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Abstrat. We introdue two algebrai ompletely integrable analogues of the

Mumford systems whih we all hyperellipti Prym systems, beause every

hyperellipti Prym variety appears as a �ber of their momentum map. As

an appliation we show that the generi �ber of the momentum map of the

periodi Volterra lattie
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is an aÆne part of a hyperellipti Prym variety, obtained by removing n trans-

lates of the theta divisor, and we onlude that this integrable system is alge-

brai ompletely integrable.
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1. Introdution

In this paper we introdue two algebrai ompletely integrable (a..i.) systems,

similar to the even and odd Mumford systems (see [12℄ for the odd system and [15℄

for the even system). By a..i we mean that the general level sets of the momentum

map are isomorphi to aÆne abelian varieties and the ows are linearized by this
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isomorphism ([16℄). The phase spae of these systems is desribed by triplets of

polynomials (u(x); v(x); w(x)), as in the ase of the Mumford system, but now we

have the extra onstraints that u;w are even and v odd for the �rst system (the

\odd" ase), and with the opposite parities for the other system (the \even" ase).

We show that in the odd ase the generi �ber of the momentum map is an aÆne

part of a Prym variety, obtained by removing three translates of its theta divisor,

while in the even ase the generi �ber has two aÆne parts of the above form.

We all these system the odd and the even hyperellipti Prym system beause

every hyperellipti Prym variety (more preisely an aÆne part of it) appears as

the �ber of their momentum map. Thus we �nd the same universality as in the

Mumford system: in the latter every hyperellipti Jaobian appears as the �ber of

its momentum map.

To show that the hyperellipti Prym systems are a..i. we exhibit a family of

ompatible (linear) Poisson strutures, making these system multi-Hamiltonian.

These strutures are not just restritions of the Poisson strutures on the Mumford

system. Rather they an be identi�ed as follows: the hyperellipti Prym systems

are �xed point varieties of a Poisson involution (with respet to ertain Poisson

strutures of the Mumford system) and we prove a general proposition stating that

suh a subvariety always inherits a Poisson struture (Proposition 3.4).

As an appliation we study the algebrai geometry and the Hamiltonian struture

of the periodi Volterra lattie
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Although systems of this form go bak to Volterra's work on population dynamis

([20℄), they �rst appear (in an equivalent form) in the modern theory of integrable

system in the pioneer work of Ka and van Moerbeke ([10℄), who onstruted this

system as a disretization of the Korteweg-de Vries equation and who disovered

its integrability. Though those authors only onsidered the non-periodi ase, we

shall refer to it as the KM system. In the seond part of the paper we give a preise

desription of the �bers of the momentum map of the periodi KM system and we

prove its algebrai omplete integrability.

In order to link the periodi KM system to the hyperellipti Prym system we

establish a ommutative diagram

T

� //
M

0

K

�

//
� ?

OO

P

� ?

OO

in whih M

0

; P ; T ; K are (in that order) the phase spaes of the (even) Mumford

system, the hyperellipti Prym system (odd or even), the periodi sl Toda lattie

and the periodi KM system. The vertial arrows are natural inlusion maps ex-

hibiting for both spaes the subspae as �xed points varieties and the horizontal

arrows are injetive maps that map every �ber of the momentum map on the left

injetively into (but not onto) a �ber of the momentum map on the right. In or-

der to make these morphisms into morphisms of integrable systems, the horizontal

maps should be, in addition, Poisson maps, so we onstrut a penil of quadrati

brakets making the map Toda ! Mumford a Poisson map. For one braket in
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this penil the indued map for the KM system is also Poisson, again upon using

Proposition 3.4, so the diagram also has a meaning in the Poisson ategory.

A desription of the generi invariant manifold of the periodi KM system as

an aÆne part of a hyperellipti Prym variety follows. Sine the ows of the KM

system are restritions of ertain linear ows of the Toda lattie this enables us to

show that the periodi KM system is a..i.; moreover the above map leads to an

expliit linearization of the KM system.

In order to determine preisely whih divisors are missing from the aÆne varieties

that appear in the momentum map we use Painlev�e analysis, sine it is diÆult

to read this o� from the map �. The result is that n (= the number of KM

partiles) translates of the theta divisor are missing from these aÆne parts. We

also show that eah hyperellipti Prym variety that we get is anonially isomorphi

to the Jaobian of a related hyperellipti Riemann surfae, whih an be omputed

expliitly, thereby providing an alternative, simpler desription of the geometry of

the KM systems.

The plan of this paper is as follows. In Setion 2 we reall the de�nition of a

Prym variety and speialize it to the ase of a hyperellipti Riemann surfae with an

involution (di�erent from the hyperellipti involution). We show that suh a Prym

variety is anonially isomorphi to a hyperellipti Jaobian and use this result

to desribe the aÆne parts that show up in Setion 3, in whih the hyperellipti

Prym systems are introdued and in whih their algebrai omplete integrability

is proved. In Setion 4 we establish the preise relation between the periodi KM

system and the periodi Toda lattie and we onstrut the injetive morphism �.

We use it to give a �rst desription of the generi �bers of the momentum map of the

periodi KM system and derive its algebrai omplete integrability. A more preise

desription of these �bers is given in Setion 5 by using Painlev�e analysis. We �nish

the paper with a worked out example (n = 5) in whih we �nd a on�guration of

genus two urves on an Abelian surfae that looks very familiar (Figure 2).

As a �nal note we remark that the (periodi) KM system has reeived muh less

attention than the (periodi) Toda lattie, another disretization of the Korteweg-

de Vries equation, whih besides admitting a Lie algebrai generalization, is also

interesting from the point of view of representation theory. It is only reently that

the interest in the KM system has revived (see e.g. [6℄, [18℄, and referenes therein).

We hope that the present work lari�es the onnetions between these systems and

the mastersystems (Mumford and Prym systems). It was pointed out to us by

Vadim Kuznetsov, that an embedding of the KM system in the Heisenberg magnet

was onstruted by Volkov in [19℄.

2. Hyperellipti Prym varieties

In this setion we reall the de�nition of a Prym variety and speialize it to the

ase of a hyperellipti Riemann surfae �, equipped with an involution �. We on-

strut an expliit isomorphism between the Prym variety of (�; �) and the Jaobian

of a related hyperellipti Riemann surfae and we use this isomorphism to give a

preise desription of the aÆne part of the Prym variety that will appear further

as the �ber of the momentum map of an integrable system related to the Ka-van

Moerbeke system.

2.1. The Prym variety of a hyperellipti Riemann surfae. Let � be a

ompat Riemann surfae of genus G, equipped with an involution � with p �xed
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points. The quotient surfae �

�

= �=� has genus g

0

, with G = 2g

0

+ p=2� 1, and

the quotient map � ! �

�

is a double overing whih is rami�ed at the p �xed

points of �. We assume that g

0

> 0, i.e., � is not the hyperellipti involution on a

hyperellipti Riemann surfae �. The group of divisors of degree 0 on �, denoted

by Div

0

(�), arries a natural equivalene relation, whih is ompatible with the

group struture and whih is de�ned by D � 0 i� D is the divisor of zeros and poles

of a meromorphi funtion on �. The quotient group Div

0

(�)= � is a ompat

omplex algebrai torus (Abelian variety) of dimension G, alled the Jaobian of

� and denoted by Ja(�) ([9℄, Ch. 2.7), its elements are denoted as [D℄, where

D 2 Div

0

(�) and we write 
 for the group operation in Ja(�). Note that �

indues an involution on Div

0

(�) and hene on Ja(�); we use the same notation

� for these involutions.

De�nition 2.1. The Prym variety of (�; �) is the (G � g

0

)-dimensional subtorus

of Ja(�) given by

Prym(�=�

�

) = f[D � �(D)℄ j D 2 Div

0

(�)g:

We will be interested in the ase in whih � is the Riemann surfae of a hyper-

ellipti urve �

(0)

: y

2

= f(x), where f is a moni even polynomial of degree 2n

without multiple roots (in partiular 0 is not a root of f), so that the urve is non-

singular. The Riemann surfae � has genus G = n�1 and is obtained from �

(0)

by

adding two points, whih are denoted by 1

1

and 1

2

. The two points of �

(0)

for

whih x = 0 are denoted by O

1

and O

2

. The 2nWeierstrass points of � (the points

(x; y) of �

(0)

for whih y = 0) ome in pairs (X; 0) and (�X; 0); �xing some order

we denote them by W

i

= (X

i

; 0) and �W

i

= (�X

i

; 0), where i = 1; : : : ; n. The

Riemann surfae � admits a group of order four of involutions, whose ation on

�

(0)

and on the Weierstrass points (X

i

; 0) and whose �xed point set are desribed

in Table 1 for n odd, n = 2g + 1 and in Table 2 for n even, n = 2g + 2 ({ is the

hyperellipti involution).

