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Abstrat

In this paper we disuss some algebrai-geometri aspets of a (family of) integrable quarti

potential(s) in two degrees of freedom. It is a speial ase of the so-alled Garnier system, whih was

�rst introdued by Garnier when studying isomonodromi deformations of di�erential equations.

We show that the omplex invariant manifolds of this integrable system omplete into Abelian

surfaes of type (1; 4) and use the spei� geometry of these surfaes to prove that the system is

algebrai ompletely integrable. The limiting ase of the potential (q
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+ q

2
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)

2

will also be disussed,

in partiular a Lax pair for this limiting potential will be found from the Lax pair we onstrut for

the generi ase.

We also show that every Abelian surfae of type (1; 4) ours as an invariant manifold for one

of these integrable potentials. This allows us (among other expliit things) to ompute expliitely

a anonial map between the moduli spae of Abelian surfaes of type (1; 4) to the moduli spae

of Jaobians of genus two urves.
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1. Introdution

It is well-known that there is a rih interation between algebrai geometry and algebrai

ompletely integrable systems (a..i. systems) both in the �nite-dimensional ase (e.g. Toda latties,

geodesi ows on Lie groups, lassial tops) and the in�nite-dimensional ase (e.g. KdV and KP

equations, non-linear Shr�odinger equation) (see [AvM1℄, [D℄, [M2℄, [Sh℄).

The main fat is that the generi integral urve of the Hamiltonian vetor �eld of suh an

integrable system is dense in an Abelian variety, i.e., in a omplex algebrai torus (run with omplex

time). The di�erent Abelian varieties whih orrespond to the di�erent integral urves �ll up the

phase spae and are alled the (omplex) invariant manifolds of the vetor �eld. Equations for

(an aÆne part of) these invariant manifolds are given by a maximal set of independent funtions,

invariant for the vetor �eld (often alled onstants of motion or �rst integrals) one of whih is the

Hamiltonian funtion de�ning the vetor �eld. It follows that knowing these onstants of motion

leads to expliit equations for aÆne parts of Abelian surfaes. On the one hand they yield by

diret methods some interesting results about the family of Abelian varieties whih appear in the

system, whih often desribe the full moduli of Abelian varieties of a given type (at least in small

dimensions). Remember that Abelian varieties (of dimension g) are desribed by means of a set of

disrete parameters (Æ

1

; : : : ; Æ

g

) giving the (polarization) type and by means of a Riemann matrix Z

(i.e., a symmetri g� g matrix with positive de�nite imaginary part). On the other hand algebrai

geometry an be used to study the integrable system, for example to linearize the ow of the vetor

�eld or to �nd transformations between di�erent systems (see [V1℄ and Setion 2.2 below).

The present paper deals with an integrable system de�ned by a quarti potential in two degrees

of freedom, whose generi invariant manifolds are Abelian surfaes of polarization type (1; 4). In one

diretion, the spei� geometry of these Abelian surfaes will be used to prove algebrai omplete

integrability of the potential and in the other diretion the expliit (aÆne) oordinates provided

by the system will be used to prove some new results and perform some expliit onstrutions for

Abelian surfaes of type (1; 4). In this way we provide and exploit an essentially new ase of the

interation between algebrai geometry and a..i. systems (the present potential is the �rst known

a..i. system leading to Abelian surfaes of type (1; 4)).

The potential is a quadrati perturbation
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the latter being obviously integrable sine it is a entral potential. However, although V

00

as well as

V
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are only Liouville integrable (but not a..i.) the perturbation V

��

beomes a..i. for � 6= �. V

��

an be interpreted as a potential whih desribes an anisotropi harmoni osillator in a entral

�eld; remark that the entral �eld V

00

is exeptional in the sense that an anisotropi harmoni

osillator in a general entral �eld is not integrable.

Newton's equations of motion take the symmetri form
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It was pointed out to me by A. Perelomov that this potential was �rst studied by Garnier in

the beginning of this entury. In fat the Garnier system is a muh more general system whih

ontains a lot of integrable systems; the derivation of the potentials V

��

(and their generalizations

to higher dimensions) will be given in the Appendix (see [G℄, [P℄).

To prove that the potentials V

��

de�ne an a..i. system we use the result of [BLS℄ (explained in

Setion 2.1) whih states that the line bundle L whih de�nes the polarization on a generi Abelian

surfae of type (1; 4) indues a birational map �

L
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, whose image is an oti of a ertain
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3

by

�

2

0

y

2

0

y

2

1

y

2

2

y

2

3

+ �

2

1

(y

4

0

y

4

1

+ y

4

2

y

4

3

) + �

2

2

(y

4

1

y

4

3

+ y

4

0

y

4

2

) + �

2

3

(y

4

0

y

4

3

+ y

4

1

y

4

2

)+

2�

1

�

2

(y

2

0

y

2

1

+ y

2

2

y

2

3

)(y

2

1

y

2

3

� y

2

0

y

2

2

) + 2�

1

�

3

(y

2

0

y

2

3

� y

2

1

y

2

2

)(y

2

0

y

2

1

� y

2

2

y

2

3

)+

2�

2

�

3

(y

2

1

y

2

2

+ y

2

0

y

2

3

)(y

2

1

y

2

3

+ y

2

0

y

2

2

) = 0;

(2)

for some (�
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nS where S is some divisor of IP

3

, whih we will determine. Moreover

eah oti of this type ours in that way. It will allow us to show that the invariant surfaes of

the Hamiltonian vetor �eld assoiated to the potential V

��

; (� 6= �), are Abelian surfaes, and

we show that the ow of this vetor �eld is linear on the invariant tori. Combining these results

leads to the proof that the potentials V

��

de�ne an a..i. system for � 6= � and we derive a Lax

representation for it. Our proof of algebrai omplete integrability is unusual in the sense that we

do not use the Laurent solutions to the di�erential equations (see [AvM3℄), nor the Lax equations

(whih often only ome up at the end) (see [Gr℄).

Do the Abelian surfaes generated by the potentials (1) aount for all moduli of (1; 4)-polarized

Abelian surfaes? The answer is yes. In order to state preisely this answer (as given in Setion

4), we �rst make a detailed study of the moduli spae A

(1;4)

of Abelian surfaes of type (1,4) and

of some assoiated moduli spaes (Setion 4). We use some results from [BLS℄ to onstrut a map

 from A

(1;4)

to an algebrai one M

3

of dimension 3, whih lives in weighted projetive spae

IP

(1;2;2;3;4)

. The map is bijetive on the dense subset

~

A

(1;4)

of Abelian surfaes for whih the above

map �

L

is birational and the image is an aÆne varietyM

3

nD where D is some divisor inM

3

; the

two-dimensional subset A

(1;4)

n

~

A

(1;4)

whih onsists of those Abelian surfaes (T

2

;L) for whih �

L

is 2: 1 however maps to a urve C (minus two points P;Q), whih itself is a divisor in D. It follows

that the image of the map  :A

(1;4)

! IP

(1;2;2;3;4)

onsists of the union

I = (M

3

nD) [ (C n fP;Qg);

and the one M

3

an be onsidered as a ompati�ation of A

(1;4)

. Equations for M

3

; D; C and

oordinates for the points P and Q will be expliitly alulated. We prove that for every point in

the one M

3

(exept for its vertex) there is at least one invariant surfae of some potential V

��

orresponding to it under  (Theorem 3).

We also de�ne a map from

~

A

(1;4)

onto the moduli spae of two-dimensional Jaobians, or what

is the same the moduli spae of smooth urves of genus two. Namely we show (Setion 5) that for
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every T

2

2

~

A

(1;4)

there exists exatly one Jaobi surfae J = J(T

2

) (with urve � = �(T

2

)) suh

that the map 2

J

(multipliation by 2 in J) fatorizes over T

2

(hene also over its dual

^

T

2

,) i.e.,

there is a ommutative diagram

J
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^
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2
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y

4:1
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2

4:1

�! J

(3)

We all this Jaobian the anonial Jaobian (of T

2

); it will also appear naturally in Setion 3

when linearizing the vetor �eld de�ned by the potentials V

��

. One sees from the diagram that T

2

annot be reonstruted from J (or �); indeed T

2

indues a deomposition � = �

1

� �

2

of any

lattie � de�ning J = C

2

=� (and a partition W = W

1

[W

2

of the set of Weierstra� points of �)

and this extra datum suÆes to reonstrut T

2

from J (or �). This will be shown in Setion 5.

The problem arises to alulate this map expliitely as well as the extra data. We know of no

diret algebrai way to do this. Instead we solve this problem (in Setion 6) by relying heavily on

the partiular oordinates provided by the potentials V

��

. Some geometrial investigations then

lead to the following result: the urve �(T

2

) orresponding to T

2

is given by
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when the oordinate x is hosen suh that it sends the points of W

2

to 0; 1 and 1; W

1

ontains

the other 3 Weierstra� points on this urve. We obtain this result in two di�erent ways: one way

uses the over J ! T

2

and the other uses the over T

2

! J . It would be nie to alulate this

map in a diret way, i.e., without using the V

��

.

In the �nal setion (Setion 7) we study the degenerate ase V

��

as a limit of the generi

ase V

��

(� 6= �). Sine the potentials V

��

are entral they are obviously integrated using polar

oordinates; these oordinates will be obtained as a limit of the linearizing variables for the generi

ase (V

��

; � 6= �) as well as the Lax representation (with a spetral parameter). This shows that

the systemati tehniques developped in [V1℄ to obtain linearizing variables and Lax equations for

generi two-dimensional a..i. systems an lead to these data for integrable systems whose invariant

manifolds are not Abelian varieties. We prove that in this degenerate ase the aÆne invariant

manifolds are C

�

-bundles over an ellipti urve, whih itself is the spetral urve going with the

Lax pair. Also we show that the invariant manifolds of all entral potentials V

��

orresponds to

the speial point P 2M

3

at the boundary of I.
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2. Preliminaries

In this setion we reall some results about Abelian surfaes of type (1,4) whih will be used

in this paper (see [BLS℄, [GH℄, [LB℄), as well as the basi tehniques to study two-dimensional

(algebrai) ompletely integrable systems (see [V1℄).

2.1. Abelian surfaes of type (1,4)

Let � be a rank 4 lattie in C

2

; and form the assoiated omplex torus T

2

= C

2

=�. By a

theorem of Riemann, T

2

is an Abelian surfae (i.e., an be embedded in projetive spae) if and

only if there exists a omplex base fe

1

; e

2

g for C

2

and an integer base f�

1

; : : : ; �

4

g for � suh that

the latter base an be written in terms of the former as

� =

�
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�

(i.e., �

1
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1

; : : :) where Æ

1

j Æ

2

2 IN and =

�

a b

b 

�

> 0: The integers Æ

1

and Æ

2

are not invariants

for the Abelian surfae T

2

itself, but for T

2

equipped with some additional data: if L is an ample

line bundle on T

2

(i.e., a line bundle for whih the setions of some power of the line bundle embeds

the surfae in projetive spae) then a base �

1

; : : : ; �

4

for � an be hosen suh that the �rst Chern

lass 

1

(L) is given in terms of oordinates x

1

; : : : ; x

4

; dual to �

1

; : : : ; �

4

; by
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1

(L) is alled the polarization determined by L and depends only on L up to algebrai equivalene;

Æ

1

and Æ

2

are invariants of 

1

(L): The pair (Æ

1

; Æ

2

) is alled the type of L; (or the type of the

polarization 

1

(L)). Loosely speaking we often say that the Abelian surfae T

2

has type (Æ

1

; Æ

2

).

T

2

is said to be prinipal polarized if it has type (1; 1). A prinipal polarized Abelian surfae is

either isomorphi to a produt of ellipti urves (eah taken with its prinipal polarization), or to

the Jaobian of a smooth urve of genus two, polarized by its theta divisor �.

For a generi Abelian surfae the line bundle L = [D℄ orresponding to any e�etive divisor D

is ample and one has the following useful string of identities:

g(D)� 1 = dimH

0

�

T

2

;O(L)

�

= Æ

1

Æ

2

; (4)

where g(D) is the virtual genus of D; whih an (for Abelian surfaes) be de�ned in terms of

intersetion of divisors by

g(D) =

D � D

2

+ 1; (5)

if D is non-singular, g(D) is just the topologial genus of D: To L there is assoiated a rational map

�

L

:T

2

! IP

Æ

1

Æ

2

�1

whih is de�ned by means of the setions of the sheaf O(L), or equivalently by

means of the elements of L(D), where

L(D) = ff j f meromorphi on T

2

and (f) +D � 0g:

In this paper we onentrate on Abelian surfaes of type (1; 4): These Abelian surfaes have

a very rih geometry, whih we desribe now (see [BLS℄). As in [BLS℄ we will without further

mention always restrit ourselves to those Abelian surfaes of type (1; 4) whih are not isomorphi
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to a produt of ellipti urves as polarized Abelian surfaes. Let L be a line bundle of type (1; 4)

on an Abelian surfae T

2

: It follows from (4) that dimH

0

(T

2

;O(L)) = 4 and L indues a rational

map �

L

:T

2

! IP

3

:

� In the generi ase, the image of this map O = �

L

(T

2

) � IP

3

is an oti and �

L

is birational

on its image. Let K(L) be the kernel of the isogeny

I
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2

!

