
POISSON COHOMOLOGY OF THE AFFINE PLANE

CLAUDE ROGER AND POL VANHAECKE

Abstrat. We ompute the Poisson ohomology of homogeneous Poisson

strutures on the plane. The singular lous � of suh a Poisson struture

onsists of a family of lines passing through O and we show how the dimen-

sions of the �rst and seond ohomology groups are related to the weight of O

as a singular point of �.
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1. Introdution

Poisson strutures appear naturally in the study of rigidity/deformations of as-

soiative ommutative algebras, in Lie theory and in lassial mehanis. Poisson

ohomology in turn appears when one onsiders rigidity/deformations of Poisson al-

gebras, it generalizes Lie algebra ohomology and the basi onepts of Hamiltonian

mehanis are onveniently expressed in terms of Poisson ohomology.

In order to justify the latter three laims, let (A; f� ; �g) be a Poisson algebra over

a �eld F of harateristi 0 and let us introdue for k > 0 the vetor spae �

k

(A)

of antisymmetri k-derivations: a Q 2 �

k

(A) is a multilinear antisymmetri map

from A

k

to A suh that for any a

1

; : : : ; a

k�1

the map a 7! Q(a; a

1

; : : : ; a

k�1

) is a

derivation. We set �

0

(A) = A. These spaes are the elements of a omplex whose

oboundary operator Æ : �

k

(A)! �

k+1

(A) is de�ned for Q 2 �

k

(A) by

(ÆQ)(q

0

; q

1

; : : : ; q

k

) =

k

X

i=0

(�1)

i

fq

i

; Q(q

0

; : : : ; q̂

i

; : : : ; q

k

)g+

+

k

X

0�i<j

(�1)

i+j

Q(fq

i

; q

j

g; q

0

; : : : ; q̂

i

; : : : ; q̂

j

; : : : ; q

k

);
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where q

0

; : : : ; q

k

are arbitrary elements of A. In terms of the Shouten braket

[� ; �℄

S

we have that ÆQ = [f� ; �g; Q℄

S

, yielding Æ

2

= 0, an immediate onsequene of

the graded Jaobi identity for [� ; �℄

S

. Reall that this braket is the natural braket

on the graded Lie algebra of derivations of the exterior algebra of A. The k-th

ohomology group of this omplex is alled the k-th Poisson ohomology group of

(A; f� ; �g) and is denoted by H

k

(A; f� ; �g).

(1) The relevane of H

2

(A; f� ; �g) and H

3

(A; f� ; �g) for the deformation theory

of Poisson algebras omes from the following. Suppose that f� ; �g

?

=

P

n

i=0

f� ; �g

i

h

i

is a n-th order deformation, i.e. (A[[h℄℄=(h

n+1

); f� ; �g

?

) is a Poisson algebra (over

C [[h℄℄), with f� ; �g

0

= f� ; �g (on A). Then f� ; �g

?

an be extended to an (n+ 1)-th

order deformation if and only if the three-oyle

C

n+1

=

X

i+j=n+1

i;j>0

[f� ; �g

i

; f� ; �g

j

℄

S

is a oboundary. The extension of the k-th order deformation is then given by �

?

+

f� ; �g

k+1

h

k+1

, where Æf� ; �g

k+1

= C

k+1

. Moreover, any two suh extensions di�er

by a 2-oyle and this oyle is a oboundary if and only if the two extensions

de�ne equivalent (n+ 1)-th order deformations.

(2) Suppose that g is a (�nite-dimensional) Lie algebra. Sym g beomes a Poisson

algebra, simply by de�ning fx; yg = [x; y℄ for any x; y 2 g, and extending f� ; �g to a

biderivation. Let us denote by Cas(f� ; �g) the algebra of Casimirs of f� ; �g, whih is

the entral part of the enveloping algebra and onsists of the symmetri invariants

of g. If g is redutive then Poisson ohomology H

?

(Sym g; f� ; �g) is related to Lie

algebra ohomology H

?

(g) by

H

k

(Sym g; f� ; �g) = H

k

(g)


F

Cas(f� ; �g);

where k is any non-negative integer.

