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Abstrat. We introdue the moduli problem for (algebrai ompletely) integrable sys-

tems. This problem onsists in onstruting a moduli spae of aÆne algebrai varieties and

expliitly desribing a map whih assoiates to a generi aÆne variety, whih appears as a

level set of the �rst integrals of the system (or, equivalently, a generi aÆne variety whih

is preserved by the ows of the integrable vetor �elds), a point in this moduli spae. As

an illustration, we work out the example of an integrable geodesi ow on SO(4). In this

ase, the generi invariant variety is an aÆne part of the Jaobian of a Riemann surfae

of genus two. Our onstrution relies heavily on the fat that these aÆne parts have the

additional property of being 4 : 1 unrami�ed overs of Abelian surfaes of type (1; 4).
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1. Introdution

An important property whih distinguishes integrable systems from generi dynamial

systems is that the ow of an integrable vetor �eld, starting from an arbitrary point, is

not dense in the orresponding energy level but is onstrained to a subvariety of half the

dimension (or less) of phase spae. These subvarieties are the level sets of the Poisson

ommuting funtions that make up the integrable system and the above property follows

from the fat that X

G

F = fF;Gg = 0, where F and G are any two Poisson ommuting

funtions (suh as the Hamiltonian and any of its �rst integrals).

In a real setting the relevane of these invariant manifolds for understanding and

desribing the mehanis of the integrable system an be seen from the Arnold-Liouville

theorem and from the existene of ation-angle variables: if suh an invariant manifold is

ompat then it is di�eomorphi to a real torus and the ow is a linear ow on this torus;

moreover, suh a linearizing di�eomorphism an be onstruted semi-loally (on a neigh-

borhood of a ompat invariant manifold) onto a produt of a torus with a linear spae,

the latter being equipped with the standard sympleti or Poisson struture. In partiular,

it entails quasi-periodiity of the solutions, hene of the motion of the mehanial system.

See [4℄ or [5℄.

In a omplex analyti or a omplex algebrai setting the struture of the invariant

manifolds is more ompliated. First, while two real tori are di�eomorphi if and only

if they have the same dimension, the onditions for two omplex tori (quotients of C

n

by a lattie) to be biholomorphi (or, in an algebrai setting, isomorphi) are muh more

involved, as beomes already apparent in the one-dimensional ase (Riemann surfaes of

genus 1; ellipti urves). Seond, sine omplex tori are ompat they annot live in an

aÆne variety and the omplex invariant manifolds are at best aÆne parts of omplex

algebrai tori and this fat puts an extra ondition on the possibility of two invariant

manifolds being biholomorphi or isomorphi: suh an isomorphism must preserve the

divisor at in�nity, i.e., the divisor to be glued to the aÆne variety in order to omplete

it into a ompat omplex torus. Both aspets have their relevane for mehanis. First,

while the solutions orresponding to non-isomorphi omplex tori an in both ases be

written in terms of theta funtions, the harateristis of these quasi-periodi funtions

will be di�erent; and seond, even when the tori are isomorphi, if their aÆne parts are

not isomorphi then the behaviour of the system for �nite (omplex) time will be di�erent

beause in an a..i. system on an aÆne variety every (omplex) integral urve hits the

divisor at in�nity after a �nite time (see [2℄ or [3℄).

These onsiderations lead us to what we all themoduli problem for integrable systems.

In order to give a preise de�nition we will restrit ourselves to algebrai ompletely

integrable systems (a..i. systems) on an aÆne variety; the de�nition an easily be adapted

to other situations when needed. We reall from [14℄ that the generi invariant manifold

of an a..i. system is an aÆne part of an Abelian variety (a omplex algebrai torus) and

that a large amount of expliit information about these tori (suh as equations for an

aÆne part, embeddings in projetive spae and equations for the divisor at in�nity) an

be obtained by studying the Laurent solutions to the di�erential equations, whih desribe

the vetor �eld de�ned by the Hamiltonian. The divisor whih is needed to omplete the

aÆne part into an Abelian variety indues a polarization on the orresponding torus; in

all known ases the polarization type, whih is a disrete invariant of the Abelian variety,

is the same for all these invariant manifolds. We are thus led to onsider, on one side,

the family of aÆne parts of Abelian varieties that appear as invariant manifolds in the

a..i. system, on the other side, the moduli spae

1

of Abelian varieties with a presribed

1

In order to have a good moduli spae (e.g. one that admits an algebrai struture),
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divisor (hene polarization type) and, �nally, the map between these two spaes, whih

sends an invariant manifold to its isomorphism lass. The moduli problem for an a..i.

system onsists in expliitly onstruting the moduli spae and the anonial map.

To illustrate our point, we will treat a non-trivial example, namely an integrable

system that appears in Adler and van Moerbeke's lassi�ation of integrable geodesi

ows on SO(4) as the ase of metri II (see [1℄). It has the following geometri desription

(for further details, see Setion 2). Phase spae is C

6

and there are four independent

quadrati polynomial funtions H

1

; : : : ;H

4

whih Poisson ommute; in fat we will exhibit

a tri-Hamiltonian struture for this integrable system. The aÆne surfaes that appear as

the �bers of the map

� : C

6

! C

4

: z = (z

1

; : : : ; z

6

) 7! (H

1

(z);H

2

(z);H

3

(z);H

4

(z))

are invariant for the ow of the two ommuting vetor �elds X

1

and X

2

and for generi

h 2 C

4

the invariant surfae �

�1

(h) is isomorphi to an aÆne part of the Jaobian of a

(ompat) Riemann surfae

�

�

h

. We will onstrut suh an isomorphism; in lassial termi-

nology we separate the variables of the integrable system (leading to expliit solutions; as

far as we ould hek a separation of variables for this integrable system was not known).