^
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a 7! t

a

L
 L

�1

between T

2

and its dual

^
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2

(de�ned as the set of all line bundles on T

2

of degree 0; t

a

is translation

by a 2 T

2

), then K(L) is a group of translations, isomorphi to ZZ=4ZZ� ZZ=4ZZ. Piking any suh

isomorphism, let � and � be generators of the subgroups orresponding to this deomposition. Then

homogeneous oordinates (y
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an be piked, suh that �; � and the (�1)-involution
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) 2C

2
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(stritly speaking it may be neessary to replae � by 3� ; it is easily heked that these oordinates

exist only for (�; �) and (3�; 3�) or for (�; 3�) and (3�; �)). [BLS℄ show that the oti O is given in
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for some (�

0

:�

1

:�

2

:�

3

) 2 IP

3

n S where S is some divisor of IP

3

whih we will determine later

(Setion 6.4). Remark that for any �

i

= �1; the oordinates (�

0

y

0

: �

1

y

1

: �

2

y

2

: �

0

�

1

�

2

y

3

) will also

satisfy (6) and these are the only oordinates with this property. It is also seen that, if (�; �) is

replaed by (3�; 3�), then the oordinates (y

0

: y

1

: y

2

: y

3

) are replaed by (y

0

: y

1

: y

2

:�y

3

): Sine the

equation of O depends only on y

2

i

these hoies do not a�et the equation (7), so there is assoiated

to a deomposition K(L) = K

1

� K

2

(where K

1

and K

2

are yli of order 4) an equation for

O: [BLS℄ also show that the polarized Abelian surfae as well as the deomposition of K(L) an

be reovered from (7) and that every oti of the type (7) (with (�

0

:�

1

:�

2

:�

3

) =2 S) is the image

�

L

(T

2

) of some (1; 4)-polarized Abelian surfae (T

2

;L).

If we denote by

~

A

0

(1;4)

the moduli spae of (isomorphism lasses of) (1; 4)-polarized Abelian

surfaes for whih �

L

is birational, equipped with a deomposition of K(L) as above, then it follows

that

~

A

0

(1;4)

�

=

IP

3

n S

�

0

� ��

0

: (8)

Moreover, if we denote by K the subgroup of K(L) of two-torsion elements,

K = f0; 2�; 2�; 2� + 2�g;
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then T

2

=K is a prinipal polarized Abelian surfae, whih is the Jaobian of a urve of genus two;

we all T

2

=K the anonial Jaobian assoiated to T

2

: Reall that for a two-dimensional Jaobian

J its Kummer surfae is the image of �

[2�℄

� IP

3

, where � is the theta divisor of J . Then it

is seen from (6) that an equation for the Kummer surfae of T

2

=K is given by the quarti Q in

IP

3

, obtained by replaing y

2

i

by z

i

in the equation (7) for O and there is an obvious projetion

�p:O ! Q. In fat, hoosing the origin of T

2

suh that L beomes symmetri, L is the pull-bak of

a line bundle N on T

2

=K of type (1,1) via the anonial projetion

p:T

2

! T

2

=K;

and �

N

2

indues the Kummer mapping; [BLS℄ prove that the following diagram ommutes

T

2

�

L

�! O

?

?

y

p

?

?

y

p

T

2

=K

�

N

2

�! Q

(9)

� If �

L

is not birational, then it is 2: 1 and �

L

(T

2

) is a quarti in IP

3

; given by one of the equations

�

1

(y

2

0

y

2

1

+ y

2

2

y

2

3

) + �

2

(y

2

1

y

2

3

� y

2

0

y

2

2

) = 0;

�

1

(y

2

2

y

2

3

� y

2

0

y

2

1

) + �

3

(y

2

1

y

2

2

� y

2

0

y

2

3

) = 0;

�

2

(y

2

1

y

2

3

+ y

2

0

y

2

2

) + �

3

(y

2

1

y

2

2

+ y

2

0

y

2

3

) = 0;

depending on the hoie of the deomposition; in this ase the Abelian surfae as well as the

deomposition of K(L) an only partly be reovered from these equations and T

2

=K is a produt

of ellipti urves (in partiular T

2

is isogeneous to a produt of ellipti urves). Squaring eah of

these equations we �nd equation (7) respetively with

(

�

2

0

= 2(�

2

2

+ �

2

3

)

�

1

= 0

�

2

�

3

6= 0; �

2

2

� �

2

3

6= 0;

(

�

2

0

= �2(�

2

1

+ �

2

3

)

�

2

= 0

�

1

�

3

6= 0; �

2

1

� �

2

3

6= 0;

(

�

2

0

= 2(�

2

1

� �

2

2

)

�

3

= 0

�

1

�

2

6= 0; �

2

1

+ �

2

2

6= 0;

(10)

Summarizing, in the �rst ase (the generi ase), �

L

(T

2

) is an oti, T

2

=K is a Jaobian and

T

2

as well as the deomposition of K(L) an be reonstruted from the oti; in the other ase

�

L

(T

2

) is a quarti, T

2

=K is a produt of ellipti urves and T

2

annot be reonstruted from the

quarti. The rational map �

L

provides us with a natural surjetive map

 

0

:A

0

(1;4)

!

�

�

IP

3

n S

�

[

(three rational urves in S, eah missing eight points)

�

Æ

(�

0

� ��

0

);

where A

0

(1;4)

denotes the moduli spae of (isomorphism lasses of) (1; 4)-polarized Abelian surfaes

together with a deomposition of K(L) (as above). The map  

0

extends the bijetion (8) de�ned

7



on the dense subset

~

A

0

(1;4)

of A

0

(1;4)

and maps the (two-dimensional) omplement of

~

A

0

(1;4)

to the

three rational urves, whih are thought of as lying inside the boundary of  

0

(

~

A

0

(1;4)

), i.e., in S;

the generi point of S however does not orrespond to Abelian surfaes, but to surfaes whih an

be interpreted as degenerations of Abelian surfaes (see [BLS℄).

2.2. Two-dimensional a..i. systems

We now reall the basi tools to study two-dimensional a..i. systems (see [AvM1℄, [V1℄). At

�rst, an integrable system on (IR

2n

; !) (! may be any sympleti struture on IR

2n

but the ase

that ! is the standard sympleti struture will suÆe for this paper) onsists of a Hamiltonian

vetor �eld X

H

, de�ned as

!(X

H

; �) = dH(�);

for whih there exist n� 1 additional invariants, i.e., there are n independent, Poisson-ommuting

funtions H

1

; : : : ;H

n

on IR

2n

; Poisson-ommuting funtions F;G 2 C

1

(IR

2n

), are by de�nition

funtions for whih their Poisson braket fF;Gg

!

= !(X

F

;X

G

) vanishes. The intersetion

n

\

i=1

�

x 2 IR

2n

j H

i

(x) = 

i

	

is by Poisson-ommutativity invariant for the ows of all X

H

i

and is smooth for generi values of

 = (

1

; : : : ; 

n

). By the well-known Arnold-Liouville Theorem, the ompat onneted omponents

of these invariant manifolds are di�eomorphi to real tori (the non-ompat omponents being

di�eomorphi to ilindres, assuming that the ow of the vetor �elds X

H

i

is omplete on them);

moreover the ows of the vetor �elds X

H

i

are linear, when seen as ows on the tori (ilindres)

using the di�eomorphism. n is alled the dimension of the system.

A notable ase | whih appears most often in both the lassial and reent, mathematial

and physis literature | is the ase that there exist oordinates q

1

; : : : ; q

2n

for IR

2n

, in whih

all H

i

; (i = 1; : : : ; n) as well as all brakets fq

i

; q

j

g

!

; (i; j = 1 : : : ; 2n) are polynomials (stritly

speaking, for the larger lass of these examples (IR

2n

; f�; �g

!

) is replaed by the more general Poisson

manifold (IR

m

; f�; �g), where f�; �g does not neessarily ome from a sympleti struture). Then

the sympleti struture and the vetor �eld are easily omplexi�ed, giving a Poisson ommuting

family of funtions on C

2n

and for generi  = (

1

; : : : ; 

n

) (where the 

i

may now also take values

in C) the invariant manifolds

A



=

n

\

i=1

�

x 2C

2n

j H

i

(x) = 

i

	

are aÆne (algebrai) varieties. In suh a situation, the integrable system will be alled algebrai

ompletely integrable if these generi invariant manifolds A



are aÆne parts of an Abelian variety

T

n



, A



= T

n



n D



, where D



is the minimal divisor where the oordinate funtions (restrited to

the invariant manifolds) blow up, and if the (omplex) ow of the vetor �elds on T



is linear (see

[AvM3℄).

In the two-dimensional ase (n = 2) the invariant manifolds omplete into Abelian surfaes by

adding one or several (possibly singular) urves to the aÆne surfaes A



. In this ase, the following

algorithm, proposed in [V1℄ leads to an expliit linearization (i.e., integration) of the vetor �eld

X

H

(steps (1) and (2) are due to Adler and van Moerbeke, see [AvM1℄).
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(1) Compute the �rst few terms of the Laurent solutions to the di�erential equations, and use

these to onstrut an embedding of the generi invariant manifolds in projetive spae (see

[AvM3℄, [V1℄ and [V2℄).

(2) Dedue from the embedding the struture of the divisors D



to be adjoined to the (generi)

aÆne invariant manifolds A



in order to omplete them into Abelian surfaes. At this point

the type of polarization indued by eah irreduible omponent of D



an also be determined.

(3) a) If one of the omponents of D



is a smooth urve �



of genus two, ompute the image of

the rational map

�

[2�



℄

:T

2



! IP

3

whih is a singular surfae in IP

3

, the Kummer surfae K



of Ja(�



).

b) Otherwise, if one of the omponents of D



is a d: 1 unrami�ed over C



of a smooth urve

�



of genus two, p: C



! �



, the map p extends to a map �p:T

2



! Ja(�



). In this ase, let

E



denote the (non-omplete) linear system �p

�

j2�



j � j2C



j whih orresponds to the omplete

linear system j2�



j and ompute now the Kummer surfae K



of Ja(�



) as the image of

�

E



:T

2



! IP

3

:

) Otherwise, hange the divisor at in�nity so as to arrive in ase a) or b). This an always be

done for a generi Abelian surfae (i.e., for an Abelian surfae whih has no automorphisms

exept identity and the obvious (�1)-involution).

(4) Choose a Weierstra� point W on the urve �



and oordinates (z

0

: z

1

: z

2

: z

3

) for IP

3

suh that

�

[2�



℄

(W ) = (0: 0: 0: 1) in ase (3) a) and �

E



(W ) = (0: 0: 0: 1) in ase (3) b). Then this point

will be a singular point (node) for K



and K



has an equation

p

2

(z

0

; z

1

; z

2

)z

2

3

+ p

3

(z

0

; z

1

; z

2

)z

3

+ p

4

(z

0

; z

1

; z

2

) = 0;

where the p

i

are polynomials of degree i. After a projetive transformation whih �xes

(0: 0: 0: 1) we may assume that

p

2

(z

0

; z

1

; z

2

) = z

2

1

� 4z

0

z

2

:

(5) Finally, let x

1

and x

2

be the roots of the quadrati equation z

0

x

2

+z

1

x+z

2

= 0, whose disrim-

inant is p

2

(z

0

; z

1

; z

2

), with the z

i

expressed in terms of the original variables q

1

; : : : ; q

4

. Then

the di�erential equations desribing the vetor �eld X

H

are rewritten by diret omputation

in the lassial Weierstra� form

dx

1

p

f(x

1

)

+

dx

2

p

f(x

2

)

= �

1

dt;

x

1

dx

1

p

f(x

1

)

+

x

2

dx

2

p

f(x

2

)

= �

2

dt;

where �

1

and �

2

depend on  (i.e., on the torus) only. From it, the symmetri funtions

x

1

+ x

2

(= �z

1

=z

0

) and x

1

x

2

(= z

2

=z

0

) and hene also the original variables q

1

; : : : ; q

4

an be

written in terms of the Riemann theta funtion assoiated to the urve y

2

= f(x).

The best way to see that this algorithm is very e�etive and easy to apply is to look at one or

several of the worked-out examples in [V1℄. In the present paper this algorithm will not be used as

it stands, sine we do not know in advane that our system is a..i.; instead we will see how it an

be helpful when proving algebrai omplete integrability. We remark that it is shown in [V1℄ how

a Lax pair for the system derives from the above linearization.
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3. The quarti potential V

��

and its integrability

It is shown in [CC℄ that for any � = (�

1

; : : : ; �

n

); the potential

V

�

=

 

n

X

i=1

q

2

i

!

2

+

n

X

i=1

�

i

q

2

i

; (11)

de�nes an integrable system on IR

2n

= f(q

1

; : : : ; q

n

; p

1

; : : : ; p

n

) j q

i

; p

i

2 IRg; equipped with the

standard sympleti struture ! =

P

dq

i

^ dp

i

; when the Hamiltonian is taken as the total energy

H

�

= T + V

�

; T =

1

2

n

X

i=1

p

2

i

;

(T is the kineti energy). This result also follows immediately from the integrability of the Garnier

system, whih will be realled in the Appendix. We study here the ase n = 2 (two degrees of

freedom) writing

V

��

= (q

2

1

+ q

2

2

)

2

+ �q

2

1

+ �q

2

2

:

It would be interesting to study also the higher-dimensional potentials as well as other ases of the

Garnier system from the point of view of algebrai geometry.