(3) The phase spae of a lassial mehanial system omes always equipped with

a Poisson struture (whih is not neessarily sympleti). The algebra of Casimirs

of (A; f� ; �g) is preisely H

0

(A; f� ; �g) and orresponds to the Hamiltonians with

trivial (zero) dynamis. The 1-oboundaries are the Hamiltonian derivations, i.e.,

the Hamiltonian vetor �elds in the smooth ase. Sine the oboundary of a vetor

�eld X is the Lie derivative of f� ; �g with respet to X the 1-oyles are the sym-

metries of the Poisson struture. Furthermore, a 2-oyle whih de�nes a Poisson

struture is ompatible with f� ; �g, leading to a multi-Hamiltonian struture, and

a 2-oboundary is the Lie derivative of f� ; �g with respet to some vetor �eld.

We also wish to point out that the Shouten braket, whih de�nes a graded Lie

algebra struture on the spae of antisymmetri derivations, indues a graded Lie

algebra struture [� ; �℄

S

in Poisson ohomology,

[� ; �℄

S

: H

k

(A; f� ; �g)�H

l

(A; f� ; �g)! H

k+l�1

(A; f� ; �g):

For k = l = 1 this braket is preisely the ommutator of derivations. There exists

moreover another algebra struture on H

?

(A; f� ; �g): exterior produt de�nes a

ommutative graded algebra struture on the spae of ohains �

?

A and indues a

up-produt in Poisson ohomology,

^ : H

k

(A; f� ; �g)�H

l

(A; f� ; �g)! H

k+l

(A; f� ; �g):

These two di�erent graded produts de�ne on H

?

(A; f� ; �g) a Gerstenhaber algebra

struture, indued from the one on �

?

A; the latter algebra struture an, in the
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ase when A is the algebra of smooth funtions on a di�erentiable manifold, be

identi�ed with the Shouten algebra of antisymmetri ontravariant tensors on a

manifold.

As was notied by many authors, the omputation of the Poisson ohomology

of a given spae is very diÆult. Exeptions are the Poisson ohomology of a

sympleti manifold, whih is preisely its de Rham ohomology, and the Poisson

ohomology of a linear Poisson struture, as disussed in (2) above. Indeed, already

the alulation in the ase of the Poisson struture on R

2

, de�ned by

fx; yg = x

2

+ y

2

has been the subjet of several papers! The purpose of the present paper is to

ompute the Poisson ohomology for all Poisson strutures on F

2

whih are ho-

mogeneous, in the sense that they are given by fx; yg

'

= '(x; y), where ' is a

homogeneous polynomial of degree n 2 N . Notie that the singular lous �

'

�

�

F

2

of f� ; �g

'

onsists of m � n distint lines through the origin, a singular urve (if

m � 2). It is easy to show (Lemma 2.1) that dimH

2

(A; ') is in�nite-dimensional

when m 6= n and that dimH

2

(A; ') > 0 when m � 2. A more preise statement,

obtained in Proposition 2.3, states that if m = n then dimH

2

(A; ') = n(n � 1),

a number whih is preisely twie the number of singularities of �

'

; indeed, the

origin is the only singular point, but it has weight

�

n

2

�

. Similarly we show that

under the same assumption dimH

1

(A; ') = n. In the more general ase where '

admits a omplete fatorization into fators of degree 1, whih means that �

'

on-

sists of arbitrary lines in the plane (assumed non-parallel) we show that 2

�

n

2

�

is

an upper bound for the dimension of H

2

(A; '). We onjeture that the inequality,

given by this bound, is atually an equality. Notie that when the n lines of �

'

are

in general position then

�

n

2

�

is preisely the number of singular points of �

'

.

Aknowledgements. The �rst author wishes to thank the Laboratoire d'Anney

le Vieux de Physique Th�eorique, where a good deal of this work was done during

the aademi year 1999-2000.