Table 1: n odd

(x; y) O

1

O

2

1

1

1

2

W

i

�W

i

Fix

{ (x;�y) O

2

O

1

1

2

1

1

W

i

�W

i

W

i

; �W

i

� (�x; y) O

1

O

2

1

2

1

1

�W

i

W

i

O

1

; O

2

� (�x;�y) O

2

O

1

1

1

1

2

�W

i

W

i

1

1

; 1

2

Table 2: n even

(x; y) O

1

O

2

1

1

1

2

W

i

�W

i

Fix

{ (x;�y) O

2

O

1

1

2

1

1

W

i

�W

i

W

i

; �W

i

� (�x;�y) O

2

O

1

1

2

1

1

�W

i

W

i

{

� (�x; y) O

1

O

2

1

1

1

2

�W

i

W

i

O

1

; O

2

; 1

1

; 1

2

For future use we also point out that for points P 2 � whih are not indiated on

these tables, neither �(P ) nor �(P ) oinide with {(P ).
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The involutions � and � lead to two quotient Riemann surfaes �

�

:= �=� and

�

�

:= �=� , and to two overing maps �

�

: �! �

�

and �

�

: �! �

�

. It follows from

Tables 1 and 2 that the genus of �

�

equals g, while the genus g

0

of �

�

is g or g+1

depending on whether n is odd or even. Also, the dimension of Prym(�=�

�

) = g

(whether n is odd or even). If the equation of �

(0)

is written as y

2

= g(x

2

) then

for n odd, �

(0)

�

has an equation v

2

= g(u) while �

(0)

�

has an equation v

2

= ug(u);

for n even the roles of �

(0)

�

and �

(0)

�

are interhanged.

In order to desribe Prym(�=�

�

), whih we will all a hyperellipti Prym variety,

we need the following lassial results about hyperellipti Riemann surfaes and

their Jaobians (for proofs, see [12℄, Ch. IIIa).

Lemma 2.2. Let D be a divisor of degree H > G on �, where G is the genus of �,

and let P be any point on �. There exists an e�etive divisor E of degree G on �

suh that

D � E + (H �G)P:

Corollary 2.3. For any �xed divisor D

0

of degree G, Ja(�) is given by

Ja(�) =

("

G

X

i=1

P

i

�D

0

#

j P

1

; : : : ; P

G

2 �

)

:

Lemma 2.4. Let D be a divisor on � of the form D =

P

H

i=1

(P

i

�Q

j

) where H � G

and P

i

6= Q

j

for all i and j. Then [D℄ = 0 if and only if H is even and D is of the

form

D =

H=2

X

i=1

(R

i

+ {(R

i

)� S

i

� {(S

i

));

for some points R

i

; S

i

2 �.

2.2. Hyperellipti Prym varieties as Jaobians. In the following theorem we

show that for any n the Prym variety Prym(�=�

�

) assoiated with the hyperellipti

Riemann surfae � is anonially isomorphi to the Jaobian of �

�

.

This result was �rst proven by D. Mumford (see [13℄) for the ase in whih

�

�

: � ! �

�

is unrami�ed (n even) and by S. Dalaljan (see [7℄) for the ase in

whih �

�

: � ! �

�

has two rami�ation points (n odd). Our proof, whih is valid

in both ases, is di�erent and has the advantage of allowing us to desribe expliitly

the aÆne parts of the Prym varieties that we will enounter as aÆne parts of the

orresponding Jaobians.

Theorem 2.5. Let �

�

�

denote the homomorphism Div

0

(�

�

)! Div

0

(�) whih sends

every point of �

�

to the divisor on � whih onsists of its two anteedents (under �).

The indued map

� : Ja(�

�

) ! Prym(�=�

�

)

[D℄ 7! [�

�

�

D℄

is an isomorphism.

Proof. It is lear that the homomorphism � is a well-de�ned: if [D℄ = 0 then D

is the divisor of zeros and poles of a meromorphi funtion f on �

�

, hene �

�

�

D is

the divisor of zeros and poles of f Æ � and [�

�

�

D℄ = 0. To see that the image of �
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is ontained in Prym(�=�

�

), just notie that �

�

�

(D) an be written as E + �(E) for

some E 2 Div

0

(�), so that

[�

�

�

(D)℄ = [E + �(E)℄ = [E � �(E)℄ 2 Prym(�=�

�

):

Sine Ja(�

�

) and Prym(�=�

�

) both have dimension g it suÆes to show that � is

injetive. Suppose that [�

�

�

D℄ = 0 for some D 2 Div

0

(�

�

). We need to show that

this implies [D℄ = 0. It follows from Corollary 2.3 that we may assume that D is of

the form

P

g

i=1

p

i

� g�

�

(1

1

), where p

i

2 �

�

. Then �

�

�

D =

P

g

i=1

P

i

+ �(P

i

)� 2g1

1

(�

�

(P

i

) = p

i

). Sine 2g � G and 1

1

6= {(1

1

) Lemma 2.4 implies that P

i

= 1

1

,

i.e., p

i

= �

�

(1

1

) for all i. �

2.3. The theta divisor. We introdue two divisors on Ja(�) by

�

1

=

("

G�1

X

i=1

P

i

� (G� 1)1

1

#

j P

i

2 �

)

;(2)

�

2

=

("

G�1

X

i=1

P

i

+1

2

�G1

1

#

j P

i

2 �

)

:(3)

These two divisors are both translates of the theta divisor and they di�er by a shift

over [1

2

�1

1

℄. Sine 1

2

= {(1

1

) they are tangent along their intersetion lous,

whih is given by


 =

("

G�2

X

i=1

P

i

+1

2

� (G� 1)1

1

#

j P

i

2 �

)

:

Proposition 2.6. When n is odd Prym(�=�

�

)\ (�

1

[�

2

) onsists of three trans-

lates of the theta divisor of Ja(�

�

), interseting as in the following �gure.

PSfrag replaements

[1

1

+O℄ [1

2

+O℄

[1

1

+1

2

℄

�

1

�

2

�

Figure 1

Proof. We use the isomorphism � to determine whih divisors of Ja(�

�

) get

mapped into �

1

and �

2

. Sine O

1

and O

2

are the only points of � on whih {

and � oinide Lemma 2.4 implies that the only divisors D =

P

g

i=1

p

i

� g�

�

(1

1

) 2

Div(�

�

) for whih �

�

�

D ontains, up to linear equivalene, 1

1

or 1

2

are those for
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whih at least one of them ontains �

�

(1

1

) or �

�

(1

2

) or �

�

(O

1

) (=�

�

(O

2

)). De-

noting O = �

�

(O

1

) we �nd that these points onstitute the following three divisors

on Ja(�

�

).

�

1

=

("

g�1

X

i=1

p

i

� (g � 1)�

�

(1

1

)

#

j p

i

2 �

�

)

;

�

2

=

("

g�1

X

i=1

p

i

+ �

�

(1

2

)� g�

�

(1

1

)

#

j p

i

2 �

�

)

;

� =

("

g�1

X

i=1

p

i

+O � g�

�

(1

1

)

#

j p

i

2 �

�

)

:

They all pass through

! =

("

g�2

X

i=1

p

i

+ �

�

(1

2

)� (g � 1)�

�

(1

1

)

#

j p

i

2 �

�

)

;

whih is the tangeny lous of �

1

and �

2

, and �

i

intersets � in addition in

!

i

=

("

g�2

X

i=1

p

i

+ �

�

(1

i

) +O � g�

�

(1

1

)

#

j p

i

2 �

�

)

;

whih is a translate of !. �

When n is even then learly Prym(�=�

�

) is ontained in �

1

, but the following

result, similar to Proposition 2.6, holds for an appropriate translate of Prym(�=�

�

).

The proof is left to the reader.

Proposition 2.7. When n is even and i 2 f1; 2g then (Prym(�=�

�

)
 [O

1

�1

i

℄)\

(�

1

[ �

2

) onsists of three translates of the theta divisor of Ja(�

�

), interseting

as in Figure 1 (in whih O should now be replaed by O

2

).

We will see in the next setion how in both ases (n even/odd) the aÆne

variety obtained by removing these three translates from the theta divisor from

Prym(�=�

�

) an be desribed by simple, expliit equations.

3. The hyperellipti Prym systems

In this setion we introdue two families of integrable systems, whose mem-

bers we all the odd and the even hyperellipti Prym systems, where the adjetive

\odd/even" refers to the parity of n, as in the previous setion, and where \hy-

perellipti Prym" refers to the fat that the �bers of the momentum map of these

systems are preisely the aÆne parts of the hyperellipti Prym varieties that were

onsidered in the previous setion. These systems are intimately related to the even

Mumford systems, onstruted by the seond author (see [15℄), as even analogs of

the (odd) Mumford systems, onstruted by Mumford (see [12℄).

3.1. Phase spae and momentummap. As in the ase of the Mumford systems,

the phase spae of the hyperellipti Prym systems onsists of triples (u(x); v(x); w(x))

of polynomials, often represented as Lax operators

L(x) =

0

�

v(x) w(x)

u(x) �v(x)

1

A

;
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where u(x); v(x) and w(x) are subjet to ertain onstraints. Denoting by M

n

(resp. M

0

n

) the phase spae of the n-th odd (resp. even) Mumford system and

by P

n

(resp. P

0

n

) the phase spae of the n-th odd (resp. even) hyperellipti Prym

system these onstraints are indiated in the following table.