Fixing arbitrary parameters � 6= �; let H = T + V

��

: Then the equations for the vetor �eld

X

H

; de�ned by !(X

H

; �) = dH(�) are given by

_q

1

= p

1

;

_q

2

= p

2

;

_p

1

= �2q

1

(2q

2

1

+ 2q

2

2

+ �);

_p

2

= �2q

2

(2q

2

1

+ 2q

2

2

+ �):

(12)

For any f; g onsider the aÆne surfae A

fg

de�ned by

F � (q

1

p

2

� q

2

p

1

)

2

+ (� � �)(p

2

1

+ 2q

4

1

+ 2q

2

1

q

2

2

+ 2�q

2

1

) = f;

G � (q

1

p

2

� q

2

p

1

)

2

+ (�� �)(p

2

2

+ 2q

4

2

+ 2q

2

1

q

2

2

+ 2�q

2

2

) = g;

(when the dependene on � and � is important we will denote this surfae by A



where  =

(�; �; f; g)). Then A

fg

is invariant under the ow of X

H

sine both F and G Poisson ommute

with H. Sine

F �G = 2(� � �)H

and � 6= �, any pair of funtions taken form fF;G;Hg an be taken as a maximal set of independent

Poisson ommuting funtions; in order t o simplify some of the formulas in the sequel we let, for

given f and g; the onstant h be determined by f � g = 2(� � �)h:

The surfae A

fg

has the following independent involutions:

{

1

(q

1

; q

2

; p

1

; p

2

) = (�q

1

; q

2

;�p

1

; p

2

);

{

2

(q

1

; q

2

; p

1

; p

2

) = (q

1

;�q

2

; p

1

;�p

2

);

whih both preserve the vetor �eld, and one other (independent) involution

|(q

1

; q

2

; p

1

; p

2

) = (q

1

; q

2

;�p

1

;�p

2

);
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whih reverses the diretion of the vetor �eld. These three involutions generate a group isomor-

phi to (ZZ=2ZZ)

3

. Moreover one sees that for �xed �; �; f and g all A

(��;��;�

3

f;�

3

g)

; � 2 C

�

are

isomorphi. It is therefore natural to onsider (�; �; f; g) as belonging to the weighted projetive

spae

1

IP

(1;1;3;3)

. A trivial observation whih will turn out to be important is that also A

(�;�;f;g)

and A

(�;�;g;f)

are isomorphi.

Remark that if � = � then F (= G) is just the square of the momentum

q = q

1

p

2

� q

2

p

1

; (13)

whih obviously Poisson-ommutes with the energy orresponding to a entral potential. What is

remarkable however is that if � 6= � then the equations de�ning A

fg

an be rewritten (birationally)

in terms of q

1

; q

2

and the momentum q; giving preisely the equations (7) of the oti O with

�

2

0

= 4(�� �)

2

(�+ �)� 2(f + g);

�

2

1

= g;

�

2

2

= 2(�� �)

3

;

�

2

3

= f;

y

0

= 1;

y

1

= q

1

4

p

2(� � �)=f;

y

2

= q=

4

p

fg;

y

3

= q

2

4

p

2(� � �)=g:

(14)

It follows that for generi f; g the surfae A

fg

is birationally equivalent to the aÆne part O

0

=

O \ fy

0

6= 0g of the oti O whih is itself birationally equivalent to an Abelian surfae of type

(1; 4). We show in the following theorem that A

fg

atually is (isomorphi to) an aÆne part of an

Abelian surfae of type (1; 4).

Theorem 1 Fixing any � 6= � 2C, the aÆne surfae A

fg

�C

4

de�ned by

(q

1

p

2

� q

2

p

1

)

2

+ (� � �)(p

2

1

+ 2q

4

1

+ 2q

2

1

q

2

2

+ 2�q

2

1

) = f;

(q

1

p

2

� q

2

p

1

)

2

+ (�� �)(p

2

2

+ 2q

4

2

+ 2q

2

1

q

2

2

+ 2�q

2

2

) = g;

is for generi

2

f; g 2 C isomorphi to an aÆne part of an Abelian surfae T

2

fg

; of type (1; 4),

obtained by removing a smooth urve D

fg

of genus 5,

A

fg

= T

2

fg

n D

fg

;

and the vetor �eld X

H

extends to a linear vetor �eld on T

2

fg

:

Proof

(i) Let G be the group generated by the involutions {

1

; {

2

, and |. Our �rst aim is to show that

A

fg

=G is (isomorphi to) an aÆne part of a Kummer surfae. Sine f and g are generi, we may

suppose that (�

0

:�

1

:�

2

:�

3

) given by (14) do not belong to S. For these �

i

, let Q be the quadri

(Kummer surfae)

�

2

0

z

0

z

1

z

2

z

3

+ �

2

1

(z

2

0

z

2

1

+ z

2

2

z

2

3

) + �

2

2

(z

2

0

z

2

2

+ z

2

1

z

2

3

) + �

2

3

(z

2

0

z

2

3

+ z

2

1

z

2

2

)+

2�

1

�

2

(z

0

z

1

+ z

2

z

3

)(z

1

z

3

� z

0

z

2

) + 2�

1

�

3

(z

0

z

3

� z

1

z

2

)(z

0

z

1

� z

2

z

3

)+

2�

2

�

3

(z

1

z

2

+ z

0

z

3

)(z

1

z

3

+ z

0

z

2

) = 0;

(15)

1

a quik introdution to weighted projetive spaes is given in an appendix to [AvM3℄

2

preise onditions will be given later (Theorem 6)
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whih is obtained from (7) by setting z

i

= y

2

i

; i.e., there is an unrami�ed 8: 1 over O ! Q; this

map restrits to a map �p

0

:O

0

! Q

0

; where Q

0

= Q\fz

0

6= 0g: Also the rational map �:A

fg

! O

0

given by (13) and (14) indues a birational map

~

�:A

fg

=G ! Q

0

; giving rise to a ommutative

diagram

A

fg

�

�! O

0

?

?

y

�

?

?

y

�p

0

A

fg

=G

~

�

�! Q

0

(16)

Sine Q

0

is normal, it suÆes to show that

~

� is bijetive. Obviously

~

� is surjetive: if (x

1

; x

2

; x

3

) 2

Q

0

; let (y

1

; y

2

; y

3

) be suh that y

2

i

= x

i

and let q

1

; q

2

; q be determined from (14). Then these satisfy

the ondition under whih p

1

; p

2

exist suh that (q

1

; q

2

; p

1

; p

2

) 2 A

fg

and q = q

1

p

2

� q

2

p

1

: Then

~

�(q

1

; q

2

; p

1

; p

2

) = (x

1

; x

2

; x

3

). At the other hand, if (

~

�Æ�)(q

1

; q

2

; p

1

; p

2

) = (

~

�Æ�)(q

0

1

; q

0

2

; p

0

1

; p

0

2

) then

q

1

= �

1

q

0

1

; q

2

= �

2

q

0

2

; q = �q

0

; (where q

0

= q

0

1

p

0

2

� q

0

2

p

0

1

) for �

1

; �

2

; � 2 f�1; 1g: Then one sees that

(q

1

; q

2

; p

1

; p

2

) = {

�

1

1

{

�

2

2

{

�

(q

0

1

; q

0

2

; p

0

1

; p

0

2

);

where i

�

k

k

means {

k

in ase �

k

= �1 and identity for �

k

= 1: It follows that �(q

1

; q

2

; p

1

; p

2

) =

�(q

0

1

; q

0

2

; p

0

1

; p

0

2

); and

~

� is injetive. This shows that

~

� is an isomorphism, hene A

fg

=G is isomorphi

to the (aÆne) Kummer surfae de�ned by Q

0

:

(ii) We proeed to show that A

fg

is isomorphi to an aÆne part of an Abelian surfae, more

preisely to the normalization A of O

0

(the oti is singular along the oordinate planes). This

normalization an be obtained via the birational map �

L

:T

2

! O: In partiular, by restrition of

(9) to an aÆne piee we get a ommutative diagram

A

�

L

�! O

0

?

?

y

p

0

?

?

y

�p

0

K

0

�

N

2

�! Q

0

(17)

where �

N

2

is an isomorphism. If we ombine both diagrams (16) and (17) we get

A

fg

'

�! A

?

?

y

8:1

?

?

y

8:1

A

fg

=G

~'

�! K

0

with ' the birational map �

�1

L

� and ~' the isomorphism �

�1

N

2

~

�. Now the two overs A

fg

! A

fg

=G

and A ! K

0

are only rami�ed in disrete points; the same holds true if A and A

fg

are replaed

by their losures: the losure of A is just T

2

and the losure of A

fg

is obtained from the expliit

embedding whih will be given in 6.1. By Zariski's Main Theorem the normality of T

2

implies that

the lifting ' of ~' must also be an isomorphism and we get

A

fg

= T

2

fg

n D

fg

for some divisor D

fg

on a (1; 4)-polarized Abelian surfae T

2

fg

: It is seen that D

fg

is a 4: 1 unrami�ed

over of a translate of the Riemann theta divisor of the anonial Jaobian, hene D

fg

is smooth

and has genus 5; an equation for D

fg

will be given in Setion 6.

12



(iii) Finally we show that X

H

extends to a linear vetor �eld on T

2

fg

: Letting �

0

= 1; �

1

= q

2

1

and �

3

= q

2

; we have shown that an equation for the Kummer surfae of the anonial Jaobian

assoiated to A

fg

is a quarti in these variables. From (14) and (7) the leading term in �

2

3

is given

by ((� + �)�

0

+ �

1

+ �

2

)

2

� 4(���

0

+ ��

1

+ ��

2

); or, in terms of the original variables,

(q

2

1

+ q

2

2

+ �+ �)

2

� 4(�� + �q

2

2

+ �q

2

1

): (18)

We let x

1

and x

2

be the roots of the polynomial

x

2

+

�

q

2

1

+ q

2

2

+ �+ �

�

x+ �� + �q

2

2

+ �q

2

1

;

as suggested by the algorithm realled in Setion 2.2 (\suggested" beause we did not prove yet

that the system is a..i.). Expliitely, let

x

1

+ x

2

= �(q

2

1

+ q

2

2

+ �+ �);

x

1

x

2

= �� + �q

2

2

+ �q

2

1

;

_x

1

+ _x

2

= �2(q

1

p

1

+ q

2

p

2

);

x

1

_x

2

+ _x

1

x

2

= 2(�q

1

p

1

+ �q

2

p

2

);

(19)

then it is not hard to rewrite the equations F = f; G = g; de�ning A

fg

; in terms of x

1

; x

2

; _x

1

; _x

2

:

This gives

_x

2

i

=

8(x

i

+ �)(x

i

+ �)

�

x

3

i

+ (�+ �)x

2

i

+ (�� � h)x

i

+ (�f � �g)=2(� � �)

�

(x

1

� x

2

)

2

so that

dx

1

p

f(x

1

)

+

dx

2

p

f(x

2

)

= 0;

x

1

dx

1

p

f(x

1

)

+

x

2

dx

2

p

f(x

2

)

= 2

p

2dt;

(20)

where

f(x) = (x+ �)(x+ �)

�

x

3

+ (�+ �)x

2

+ (�� � h)x+

�f � �g

2(�� �)

�

:

Integrating (20) we see that X

H

is a linear vetor �eld on A

fg

; whih obviously extends to a linear

vetor �eld on T

2

fg

: From this expression the symmetri funtions x

1

+ x

2

and x

1

x

2

; hene the

variables q

1

; q

2

; p

1

; p

2

an be written at one in terms of theta funtions (see [M2℄).