2. Poisson ohomology of F

2

In this setion we will study the Poisson ohomology of (A; �; f� ; �g), in the ase

of A = F [x; y℄, the algebra of regular funtions on F

2

, where F is a �eld of har-

ateristi 0, and f� ; �g is a homogeneous Poisson struture on A, as will be de�ned

below. Notie that if ' is any polynomial in two variables then there is a unique

antisymmetri biderivation f� ; �g

'

of F [x; y℄ suh that fx ; yg

'

= '(x; y) and this

biderivation automatially satis�es the Jaobi identity beause �

3

(A) = 0, hene

f� ; �g

'

is a Poisson braket on A. Conversely every Poisson braket on A is ob-

tained in this way for a unique ', so that the vetor spae of Poisson brakets

on A is isomorphi to A (as well as to �

2

(A)). In the sequel we freely use the

identi�ation f� ; �g

'

$ '. In partiular we write H

k

(A; ') for H

k

(A; f� ; �g

'

), we

denote the oboundary operator orresponding to f� ; �g

'

by Æ

'

and we say that

f� ; �g

'

is a homogeneous Poisson struture (of degree n) when ' is a homogeneous

polynomial (of degree n). We have that H

i

(A; ') = 0 for i � 3, beause �

i

(A) = 0

for i � 3. Also H

0

(A; 0) = A and H

0

(A; ') = F if ' 6= 0. Thus we are left with the
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omputation of H

1

(A; ') and H

2

(A; '). As we will see the properties of B

2

(A; ')

are reeted in the properties of the plane algebrai urve �

'

de�ned by

(1) �

'

= f(x; y) 2

�

F

2

j '(x; y) = 0g;

where

�

F is the algebrai losure of F . Notie that the points on this urve are

those points on the plane

�

F

2

where the rank of the Poisson struture vanishes; it

is the singular lous of f� ; �g

'

. We stress the fat that although we ompute the

ohomology of A and not of the Poisson algebra

�

A = A �

�

F , it is

�

F and not F

whih is relevant in the omputation.

2.1. The seond Poisson ohomology spae. Under the above identi�ation

of antisymmetri biderivations and polynomials the vetor spae of 2-oyles is

just A = F [x; y℄. On the other hand an antisymmetri biderivation f� ; �g

 

is a 2-

oboundary if and only if there exists a derivation X of A suh that Æ

'

X = f� ; �g

 

.

In terms of polynomials,  is a 2-oboundary if and only if there exist f; g 2 A

suh that  = �(f; g), where � : A�A! A is the linear map de�ned by

(2) �(f; g) = f

�'

�x

+ g

�'

�y

�

�

�f

�x

+

�g

�y

�

':

In order to determine H

2

(A; ') it is thus suÆient to expliitly desribe the vetor

spae of polynomials given by (2). We denote this spae by B

2

(A; ') and we let

I(') denote the ideal (of (A; �)) generated by ';

�'

�x

and

�'

�y

. Aording to (2) we

have that B

2

(A; ') � I('), but in general B

2

(A; ') is not an ideal of A and hene

it is stritly ontained in I('). Moreover, sine � is linear, its image B

2

(A; ')

is generated by the images �(m; 0) and �(0;m), where m runs over the set of all

(moni) monomials.

Lemma 2.1.

(1) If �

'

is singular then dimH

2

(A; ') > 0.

(2) If �

'

is non-redued then H

2

(A; ') is in�nite-dimensional.

Proof. If �

'

is singular then all elements of I(') have a ommon zero in

�

F , hene

I(') does not ontain the onstants, I(') 6= A. A fortiori B

2

(A; ') 6= A so

that dimH

2

(A; ') > 0. Similarly, if �

'

is not redued, i.e., if ' ontains a fator of

multipliity at least two (in

�

F [x; y℄), then all elements of I(') have a ommon fator

in

�

F [x℄, hene I(') is of in�nite odimension inA, a fortiori dimH

2

(A; ') =1. �

We next onsider the ase in whih f� ; �g

'

is a homogeneous Poisson struture

on A of degree n, i.e., ' is a homogeneous polynomial of degree n. Then the

urve �

'

, whih is de�ned by (1), is a singular urve onsisting of n lines that

pass through the origin. Notie that �

'

is redued if and only if these n lines are

distint. The homogeneous ase beomes feasible thanks to the fat that �(f; g) is

homogeneous when f and g are homogeneous of the same degree; more preisely, in

this ase deg�(f; g) = deg f+n�1 and the subspae of B

2

(A; ') whih onsists of

homogeneous elements of degree i is generated by the images �(m; 0) and �(0;m),

where m runs over the set of all (moni) monomials of degree i + 1 � n. Let us

denote for i 2 N the linear map

(3) �

i

: A

i

�A

i

! A

i+n�1

;

whih is the restrition of � to A

i

�A

i

, with A

i

the subspae of A of homogeneous

polynomials of total degree i. Notie that A

i

has dimension i + 1 so that �

i

is a
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map between equi-dimensional spaes preisely when i = n � 2. In terms of the

maps �

i

the dimension of H

2

(A; f� ; �g) is given by

dimH

2

(A; f� ; �g) =

n�2

X

i=0

dimA

i

+

X

i2N

(dimA

i+n�1

� rk�

i

)

=

n(n� 1)

2

+

X

i2N

(i+ n� rk�

i

)

In order to ompute the rank of the maps �

i

we will use the following lemma.