Table 3

phase spae dim u(x) v(x) w(x)

M

n

3n+ 1

moni

deg = n

deg < n

moni

deg = n+ 1

M

0

n

3n+ 2

moni

deg = n

deg < n

moni

deg = n+ 2

P

n

3n+ 1

moni

even

deg = 2n

odd

deg < 2n

moni

even

deg = 2n+ 2

P

0

n

3n+ 2

moni

odd

deg = 2n+ 1

even

deg < 2n+ 1

moni

odd

deg = 2n+ 3

In eah of these four ases phase spae is an aÆne spae, whose dimension is

indiated in the table, and we an use the oeÆients of the three polynomials as

oordinates on this spae: for M

n

for example we write

u(x) = x

n

+ u

n�1

x

n�1

+ � � �+ u

0

and similarly for v(x) and w(x) and for the other phase spaes.

We de�ne on eah of these spaes a momentum map H with values in (a �nite-

dimensional aÆne subspae of) C [x℄ by

H(L(x)) = � det(L(x)) = u(x)w(x) + v

2

(x):

Eah of these spaes arries a multi-hamiltonian struture for whih H is the mo-

mentum map of an integrable system, as we will see in the next paragraph. We

now desribe the generi �bers of H , using the results of the previous setion.

We start by realling the desription of these �bers for the Mumford systems

(see [12℄ for the odd ase and [15℄ for the even ase).

Proposition 3.1. Let f(x) be a moni polynomial of degree 2g + 1 (resp. 2g + 2)

without multiple roots and let � denote the Riemann surfae orresponding to the

(smooth) aÆne urve (of genus g) de�ned by �

(0)

: y

2

= f(x). Then the �ber over

f(x) of H : M

g

! C [x℄ (resp. H : M

0

g

! C [x℄) is isomorphi to Ja(�) minus

its theta divisor (resp. minus two translates of its theta divisor whih are tangent

along their intersetion lous).

Proof. We shortly indiate the idea of the proof, sine it will be useful later. To

(u(x); v(x); w(x)) in the �ber over f(x) of H :M

g

! C [x℄ one assoiates a divisor

D =

P

g

i=1

(x

i

; y

i

) � g1 on � (where f1g := � n �

(0)

) by taking for x

i

the roots

of u(x) and y

i

= v(x

i

). This map is injetive and its image onsists of those
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divisors

P

g

i=1

P

i

� g1 for whih P

i

2 �

(0)

and for whih i 6= j ) P

i

6= {(P

j

).

Mapping D to its equivalene lass [D℄ we get an injetive map into Ja(�) and

the omplement of its image is the theta divisor

nh

P

g�1

i=1

P

i

� (g � 1)1

i

j P

i

2 �

o

.

For (u(x); v(x); w(x)) 2 M

0

g

the onstrution is similar but the omplement of the

image onsists of two translates of the theta divisor beause � n�

(0)

onsist now of

two points. �

In the following two propositions we desribe the �bers of H for the hyperellipti

Prym systems. Notie that for these systems H takes values in C [x

2

℄ hene the

orresponding Riemann surfae � is of the type onsidered in the previous setion.

Proposition 3.2. Let f(x) be a moni even polynomial of degree 4g + 2 without

multiple roots and let � denote the Riemann surfae orresponding to the (smooth)

aÆne urve (of genus 2g) de�ned by �

(0)

: y

2

= f(x). The �ber of H : P

g

! C [x

2

℄

over f(x) is isomorphi to Prym(�=�

�

)

�

=

Ja(�

�

) minus three translates of its

theta divisor, interseting as in Figure 1.

Proof. Sine the �ber over f(x) ofH : P

g

! C [x

2

℄ is ontained in the �ber over f(x)

of H : M

0

2g

! C [x℄ it is a subset of Ja(�). In fat it is a subset of Prym(�=�

�

).

To see this, onsider the divisor D =

P

2g

i=1

(x

i

; y

i

) � 2g1

1

whih orresponds to a

triple (u(x); v(x); w(x)), with u;w even and v odd. The roots of u ome in pairs

(x

i

; x

j

= �x

i

) and y

j

= v(x

j

) = v(�x

i

) = �v(x

i

) = �y

i

(reall that 0 an never

be a root of u beause then f would have 0 as a double root), hene the points in D

ome in pairs P; �(P ) and [D℄ belongs to Prym(�=�

�

). The points of Prym(�=�

�

)

whih do not belong to the �ber are those

h

P

2g

i=1

P

i

� 2g1

1

i

2 Prym(�=�

�

) for

whih at least one of the P

i

equals 1

1

or 1

2

, i.e., the points on �

1

[ �

2

, as

de�ned in (2) and (3). By Proposition 2.6 the �ber is isomorphi to an aÆne part

of Prym(�=�

�

) obtained by removing three translates of the theta divisor. �

Proposition 3.3. Let f(x) be a moni even polynomial of degree 4g + 4 without

multiple roots and let � denote the Riemann surfae orresponding to the (smooth)

aÆne urve (of genus 2g + 1) de�ned by �

(0)

: y

2

= f(x). The �ber over f(x)

of H : P

0

g

! C [x

2

℄ is reduible and eah of its two omponents is isomorphi to

Prym(�=�

�

)

�

=

Ja(�

�

) minus three translates of its theta divisor, interseting as

in Figure 1.

Proof. Consider the divisor D =

P

2g+1

i=1

(x

i

; y

i

) � (2g + 1)1 whih orresponds to

a triple (u(x); v(x); w(x)), with u;w odd and v even. 0 is a root of u and its other

roots ome in pairs x

i

; x

j

= �x

i

and y

j

= v(x

j

) = v(x

i

) = y

i

, hene the points in

D onsist of O

1

or O

2

and the others ome in pairs P; �(P ). It follows that [D℄

belongs to Prym(�=�

�

)
 [O

1

�1

1

℄ or to Prym(�=�

�

)
 [O

1

�1

2

℄. The points of

Prym(�=�

�

) whih do not belong to the �ber are those

h

P

2g+1

i=1

P

i

� (2g + 1)1

1

i

for whih at least one of the P

i

equals 1

1

or 1

2

, i.e., the points on �

1

[ �

2

,

as de�ned in (2) and (3). By Proposition 2.6 the �ber onsists of two opies of

an aÆne part of Prym(�=�

�

) obtained by removing three translates of the theta

divisor. Notie that the fat that the �ber is reduible an also be dedued from

the fat that f(0) = u(0)w(0) + v

2

(0) = v

2

0

. �

3.2. Flows and Hamiltonian struture. The vetor �elds of the even Mumford

system are a family of ommuting vetor �elds, tangent to the �bers of H :M

0

g

!
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C [x℄, and they are linear (translation invariant) when restrited to these �bers.

Expliitly, for y 2 C onsider the vetor �eldX

y

onM

0

g

de�ned by the Lax equation

(4) X

y

L(x) =

1

x� y

[L(x); L(y) + (x� y)B(x; y)℄;

where

B(x; y) =

0

�

0 �(x + y)u(y)

0 0

1

A

; �(x) = x+ w

g+1

� u

g�1

:

Eah of the vetor �elds X

y

is Hamiltonian with respet to a family of ompatible

Poisson strutures on M

0

g

, namely for any polynomial ' 2 C [x℄ n f0g of degree at

most g the formulas

fu(x); u(x

0

)g

'

M

= fv(x); v(x

0

)g

'

M

= 0;

fu(x); v(x

0

)g

'

M

=

u(x)'(x

0

)� u(x

0

)'(x)

x� x

0

;

fu(x); w(x

0

)g

'

M

= �2

v(x)'(x

0

)� v(x

0

)'(x)

x� x

0

;(5)

fv(x); w(x

0

)g

'

M

=

w(x)'(x

0

)� w(x

0

)'(x)

x� x

0

� �(x+ x

0

)u(x)'(x

0

);

fw(x); w(x

0

)g

'

M

= 2�(x+ x

0

) (v(x)'(x

0

)� v(x

0

)'(x)) ;

de�ne a Poisson struture (of rank 2g on a Zariski open subset). Sine

(6) fH(x); H(x

0

)g

'

M

=

�

u(x)w(x) + v

2

(x); u(x

0

)w(x

0

) + v

2

(x

0

)

	

'

M

= 0;

the omponents of H are in involution and by taking

H

'

(y) '

H(y)

'(y)

=

u(y)w(y) + v

2

(y)

'(y)

as Hamiltonian we see that for every y 2 C , whih is not a root of ', the vetor �eld

X

y

is Hamiltonian with respet to f�; �g

'

M

. Moreover, for any two values of y the

orresponding vetor �elds X

y

ommute in view of (6). Notie that taking ' = 1

one sees that the vetor �elds X

y

generate a Hamiltonian abelian (loal) ation

with momentum map H :M

0

g

! C [x℄. Sine the vetor �elds X

y

span the tangent

spae of the generi �bers of H , whih are aÆne parts of Jaobians, and sine they

are linear on these Jaobians, they de�ne an algebrai ompletely integrable system

(a..i. system) on M

0

g

(see [16℄ for details).