Remark that as a by-produt we �nd an equation

y

2

= (x+ �)(x+ �)

�

x

3

+ (�+ �)x

2

+ (�� � h)x+

�f � �g

2(�� �)

�

: (21)

for the urve whose Jaobian is the anonial Jaobian assoiated to T

2

fg

:

The theorem leads to the following important orollary:

Corollary 2 If � 6= � then the potential

V

��

=

�

q

2

1

+ q

2

2

�

2

+ �q

2

1

+ �q

2

2

13



de�nes an a..i. system (in the sense of [AvM1℄) on IR

4

with the anonial sympleti struture. A

Lax representation of the vetor �eld X

H

, where H =

1

2

(p

2

1

+ p

2

2

) + V

��

, is given by

d

dt

�

v(x) u(x)

w(x) �v(x)

�

=

p

2

��

v(x) u(x)

w(x) �v(x)

�

;

�

0 1

x� 2(q

2

1

+ q

2

2

) 0

��

;

where

u(x) = x

2

+ (q

2

1

+ q

2

2

+ �+ �)x+ �� + �q

2

2

+ �q

2

1

;

v(x) =

1

p

2

[(q

1

p

1

+ q

2

p

2

)x+ (�q

1

p

1

+ �q

2

p

2

)℄ ;

w(x) = x

3

+ (�+ � � q

2

1

� q

2

2

)x

2

�

�

p

2

1

+ p

2

2

2

+ (�+ �)

�

q

2

1

+ q

2

2

�

� ��

�

x

� ��

�

p

2

1

2�

+

p

2

2

2�

+ q

2

1

+ q

2

2

�

:

Proof

The Liouville integrability is proven in [G℄ and [CC℄; it is in our ase proven easily by showing

that fF;Gg = 0 (F;G Poisson ommute) and that F and G are independent on a dense subset of

IR

4

: To show that for � 6= � the system is a..i. we need to prove in addition the following three

laims:

(i) the generi (omplex) aÆne invariant surfae A

fg

is an aÆne part of an Abelian surfae

T

2

fg

; A

fg

= T

2

fg

n D

fg

; where D

fg

is some divisor on T

2

fg

,

(ii) D

fg

is the minimal divisor where the variables q

1

; q

2

; p

1

and p

2

blow up,

(iii) the vetor �elds X

F

and X

H

extend to holomorphi (= linear) vetor �elds on T

2

fg

:

(i) and half of (iii) are shown in Theorem 1. To show the other half of (iii), whih onerns the

extension of X

F

, the linearizing variables are de�ned in the same way, but their derivatives are now

alulated using X

F

instead of X

H

: Finally, sine the variables q

1

; q

2

; p

1

and p

2

do not blow up on

A

fg

; and sine D

fg

is irreduible, they all blow up along D

fg

, showing (ii).

To onstrut a Lax pair, note that if u(x) is de�ned as u(x) = (x� x

1

)(x� x

2

) and v(x) is its

derivative (suitable normalised), then

f(x)� v

2

(x) is divisible by u(x);

where f(x) is the polynomial introdued in the proof of Theorem 1. The quotient

w(x) =

f(x)� v

2

(x)

u(x)

is easily alulated. The form of the Lax pair then follows from [V1℄.
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4. Some moduli spaes of Abelian surfaes of type (1,4)

In this setion we desribe a map  from the moduli spae A

(1;4)

of polarized Abelian surfaes

of type (1; 4) into an algebrai one M

3

in some weighted projetive spae. To be preise we

reall that (1; 4)-polarized Abelian surfaes whih are produts of ellipti urves (with the produt

polarization) are exluded from A

(1;4)

. The map will be bijetive on the dense subset

~

A

(1;4)

whih

is the moduli spae of polarized Abelian surfaes (T

2

;L) for whih the rational map �

L

: T

2

! IP

3

is birational. An alternative way to onstrut the map  and the one M

3

will ome up later.

Reall from Setion 2 that A

0

(1;4)

maps onto

P =

IP

3

n S

�

0

� ��

0

[

(three rational urves in S, eah missing eight points),

bijetively on the �rst omponent (whih is dense); the three rational urves are thought of as lying

in IP

3

=(�

0

� ��

0

) at the boundary of this omponent. A

0

(1;4)

is a 24: 1 (rami�ed) overing of A

(1;4)

:

let � and � be elements of order 4 suh that K(L) = h�i � h�i, and de�ne

K

1

= f0; �; 2�; 3�g;

K

2

= f0; �; 2�; 3�g;

K

3

= f0; � + �; 2� + 2�; 3� + 3�g;

K

4

= f0; � + 2�; 2�; 3� + 2�g;

K

5

= f0; 2� + �; 2�; 2� + 3�g;

K

6

= f0; � + 3�; 2� + 2�; 3� + �g:

These are the only yli subgroups of order 4 of K(L). It is easy to see that taking all possible

isomorphisms K(L)

�

=

ZZ=4ZZ� ZZ=4ZZ we �nd exatly the 24 deompositions

K(L) = K

i

�K

j

; (1 � i; j � 6; ji� jj 6= 0; 3):

We desribe the over

A

0

(1;4)

24:1

�! A

(1;4)

and onstrut a 24: 1 over P !M

3

and a map  :A

(1;4)

!M

3

, whereM

3

is an algebrai variety

(lying in weighted projetive spae IP

(1;2;2;3;4)

), suh that there results a ommutative diagram

A

0

(1;4)

24:1

�! A

(1;4)

�

~

A

(1;4)

?

?

y

 

0

?

?

y

 

?

?

y

~

 

P

24:1

�! M

3

� M

3

nD

(22)

in whih the restrition

~

 of  to

~

A

(1;4)

is a bijetion (D is a divisor onM

3

whih will be determined

expliitely).

The main idea in this onstrution is to see how the Galois group of the over A

0

(1;4)

! A

(1;4)

ats on P and de�ne M

3

to be the quotient. This quotient will be easy to alulate sine it is a

quotient of (a Zariski open subset of) IP

3

by a group whih ats linearly. The fat that this ation is

so simple is surprizing and was suggested to us by the obvious observation that the aÆne invariant

surfaes A



and A



0

, with  = (�; �; f; g) and 

0

= (�; �; g; f) are isomorphi, showing by (14) that

�

1

and �

2

an (in some way) be interhanged.
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The group G = GL(2;ZZ=4ZZ) ats transitively on (ordered!) bases as follows: if �; � are suh

that K(L) = h�i � h�i and

�

a b

 d

�

2 G then

�

a b

 d

�

� (�; �) = (a� + b�; � + d�);

giving a new deomposition K(L) = ha� + b�i � h� + d�i: We denote by H the normal subgroup

of G whih onsists of those elements of G whih are ongruent to the identity matrix, modulo

2. Then H ats on the set of deompositions of K(L), thus H ats on A

0

(1;4)

; to determine the

orresponding ation on the isomorphi spae P, it is suÆient to take any element of H, at to

obtain a new base and determine the new oordinates (y

0

: y

1

: y

2

: y

3

) aording to (6). Substituting

these in (7) the new parameters (��

0

:�

1

:�

2

:�

3

) are found immediately. The result is ontained

in the following table (sine diagonal matries at trivially only one representative of eah oset

modulo diagonal matries is shown):

H base K(L) oo. for IP

3

moduli in P

�

1 0

0 1

�

(�; �) K

1

�K

2

(y

0

: y

1

: y

2

: y

3

) (��

0

:�

1

:�

2

:�

3

)

�

1 2

0 1

�

(� + 2�; �) K

4

�K

2

(y

0

: y

1

: iy

2

: iy

3

) (��

0

:��

1

:�

2

:�

3

)

�

1 0

2 1

�

(�; 2� + �) K

1

�K

5

(y

0

: iy

1

: y

2

: iy

3

) (��

0

:�

1

:��

2

:�

3

)

�

1 2

2 1

�

(� + 2�; 2� + �) K

4

�K

5

(y

0

: iy

1

: iy

2

:�y

3

) (��

0

:�

1

:�

2

:��

3

)

Table 1

The upshot of the table is that all (��

0

:��

1

:��

2

:��

3

) orrespond to the same Abelian

surfae. The quotient spae is given by

P

0

=

P

(��

0

:�

1

:�

2

:�

3

) � (��

0

:��

1

:��

2

:��

3

)

�

=

�

IP

3

n S

0

�

[

(three rational urves in S

0

, eah missing three points),

(23)

upon de�ning �

i

= �

2

i

as oordinates for the quotient IP

3

, from whih in partiular equations for

the three rational urves, as well as for the three points are immediately obtained (the fat that

there are three missing points instead of two is due to rami�ation of the quotient map at two

of the three points). The divisors S and S

0

will be alulated later. We will also interpret this

\intermediate" moduli spae P

0

.

Remark that G=H is isomorphi to the permutation group S

3

; so we have an ation of S

3

on

P

0

(whih extends to all of IP

3

sine it is linear). Choosing six representatives for G=H we �nd as

above the following table:
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S

3

G=H base K(L) oo. for IP

3

moduli in P

0

()

�

1 0

0 1

�

(�; �) K

1

�K

2

(y

0

: y

1

: y

2

: y

3

) (�

0

:�

1

:�

2

:�

3

)

(12)

�

0 1

3 0

�

(�; 3�) K

2

�K

1

(y

0

: y

2

: y

1

: iy

3

) (��

0

:�

2

:�

1

:�

3

)

(13)

�

1 0

1 1

�

(�; �+�) K

1

�K

3

(

p

iy

2

: y

1

:

p

iy

0

: y

3

) (�

0

:�

3

:��

2

:�

1

)

(23)

�

1 1

0 1

�

(�+�; �) K

3

�K

2

(y

1

: y

0

:

p

iy

2

:

p

iy

3

) (�

0

:��

1

:�

3

:�

2

)

(123)

�

0 3

1 1

�

(3�; �+�) K

2

�K

3

(

p

iy

1

: iy

2

:

p

iy

0

: y

3

) (�

0

:��

3

:�

1

:��

2

)

(321)

�

1 1

3 0

�

(�+�; 3�) K

3

�K

1

(

p

iy

2

:

p

iy

0

:�y

1

:�iy

3

) (�

0

:�

2

:��

3

:��

1

)

Table 2

The tables 1 and 2 together show how to reonstrut expliitly the deomposition of K(L)

from the equation of the oti. More important, it allows us to onstrut the quotient spae M

3

as is shown in the following theorem.

Theorem 3 There is a bijetive map

~

 :

~

A

(1;4)

!M

3

nD, where M

3

is the one de�ned by

f

2

4

= f

1

(4f

3

2

� 27f

2

3

)

in weighted projetive spae IP

(1;2;2;3;4)

(with oordinates (f

0

: � � � : f

4

)) and D = D

1

+ D

2

is the

divisor whose two irreduible omponents are ut o� from M

3

by the hypersurfaes

D

1

: f

4

= f

1

(f

1

� 3f

2

);

D

2

: 512f

4

= �16

�

16f

2

2

+ 72f

1

f

2

� 27f

2

1

� 48f

0

f

3

�

+ 3f

2

0

�

f

2

0

+ 24f

1

� 32f

2

�

:

(24)

In partiular the moduli spae

~

A

(1;4)

has the struture of an aÆne variety. The map

~

 extends in

a natural way to a map

 :A

(1;4)

!M

3

;

the image of the (two-dimensional) boundary A

(1;4)

n

~

A

(1;4)

being C nfP;Qg; where C is the rational

urve (inside D) given by

C: 3f

2

0

= 4(4f

2

� f

1

);

and P;Q 2 C are given by P = (4: 0: 3: 2: 0); and Q = (2: 1: 1: 0:�2): Moreover, apart from its top

(1: 0: 0: 0: 0), all points in the one M

3

orrespond to some invariant surfae A

(�;�;f;g)

for some

�; �; f and g, with � 6= �:

Proof

First we desribe the quotient of IP

3

by the ation of S

3

, and show that it is (isomorphi to)

the algebrai variety M

3

given by an equation f

2

4

= f

1

(4f

3

2

� 27f

2

3

) in weighted projetive spae
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IP

(1;2;2;3;4)

. To do this we use the (indued) ation of S

3

on C

3

whih is given in terms of aÆne

oordinates x

i

= �

i

=�

0

for C

3

by

(1; 2) � (x

1

; x

2

; x

3

) = (�x

2

;�x

1

;�x

3

);

(1; 2; 3) � (x

1

; x

2

; x

3

) = (�x

3

; x

1

;�x

2

):

Sine the ation is orthogonal, it must be reduible, having an invariant line and an invariant plane

orthogonal to it. Indeed let

u

1

= x

1

+ x

2

� x

3

;

u

2

= x

1

� x

2

;

u

3

= x

1

+ x

3

;

(25)

then u

1

is anti-invariant for (1; 2) and is invariant for (1; 2; 3); u

2

and u

3

are hosen orthogonal to

u

1

. Then invariants

f

2

= u

2

2

� u

2

u

3

+ u

2

3

;

f

3

= u

2

u

3

(u

2

� u

3

);

for the ation of S

3

are found. Also there is

� = u

2

2

(2u

2

� 3u

3

) + u

2

3

(2u

3

� 3u

2

)

whih is (1; 2)-anti-invariant and (1; 2; 3)-invariant, giving a new invariant f

4

= u

1

�. Sine f

2

and

f

3

generate the invariants depending on u

2

; u

3

the invariant �

2

is expressible in terms of f

2

and

f

3

;

�

2

= 4f

3

2

� 27f

2

3

;

i.e., �

2

is nothing else than the disriminant of the ubi polynomial x

3

� f

2

x+ f

3

: It follows that

f

2

4

= f

1

(4f

3

2

� 27f

2

3

); (26)

where f

1

= u

2

1

. Remark that (f

1

; f

2

; f

3

; f

4

) have degree (2; 2; 3; 4) so that the quotient of IP

3

by the

ation of S

3

is given by (26) viewed as an equation in weighted projetive spae IP

(1;2;2;3;4)

with

respet to oordinates (f

0

: f

1

: f

2

: f

3

: f

4

): In onlusion we have established the over P !M

3

and

there is an indued map  :A

(1;4)

!M

3

whih makes

A

0

(1;4)

24:1

�! A

(1;4)

?

?

y

 

0

?

?

y

 

P

24:1

�! M

3

(27)

into a ommutative diagram (sine the ations on A

0

(1;4)

are the same by onstrution).