The lemma an easily be generalized to the ase of a pair of polynomials but we

will not need it in that degree of generality. For i 2 N we denote by F

i

[x℄ the

vetor spae of polynomials of degree at most i. For a linear map f : V ! W

between �nite-dimensional vetor spaes we say that the rank of f is maximal when

rk f = minfdimV; dimWg. Moreover we de�ne ork f = minfdimV; dimWg�rkf .

Lemma 2.2. Let  2 F [x℄ be a polynomial of degree n and for any i 2 N let 	

i

be the linear map 	

i

: F

i

[x℄ � F

i+1

[x℄ ! F

n+i

[x℄ de�ned by 	

i

(f; g) = f + g 

0

,

where  

0

denotes the derivative of  . The rank of 	

i

is given by

rk	

i

=

�

2i+ 3 i � m� 2

i+m+ 1 i � m� 2

where m is the number of distint roots of  in

�

F . In partiular, if  is square-free

then 	

i

has maximal rank for all i 2 N .

Proof. We have that rk	

i

= 2i+3�dimKer	

i

. Therefore it suÆes to show that

the dimension of Ker	

i

is given by maxfi + 2 � m; 0g. Let us denote by r the

greatest ommon divisor (in F [x℄) of  and  

0

. Sine the degree of r is n�m the

degree of the polynomial  =r (resp.  

0

=r) is m (resp. m� 1). Sine  =r and  

0

=r

are oprime any pair (U; V ) suh that U +V  

0

= 0 is of the form (F 

0

=r;�F =r).

It follows that

Ker	

i

=

��

F 

0

r

;�

F 

r

�

j degF � i+ 1�m

�

:

The above laim about the dimension of Ker	

i

follows. �

We an now give a omplete desription of H

2

(A; ') in ase ' is a homogeneous

polynomial.

Proposition 2.3. Suppose that ' is homogeneous of degree n � 1 and that ' has

m distint fators in

�

F [x℄.

(1) The rank of �

i

is given by

(4) ork�

i

=

8

<

:

maxfi�m+ 2; 0g 0 � i � n� 2

n� 1 i = n� 1

n�m i � n

(2) If �

'

is redued then the rank of �

i

is maximal for all i 6= n � 1, and

rk�

n�1

= n;

(3) If �

'

is redued then dimH

2

(A; ') = n(n� 1):
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Proof. Suppose that we have established the �rst laim. Then 2. follows from the

fat that m = n if �

'

is redued. Also rk�

i

= minf2i + 2; i + ng for i 6= n � 1,

hene

dimH

2

(A; f� ; �g) =

n(n� 1)

2

+

X

0�i�n�2

(n� i� 2) + n� 1 = n(n� 1):

In order to show 1, we write ' =

P

n

i=0

�

i

x

n�i

y

i

. By a linear hange on x; y we

may assume that �

0

= 1. We will show that the maps 	

i

and �

i

are intimately

related. The matrix of 	

i

is given, in terms of natural bases, by

(5)

0

B

B

B

B

B

B

B

B

B

B

B

�

1 n

�

1

1 (n� 1)�

1

n

.

.

. �

1

.

.

.

.

.

. (n� 1)�

1

.

.

.

�

n

.

.

.

.

.

.

1 �

n�1

.

.

.

.

.

.

n

�

n

�

1

�

n�1

(n� 1)�

1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n�1

1

C

C

C

C

C

C

C

C

C

C

C

A

with i+ 1 olumns in the leftmost blok and i+2 olumns in the rightmost blok.

Now subtrat n times the �rst olumn from the (i+2)-th olumn and remove the �rst

row and the �rst olumn from the resulting matrix. The resulting (n+ i)� (2i+2)

matrix is given by

(6) M

i

=

0

B

B

B

B

B

B

B

B

B

�

1 �

1

n

�

1

.