We now onstrut the orresponding Poisson strutures and integrable vetor

�elds for the hyperellipti Prym systems and establish their algebrai omplete

integrability. Consider the natural inlusions P

g

,! M

0

2g

and P

0

g

,! M

0

2g+1

and

onsider the involution | :M

0

n

!M

0

n

de�ned by:

| :

0

�

v(x) w(x)

u(x) �v(x)

1

A

7�!

0

�

�v(�x) w(�x)

u(�x) v(�x)

1

A

:

Then we see that the image of P

g

,!M

0

2g

is the �xed point variety of |, while the

image of P

0

g

,!M

0

2g+1

is the �xed point variety of �|. We laim that | (resp. �|)
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is a Poisson automorphism of (M

0

2g

; f�; �g

'

M

) (resp. (M

0

2g+1

; f�; �g

'

M

)), whenever '

is an even (resp. odd) polynomial. In fat, taking ' even we have

fu(x) Æ |; v(x

0

) Æ |g

'

M

= fu(�x);�v(�x

0

)g

'

M

=

u(�x)'(x

0

)� u(�x

0

)'(x)

x� x

0

= fu(x); v(x

0

)g

'

M

Æ |;

showing that for any i and j, fu

i

Æ |; v

j

Æ |g

'

M

= fu

i

; v

j

g

'

M

and similarly for the

Poisson brakets of the other omponents. Sine all brakets are linear in ' the

result for ' odd also follows, when | is replaed by �|.

The following proposition, whih an be seen as a partiular ase of Dira redu-

tion, yields a Poisson struture on the �xed point variety of a Poisson involution.

For the general theorem on Dira redution, see Weinstein ([21℄, Prop. 1.4) and

Courant ([4℄, Thm. 3.2.1). For our onveniene we give a proof in the algebrai

ategory; the proof is easily adapted to smooth manifolds.

Proposition 3.4. Suppose that (M; f�; �g) is an aÆne Poisson variety, equipped

with an involution | whih is a Poisson map. Let N be the subvariety of M on-

sisting of the �xed points of | and denote the inlusion map N ,!M by {. Then N

arries a (unique) Poisson struture f�; �g

N

suh that

(7) {

�

fF;Gg = f{

�

F; {

�

Gg

N

for all F;G 2 O(M) that are |-invariant.

Proof. For f; g 2 O(N) we hoose F;G 2 O(M) suh that f = {

�

F and g = {

�

G.

We may assume that F and G are |-invariant by replaing F by (F + |

�

(F ))=2

and similarly for G. We de�ne ff; gg

N

= {

�

fF;Gg and show that this de�nition is

independent of the hoie of F and G. To do this it is suÆient to show that if G is

|-invariant and {

�

F = 0, then {

�

fF;Gg = 0. Sine the ideal of funtions vanishing

on N is generated by |-anti-invariant funtions (|

�

F = �F ) it suÆes to show this

for F 2 O(M) suh that |

�

F = �F . By assumption | is a Poisson map, | Æ { = |

and |

�

G = G so that

{

�

fF;Gg = {

�

|

�

fF;Gg = {

�

f|

�

F; |

�

Gg = �{

�

fF;Gg ;

showing our laim. Similarly, the braket of any two |-invariant funtions is |-

invariant. In view of this and beause the de�nition of f�; �g

N

is independent of the

hoie of F and G we have for any f; g; h 2 O(N) that

fff; gg

N

; hg

N

= {

�

ffF;Gg ; Hg ;

leading at one to the Jaobi identity for f�; �g

N

. Similarly the fat that f�; �g

N

is

an anti-symmetri biderivation follows. �

The Hamiltonian struture of the hyperellipti Prym systems and its algebrai

omplete integrability is desribed in the following proposition.

Proposition 3.5. Let ' be an even (resp. odd) polynomial of degree at most 2g+1,

' 6= 0. The Poisson braket f�; �g

'

M

onM

0

2g

, (resp. onM

0

2g+1

), given by (5) indues

a Poisson braket f�; �g

'

P

on P

g

(resp. on P

0

g

), the omponents of H : P

g

! C [x

2

℄

(resp. H : P

0

g

! C [x

2

℄) are in involution and they de�ne an (algebrai ompletely)

integrable system on P

g

(resp. on P

0

g

).
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Proof. Sine for ' even (resp. odd) the image of P

g

,! M

0

2g

(resp. P

g

,! M

0

2g

)

is the �xed point set of the Poisson involution | (resp. -|) it follows from Proposi-

tion 3.4 that P

g

(resp. P

0

g

) inherits a Poisson braket from M

0

2g

, whih we denote

in both ases by f�; �g

'

P

. We exemplify the omputation of the redued brakets by

deriving the formula for fu(x); v(x

0

)g

'

P

on P

g

(' even). Notie that sine u is even

and v is odd the polynomial fu(x); v(x)g

'

P

, whih is a generating funtion for the

Poisson brakets fu

i

; v

j

g

'

P

, is even in x and odd in x

0

. Obvious |-invariant exten-

sions of the funtions u

2i

and v

2i+1

are the orresponding funtions u

2i

and v

2i+1

on M

0

2g

. Therefore fu(x); v(x

0

)g

'

P

is omputed by taking in fu(x); v(x

0

)g

'

M

the

terms that are even in x and odd in x

0

and restriting the resulting polynomial to

the image of P

g

, as embedded in M

2g

. Using the fat that the terms of a bivariate

polynomial F (x; x

0

) that are even in x and odd in x

0

are piked by taking

1

4

(F (x; x

0

) + F (�x; x

0

)� F (x;�x

0

)� F (�x;�x

0

))

we �nd for

F (x; x

0

) = fu(x); v(x

0

)g

'

M

=

u(x)'(x

0

)� u(x

0

)'(x)

x� x

0

that the redued Poisson braket, for ' even, is given by

fu(x); v(x

0

)g

'

P

=

x

0

2

�

(u(x) + u(�x))'(x

0

)� (u(x

0

) + u(�x

0

))'(x)

x

2

� x

0

2

�

�

�

�

�

P

g

= x

0

u(x)'(x

0

)� u(x

0

)'(x)

x

2

� x

0

2

:

Repeating the same omputation for the other oordinates we �nd the following

formulas for f�; �g

'

P

,

fu(x); u(x

0

)g

'

P

= fv(x); v(x

0

)g

'

P

= 0;

fu(x); v(x

0

)g

'

P

= x

0

u(x)'(x

0

)� u(x

0

)'(x)

x

2

� x

0

2

;

fu(x); w(x

0

)g

'

P

= �2

xv(x)'(x

0

)� x

0

v(x

0

)'(x)

x

2

� x

0

2

;

fv(x); w(x

0

)g

'

P

= x

w(x)'(x

0

)� w(x

0

)'(x)

x

2

� x

0

2

� xu(x)'(x

0

);

fw(x); w(x

0

)g

'

P

= 2 (xv(x)'(x

0

)� x

0

v(x

0

)'(x)) :

Using the fat that all Poisson brakets are linear in ' one �nds that the formulas

for the redued braket on P

0

g

(with ' odd) are formally idential to the above

ones. It is now obvious that the omponents of the new momentum map H are

in involution. Sine we know that the �bers of H : P

g

! C [x

2

℄ are aÆne parts of

Abelian varieties of dimension g, the omponents of the new H are independent.

The integrable vetor �elds X

y

on P

g

are omputed from f� ; H(y)g

1

P

, to wit

(8) X

y

L(x) =

1

x

2

� y

2

2

4

L(x);

0

�

yv(y) xw(y) + x(x

2

� y

2

)u(y)

xu(y) �yv(y)

1

A

3

5

:

Sine the formulas for the redued brakets on P

g

and on P

0

g

are formally the same

the vetor �elds X

y

on P

0

g

are also given by (8). Finally, the ows of all vetor
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�elds X

y

are linear sine they are restritions of linear ows, showing that the odd

hyperellipti Prym systems are algebrai ompletely integrable. �

4. The periodi Toda latties and KM systems

In this setion we show that the periodi KM systems are related to the periodi

sl Toda latties in the same way as the hyperellipti Prym systems are related to

the even Mumford systems and we onstrut a morphism from the Toda latties

to the even Mumford systems, whih indues a morphism from the KM systems to

the odd or the even hyperellipti Prym systems. The latter map is then used to

desribe the level sets of the momentum map of the KM systems.