The reduible divisor D is easily omputed one expliit equtions for S (or S

0

) are known.

Sine we know of no easy diret way to determine S, we postpone the omputation of S to Setion

6.4, where the potentials will be used to ompute S in a straightforward way; we will show there

that S

0

breaks up in four irreduible piees �

1

= 0; �

2

= 0; �

3

= 0 and dis(P

�

3

(x)) = 0 where P

3

is the polynomial

P

3

= 4�

2

x

3

� (�

0

+ 2�

1

+ 6�

2

+ 2�

3

)x

2

+ (�

0

� 2�

1

+ 2�

2

� 6�

3

)x� 4�

3

;

18



and dis(P

�

3

(x)) = 0 denotes its disriminant (in x). Granted this, we take �

1

= 0; let x

1

= 0 and

eliminate x

2

and x

3

from f

1

; f

2

and f

4

. Then the relation

f

4

= f

1

(f

1

� 3f

2

);

is found at one; obviously the same equation is found for �

2

= 0; �

3

= 0: The omputation for

dis(P

�

3

(x)) = 0 is longer but also straightforward. Namely, by a simple translation in x the moni

polynomial P

�

3

(x)=(4�

2

) an be written as x

3

� ax + b, with disriminant 4a

3

� 27b

2

. When this

disriminant (depending on �

i

) is written in terms of u

i

using the inverse of (25), the equation (24)

for D

2

is read o� immediately.

As for the urve to be added to

~

 (

~

A

(1;4)

) to obtain  (A

(1;4)

) remark that the ation of S

3

identi�es the three rational urves in (23), leading to a single urve. To ompute its equation (as a

subvariety of D

1

) in terms of the oordinates f

i

, let aording to (10), �

1

= 0 and �

0

= 2(�

2

+�

3

).

Then in terms of �

0

and �

2

we get

f

0

= �

0

;

f

1

= (2�

2

� �

0

=2)

2

;

f

2

= �

2

2

�

�

0

�

2

2

+

�

2

0

4

;

leading to

3f

2

0

= 4(4f

2

� f

1

);

by elimination of �

0

and �

2

. As for the two speial points P and Q on this urve, it is easy to hek

that piking �

1

= 0; �

2

= �

3

and �

0

= 2(�

2

+ �

3

) leads to the point (4: 0: 3: 2: 0) and alternatively

taking �

1

= �

2

= 0; �

0

= 2�

3

leads to the point (2: 1: 1: 0:�2). This gives expliit equations for all

these spaes and proves the announed result in (22).

Finally, let (f

0

: � � � : f

4

) 2 M

3

be any point di�erent from the top (1: 0: 0: 0: 0) of this one.

Then �

2

6= 0 for at least one of the six points (�

0

:�

1

:�

2

:�

3

) lying over this point. De�ne �; �; f; g

by

� = �

0

+ 2�

1

+ 2�

2

+ 2�

3

;

� = �

0

+ 2�

1

� 2�

2

+ 2�

3

;

f = 128�

2

2

�

3

;

g = 128�

2

2

�

1

;

(28)

then � 6= � and �; �; f and g satisfy (14). This shows that, apart from the top, all points in the

one M

3

orrespond to some invariant surfae A

(�;�;f;g)

for some � 6= �; f and g. This �nishes

the proof of the theorem.
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5. The preise relation with the anonial Jaobian

In this setion we want to show that a (1; 4)-polarized Abelian surfae T

2

2

~

A

(1;4)

is intimely

related to its anonial Jaobian, denoted by J(T

2

) (introdued in Setion 2), hene also to some

urve of genus two, denoted �(T

2

). In fat there is more: at the level of the Jaobian, let J(T

2

) be

represented as C

2

=�, then T

2

indues a non-degenerate deomposition of the lattie � and at the

level of the urve, T

2

indues a deomposition of the set of Weierstra� points of �(T

2

) whih in turn

orresponds to an inidene diagram for the 16

6

on�guration on its Kummer surfae; moreover,

the Abelian surfae an be reonstruted from either of these data (Theorem 4).

Reall that the anonial Jaobian of a (1; 4)-polarized Abelian surfae T

2

= (T

2

;L) 2

~

A

(1;4)

is de�ned as the (irreduible prinipally polarized) Abelian surfae J(T

2

) = T

2

=K, where K is the

(unique) subgroup of two-torsion elements of K(L). As is well-known suh an Abelian surfae is

the Jaobian of a smooth urve � of genus two, i.e., it is given as C

2

=�, where � is the period lattie

� =

�

I



~! j  2 H

1

(�;ZZ)

�

onsisting of all periods of ~! =

t

(!

1

; !

2

), the !

i

being (independent) holomorphi di�erentials on

�. The Abelian group H

1

(�;ZZ) has an (alternating) intersetion form

℄

( � ) and H

1

(�;ZZ) an be

deomposed into non-degenerate planes (in many di�erent ways),

H

1

(�;ZZ) = H

1

�H

2

;

℄

( � )

H

1

and

℄

( � )

H

2

non-degenerate:

Suh a deomposition leads to a deomposition � = �

1

� �

2

upon de�ning

�

i

=

�

I



~! j  2 H

i

�

; (29)

both H

1

(�;ZZ) = H

1

�H

2

and � = �

1

��

2

will be alled non-degenerate deompositions. They are

alled in addition simple if eah H

i

is generated by yles whih ome from simple losed urves

(Jordan urves) in IP

1

under some (hene any) double over �: �! IP

1

.

We also reall from the lassial literature the 16

6

on�guration on the Kummer surfae of

Ja(�), where � is a urve of genus two. Let W

1

; : : : ;W

6

be the Weierstra� points on �, then the

points

W

ij

=

Z

W

j

W

i

~! (mod �)

are half-periods of Ja(�), sixteen in total sine W

ij

= W

ji

and W

ii

= W

jj

for all i; j = 1; : : : ; 6.

There are also sixteen genus two urves �

ij

in Ja(�), the translates W

ij

+�

kk

of the single urve

�

11

= � � � = �

66

, whih have the property that �

11

, hene all �

ij

pass through six pointsW

kl

. Then

also eah point belongs to six lines �

ij

. This whole on�guration goes down to the Kummer surfae

in IP

3

and gives there a 16

6

on�guration, lassially alled Kummer's on�guration. The sixteen

points are nodes (singular points) and the sixteen planes the lines belong to are tropes (singular

planes) of the Kummer surfae. The 16

6

on�guration is best visualized by the inidene diagram,

whih onsists of a pair of square diagrams, suh as

W

11

W

12

W

23

W

13

W

45

W

36

W

16

W

26

W

46

W

35

W

15

W

25

W

56

W

34

W

14

W

24

�

11

�

12

�

23

�

13

�

45

�

36

�

16

�

26

�

46

�

35

�

15

�

25

�

56

�

34

�

14

�

24

20



Namely the points inident with a line at position (m;n) in the seond square diagram are those six

points in the m-th row and n-th olumn, but not in both, of the �rst square diagram. Dually, the

same applies for the lines inident with a point. The 24

2

inidene diagrams obtained by permuting

the rows or olumns of both square diagrams in an inidene diagram (in the same way) are de�ned

to be the same as the original inidene diagram (we will see that there are 20 inidene diagrams

whih are di�erent in this sense).

The relevane of simple, non-degenerate deompositions and inidene diagrams for (1; 4)-

polarized Abelian surfaes is seen from the following theorem.

Theorem 4 There is a natural orrespondene between the following (isomorphism lasses) of

data:

(1) a (1; 4)-polarized Abelian surfae T

2

2

~

A

(1;4)

,

(2) a Jaobi surfae J =C

2

=� + a simple, non-degenerate deomposition � = �

1

� �

2

of �,

(3) a smooth genus two urve � + a deomposition W = W

1

[W

2

; #W

1

= #W

2

= 3, of its

Weierstra� points.

(4) a smooth genus two urve � + an inidene diagram for the 16

6

on�guration on its

orresponding Kummer surfae.

The orrespondene (1)$ (2) is established in two ways, namely J may be taken as the quotient of

T

2

using �

2

or as a over of T

2

using �

1

(or W

1

). Moreover, interhanging the omponents of the

deomposition in (2) amounts to taking the dual

^

T

2

of T

2

in (1). J is the Jaobian of the urve

� whih appears in (3) and (4) and interhanging �

1

and �

2

in (2) amounts to interhanging W

1

and W

2

in (3) and taking the transpose of both square diagrams in the inidene diagram in (4).

Summarizing we have the following ommutative diagram, determined by T

2

(only),

J

�

2

�!

^

T

2

?

?

y

�

1

2

J

&

?

?

y

�

1

T

2

�

2

�! J

(30)

where 2

J

denotes multipliation by 2 in J and a �

i

labeling an arrow means that a projetion is

onsidered on the quotient torus that is obtained by doubling the sublattie �

i

.

Proof

(3) ! (2) Given a genus two urve � and a deomposition W = W

1

[ W

2

of its Weierstra�

points, with #W

i

= 3, let �: �! IP

1

be any two-sheeted over of IP

1

. It is well known that � has

branh points exatly atW; the points inW as well as their projetions under � will be denoted by

W

1

; : : : ;W

6

, also �(W

i

) will just be written as W

i

. If IP

1

is overed with onneted open subsets

U

1

and U

2

for whih W

i

� U

i

and U

1

\ U

2

\W = ; then H

1

(�;ZZ) deomposes as H

1

�H

2

where

H

1

and H

2

are de�ned as

H

i

= f 2 H

1

(�;ZZ) j �

�

 2 H

1

(U

i

n W

i

;ZZ)g:

Among the yles in H

i

there are those whih ome from simple losed urves in U

i

nW

i

enerling

two points inW

i

and these generate H

i

. Sine any (di�erent) of these interset (one) the restrition

℄

( � )

H

i

is non-degenerate, hene leads (upon using (29)) to a non-degenerate simple deomposition

� = �

1

� �

2

for the period lattie. Thus C

2

=� and � = �

1

� �

2

provide the orresponding data.

We now show that the onstruted data only depend (up to isomorphism) on the isomorphism

lass of the data �; W = W

1

[ W

2

. Let �: � ! � be an automorphism whih permutes the

Weierstra� points (suh an automorphism only exists for speial urves �). Then � extends linearly

21



to Ja(�)

�

=

C

2

=�, hene also to the lattie �, giving a new deomposition � = ��

1

� ��

2

.

The lattie ��

i

ontains the periods orresponding to the points �W

i

(w.r.t. the same basis of

holomorphi di�erential forms), hene � = ��

1

� ��

2

orresponds to the deomposition W =

�W

1

[ �W

2

.

(2)! (3) By the lassial Torelli Theorem, � an be reonstruted from its Jaobian, atually in

dimension two, � is isomorphi to the theta divisor of Ja(�). The lattie � �C

2

is the period lattie

of � with respet to some basis ~! = f!

1

; !

2

g of holomorphi di�erentials on �, whih determines

an isomorphism �: � ! H

1

(�;ZZ), whih in turn leads to a deomposition H

1

(�;ZZ) = H

1

� H

2

upon de�ning H

i

= �(�

i

).

If we denote byW the set of Weierstra� points of � and by �: �! IP

1

any two-sheeted over as

above, then H

i

has generators �

i1

; �

i2

for whih �

�

�

ij

is a simple losed urve in IP

1

nW, enirling

an even number of branh points W

i

, whih redues to two in this ase (there are only six points

W

i

and enirling four points amounts to the same as enirling the other two points). Sine the

deomposition is non-degenerate, �

�

�

i1

and �

�

�

i2

enirle a ommon point, so we may take

W

i

= �

�1

fpoints in W enirled by �

�

�

i1

or �

�

�

i2

g:

Then #W

1

= #W

2

= 3 and it is easy to see that W

1

\W

2

= ;:

We show again that the onstruted data are independent of the hoie of the base f!

1

; !

2

g

and are well-de�ned up to isomorphism. To do this remark �rst that when the hoie of base ~! =

t

(!

1

; !

2

) is not unique, say ~!

0

is another base produing �, then ~! = A~!

0

for some A 2 GL(2;C),

hene

I



~! = A

I



~!

0

for any  2 H

1

(�;ZZ). We �nd that � = A�, i.e., � has a non-trivial symmetry group. Then

Ja(�) = C

2

=� has a non-trivial automorphism group and the data (C

2

=�;� = �

1

� �

2

) and

(C

2

=�;� = A�

1

� A�

2

) are isomorphi. Thus it suÆes to show that the onstruted data are

well-de�ned up to isomorphism. This follows (as in the �rst part of the proof) at one from the

property that if Ja(�) has a non-trivial automorphism �, then it is indued by an automorphism

on �. To see this property (whih is partiular for the ase in whih the genus of � is 2) let �

be a generi translate of the Riemann theta divisor passing through the origin O of Ja(�). Then

�(�) is another translate passing through O (sine every urve in Ja(�) whih is isomorphi to �

is a translate of �) hene omposing � with this translate determines an automorphism of �. This

shows the onstruted data are well-de�ned.