.

.

2�

2

(n� 1)�

1

.

.

.

.

.

.

.

.

.

1

.

.

.

.

.

.

.

.

.

n

�

n

�

1

n�

n

�

n�1

(n� 1)�

1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n�1

1

C

C

C

C

C

C

C

C

C

A

and the rank of M

i

is one less than the rank of 	

i

,

rkM

i

=

�

2i+ 2 i � m� 2

i+m i � m� 2

We will show that when i 6= n�1 thenM

i

is the matrix of �

i

: A

i

�A

i

! A

i+n�1

with respet to appropriate bases for A

i

�A

i

and for A

i+n�1

. One easily omputes

that

�

i

(x

i�j+1

y

j�1

; x

i�j

y

j

) = (n� i� 1)x

i�j

y

j�1

'(x; y);

�

i

((n� j)x

i�j+1

y

j�1

; (i+ 1� j)x

i�j

y

j

) = (n� i� 1)x

i�j+1

y

j�1

�'

�x

(x; y);

for j = 1; : : : ; i, and 	(y

i

; 0) = y

i

�'

�x

; 	(0; x

i

) = x

i

�'

�y

. This produes (up to a

non-zero fator) preisely all olumns of M

i

when i 6= n � 1, yielding Formula (4)

for i 6= n � 1. For i = n � 1 the preeeding omputation shows that n � 1 of the

olumns of the matrix of �

n�1

are dependent. The other n+1 olumns lead to the
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following (2n� 1)� (n+ 1) matrix

(7)

0

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 �

1

0 2 2�

2

��

2

�

1

3 3�

3

.

.

.

.

.

. 2�

1

.

.

.

.

.

.

(1� n)�

n

(3� n)�

n�1

.

.

.

.

.

.

n n�

n

0 (2� n)�

n

(4� n)�

n�1

(n� 1)�

1

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 �

n�1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

It is easy to see that the last olumn is a linear ombination of the n other olumns,

whih are linearly independent. It follows that rk�

n�1

= n whih establishes

formula (4) for all i 2 N . �

Notie that the number n(n � 1) that appears here is preisely twie the num-

ber of singularities (with multipliities) of �

'

. We onjeture that the number of

singularities �

'

is in general a lower bound for the dimension of H

2

(A; f� ; �g

'

).

2.2. The �rst Poisson ohomology spae. We proeed to ompute the dimen-

sion of the �rst Poisson ohomology spae for the ase in whih ' is homogeneous

of degree n � 1. We have in this ase a bijetive orrespondene between �

1

(A)

and A � A, given by �

1

(A) 3 X 7! (X(x); X(y)) 2 A � A. Sine H

1

(A; ') is

the spae of Poisson vetor �elds modulo the spae of Hamiltonian vetor �elds we

have, using this orrespondene,

H

1

(A; ') =

n

(f; g) 2 A�A j f

�'

�x

+ g

�'

�y

�

�

�f

�x

+

�g

�y

�

' = 0

o

n�

'

�f

�y

;�'

�f

�x

�

j f 2 A

o

:

It follows that

dimH

1

(A; ') =

1

X

i=0

(dimKer�

i

� dim=�

i+1�n

);

where �

i

: A

i

! A

i+n�1

�A

i+n�1

is de�ned, for i � 0, by �

i

(f) =

�

'

�f

�y

;�'

�f

�x

�

,

and �

i

= 0 for i < 0. We obviously have that

dim=�

i+1�n

= dimA

i+1�n

� dimKer�

i+1�n

= i� n+ 2� Æ

i;n�1

:

On the other hand, sine ork�

i

= minf2i+ 2; i+ ng � rk�

i

we �nd that

dimKer�

i

= ork�

i

�minf0; n� i� 2g;

and we �nd a formula for dimKer�

i

by using the formula (4) for ork�

i

, giving

dimKer�

i

=

8

>

>

<

>

>

:

0 0 � i � m� 2

i+ 2�m m� 1 � i � n� 2

n i = n� 1

i+ 2�m i � n:

By a diret substitution we �nd that dimH

1

(A; ') is in�nite-dimensional when

m 6= n, i.e., when �

'

is non-redued, that dimH

1

(A; ') = 0 when ' is onstant,

and that dimH

1

(A; ') = n when m = n � 1. Notie that this number equals the
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number of irreduible omponents of the urve �

'

and that the modular vetor

�eld

�

�

�'

�y

;

�'

�x

�

de�nes a non-trivial ohomology lass at level i = n � 1, orresponding to the

speial term Æ

i;n�1

whih appears in the omputation. We onjeture that the

number of irreduible omponents of the urve �

'

is in general a lower bound for

the dimension of the �rst Poisson ohomology spae.