4.1. Flows and Hamiltonian struture. The phase spae T

n

of the periodi

sl(n) Toda lattie (n-body Toda lattie for short) is the aÆne variety of all Lax

operators in sl[h; h

�1

℄ of the form

(9) L(h) =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

b

1

a

1

0 � � � 0 h

�1

1 b

2

a

2

0

0 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 b

n�1

a

n�1

ha

n

0 � � � � � � 1 b

n

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

with

Q

n

i=1

a

i

= 1. It arries a natural Z=n ation, de�ned by

((a

1

; a

2

: : : ; a

n

); (b

1

; b

2

: : : ; b

n

)) 7! ((a

2

; a

3

: : : ; a

1

); (b

2

; b

3

; : : : ; b

1

)):

For this reason it is onvenient to view the indies as elements of Z=n and we put

a

n

= a

0

; b

n

= b

0

; a

n+1

= a

1

; b

n+1

= b

1

; : : : . The Hamiltonians I

i

, de�ned by

I

i

=

1

1 + i

tr(L(h)

i+1

):

are in involution with respet to the linear Poisson braket f�; �g

1

T

, de�ned by

fa

i

; a

j

g

1

T

= fb

i

; b

j

g

1

T

= 0, fa

i

; b

j

g

1

T

= a

i

(Æ

ij

� Æ

i+1;j

), as well as with respet

to the quadrati Poisson braket f�; �g

x

T

, de�ned by

fa

i

; a

j

g

x

T

= a

i

a

j

(Æ

i;j+1

� Æ

i+1;j

);

fb

i

; b

j

g

x

T

= a

i

(Æ

i;j+1

� Æ

i+1;j

);

fa

i

; b

j

g

x

T

= a

i

b

j

(Æ

i;j

� Æ

i+1;j

):

Sine f�; �g

x

T

and f�; �g

1

T

are ompatible we may de�ne, for any ' 2 C [x℄ of degree

at most 1 a Poisson braket on T

n

by f�; �g

'

T

= '

1

f�; �g

x

T

+'

0

f�; �g

1

T

, where '(x) =

'

1

x+ '

0

.

The ommuting vetor �elds X

i

= f� ; I

i

g

1

T

admit the Lax representation

(10) X

i

L(h) = [L(h); (L(h)

i

)

+

℄;

where the subsript + denotes projetion into the Lie subalgebra of sl[h; h

�1

℄ gen-

erated by the positive roots. They are also Hamiltonian with respet to f�; �g

x

T

and
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their ows are linear on the generi �bers of the momentum map K : T

n

! C [x℄

whih is de�ned by

det(x Id�L(h)) = �h�

1

h

+K(x)=2;

sine these �bers are aÆne parts of hyperellipti Jaobians, the Toda lattie is an

a..i. system (see [3℄ for details). For higher order brakets for the Toda lattie,

see [5℄.

We now turn to the n body, periodi, Ka-van Moerbeke system (periodi KM,

for short). Its phase spae K

n

is the subspae of T

n

onsisting of all Lax operators

(9) with zeros on the diagonal. K

n

is not a Poisson subspae of T

n

. However, K

n

is the �xed manifold of the involution | : T

n

! T

n

de�ned by

((a

1

; a

2

: : : ; a

n

); (b

1

; b

2

: : : ; b

n

)) 7! ((a

1

; a

2

: : : ; a

n

); (�b

1

;�b

2

: : : ;�b

n

));

whih is a Poisson automorphism of (T

n

; f�; �g

x

T

). Therefore, by Theorem 3.4, K

n

inherits a Poisson braket f�; �g

K

from f�; �g

x

T

, whih is given by

fa

i

; a

j

g

K

= a

i

a

j

(Æ

i;j+1

� Æ

i+1;j

):

It follows that the restrition of the momentum map K to K

n

is a momentum map

for the KM system. Notie that this restrition, whih we will also denote by K,

takes now values in C [x

2

℄. In partiular, K

i

= 0 for even i, while for i odd the Lax

equations (10) lead to Lax equations for the KM systems, merely by putting all b

i

equal to zero. Taking i = 1 we �nd the vetor �eld

(11) _a

i

= a

i

(a

i�1

� a

i+1

); i = 1; : : : ; n;

whih we alled the KM vetor �eld in the introdution. More generally, taking

i odd we �nd a family of ommuting Hamiltonian vetor �elds on K

n

whih are

restritions of the Toda vetor �elds, while for i even the Toda vetor �elds X

i

are

not tangent to K

n

. In order to onlude that the KM systems are a..i. we need to

desribe the �bers of the momentum map K : T

n

! C [x

2

℄. This will be done in

the next paragraph.

4.2. Algebrai integrability of KM. We �rst de�ne a map � : T

n

! M

0

n�1

whih maps the Toda systems to the even Mumford system. The following identity,

valid for tridiagonal matries, will be needed.

Lemma 4.1. Let M be a tridiagonal matrix,

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

�

1

�

1

0 � � � 0 0



1

�

2

�

2

0

0 

2

�

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 �

n�1

�

n�1

0 0 � � � � � � 

n�1

�

n

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

and denote by �

i

1

;:::;i

k

the determinant of the minor of M obtained by removing

from M the rows i

1

; : : : ; i

k

and the olumns i

1

; : : : ; i

k

. Then:

(12) �

1

�

n

���

1;n

=

n�1

Y

i=1

�

i



i

:
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Proof. For n = 2 this is obvious. For n > 2 one proeeds by indution, using the

following formula for alulating the determinant � of M ,

(13) � = �

n

�

n

� �

n�1



n�1

�

n�1;n

:

�

In the sequel we use the notation �

i

1

;:::;i

k

from the above lemma taking asM the

tridiagonal matrix obtained from x Id�L(h) in the obvious way, i.e., by removing

the two terms that depend on h. In this notation the harateristi polynomial of

L(h) is given by

(14) det(x Id�L(h)) = �h� h

�1

+�� a

n

�

1;n

:

Proposition 4.2. For any m = 1; : : : ; n the map �

m

: T

n

!M

0

n�1

de�ned by

u(x) = �

m

;

v(x) = a

m�1

�

m�1;m

� a

m

�

m;m+1

(15)

w(x) = (x� b

m

)

2

�

m

+ 2(x� b

m

)(a

m�1

�

m�1;m

+ a

m

�

m;m+1

)

+ 4a

m

a

m�1

�

m�1;m;m+1

;

maps eah �ber of the momentum map K : T

n

! C [x℄ into a �ber of the momentum

map H :M

0

n�1

! C [x℄. The restrition of �

m

to K

n

takes values in P
n�1

2

when n

is odd and in P

0

n

2

�1

when n is even, mapping in both ase the �ber of the momentum

map K : K

n

! C [x

2

℄ into the �ber of the momentum map H : P
n�1

2

! C [x

2

℄ (or

H : P

0

n

2

�1

! C [x

2

℄).

Proof. Sine the momentum map is equivariant with respet to the Z=n ation on

T

n

it suÆes to prove the proposition for m = n.

It is easy to see that the triple (u; v; w), de�ned by (15) satis�es the onstraints

u;w moni, degw = degu+ 2 = n+ 1 and deg v < n� 1, so that �

n

takes values

inM

0

n�1

. Moreover, taking �

1

= � � � = �

n

= x in (13) implies that when all entries

on the diagonal of L(h) are zero then �

i

1

;:::;i

p

has the same parity as n� p, so that

the triples (u; v; w) whih orrespond to points in K

n

have the additional property

that v has the same parity as n while u and w have the opposite parity. Therefore

the restrition of �

n

to K

n

takes values in P
n�1

2

when n is odd and in P

0

n

2

�1

when

n is even.

For p(x) a moni polynomial of degree n, let L(h) 2 K

�1

(2p(x)), i.e.,

(16) p(x) = (x� b

n

)�

n

� a

n

�

1n

� a

n�1

�

n�1;n

:

Proving that �

n

(L(h)) belongs toH

�1

(p

2

(x)�4) amounts to showing that u(x)w(x)+

v

2

(x) = p

2

(x) � 4, whih follows from a diret omputation, using (12). The om-

mutativity of the following diagram follows:

T

n

� //

K

��

M

0

n�1

H

��
C [x℄

�

//
C [x℄

where � is de�ned by �(q) = (q=2)

2

� 4, for q 2 C [x℄.

To show that the map �

n

is injetive let (u(x); v(x); w(x)) 2 �

n

(T

n

). We show

that the matrix L(h) 2 T

n

whih is mapped to this point is unique.
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First observe that the moni polynomial p(x) = � � a

n

�

1;n

an be reovered

from u(x)w(x) + v(x)

2

= p(x)

2

� 4. We an then determine b

n

from the following

two formulas:

p(x) = x

n

�

 

n

X

i=1

b

i

!

x

n�1

+ � � � ;

u(x) = �

n

= x

n�1

�

 

n�1

X

i=1

b

i

!

x

n�2

+ � � � :

Next, the seond relation in (15) and (16) lead to the system:

8

<

:

a

n�1

�

n�1;n

� a

n

�

1;n

= v(x);

a

n�1

�

n�1;n

+ a

n

�

1;n

= (x� b

n

)u(x)� p(x):

This linear system ompletely determines the produts a

n

�

1;n

and a

n�1

�

n�1;n

.

Beause the determinants of the prinipal minors of x Id�L(h) are moni poly-

nomials, this means that we know a

n

; �

1;n

and �

n�1;n

separately. From � =

p(x) + a

n

�

1;n

we also obtain �.