(2)! (1) Given J =C

2

=� and � = �

1

� �

2

we form the omplex torus

T

2

=C

2

=�

0

with �

0

=

1

2

�

1

� �

2

;

(i.e., the �rst lattie is doubled in both diretions) and equip this torus with the polarization

indued by the prinipal polarization on J . We laim that T

2

is a (1; 4)-polarized Abelian surfae

whih belongs to

~

A

(1;4)

: To show this, �rst notie that the yles f�

11

; �

21

; �

12

; �

22

g introdued

above, form a sympleti base for H

1

(�;ZZ), i.e.,

℄

(�

1i

� �

2i

) = 0,

℄

(�

i1

� �

i2

) = 1, hene these yles

lead to a period matrix of the form (see [GH℄)

�

1 0 a b

0 1 b 

�

22



satisfying the Riemann onditions. Sine H

1

is spanned by �

11

and �

12

(whih orrespond to the

�rst and third olumns of this matrix) �

0

has in terms of slightly di�erent oordinates the period

matrix

�

1 0 a 2b

0 4 2b 4

�

whih leads immediately to the result that T

2

is a (1; 4)-polarized Abelian surfae, 4: 1 isogeneous

to J (remark that the right blok of this matrix is positive de�nite). Sine the original J =C

2

=�

is the anonial Jaobian of T

2

, we are in the generi ase of Setion 2 whih implies T

2

2

~

A

(1;4)

.

Dually the surfae is (up to isomorphism) also onstruted by taking

T

2

=C

2

=�

00

with �

00

= �

1

� 2�

2

;

but this deomposition indues a 4: 1 isogeny from J to (this) T

2

.

To show that the orrespondene is well-de�ned, remark that

(C

2

=�; � = �

1

� �

2

)

�

=

(C

2

=�; � = �

0

1

� �

0

2

)

implies

C

2

.

�

1

2

�

1

� �

2

�

�

=

C

2

.

�

1

2

�

0

1

� �

0

2

�

and C

2

.

(�

1

� 2�

2

)

�

=

C

2

.

(�

0

1

� 2�

0

2

)

the last two isomorphisms being isomorphism of polarized Abelian surfaes.

(1) ! (2) For given T

2

2 A

0

(1;4)

, let J be its anonial Jaobian J(T

2

). Then T

2

! J is

part of the isogeny 2

J

:J ! J hene there is a unique omplementary isogeny J ! T

2

with

kernel ZZ=2ZZ � ZZ=2ZZ. Writing J as J = C

2

=�, the latter isogeny indues an injetive lattie

homomorphism �: � ! � whose okernel is isomorphi to ZZ=2ZZ � ZZ=2ZZ. Then � determines a

unique deomposition �

1

��

2

of � for whih �

j�

2

is an isomorphism and �

j�

1

is multipliation by

2. We have seen that suh a deomposition is simple. It is also non-degenerate, sine otherwise T

2

would not have an indued (1; 4)-polarization (see Remark 1 below).

Observe that in the exeptional ase that T

2

! J is another part of the isogeny 2

J

, the two

isogenies ombine to an automorphism of J , leading to isomorphi data in (3).

(3) $ (4) This is lassial (see [Hu℄); we prove it as follows. Given a deomposition of W; say

W = fW

1

;W

2

;W

3

g [ fW

4

;W

5

;W

6

g the orresponding inidene diagram is taken as

W

11

W

12

W

23

W

13

W

45

W

36

W

16

W

26

W

46

W

35

W

15

W

25

W

56

W

34

W

14

W

24

�

11

�

12

�

23

�

13

�

45

�

36

�

16

�

26

�

46

�

35

�

15

�

25

�

56

�

34

�

14

�

24

and obviously the deomposition ofW is reonstruted from it at one. To show that every inidene

diagram is of this form, remark at �rst that we have the freedom to permute the rows as well as

the olumns, so that we an put W

11

= : : : = W

66

in the upper left orner. The urves �

ij

this

point W

11

belongs to are the entries in the �rst row and the �rst olumn (exept �

11

) of the square

diagram on the right. If the origin belongs to �

ij

\�jk; (j 6= k), then it also belongs to �

ik

. Then

�

11

is easily identi�ed as the image of the map �! Ja(�) de�ned by

P 7!

Z

P

W

i

~! +

Z

W

k

W

j

~! (mod �);

23



and the other three urves are �

lm

;�

mn

and �ln with fi; j; k; l;m; ng = f1; 2; 3; 4; 5; 6g. Hene the

inidene tabel takes the above form from whih the deomposition of W an be read o�.

If the urve has non-trivial automorphisms, we de�ne diagrams whih orrespond to suh

automorphisms as being isomorphi, so as to obtain the equivalene (3) $ (4) at the level of

isomorphism lasses.

Finally we onentrate on the dual

^

T

2

of T

2

and its relation with the anonial Jaobian of

T

2

. At �rst reall from [GH℄ that the period matries of T

2

and

~

T

2

relate as

T

2

�

�

1 0 a 2b

0 4 2b 4

�

^

T

2

�

�

4 0 4a 2b

0 1 2b 

�

�

�

1 0  2b

0 4 2b 4a

�

showing that

^

T

2

is onstruted from J by taking �

1

�

1

2

�

2

instead of taking

1

2

�

1

� �

2

when

onstruting T

2

from J . It follows that the isogeny 2

J

fatorizes via

^

T

2

as well and that taking the

dual of T

2

orresponds to interhanging the omponents of the deomposition of �. This �nishes

the proof of the theorem.

Remarks

1) If in (2) above one onsiders simple degenerate deompositions (instead of non-degenerate)

then the deomposition in (3) is altered into W = W

1

[W

2

[W

3

; #W

i

= 2 and the order of the

omponents in the deomposition of W is now irrelevant. The orresponding objet in (1) is then a

Jaobi surfae (di�erent from the one in (2)) from whih the original Jaobi surfae (or the urve)

annot be reonstruted.

2) Sine

�

6

3

�

= 20; there are 20 di�erent inidene diagrams and 20 possible deompositions

of the isogeny 2

J

:J ! J; some of whih are isomorphi if and only if J (hene �) has a non-

trivial automorphism group (i.e., di�erent from ZZ

2

). It follows from the above theorem that the

20 intermediate Abelian surfaes appear in 10 groups of dual pairs.

3) Let C

(2)

denote the moduli spae of all smooth urves of genus two. Then we have the

following isomorphisms

~

A

(1;4)

�

=

�

(fW

1

;W

2

;W

3

g; fW

4

;W

5

;W

6

g) jW

i

2 IP

1

; i 6= j )W

i

6=W

j

	

.

mod IPGL(2;C);

C

(2)

�

=

�

fW

1

;W

2

;W

3

;W

4

;W

5

;W

6

g j W

i

2 IP

1

; i 6= j )W

i

6=W

j

	

.

mod IPGL(2;C);

and both spaes are related by an obvious unrami�ed overing projetion

~

A

(1;4)

! C

(2)

. We have

seen that

~

A

(1;4)

has a natural struture of an aÆne variety whih is ompati�ed in a natural way

into its projetive losure, whih is the (singular) algebrai varietyM

3

: At the other hand, C

(2)

has

also a natural ompati�ation (the Mumford-Deligne ompati�ation). It would be interesting

to �gure out how both ompati�ations are related.

4) Among the di�erent ways to de�ne (and haraterize) the anonial Jaobian J(T

2

) of

T

2

, here is a �nal one. It is that J = J(T

2

) is the only Jaobian for whih the diagram

T

2

?

?

y

4:1

2

T

&

J

4:1

�! T

2

ommutes (2

T

is multipliation by 2 on T

2

). The proof is easy using the ideas of the above proof.

Observe that this diagram is (30) with T

2

and J interhanged; we ould drop a superuous triangle

sine

^

J = J .

24



6. The relation with the anonial Jaobian made expliit

We have shown in Setion 5 that there is assoiated to an Abelian surfae of type (1; 4) the

Jaobi surfae of a genus two urve � and some additional data. Also we have seen (in Setion

3) that these Abelian surfaes appear as invariant surfaes of the Hamiltonian vetor �eld de�ned

by one of the potentials V

��

. This allows us to make this relation very expliit (in two di�erent

ways) and to alulate preisely the lous S in IP

3

for whih the assoiated quarti fails to be a

Kummer surfae (and hene the assoiated (1; 4)-polarized Abelian surfae fails to be birational to

an oti). We know of no diret method (i.e., without using integrable systems) to do this. We

refer to [Bu℄ for an alternative approah, under urrent investigation, whih uses another integrable

system (some geodesi ow on SO(4)).

6.1. An embedding of the Abelian surfaes in IP

15

Our alulations rely on the expliit onstrution of an embedding for T

2

in projetive spae,

whih is found by using the Laurent solutions to the di�erential equations (12). Sine we know

that the potential V

��

is a..i. (for � 6= �), the vetor �eld X

H

has a oherent tree of Laurent

solutions (see [AvM1℄), in partiular it has Laurent solutions depending on dim IR

4

� 1 = 3 free

parameters (prinipal balanes). Moreover, sine the divisor D

fg

to be adjoined to a (generi)

invariant manifold A

fg

is irreduible, there is only one suh family. Also q

1

; q

2

and q = q

1

p

2

� q

2

p

1

have a simple pole along D

fg

sine their squares desend to Ja(�) with a double pole along (some

translate of) its theta divisor. With this information the prinipal balane is given by

q

1

=

1

t

�

a+

2

3

((1 + a

2

� b

2

)�+ 2ab

2

�)t

2

+ bt

3

+O(t

4

)

�

;

q

2

=

1

t

�

b+

2

3

((1 + b

2

� a

2

)� + 2ba

2

�)t

2

� at

3

+O(t

4

)

�

;

(31)

where 2a

2

+ 2b

2

+ 1 = 0; the series for p

1

and p

2

are found by di�erentiation. Using the Laurent

solutions it is easy to �nd an embedding of T

2

fg

in projetive spae: sine 2D

fg

indues a polarization

of type (2; 8), it is very ample and this an be done using the sixteen funtions with a double pole

along D

fg

, to wit,

z

0

= 1;

z

1

= q

1

;

z

2

= q

2

;

z

3

= q = q

1

p

2

� q

2

p

1

;

z

4

= p

1

;

z

5

= p

2

;

z

6

= q

2

1

;

z

7

= q

1

q

2

;

z

8

= q

2

2

;

z

9

= q

1

q;

z

10

= q

2

q;

z

11

= (q

2

1

+ q

2

2

)q + �q

1

p

2

+ �q

2

p

1

;

z

12

= fq

1

; qg;

z

13

= fq

2

; qg;

z

14

= 2q

1

q

2

(q

2

1

+ q

2

2

) + p

1

p

2

;

z

15

= q

2

;

where ff

1

; f

2

g =

_

f

1

f

2

� f

1

_

f

2

; the Wronskian of f

2

and f

1

:
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6.2. Abelian surfaes of type (1,4) as quotients of their anonial Jaobians

A �rst way to ompute the orrespondene between the data is to use the over J ! T

2

; reall

from Setion 5 that given T

2

2

~

A

(1;4)

there is a unique Jaobian J = J(T

2

) suh that

J

?

?

y

p

1

2

J

&

T

2

p

2

�! J

yields a fatorization of the map 2

J

(multipliation by 2). This implies the existene of a singular

divisor in T

2

whose omponents are birational equivalent to � = �(T

2

) as is shown in the following

proposition.

Proposition 5 The image p

1

(K) of Kummer's 16

6

on�guration K onsists of four urves, all

passing through the half periods of T

2

; these points are the images of the sixteen points in the

on�guration and eah of the four image urves has an ordinary three-fold point at one of these

points, with tangents at this point, whih are di�erent from the tangents to the other urves. Eah

urve is birational equivalent to � and indues a (1; 4)-polarization on T

2

. The image p

2

(p

1

(K)) is

one single urve, birational equivalent to � with an ordinary six-fold point.

Proof

The map p

1

identi�es all half-periods whih appear in a row in the �rst square diagram of the

inidene diagram whih orresponds to T

2

. Therefore p

1

also identi�es the urves whih appear

in a row in the seond square diagram of this inidene diagram and we obtain four urves passing

through the four image points, every urve having a three-fold point at the image of the three

points in the same row (but not the same olumn) of the �rst square diagram. Sine K indues

a (16; 16)-polarization on J , p

1

(K) indues a (4; 16)-polarization on T

2

, hene eah omponent

indues a (1; 4)-polarization. The virtual genus of eah omponent is thus �ve, and sine eah

is obviously birational to � via p

1

, the threefold point must be ordinary and there are no other

singular points.

The intersetion of two of these omponents is the self-intersetion of one of them (sine they

are translates of eah other), hene is by (5) equal to 2(5 � 1) = 8; at the other hand, sine eah

passes through the three-fold point of the other and sine they have two simple points in ommon,

this gives already 3+3+1+1 = 8 so all tangents must be di�erent and there are no other intersetion

points. The fat that p

2

(p

1

(K)) has an ordinary six-fold point and is birational equivalent to � is

shown in a similar way.

The image 2

J

(�) is a divisor � with a six-fold point, �rst studied in [V1℄ (where it was an

essential ingredient in the onstrution of linearizing variables for integrable systems) and p

1

(K) is

nothing but p

�

2

�. We have also shown there that this divisor is the zero lous of the leading term

in the equation of the Kummer surfae of J (when normalised as in the algorithm in Setion 2.2).