3. Finite dimensionality of the seond Poisson ohomology spae

It follows from Setion 2 that H

2

(A; ') is �nite-dimensional when ' is a homoge-

neous polynomial whih is square-free. In the present setion we will generalize this

result to a general lass of polynomials. It will follow in partiular that H

2

(A; ')

is �nite-dimensional when ' is a generi polynomial of degree n.

For i 2 N let us denote by A

�i

the subspae of A onsisting of all polynomials

of total degree at most i. We also introdue for i � 0 the vetor spae A

i

=

A

�i

=A

�i�1

. We have a natural isomorphism A

i

�

=

A

i

, in partiular dimA

i

= i+1.

We denote for a polynomial f 2 A of total degree i its projetion on A

i

as well as

the orresponding element of A

i

by

^

f . Let ' be a polynomial of total degree n and

let � : A�A! A denote the linear map given by (2). � indues for any i 2 N a

linear map

(8)

^

�

i

: A

i

�A

i

! A

i+n�1

(

^

f; ĝ) 7!

\

�

i

(f; g):

Under the above isomorphism A

i

�

=

A

i

the map 	 is preisely the linear map

A

i

�A

i

! A

n+i�1

assoiated to the leading term '̂ 2 A

n

, so that

(9) ork

^

�

i

=

8

<

:

maxfi�m+ 2; 0g 0 � i � n� 2

n� 1 i = n� 1

n�m i � n;

where m denotes the number of di�erent roots of the polynomial '̂. Notie that

this number is the number of points at in�nity of �

'

and that m < n if and only

if �

'

has a multiple point at in�nity if and only if '̂ ontains a square fator. We

have that

dimH

2

(A; ') �

X

0�i�n�2

dimA

i

+

X

i2N

(dimA

i+n�1

� rk

^

�

i

);

so that dimH

2

(A; ') � dimH

2

(A; '̂) = 2

�

n

2

�

when '̂ is square-free, an inequal-

ity whih is by the preeeding setion an equality for all homogeneous polynomials

' that are square-free. We see in partiular that when ' is a generi polynomial of

degree n then dimH

2

(A; ') � 2

�

n

2

�

. Examples of this are given by polynomials

' that fatorize ompletely into terms of degree at most one, so that �

'

onsists

of n lines in the plane: if the linear parts of eah fator are all di�erent (so that

no two lines of �

'

are parallel) then the above inequality holds and it admits an

interpretation in terms of the number of intersetion points of these lines, as in the

ase of a homogeneous polynomial '. We onjeture that in this ase the inequality

is atually an equality.
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4. An example

The non-homogeneous ase not being tratable in full generality at this point

we treat a simple example, whih shows that even when �

'

is as simple as a

irle (no singularities, genus zero) the dimension of dimH

2

(A; ') needs not be

zero. The tehniques that we use may be useful to study more general examples.

We take ' = x

2

+ y

2

� 1, and write ' = '

1

+ '

2

, where '

1

= x

2

+ y

2

and

'

2

= �1. The orresponding oboundary operators then satisfy Æ = Æ

1

+ Æ

2

. Sine

Æ

2

= Æ

2

1

= Æ

2

2

= 0 we have that Æ

1

Æ

2

= �Æ

2

Æ

1

, so that Æ

2

indues a oboundary

operator

^

Æ

2

on H

?

(A; '

1

), making the latter into a omplex. Expliitly, if we

denote the ohomology lass of an element in H

?