We have now shown how b

n

, a

n

, �, �

n

and �

n�1;n

are determined. We proeed

by indution, showing how to determine b

n�k�1

, a

n�k�1

, �

n�k�1;:::;n

one we

know b

n�i

, a

n�i

and �

n�i;:::;n

for i = 0; : : : ; k. We use (13) to obtain the reursive

relation:

�

n�k+1;:::;n

= (x� b

n�k

)�

n�k;:::;n

� a

n�k�1

�

n�k�1;:::;n

:

This determines the produt a

n�k�1

�

n�k�1;:::;n

, but also a

n�k�1

and �

n�k�1;:::;n

separately, again beause �

n�k�1;:::;n

is moni. Now from�

n�k�1;:::;n

and �

n�k;:::;n

we know, as above, the sums

P

n�k�2

i=1

b

i

and

P

n�k�1

i=1

b

i

. Hene, b

n�k�1

is deter-

mined. �

We saw in Proposition 3.3 that the �bers of the momentum map of the even

Prym system are reduible (two isomorphi piees), so there remains the question

if the same is true for the KM system for even n. To hek that this is so, note that

the highest degree oeÆient of the harateristi polynomial of L(h) gives, for n

even, the �rst integral I = a

1

a

3

a

5

� � � a

n�1

+ a

2

a

4

a

6

� � � a

n

. Sine a

1

a

2

:::a

n

= 1, for

generi values of I , the variety de�ned by

a

1

a

3

a

5

� � � a

n�1

= onstant; a

2

a

4

a

6

� � �a

n

= onstant;

is reduible, and the laim follows. Note however that both a

1

a

3

a

5

� � � a

n�1

and

a

2

a

4

a

6

� � � a

n

are �rst integrals themselves, so we an onstrut a momentum map

using these integrals (instead of their sum and produt) and then the generi �ber

is irreduible.

The map �

m

: T

n

! M

0

n�1

not only maps �bers to �bers of the momentum

maps, but it maps the whole hierarhy of Toda ows to the Mumford ows de�ned

by (4). To see this, we onstrut a family of quadrati Poisson brakets f�; �g

'

M;q

on M

0

n�1

whih make this map Poisson.

First observe that there exist unique polynomials p(x) and r(x), with p(x) moni

of degree n and r(x) of degree less than n, suh that

(17) u(x)w(x) + v(x)

2

= p(x)

2

+ r(x):
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The oeÆients of p(x) and r(x) are regular funtions of u

i

, v

i

and w

i

. Hene,

we an de�ne a skew-symmetri biderivation on the spae of regular funtions of

M

0

n�1

by setting, for any ' 2 C [x℄ of degree at most 1,

fu(x); u(x

0

)g

'

M;q

= fv(x); v(x

0

)g

'

M

= 0;

fu(x); v(x

0

)g

'

M;q

= fu(x); v(x

0

)g

p'

M

+ �

'

(x+ x

0

)u(x)u(x

0

);

fu(x); w(x

0

)g

'

M;q

= fu(x); w(x

0

)g

p'

M

� 2�

'

(x+ x

0

)u(x)v(x

0

);

fv(x); w(x

0

)g

'

M;q

= fv(x); w(x

0

)g

p'

M

+ �

'

(x + x

0

)u(x)w(x

0

));

fw(x); w(x

0

)g

'

M;q

= fw(x); w(x

0

)g

p'

M

+ 2�

'

(x + x

0

) (w(x)v(x

0

)� w(x

0

)v(x)));

where �

'

(x) = '(�(2x)=2). Notie that the polynomial p', used in the de�nition

of the braket, depends on the phase variables.

Proposition 4.3. Let ' be a polynomial of degree at most 1. Then

(i) f�; �g

'

M;q

is a Poisson braket on M

0

n�1

and the maps

�

m

: (T

n

; f�; �g

'

T

)! (M

0

n�1

; f�; �g

'

M;q

)

are Poisson and map the Toda ows to the Mumford ows;

(ii) For ' odd, the braket f�; �g

'

M;q

indues a Poisson braket f�; �g

P;q

on

P

(n�1)=2

(resp. on P

0

n=2�1

), and the maps

�

m

: (K

n

; f�; �g

K

)! (P

(n�1)=2

; f�; �g

P;q

)

�

m

: (K

n

; f�; �g

K

)! (P

0

n=2�1

; f�; �g

P;q

)

are Poisson and map the KM ows to the ows of the hyperellipti Prym

systems.

Proof. We take the braket of both sides of (17) with u(x) to obtain

2p(y)'(y)

u(x)v(y) � u(y)v(x)

x� y

= 2p(y) fu(x); p(y)g

'

M;q

+ fu(x); r(y)g

'

M;q

:

It follows that fu(x); r(y)g

'

M;q

is divisible by p(y). Sine fu(x); r(y)g

'

M;q

is of degree

less than n in y and sine p(y) is moni of degree n we must have fu(x); r(y)g

'

M;q

= 0

and

fu(x); p(y)g

'

M;q

=

u(x)v(y)� u(y)v(x)

x� y

'(y):

Similarly, we �nd fv(x); r(y)g

'

M;q

= fw(x); r(y)g

'

M;q

== 0 and also that:

fv(x); p(y)g

M;q

=

'(y)

2

�

w(x)u(y) � u(x)w(y)

x� y

� �(x + y)u(x)u(y)

�

;

fw(x); p(y)g

M;q

= '(y)

�

v(x)w(y) � w(x)v(y)

x� y

+ �(x+ y)v(x)u(y)

�

:

These expressions also allow one to ompute the brakets of u(x), v(x), w(x) and

p(x) with �(y), and the hek of the Jaobi identity follows easily from it. Therefore,

f�; �g

'

M;q

is a Poisson braket for whih the oeÆients of r(x) are Casimirs.

If we ompare the expressions above for the brakets with p(y) with expressions

(4) for the Mumford vetor �elds, we onlude that they are Hamiltonian with

respet to f�; �g

1

M;q

with Hamiltonian funtion K. Cheking that �

m

is Poisson an
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be done by a straightforward (but rather long) omputation using the following

expressions for the derivatives of �

i

1

;:::;i

k

:

��

i

1

;:::;i

k

�a

i

=

8

<

:

��

i;i+1;i

1

;:::;i

k

; i; i+ 1 62 fi

1

; : : : ; i

k

g ;

0 otherwise,

��

i

1

;:::;i

k

�b

i

=

8

<

:

��

i;i

1

;:::;i

k

; i 62 fi

1

; : : : ; i

k

g ;

0 otherwise.

For the seond statement, one easily heks that when ' is odd then | is a Poisson

involution, so that there is an indued braket on P

(n�1)=2

or on P

0

n=2�1

. Expliit

formulas for this braket are omputed as in the proof of Proposition 3.5. The other

statements in (ii) then follow from (i). �

It is easy to hek that the Poisson brakets f�; �g

'

M;q

and f�; �g

 

M

on M

0

n�1

are

ompatible, when ' and  have degree at most 1. This is however not true when

 is of higher degree.

5. Painlev

�

e Analysis

The results in the previous setion show that the generi �ber of the momentum

map of the KM system is an aÆne part of a hyperellipti Prym variety (or two

opies of it), whih an also be desribed as a hyperellipti Jaobian. In order to

desribe preisely whih aÆne part we determine the divisor whih needs to be

adjoined to eah aÆne part in order to omplete it into an Abelian variety. Sine

it is diÆult to do this by using the maps �

m

we do this by performing Painlev�e

analysis of the KM system.

The method that we use is based on the bijetive orrespondene between the

prinipal balanes of an integrable vetor �eld (Laurent solutions depending on the

maximal number of free parameters) and the irreduible omponents of the divisor

whih is missing from the �bers of the momentum map (see [1℄).

We look for all Laurent solutions

(18) a

i

(t) =

1

t

r

1

X

j=0

a

(j)

i

t

j

;

to the �rst KM ow. The following lemma shows that any suh Laurent solution of

the KM system (11) an have at most simple poles. We may suppose that r in (18)

is maximal, i.e., a

(0)

i

6= 0 for at least one i, and we all r the order of the Laurent

solution. The order of pole (or zero) of a

i

(t) is denoted by r

i

, so r = max

i

r

i

.