To apply this in the present ase, we use the leading term (18) of the equation of the Kummer

surfae of J(T

2

fg

) (whih is expressed in terms of the original variables), and investigate its zero

lous, i.e.,

(q

2

1

+ q

2

2

+ �+ �)

2

� 4(�� + �q

2

1

+ �q

2

2

) = 0:

This fatorizes ompletely as

Y

�

i

=�1

h

q

2

� �

1

p

�� � � �

2

iq

1

i

= 0:
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reeting the fat that p

�

2

� is reduible. In order to �nd an equation for �(T

2

fg

), let q

2

= �

1

p

�� �+

�

2

iq

1

in the equations for A

fg

: Eliminating p

2

one �nds an equation for the urve

�

�

1

�

2

: p

2

1

Q(q

1

)(q

1

� �

1

�

2

i

p

�� �)q

1

+ P

2

(q

1

) = 0;

where

Q(x) = �

1

�

2

i(�� �)

3=2

x

3

+ (�� �)(2� � �)x

2

+ �

1

�

2

i

p

�� �(h+ �(� � �))x�

f

2

;

P is some polynomial of degree 3: This urve is learly isomorphi to the urve

z

2

= x(x� i�

1

�

2

p

�� �)Q(x): (32)

In order to deide to whih deomposition of the Weierstra� points this orresponds, let

P

1

; : : : ; P

4

be the following points in IP

15

P

1

= (0: � � � : 0:�i

p

�� �:�

p

�� �: 1:+i(� � �));

P

2

= (0: � � � : 0:+i

p

�� �: +

p

�� �: 1:+i(� � �));

P

3

= (0: � � � : 0:+i

p

�� �:�

p

�� �: 1:�i(� � �));

P

4

= (0: � � � : 0:�i

p

�� �: +

p

�� �: 1:�i(� � �));

and let q

Æ

denote the three roots of Q(x): Then it is easily heked by piking loal parameters

around the points at in�nity of �

�

1

�

2

that the inidene relation of the P

i

on the �

�

1

�

2

is given by

the following table:

q

1

! 0 q

1

!1 q

1

! q

Æ

q

1

! �

1

�

2

i

p

�� �

�

+1;+1

P

1

P

4

3P

3

P

2

�

�1;+1

P

2

P

3

3P

4

P

1

�

+1;�1

P

3

P

2

3P

1

P

4

�

�1;�1

P

4

P

1

3P

2

P

3

Table 4

The table is in agreement with the fat that eah urve has a three-fold point and passes

through the other singularities. Moreover it shows that the three points q

Æ

were identi�ed under

the map p

1

when going from J to T

2

, hene these form the subset W

1

in Theorem 4 and W

2

=

f0;1; �

1

�

2

i

p

�� �g

If we substitute

x 7!

x+ �

p

�� �

i:

in the equation (33) for the urves Æ

�

1

�

2

then we �nd the equation (21),

y

2

= (x+ �)(x+ �)

�

x

3

+ (�+ �)x

2

+ (�� � h)x+

�f � �g

2(�� �)

�

: (33)

Then the deomposition of W is given as follows: W

1

ontains the roots of x

3

+ (�+ �)x

2

+ (�� �

h)x+ (�f � �g)=(2� � 2�); and W

2

= f1;��;��g.
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6.3. Abelian surfaes of type (1; 4) as overs of their anonial Jaobians

An alternative way to ompute the data orresponding to T

2

fg

is by using the over T

2

! J .

First we alulate an equation for D

fg

by substituting (31) in the invariants. Eliminating one of

the free parameters from the resulting equations yields the following equations de�ning a urve:

D

fg

:

8

<

:

�

9

4



2

= 16(� � �)

3

a

6

+ 8(� � �)

2

(� � 2�)a

4

� 4(� � �)(h + �(� � �))a

2

� f;

�1 = 2a

2

+ 2b

2

:

(34)

Put

x = i

p

2(� � �)a; y =

p

2(�� �)b;

to �nd that this non-singular urve is isomorphi to the urve

C:

8

<

:

z

2

= x

6

+ (� � 2�)x

4

� (h+ �(� � �))x

2

�

f

2

;

y

2

= x

2

+ � � �:

(35)

To hek that the genus of D

fg

equals 5 (as we saw in Setion 3), let C

0

denote the urve

C

0

: z

2

= x

6

+ (� � 2�)x

4

� (h+ �(� � �))x

2

�

f

2

;

whih has genus two. Then the obvious map �: C ! C

0

is a 2: 1 overing map with four rami�ation

points (the points where y = 0). By Riemann-Hurewiz,

�(D

fg

) = 2�(C

0

)� rami�ation(�); (36)

it follows that g(D

fg

) = 5:

Letting t = x

2

� �; (36) is obviously equivalent to

8

>

>

>

<

>

>

>

:

z

2

= t

3

+ t

2

(�+ �) + t(�� � h) +

�f � �g

2(�� �)

;

x

2

= �+ t;

y

2

= � + t

where we used f � g = 2(� ��)h in the �rst equation to write it in a symmetri form. De�ne now

u = xyz and �nd that D

fg

is expressed as a 4: 1 unrami�ed over

8

>

>

>

<

>

>

>

:

u

2

= (t+ �)(t+ �)

�

t

3

+ t

2

(�+ �) + t(�� � h) +

�f � �g

2(�� �)

�

;

x

2

= �+ t;

y

2

= � + t

of the hyperellipti urve given by

z

2

= (t+ �)(t + �)

�

t

3

+ t

2

(�+ �) + t(�� � h) +

�f � �g

2(�� �)

�

;
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whih we found in (21) and (34). To see this, remark that if u

2

= f(t) is an equation of any

hyperellipti urve � and f(t

1

) = f(t

2

) = f(t

3

) = 0 (i.e., t

1

; t

2

and t

3

orrespond to Weierstra�

points), then the urve

u

2

= f(t); x

2

=

t� t

1

t� t

2

; y

2

=

t� t

2

t� t

3

;

is a 4: 1 over of � and has genus 5; in our ase ft

1

; t

2

; t

3

g = f1;��;��g: When this 4: 1 over

is extended to the over T

2

! Ja(�) the half-periods on T

2

orresponding to f��;��;1g are

identi�ed with the origin, hene W

2

= f��;��;1g and W

1

onsists of the other three Weierstra�

points, in agreement with our previous alulation.

6.4. The exeptional lous S � IP

3

Suppose that (T

2

;L) 2

~

A

(1;4)

and let the surfae be represented by a surfae A

(�;�;f;g)

; for

some � 6= � (using (28)). Then the urve �(T

2

) orresponding to it under the basi bijetion

explained in Setion 5 must be smooth. Sine we know from Setion 6.2 (or equivalently 6.3) that

an equation for �(T

2

) is given by

y

2

= (x+ �)(x+ �)P

3

(x); P

3

(x) = x

3

+ (�+ �)x

2

+ (�� � h)x+

�f � �g

2(� � �)

: (37)

we onlude that dis(P

3

(x)) 6= 0 and P

3

(��) 6= 0; P

3

(��) 6= 0, the last ondition meaning just

that f 6= 0 and g 6= 0. Conversely, both onditions together are suÆient to guaranty that the

urve is smooth and the orresponding Abelian surfae is in

~

A

(1;4)

. In order to state this result in

terms of the oordinates �

i

for IP

3

, use (28) to rewrite (38) in the simple form y

2

= x(x� 1)P

�

3

(x)

where

P

�

3

(x) = 4�

2

x

3

� (�

0

+ 2�

1

+ 6�

2

+ 2�

3

)x

2

+ (�

0

� 2�

1

+ 2�

2

+ 6�

3

)x� 4�

3

;

(x and y are slightly resaled); in this representation W

2

= f0; 1;1g and W

1

ontains the roots of

P

�

3

(x). The ondition for (�

0

:�

1

:�

2

:�

3

) to orrespond to a surfae in

~

A

(1;4)

is now that �

1

�

2

�

3

6= 0

and dis(P

�

3

(x)) 6= 0. It shows that the lous S

0

is given by the four divisors �

1

�

2

�

3

= 0 and

dis(P

�

3

(x)) = 0 and the exeptional lous S is found immediately from it by substituting �

2

i

for

�

i

in these equations. (These equations for S an in priniple be found purely algebrai, but the

alulations are very tedious and some ases are easily overlooked. In fat [BLS℄ laim (without

proof) in their paper that the only ondition is �

1

�

2

�

3

6= 0, thereby overlooking the more subtle

ondition dis(P

�

3

(x)) 6= 0). Combining this with Theorem 1 we have shown the following theorem.

Theorem 6 The surfae A

(�;�;f;g)

is an aÆne part T

2

nD of an Abelian surfae (T

2

; [D℄) 2

~

A

(1;4)

if and only if � 6= �; f 6= 0; g 6= 0 and dis(P

3

(x)) 6= 0. Equivalently (�

0

:�

1

:�

2

:�

3

) 2 IP

3

are moduli

oming from the birational map

3

�

L

:T

2

! IP

3

with (T

2

;L) 2

~

A

(1;4)

if and only if �

1

�

2

�

3

6= 0 and

dis(P

�

3

(x)) 6= 0. The urve �(T

2

) orresponding to the anonial Jaobian of T

2

is then written

as

y

2

= x(x� 1)

�

4�

2

x

3

� (�

0

+ 2�

1

+ 6�

2

+ 2�

3

)x

2

+ (�

0

� 2�

1

+ 2�

2

+ 6�

3

)x� 4�

3

�

;

3

reall that �

i

= �

2

i

, where �

i

are taken from (7)
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when the oordinates x for IP

1

is taken suh that W

2

= f0; 1;1g. Conversely the equation of the

oti (7) is written down at one when giving the equation of the genus two urve and a deomposi-

tion W =W

1

[W

2

of its set of Weierstra� points: the oeÆients of the oti are �

i

=

p

�

i

where

�

i

are essentially the symmetri funtions of W

2

when the oordinate x for IP

1

is taken suh that

W

2

= f0; 1;1g.

Taking also the non-generi ase into aount, there is an Abelian surfae A

(�;�;f;g)

orre-

sponding to eah point in the image  (A

(1;4)

) = (M

3

nD) [ (C n fP;Qg).

The following important orollary follows at one from this theorem.

Corollary 7 For any Abelian surfae (T

2

; [D℄) 2

~

A

(1;4)

the aÆne variety T

2

nD is (isomorphi

to) a omplete intersetion of two quartis in C

4

.

Remarks

1) Realling the desription of

~

A

(1;4)

from Remark 5.2 one has the following desription of

the moduli spae

~

A

(1;4)

:

~

A

(1;4)

�

=

�

(fW

1

;W

2

;W

3

g; fW

4

;W

5

;W

6

g) jW

i

2 IP

1

; i 6= j )W

i

6=W

j

	

.

mod IPGL(2;C);

�

=

ffW

4

;W

5

;W

6

g j W

i

2C n f0; 1g; i 6= j ) W

i

6=W

j

g

.

S

3

;

where the ation of S

3

onsists of permuting 0; 1 and1 in the equation y

2

= x(x� 1)(x�W

4

)(x�

W

5

)(x�W

6

), i.e., it is generated by replaing x by 1=x and 1� x in this equation. Obviously the

ring of invariants of the symmetri funtions of W

4

;W

5

andW

6

is just the oneM

3

, whih explains

why

~

A

(1;4)

has suh a nie struture. Using Table 2, this leads to a geometri interpretation of the

\intermediate" moduli spae IP

3

n S

0

, namely

IP

3

n S

0

�

=

ffW

4

;W

5

;W

6

g j W

i

2C n f0; 1g; i 6= j )W

i

6=W

j

g :

To explain this, remark that taking the base vetors mod 2 in the third olumn of Table 2 determines

an ordering for the 4 half-periods on the anonial Jaobian whih orrespond to the lattie �

2

,

whih in turn indue an ordering in the points inW

2

; at the other hand, all elements in the seond

olumn of Table 1 are the same mod 2.

2) In the lassial literature one de�nes a Rosenhain tetrahedron for a Kummer surfae as a

tetrahedron in IP

3

with singular planes of the surfae as faes and singular points of it as verties.

In [Hu℄ the author shows that the equation for the Kummer surfae with respet to a Rosenhain

tetrahedron is written as the quarti (15). It then follows from Theorem 6 how to read o� from

the equation of a Kummer surfae with respet to a Rosenhain tetrahedron, an equation for the

urve orresponding to this Kummer surfae and vie versa. It seems that this result is not known

in the lassial or reent literature.
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7. The entral potentials V

��

In this �nal setion we onentrate on the potentials V

��

whih were always exluded up to

now. It is interesting to ompare the lassial linearization of the entral potential V

��

whih uses

polar oordinates with the � = �-limit of the linearization of the perturbed potential V

��

(� 6= �):

they will be seen to oinide. We will also onstrut a Lax pair for this limiting ase and disuss

the geometry of the invariant manifolds of the vetor �eld.

