

solution Y

1

(x) is 
ontinued analyti
ally around a 
losed path en
ir
ling a singular point t

i

, then a

new solution Y

2

(x) is obtained, whi
h is a matrix whose rows are linear 
ombinations of the rows

of Y

1

(x), hen
e there is an asso
iated monodromy matrix M

i

de�ned by

Y

2

(x) =M

i

Y

1

(x):

In this way, n+ 3 monodromy matri
es are obtained and they depend on the position of the poles

t

i

as well as on the values of the 
onstants A

i

hk

: One of the basi
 problems in the 
lassi
al work

about linear di�erential equations is the following isomonodromi
 problem:

How 
an one make the 
oeÆ
ients A

i

hk

dependent on t

1

; : : : ; t

n

su
h that the monodromy

matri
es M

i

be
ome independent of t

1

; : : : ; t

n

?

S
hlesinger shows in [S℄ that the dependen
e of the matri
es A

i

= (A

i

hk

)

h;k=1;:::;m

on the t

i

is

given by the following set of partial di�erential equations:

�A

j

�t

i

=

[A

i

; A

j

℄

t

j

� t

i

(j 6= i);

n

X

j=1

�A

j

�t

i

= 0:

(44)

Indeed let Y be a matrix solution of (44),

dY

dx

= Y A;
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and de�ne

�

i

= Y

�1

�Y

�t

i

(i = 0; : : : ; n);

in parti
ular de�ne �

0

= A. Expressing the integrability 
ondition

�

2

Y

�t

i

�t

j

=

�

2

Y

�t

j

�t

i

leads to

��

i

�t

j

�

��

j

�t

i

= [�

i

; �

j

℄; (45)

moreover it 
an be shown that �

i

is holomorphi
, away from x = t

i

and �

i

+ A is holomorphi


around x = t

i

. It follows that

�

i

= �

A

i

x� t

i

+ 


i

; (46)

with 


i

independent of x. A
tually, without loss of generality, all 


i

may be supposed to be zero.

Expressing (46) in terms of A

i

using (47) (with 


i

= 0) and putting x = t

j

leads immediately to

S
hlesinger's system (45).

From (45), Garnier 
onstru
ts the so-
alled simpli�ed system, simply by repla
ing

t

i

! �

i

+ �t

i

; (i = 1; : : : ; n)

A

i

! �

�1

A

i

and taking the limit �! 0. The resulting system reads

�A

j

�t

i

=

[A

i

; A

j

℄

�

j

� �

i

(j 6= i)

n

X

j=1

�A

j

�t

i

= 0:

(47)

If a matrix B is de�ned as

B = Ax(x� 1)

n

Y

i=1

(x� �

i

);

then the entries of B are polynomials in x of degree n+1 and the simpli�ed form of (46) for j = 0

is given by

�B

�t

i

=

[A

i

; B℄

x� �

i

: (48)

Garnier proves that the spe
tral 
urve det(B(x) � �z) = 0 is independent of all t

i

and linearizes

the 
ow of the ve
tor �eld. Observe that the matri
es B = B(x) and A

i

are related as follows:

B(�

i

) = A

i

n+2

Y

j 6=i

(�

i

� �

j

):

This shows that the Lax pair 
oin
ides with the Lax pair 
onsidered by A. Beauville in [Be℄.
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The Lax pair (49) 
ontains a lot of integrable systems. Garnier 
onsiders two spe
ial 
ases,

whi
h both lead to hyperellipti
 
urves:

i) det(B(x)��z) = 0 is quadrati
 in z, i.e., B is a 2�2 matrix: this leads after some suitable

normalizations (see [Be℄) to what we 
alled the odd master system (see [V1℄ and [M2℄).

ii) det(B(x)� �z) = 0 is quadrati
 in y: then there is no loss of generality in supposing that

B has the form

B =

0

B

B

�

x

2

+ 


11

b

12

x+ 


12

� � � b

1m

x+ 


1m

b

21

x+ 


21




22

� � � b

2m

x+ 


2m

.

.

.

.

.

.

.

.

.

.

.

.

b

m1

x+ 


m1

b

m2

x+ 


m2

: : : 


mm

1

C

C

A

Then (49) is written out for i = 1 as

�

1

(�

1

� 1)

db

1k

dt

1

= �(b

1k

�

1

+ 


1k

);

�

1

(�

1

� 1)

db

k1

dt

1

= b

k1

�

1

+ 


k1

;

�

1

(�

1

� 1)

d


hk

dt

1

= 


h1

b

1k

� b

h1




1k

:

(49)

De�ne �

k

and �

k

by

b

1k

= �

k

exp

t

1

1� �

1

; b

k1

= �

k

exp

t

1

�

1

� 1

;

bring 
 to its 
anoni
al form (supposed here to be diagonal), de�ne a

i

= 


ii

and 
hoose




11

= ��

2

�

2

� � � � � �

m

�

m

. Then (50) redu
es to

�

�

i

= �

i

(2

m

X

j=2

�

j

�

j

+ a

i

);

��

i

= �

i

(2

m

X

j=2

�

j

�

j

+ a

i

);

an integrable system whi
h is known as the Garnier system. Restri
ted to the invariant

subspa
e �

i

= �

i

it gives exa
tly Newton's equations for the integrable potentials V

�

.
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