(A; '

1

) by square brakets, then

H

0

(A; '

1

) is generated by [1℄, H

1

(A; '

1

) is generated by f[(x; y)℄; [(y;�x)℄g and

H

2

(A; '

1

) by f[1℄; [x

2

+ y

2

℄g. By diret omputation we have

^

Æ

2

[(y;�x)℄ = 0 and

^

Æ

2

[(x; y)℄ = [1℄. It follows that 1 de�nes a trivial lass in H

2

(A; ') and that the

image of

^

Æ

2

is generated by [1℄. It is easy to see that x

2

+ y

2

de�nes a non-trivial

ohomology lass in H

2

(A; '), so that H

2

(A; ') is one-dimensional. Indeed, if we

suppose that there exists a pair (f; g) 2 A�A suh that Æ(f; g) = x

2

+ y

2

then

^

Æ

2

[(f; g)℄ = [Æ

2

(f; g)℄ = [Æ(f; g)℄ = [x

2

+ y

2

℄;

a ontradition beause the image of

^

Æ

2

is generated by [1℄.

5. Final remarks

(1) There is also Poisson homology, whih is in a sense dual to the ohomology

that we onsidered. The omplex H

?

(A; f� ; �g) is de�ned by using the A-modules




p

A

of di�erential p-forms on A with the di�erential de�ned as the Lie derivative

with respet to the Poisson braket. In our polynomial setting Æ : 


p

A

! 


p�1

A

is

given by the formula

Æ(f

0

df

1

^ : : : ^ df

p

) =

p

X

i=1

(�1)

i+1

ff

0

; f

i

gdf

1

^ � � � ^



df

i

^ � � � ^ df

p

+

p

X

1�i<j

(�1)

i+j

f

0

dff

i

; f

j

g ^ df

1

^ � � � ^



df

i

^ � � � ^



df

j

^ � � � ^ df

p

;

for any polynomials f

0

; f

1

; : : : ; f

p

(fr. [1℄, [8℄). If one translates this omplex in

a ontravariant setting, using the volume form (if it exists) then one obtains a

di�erential

~

Æ : �

p

(A)! �

p+1

(A), whih reads

~

ÆQ = ÆQ+Q ^Div(�);

where Div(�) denotes the modular vetor �eld. In the ase where the lass [Div(�)℄

is ohomologially trivial, Poisson ohomology and Poisson homology are anoni-

ally dual to eah other. In our ase this lass never vanishes (fr. Setion 2) and

it is not hard to ompute the homology: one has that H

0

(A; f� ; �g) = F and that

H

1

(A; f� ; �g) and H

2

(A; f� ; �g) are anonially isomorphi to F [x; y℄=('), the ring of

regular funtions on �

'

. In general there exists a kind of duality theorem between

Poisson homology and ohomology with non-trivial oeÆients (see [8℄).

(2) Poisson strutures and their ohomology lasses are a partiular ase of

the theory of Lie algebroids, initiated by J. Pradines in the di�erential geometri
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setting. Maybe the tehniques we use here an be extended to the simplest ase of

Lie algebroids.

(3) We already mentioned that the Poisson ohomology we onsider here an

be used to study deformation theory of Poisson algebras, more preisely to study

deformations where the Poisson braket is deformed without hanging the asso-

iative struture. It is however also possible to deform both strutures (Lie and

assoiative) preserving their ompatibility; the orresponding ohomology has been

studied by Flato, Gerstenhaber and Voronov (see [3℄). Analogous ohomologies

for Poisson algebras have been settled in the general framework of the theory of

operads.

(4) Ph. Monnier undertook in his thesis [5℄ the omputation of Poisson oho-

mology in ases analogous to ours, but at the level of jets, i.e., he is omputing

the loal Poisson ohomology (in a di�erential geometri setting). His approah

is based on di�erentiable singularity theory and the theory of normal forms. The

quadrati ase was previously worked out by N. Nakanishi [6℄.

(5) We onlude this artile with some indiations about its relations with de-

formation quantization. A fundamental result by M. Kontsevih (see [4℄) estab-

lishes a quasi-isomorphism between moduli spaes of Poisson tensors and of asso-

iative multipliations on funtions, for any in�nitesimal. One dedues from this

quasi-isomorphism its in�nitesimal (linearized) part to obtain a multipliative iso-

morphism between Poisson ohomology for a given Poisson tensor and Hohshild

ohomology of the deformed assoiative algebra (?-produt) anonially assoiated

to it. See the artile of Voronov [7℄ for a dedution of this isomorphism from

the formality theorem. So our results provide information about the Hohshild

ohomology for ?-produts on the plane; reall that Hohshild ohomology for

?-produts is a natural non-ommutative analog of the De Rham omplex.
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