At �rst, onsider for generi values of h; k the invariant surfae A

hk

de�ned by

A

hk

:

8

<

:

h =

1

2

�

p

2

1

+ p

2

2

�

+

�

q

2

1

+ q

2

2

�

2

+ �

�

q

2

1

+ q

2

2

�

;

k = q

1

p

2

� q

2

p

1

;

whih in terms of polar oordinates (�; �) beomes

h =

1

2

�

_�

2

+ �

2

_

�

2

�

+ �

4

+ ��

2

;

k = �

2

_

�;

leading to

�

1

2

�

2

_�

2

= �

6

+ ��

4

� h�

2

+

k

2

2

:

This suggests setting � = �

2

, yielding

�

_�

2

8

= �

3

+ ��

2

� h� +

k

2

2

: (38)

Seondly the transformation (19) redues for � = � to

x

1

+ x

2

= �

�

q

2

1

+ q

2

2

+ 2�

�

;

x

1

x

2

= �

2

+ �q

2

1

+ �q

2

2

;

(39)

and (20) beomes

_x

2

i

=

8(x

i

+ �)

2

�

x

3

i

+ 2�x

2

i

+ (�

2

� h)x

i

� (h� + f=2)

�

(x

1

� x

2

)

2

(40)

The equivalene of (39) and (41) beomes lear after the simple translation x

i

= x

i

+ � on the

urve; indeed (40) beomes

s

1

+ s

2

= �

�

q

2

1

+ q

2

2

�

;

s

1

s

2

= 0;

so that only one of the s

i

di�ers from zero, say 0 6= s

1

= �(q

2

1

+ q

2

2

) = �s, (the last equality is a

de�nition), whih mathes the linearizing variable � introdued above. In terms of s (41) is redued

to one equation whih reads

�

_s

2

8

= s

3

+ �s

2

� hs+

f

2

;

whih is exatly (39) sine f = (q

1

p

2

� q

2

p

1

)

2

= k

2

.
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It is also interesting that the Lax pair gives in the limit � = � a Lax pair for the potential

V

��

: The polynomials u(x); v(x) and w(x) are now all divisible by (x+ �),

u(x) = (x+ �)

�

x+ q

2

1

+ q

2

2

+ �

�

;

v(x) =

1

p

2

(x+ �) (q

1

p

1

+ q

2

p

2

) ;

w(x) = (x+ �)

�

x

2

+

�

�� q

2

1

� q

2

2

�

x�

1

2

�

p

2

1

+ p

2

2

�

� �

�

q

2

1

+ q

2

2

�

�

;

whih leads to a simpler Lax pair by aneling the fator (x+ �).

Finally we desribe the aÆne invariant surfaes for the entral potentials V

��

. These turn out

to be C

�

-bundles over the ellipti urves (39), as desribed in the following theorem.

Theorem 8 For any k; h 2C, let A

hk

denote the aÆne surfae de�ned by

A

hk

:

8

<

:

h =

1

2

�

p

2

1

+ p

2

2

�

+

�

q

2

1

+ q

2

2

�

2

+ �

�

q

2

1

+ q

2

2

�

;

k = q

1

p

2

� q

2

p

1

:

(41)

If k 6= 0 then A

hk

is a C

�

-bundle over the ellipti urve

E

hk

:�

�

2

2

= �

3

+ ��

2

� h� +

k

2

2

: (42)

Moreover the C

�

-ation on A

hk

is a Hamiltonian ation, the Hamiltonian funtion orresponding

to it being the momentum q

1

p

2

� q

2

p

1

.

Proof

The linearizing variables, alulated above suggest to onsider the map

�: C

4

!C

2

(q

1

; q

2

; p

1

; p

2

) 7! (�; �) =

�

q

2

1

+ q

2

2

; q

1

p

1

+ q

2

p

2

�

:

Our �rst aim is that the image �(A

hk

) is given by the plane ellipti urve (43). Indeed, one easily

obtains for q

2

1

+ q

2

2

6= 0;

p

1

=

q

2

k � q

1

�

q

2

1

+ q

2

2

;

p

2

= �

q

1

k + q

2

�

q

2

1

+ q

2

2

;

whih leads by diret substitution in the �rst equation of (42) immediately to

�

�

2

2

= �

3

+ ��

2

� h� +

k

2

2

:

For q

2

1

+ q

2

2

= 0, i.e., q

2

= �iq

1

one gets

h =

1

2

(p

2

1

+ p

2

2

);

k = q

1

(p

2

� ip

1

);

� = q

1

(p

1

� ip

2

);
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from whih we dedue � = �ik, giving the point (�; �) = (0;�ik) on E

hk

, proving the �rst laim.

Seondly, we determine the �ber �

�1

(�; �) over eah point on E

hk

. To do this, observe that

the multipliative group of non-zero omplex numbers,

C

�

�

=

SO(2;C) =

��

a b

�b a

�

j a

2

+ b

2

= 1

�

ats on A

hk

by

�

a b

�b a

�

�

�

q

1

p

1

q

2

p

2

�

=

�

aq

1

+ bq

2

ap

1

+ bp

2

aq

2

� bq

1

ap

2

� bp

1

�

and the surjetive map � is C

�

-invariant. It is proved by diret alulation that the ation is free,

hene eah �ber of � onsists of one or more irles. If (�; �) 2 E

hk

then p

1

and p

2

are determined

from q

1

and q

2

(at least if q

2

1

+ q

2

2

6= 0), whih themselves are determined (up to the ation of C

�

)

by q

2

1

+ q

2

2

= �, so exatly one irle lies over eah point (q

1

; q

2

; p

1

; p

2

) for whih q

2

1

+ q

2

2

6= 0; in the

speial ase that q

2

1

+ q

2

2

= 0, the same is true, sine p

1

and p

2

are determined (up to the ation of

C

�

) by p

2

1

+ p

2

2

= 2h; and q

1

; q

2

are uniquely determined from p

1

and p

2

. It follows that A

hk

is a

C

�

-bundle over the ellipti urve E

hk

.

Finally, remark that the Hamiltonian vetor �eld orresponding to the momentum q

1

p

2

� q

2

p

1

is given by

_q

1

= �q

2

;

_q

2

= q

1

;

_p

1

= �p

2

;

_p

2

= p

1

;

from whih it is seen that the omplex ow of this vetor �eld is given by the C

�

-ation, proving

the last laim in the theorem.

Let us de�ne (and alulate) the moduli (in IP

(1;2;2;3;4)

) orresponding to an invariant surfae

A

hk

of a entral potential for k 6= 0 as the limit

4

lim

�!�

~

 (T

2

(�;�;f;g)

); f = k

2

:

Then an easy omputation shows that this limit exists, is independent of f 6= 0; h and � = � and

moreover is exatly equal to the speial point P at the boundary of  (A

(1;4)

) de�ned in Theorem

3. Namely for f ! g and �! � one �nds

(�

0

:�

1

:�

2

:�

3

) = (�4: 1: 0: 1)

so that

(f

0

; f

1

; f

2

; f

3

; f

4

) = (�4: 0: 3:�2: 0)

hene by weight homogeneity the assoiated moduli orrespond to P . Remark that the point is

independent of � = � as well as of f = g, so the map  does not distinguish between any of the

invariant surfaes of any entral potential V

��

.
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8. Appendix: The Shlesinger system, the Garnier system and

the quarti potentials V

�

In this appendix we explain the origin of the quarti potentials V

�

, whih were �rst disovered

and studied in the beginning of this entury by Garnier in [G℄. Our exposition is along the lines of

that paper.

At �rst, onsider a linear di�erential equation of order m with n+ 3 regular singularities, say

at the points t

1

; : : : ; t

n

; t

n+1

= 0; t

n+2

= 1 in the plane and at in�nity (it is onvenient to put also

x = t

0

). The most general form of suh an equation is given by

dy

k

dx

=

m

X

h=1

y

h

n+2

X

i=1

A

i

hk

x� t

i

(h = 1; : : : ;m);

the A

i

hk

being onstants. This an be written more ompatly in matrix-form as

dy

dx

= yA (43)

upon de�ning a matrix A with entries

A

hk

=

n+2

X

i=1

A

i

hk

x� t

i

;

it has m independent solutions y

1

(x); : : : ; y

m

(x) whih are multivalued funtions of x. Using m

fundamental solutions as rows in a matrix, an m �m-matrix Y is formed. When suh a matrix

solution Y

1

(x) is ontinued analytially around a losed path enirling a singular point t

i

, then a

new solution Y

2

(x) is obtained, whih is a matrix whose rows are linear ombinations of the rows

of Y

1

(x), hene there is an assoiated monodromy matrix M

i

de�ned by

Y

2

(x) =M

i

Y

1

(x):

In this way, n+ 3 monodromy matries are obtained and they depend on the position of the poles

t

i

as well as on the values of the onstants A

i

hk

: One of the basi problems in the lassial work

about linear di�erential equations is the following isomonodromi problem:

How an one make the oeÆients A

i

hk

dependent on t

1

; : : : ; t

n

suh that the monodromy

matries M

i

beome independent of t

1

; : : : ; t

n

?

Shlesinger shows in [S℄ that the dependene of the matries A

i

= (A

i

hk

)

h;k=1;:::;m

on the t

i

is

given by the following set of partial di�erential equations:

�A

j

�t

i

=

[A

i

; A

j

℄

t

j

� t

i

(j 6= i);

n

X

j=1

�A

j

�t

i

= 0:

(44)

Indeed let Y be a matrix solution of (44),

dY

dx

= Y A;
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and de�ne

�

i

= Y

�1

�Y

�t

i

(i = 0; : : : ; n);

in partiular de�ne �

0

= A. Expressing the integrability ondition

�

2

Y

�t

i

�t

j

=

�

2

Y

�t

j

�t

i

leads to

��

i

�t

j

�

��

j

�t

i

= [�

i

; �

j

℄; (45)

moreover it an be shown that �

i

is holomorphi, away from x = t

i

and �

i

+ A is holomorphi

around x = t

i

. It follows that

�

i

= �

A

i

x� t

i

+ 

i

; (46)

with 

i

independent of x. Atually, without loss of generality, all 

i

may be supposed to be zero.

Expressing (46) in terms of A

i

using (47) (with 

i

= 0) and putting x = t

j

leads immediately to

Shlesinger's system (45).

From (45), Garnier onstruts the so-alled simpli�ed system, simply by replaing

t

i

! �

i

+ �t

i

; (i = 1; : : : ; n)

A

i

! �

�1

A

i

and taking the limit �! 0. The resulting system reads

�A

j

�t

i

=

[A

i

; A

j

℄

�

j

� �

i

(j 6= i)

n

X

j=1

�A

j

�t

i

= 0:

(47)

If a matrix B is de�ned as

B = Ax(x� 1)

n

Y

i=1

(x� �

i

);

then the entries of B are polynomials in x of degree n+1 and the simpli�ed form of (46) for j = 0

is given by

�B

�t

i

=

[A

i

; B℄

x� �

i

: (48)

Garnier proves that the spetral urve det(B(x) � �z) = 0 is independent of all t

i

and linearizes

the ow of the vetor �eld. Observe that the matries B = B(x) and A

i

are related as follows:

B(�

i

) = A

i

n+2

Y

j 6=i

(�

i

� �

j

):

This shows that the Lax pair oinides with the Lax pair onsidered by A. Beauville in [Be℄.
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The Lax pair (49) ontains a lot of integrable systems. Garnier onsiders two speial ases,

whih both lead to hyperellipti urves:

i) det(B(x)��z) = 0 is quadrati in z, i.e., B is a 2�2 matrix: this leads after some suitable

normalizations (see [Be℄) to what we alled the odd master system (see [V1℄ and [M2℄).

ii) det(B(x)� �z) = 0 is quadrati in y: then there is no loss of generality in supposing that

B has the form

B =

0

B

B

�

x

2

+ 

11

b

12

x+ 

12

� � � b

1m

x+ 

1m

b

21

x+ 

21



22

� � � b

2m

x+ 

2m

.

.

.

.

.

.

.

.

.

.

.

.

b

m1

x+ 

m1

b

m2

x+ 

m2

: : : 

mm

1

C

C

A

Then (49) is written out for i = 1 as

�

1

(�

1

� 1)

db

1k

dt

1

= �(b

1k

�

1

+ 

1k

);

�

1

(�

1

� 1)

db

k1

dt

1

= b

k1

�

1

+ 

k1

;

�

1

(�

1

� 1)

d

hk

dt

1

= 

h1

b

1k

� b

h1



1k

:

(49)

De�ne �

k

and �

k

by

b

1k

= �

k

exp

t

1

1� �

1

; b

k1

= �

k

exp

t

1

�

1

� 1

;

bring  to its anonial form (supposed here to be diagonal), de�ne a

i

= 

ii

and hoose



11

= ��

2

�

2

� � � � � �

m

�

m

. Then (50) redues to

�

�

i

= �

i

(2

m

X

j=2

�

j

�

j

+ a

i

);

��

i

= �

i

(2

m

X

j=2

�

j

�

j

+ a

i

);

an integrable system whih is known as the Garnier system. Restrited to the invariant

subspae �

i

= �

i

it gives exatly Newton's equations for the integrable potentials V

�

.
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