Lemma 5.1. Let the Laurent series a

i

(t); i = 1; : : : ; n, given by (18) be a solution

to the �rst vetor �eld (11) of the KM system. If at least one of the a

i

has a pole

(for t = 0) then it is a Laurent solution of order 1. Moreover the orders of the pole

(or zero) of eah a

i

(t) satisfy

(19) r

i

= a

(0)

i+1

� a

(0)

i�1

:

Proof. For s 2 N we �nd from (18):

Res

t=0

_a

i

(t)

a

i

(t)

t

s

=

8

<

:

�r

i

; s = 0

0; s > 0:
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On the other hand, if we use the �rst KM vetor �eld (11) then we �nd

Res

t=0

_a

i

(t)

a

i

(t)

t

s

= Res

t=0

(a

i�1

(t)� a

i+1

(t)) t

s

= a

(r�s�1)

i�1

� a

(r�s�1)

i+1

:

We onlude that

(20) a

(k)

i�1

� a

(k)

i+1

=

8

<

:

�r

i

; k = r � 1

0; 0 � k � r � 2:

Now substituting (18) into (11) and omparing the oeÆient of 1=t

r+1

the

following equation (the indiial equation) is obtained:

(21) �ra

(0)

i

= a

(0)

i

(a

(0)

i�1

� a

(0)

i+1

); i = 1; : : : ; n:

If a

i

has a pole of order r > 0 then a

(0)

i

6= 0 and (21) implies a

(0)

i�1

� a

(0)

i+1

= �r.

Comparing with (20) we see that we must have r = 1 and that (19) holds.

�

Notie that in view of the periodiity of the indies (a

i+n

= a

i

) the linear system

1 = (a

(0)

i+1

� a

(0)

i�1

); i = 1; : : : ; n;

has no solutions, so that at least one of the a

(0)

i

vanishes. If, say, a

(0)

0

= a

(0)

k+1

= 0

while a

(0)

i

6= 0 for i = 1; : : : ; k for some k in the range 1; : : : ; n � 1 (this inludes

the ase of a single i for whih a

(0)

i

= 0) then the indiial equation speializes to

a

(0)

2

= 1;

a

(0)

i+1

� a

(0)

i�1

= 1; i = 2; : : : ; k � 1;

a

(0)

k�1

= �1;

whih has no solution for k odd, and whih has a unique solution (a

(0)

1

; : : : ; a

(0)

k

) =

(�l; 1; 1� l; 2; : : : ;�1; l) for even k, k = 2l. The other variables a

(0)

k+1

: : : ; a

(0)

n

an

either be all zero, or they an onstitute one or several other solutions of this type

(with varying k = 2l), separated by zeroes. Using periodiity the other solutions

to the indiial equation are obtained by yli permutation.

Thus we are led to the following ombinatorial desription of the solutions to

the indiial equation of the n body KM system. For a subset A of Z=n, and for

p 2 Z=n let us denote by A(p) � Z=p the largest subset of A that ontains p and

that onsists of onseutive elements (with the understanding that A(p) = ; when

p =2 A). If we de�ne

�

n

= fA � Z=n j p 2 A) #A(p) is eveng;

then we see that the solutions to the indiial equation are in one to one orre-

spondene with the elements of �

n

. In the sequel we freely use this bijetion. For

A 2 �

n

we all the integer #A=2 its order, denoted by ordA.

For eah solution to the indiial equation (i.e., for eah A 2 �

n

) we ompute the

eigenvalues of the Kowalevski matrix K, whose entries are given by

K

ij

=

�F

i

�a

j

(a

(0)

1

; : : : ; a

(0)

n

) + Æ

ij

where F

i

= a

i

(a

i�1

� a

i+1

), the i-th omponent of the �rst KM vetor �eld (11).

The number of non-negative integer eigenvalues of this matrix are preisely the
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number of free parameters of the family of Laurent solutions whose leading term is

given by (a

(0)

1

; : : : ; a

(0)

n

) (see [1℄), hene we an dedue from it whih strata of the

Abelian variety, whose aÆne part appears as a �ber of the momentum map, are

parameterized by it.

Proposition 5.2. For a solution of the indiial equation orresponding to A 2 �

n

the Kowalevski matrix K has n� ordA non-negative integer eigenvalues.

Proof. In view of (19) the entries of K an be written in the form

K

ij

=

8

<

:

(1� r

i

)Æ

i;j

; if a

(0)

i

= 0

a

(0)

i

(Æ

i;j+1

� Æ

i;j�1

); if a

(0)

i

6= 0:

Note also that, by using the Z=n ation, we an assume that 1 2 A, n =2 A,

and that A is a disjoint union of A(p

1

); : : : ; A(p

s

), with p

1

< p

2

< � � � < p

s

. Let

l

i

= ordA(p

i

). Then K has the following form

K =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

C

1

E

1

�l

1

D

1

0

C

2

E

2

D

2

.

.

.

0 C

s

E

s

D

s

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

On the upper right orner the matrix has entry �l

1

, and the bloks C

i

,D

i

and E

i

,

i = 1; : : : ; s, are matries as follows:

� C

i

is a tridiagonal matrix of size 2l

i

of the form:

C

i

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 l

i

1 0 �1

1� l

i

0 l

i

� 1

2 0 �2

.

.

.

.

.

.

.

.

.

l

i

� 1 0 1� l

i

�1 0 1

l

i

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

� D

i

is a diagonal matrix of the form D

i

= diag (1 + l

i

; 1; : : : ; 1; 1 + l

i+1

),

with the onvention that if D

i

is 1� 1 then its only entry is 1 + l

i

+ l

j

;

� E

i

is a matrix with only one non-zero entry �l

i

in the lower left orner;

It is lear that the set of eigenvalues of K is the union of the set of eigenvalues

of the C

i

's and D

i

's. Now we have:
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Lemma 5.3. The eigenvalues of the matrix C

i

are f�1;�2; : : : ;�l

i

g.

Assuming the lemma to hold we �nd that the number of negative eigenvalues of

K is equal to

P

s

i=1

l

i

=

P

s

i=1

ordA(p

i

) = ordA, so the proposition follows.

So we are left with the proof of the lemma. We write l for l

i

and we denote by e

j

the j-th vetor of the standard basis of C

2l

. In the basis e

1

; e

3

; : : : ; e

2l�3

; e

2l�1

;

e

2l

; e

2l�2

; : : : ; e

4

; e

2

the matrix C

i

takes form

0

�

0 A

A 0

1

A

;

where A is the transpose of the matrix

� =

0

B

B

B

B

B

B

B

B

B

�

0 : : : : : : 0 1

.

.

. 0 2 �1

.

.

.

.

.

.

3 �2 0

0

.

.

.

.

.

.

.

.

.

.

.

.

l l � 1 0 : : : 0

1

C

C

C

C

C

C

C

C

C

A

:

We show that this matrix has eigenvalues 1; �2; 3; : : : ; (�1)

l�1

l: Then the result

follows beause the eigenvalues of C are � the eigenvalues of A.

For j = 1; : : : ; l, let f

j

= [1

j�1

; 2

j�1

; : : : ; l

j�1

℄

T

and let V

j

denote the span of

f

1

; : : : ; f

j

. For v = [v

1

; : : : ; v

l

℄

T

2 C

l

we have that v 2 V

j

if and only if there exists

a polynomial P of degree less than j suh that v

k

= P (k) for k = 1; : : : ; l. Sine

the k-th omponent of �f

j

is given by

k(l � k + 1)

j�1

+ (1� k)(l � k + 2)

j�1

= (�1)

j�1

jk

j�1

�

1 +O

�

1

k

��

;

we have that �f

j

� V

j

, more preisely

�f

j

2 (�1)

j�1

jf

j

+ V

j�1

:

This means that in terms of the basis ff

j

g the matrix � is upper triangular, with

the integers 1; �2; 3; : : : ; (�1)

l�1

l on the diagonal.

�

By the proposition above we an have a Laurent solution depending on n�1 free

parameters only for the n hoies of A given by (a

(0)

1

; : : : ; a

(0)

n

) = (�1; 1; 0; : : : ; 0)

and their yli permutations. Let us hek that there are indeed asymptoti ex-

pansions (18) whih formally solve the KM system (11). By x2 in [1℄, these solutions

are atually onvergent and so they de�ne onvergent Laurent solutions.

We start with the solution (a

(0)

1

; : : : ; a

(0)

n

) = (�1; 1; 0; : : : ; 0) of the indiial equa-

tion. By (19), we know that the order of the singularities of this solution are

(r

1

; : : : ; r

n

) = (1; 1;�1; 0; : : : ;�1) so we have the following ansatz for the formal
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expansions:

a

1

(t) = �

1

t

+ �

1

+ �

1

t+O(t

2

);

a

2

(t) =

1

t

+ �

2

+ �

2

t+O(t

2

);

a

3

(t) = �

3

t+O(t

2

);

a

j

(t) = �

j

+ �

j

t+O(t

2

); 4 � j � n� 1:

a

n

(t) = �

n

t+O(t

2

);

If we replae these expansions in the equations (11) de�ning the KM system we

obtain the onsisteny equations:

�

1

� �

2

= 0;

2�

1

� �

2

= ��

1

�

2

� �

n

;

�

1

� 2�

2

= ��

1

�

2

+ �

3

;

�

j

= �

j

(�

j�1

� �

j+1

); 4 � j � n� 1:

They give exatly the n�1 free parameters �

1

; �

4

; : : : ; �

n�1

; �

3

; �

n

. The oeÆients

a

(k)

= (a

(k)

1

; : : : ; a

(k)

n

) for k > 2 are then ompletely determined sine they satisfy

an equation of the form

(K � kI) � a

(k)

= some polynomial in the a

(j)

i

with j < k;

and the eigenvalues of the Kowalevski matrix K are �1; 1; 2, by the proof above.

This leads to the following result.

Theorem 5.4. When n is odd the generi �ber of the momentum map of the KM

system on K

n

is an aÆne part of a hyperellipti Prym variety, obtained by removing

n translates of its theta divisor. When n is even the generi �ber onsists of two

isomorphi omponents whih admit the same desription as in the odd ase. In

both ases the Prym variety admits an alternative desription as a hyperellipti

Jaobian.

6. Example: n=5

In this setion we study the 5 body KM system in more detail. Its phase spae is

four-dimensional and is given by K

5

= f(a

1

; a

2

; a

3

; a

4

; a

5

) j a

1

a

2

a

3

a

4

a

5

= 1g, with

Lax operator

L =

0

B

B

B

B

B

B

B

B

�

0 a

1

0 0 h

�1

1 0 a

2

0 0

0 1 0 a

3

0

0 0 1 0 a

4

ha

5

0 0 1 0

1

C

C

C

C

C

C

C

C

A

:

The spetral urve det(x Id�L) = 0 is expliitly given by

h+

1

h

= x

5

�Kx

3

+ Lx;
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where

K = a

1

+ a

2

+ a

3

+ a

4

+ a

5

;

L = a

1

a

3

+ a

2

a

4

+ a

3

a

5

+ a

4

a

1

+ a

5

a

2

:

These funtions are in involution with respet to the quadrati Poisson struture,

given by fa

i

; a

j

g = (Æ

i;j+1

� Æ

i+1;j

)a

i

a

j

. It follows from the previous setion that

for generi k; l the aÆne surfae P

kl

de�ned by K = k; L = l is an aÆne part of

the Jaobian of the genus two Riemann surfae �

�

minus �ve translates of its theta

divisor, whih is isomorphi to �

�

. As we have seen, an equation for �

(0)

�

is given

by

(22) �

(0)

�

: y

2

= (u

3

� ku

2

+ lu)

2

� 4u:

The two ommuting Hamiltonian vetor �elds X

K

and X

L

are given by

_a

1

= a

1

(a

5

� a

2

) a

0

1

= a

1

(a

3

a

5

� a

2

a

4

)

_a

2

= a

2

(a

1

� a

3

) a

0

2

= a

2

(a

4

a

1

� a

3

a

5

)

_a

3

= a

3

(a

2

� a

4

) a

0

3

= a

3

(a

5

a

2

� a

4

a

1

)

_a

4

= a

4

(a

3

� a

5

) a

0

4

= a

4

(a

1

a

3

� a

5

a

2

)

_a

5

= a

5

(a

4

� a

1

) a

0

5

= a

5

(a

2

a

4

� a

1

a

3

):

The prinipal balane of X

K

for whih a

1

and a

2

have a pole orresponds, a-

ording to Setion 5, to the following solution of the indiial equations

(a

(0)

1

; a

(0)

2

; a

(0)

3

; a

(0)

4

; a

(0)

5

) = (�1; 1; 0; 0; 0)

and its �rst few terms are given by

a

1

= �

1

t

+ ��

1

3

(�

2

+ 2� + )t+O(t

2

);

a

2

=

1

t

+ �+

1

3

(�

2

� � � 2)t+O(t

2

);

a

3

= t+O(t

2

);(23)

a

4

= Æ +O(t

2

);

a

5

= �t+ O(t

2

):

Here �; �;  and Æ are the free parameters. If we look for Laurent solutions that

orrespond to the divisor to be added to P

kl

we �nd by substituting the above

Laurent solution in K = k; L = l; a

1

a

2

a

3

a

4

a

5

= 1,

8

>

>

<

>

>

:

2�+ Æ = k;

2�Æ + � �  = l;

�Æ = �1;

whih means that the Laurent solution depends on two parameters � and Æ, bound

by the relation

(24) (k � Æ)Æ + � +

1

�Æ

= l;
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whih is an (aÆne) equation for the theta divisor, i.e., for �

�

; it is easy to see that

this urve is birational to the urve (22). The other four prinipal balanes are

obtained by yli permutation from (23).

P

kl

an be embedded expliitly in projetive spae by using the funtions with

a pole of order at most 3 along one of the translates of the theta divisor and no

other poles. Sine the theta divisor de�nes a prinipal polarization on its Jaobian,

the vetor spae of suh funtions has dimension 3

2

= 9, giving an embedding in

P

8

. One heks by diret omputation that the following funtions z

0

; : : : ; z

8

form

a basis for the spae of funtions with a pole of order at most 3 along the divisor

assoiated with the Laurent solution (23) (the �rst two funtions are obvious hoies

from the expression (23), while the others an be obtained from them by taking

the derivative along the two ows):

z

0

= 1;

z

1

= a

1

a

2

;

z

2

= a

1

a

2

a

4

;

z

3

= a

1

a

2

(a

1

+ a

5

);

z

4

= a

1

a

2

a

4

(a

3

+ a

4

+ a

5

);

z

5

= a

1

a

2

a

4

(a

1

� a

2

);

z

6

= a

1

a

2

a

4

((a

3

+ a

4

)a

1

� (a

4

+ a

5

)a

2

);

z

7

= a

2

1

a

2

2

a

4

a

5

;

z

8

= a

1

a

2

2

a

4

((a

4

+ a

5

)

2

+ a

3

a

4

):

The orresponding embedding of the Jaobian in P

8

is then given expliitly on the

aÆne surfae P

kl

by (a

1

; : : : ; a

5

) 7! (z

0

: � � � : z

8

). By substituting the �ve prinipal

balanes in this embedding and letting t ! 0 we �nd an embedding of the �ve

urves �

1

; : : : ;�

5

(in that order) whih onstitute the divisor Ja(�

�

) n P

kl

:

(�; Æ) 7!

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(0 : 0 : 0 : 1 : 0 : 2Æ : 2Æ

2

: �Æ : �Æ

3

)

(�Æ

2

: ��

2

Æ

2

: 0 : ��

2

Æ

3

: �Æ : �Æ : �Æ

2

: 0 : 1� �Æ

3

)

(1 : 0 : �Æ : 0 : �Æ(k � Æ) : �Æ

2

: ��Æ(� + Æ

2

� kÆ) : 0 : �

2

Æ(k � Æ))

(�

2

Æ : 0 : �Æ : ��Æ : �Æ(k � Æ) : ��Æ

2

: 1 + �Æ

2

(Æ � k) :

: �Æ : ��Æ

2

(� � (Æ � k)

2

))

(�Æ

2

: �Æ : 0 : Æ(Æ � k) : �Æ : ��Æ : ��Æ

2

: �1 : 1)

The points on the divisor that orrespond to the above Laurent solutions are the

ones for whih � and Æ are �nite; notie that all these points in P

8

are di�erent. In

order to determine the oordinates of the other points and the inidene relations

between these points and the urves �

i

we hoose a loal parameter around eah

of the three points needed to omplete (24) into a ompat Riemann surfae:

(a) Æ = 1=u; � = 1=u

2

(1 +O(t));

(b) Æ = 1=u; � = u

3

(1 +O(t));

() � = 1=u; Æ = �u

2

(1 +O(t)).
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Substituting these in the equations of the �ve embedded urves we �nd the following

5 points (eah one is found 3 times beause it belongs to three of the urves �

i

)

p

1

= (0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0);

p

2

= (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1);

p

3

= (1 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : �k);

p

4

= (1 : 0 : 0 : 0 : 0 : 0 : �1 : 0 : 0);

p

5

= (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : �1):

With this labeling of the points p

i

we have that �

i

ontains the points p

i�1

; p

i

and

p

i+1

. As a orollary we �nd a 5

3

on�guration on the Jaobian, where the inidene

pattern of the 5 Painlev�e divisors and the 5 points p

i

is as in the following piture

(to make the piture exat one has to identify the two points labeled p

3

, as well as

the two points labeled p

4

in suh a way that the urves �

2

and �

4

are tangent, as

well as the urves �

3

and �

5

).

PSfrag replaements

p

1

p

2

p

3

p

3

p

4

p

4

p

5

�

1

�

2

�

3

�

4

�

5

Figure 2

Obviously the order 5 automorphism

(a

1

; a

2

; a

3

; a

4

; a

5

) 7! (a

2

; a

3

; a

4

; a

5

; a

1

)

preserves the aÆne surfaes P

kl

and maps every urve �

i

and every point p

i

to its

neighbor. Sine this automorphism does not have any �xed points it is a translation

on Ja(�

�

), and sine its order is 5 it is a translation over 1=5 of a period. Notie also

that with the above labeling of points and divisors the intersetion point between �

i

and �

i+2

is p

i+1

(so they are tangent), while the intersetion points between �

i

and

�

i+1

are p

i

and p

i+1

. Dually, the divisors that pass through p

i

are preisely �

i�1

;�

i

and �

i+1

. The usual Olympi rings are nothing but an asymmetri projetion of

this most beautiful Platoni on�guration!
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