From this isomorphism we an read o�, in terms of the Weierstrass points on

�

�

h

, the rel-

ative position of the four urves whih are missing in the aÆne part A

h

. On the one hand

we an dedue from it that the quotient A

h

=T

h

is an aÆne part of an Abelian surfae of

type (1; 4). On the other hand it will allow us to set up a basi orrespondene between

the aÆne varieties A

h

(modulo isomorphism) and the spae of Riemann surfaes of genus

two, equipped with a deomposition of their Weierstrass points (modulo isomorphism).

As the latter spae is in turn isomorphi to a moduli spae of polarized Abelian surfaes

of type (1; 4) (see [13℄) this redues the moduli problem to a question of determining the

moduli (i.e., the moduli spae and the orresponding map) for the underlying Abelian

surfaes of type (1; 4). This redution will be done in Setion 3.

Abelian surfaes of type (1; 4) admit a holomorphi map to projetive spae P

3

and

the image is (in general) an oti surfae with four singular points of order four, as was

shown in [6℄. In order to �nd an equation of this oti we �rst ompute the Laurent

solutions to the integrable vetor �eld X

1

and dedue from it four independent setions,

invariant for the group ation, of the line bundle [D

h

℄, whih orresponds to the divisor at

in�nity. When the four singular points of order four are taken as base points in P

3

, the

oeÆients of the equation for the oti surfae are losely related to moduli for Abelian

surfaes of type (1; 4). Thus we need to redue the equation of the oti that we have found

to its more symmetri form. This omputation will be feasible thanks to the rihness of

the underlying geometry.

When the oti is redued to its symmetri form its oeÆients are expressed in terms

of the oordinates of the Weierstrass points of

�

�

h

rather than h, an expliit dependene

whih disappears in the �nal step of the omputation. Indeed, it remains then to pass

from the oeÆients of this oti to the moduli spae of Abelian surfaes of type (1; 4).

Inidently this moduli spae was onstruted by the seond author when studying the

Garnier system, another a..i. system, whose invariant manifolds are Abelian surfaes of

type (1; 4) (see [13℄). The moduli spae is desribed there as a Zariski open subset of a

one in weighted projetive spae and we an use the expliitly given map from the spae

of parameters of the oti to this one to omplete our example: we end up with �ve

expliit polynomials in the values h = (h

1

; h

2

; h

3

; h

4

) of the onstants of motion whih

take the same value (as an element of weighted projetive spae) on two sets of onstants

in general one also has to throw out a few bad elements.
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of motion if and only if the orresponding level sets are isomorphi aÆne varieties. This

�nal step will be done in Setion 4.

It would be interesting to study the moduli problem for other integrable systems,

suh as the Toda latties and the lassial integrable tops.

2. An integrable geodesi ow on SO(4)

It was shown by Adler and van Moerbeke (see [1, Theorem 4℄) that there exist three

lasses of left-invariant metris on SO(4) for whih the geodesi ow redues to an algebrai

ompletely integrable system (a..i. system) on its Lie algebra so(4). In the sequel, we

will onsider the seond ase, known as the ase of metri II. In suitable oordinates, the

�rst vetor �eld X

1

of this a..i. system is given by the di�erential equations

_z

1

= 2z

5

z

6

;

_z

4

= 2z

2

z

3

;

_z

2

= 2z

3

z

4

;

_z

5

= z

3

(z

1

+ z

4

);

_z

3

= z

5

(z

1

+ z

4

);

_z

6

= 2z

1

z

5

:

(1)

The seond vetor �eld X

2

, ommuting with X

1

, is given by the di�erential equations

_z

1

= z

2

z

6

;

_z

4

= z

2

(2z

3

� z

6

);

_z

2

= z

4

(2z

3

� z

6

);

_z

5

= z

3

z

4

;

_z

3

= z

4

z

5

;

_z

6

= z

1

z

2

;

(2)

the vetor �elds X

1

and X

2

admit four independent quadrati invariants, given by the

following expressions:

H

1

= z

2

3

� z

2

5

;

H

2

= z

2

1

� z

2

6

;

H

3

= z

2

2

� z

2

4

;

H

4

= (z

1

+ z

4

)

2

+ 4(z

2

3

� z

2

z

5

� z

3

z

6

):

(3)

It is easy to verify that there exist preisely three linearly independent linear Poisson stru-

tures on C

6

with respet to whih X

1

and X

2

are Hamiltonian; moreover, these Poisson

strutures are ompatible, implying that the integrable system admits a tri-Hamiltonian

struture. Expliitly, for any (�; �; ) 2 C

3

, the matrix

0

B

B

B

B

B

�

0 �z

6

��z

5

0 ��z

3

� 2z

6

�(z

2

� 2z

5

)

��z

6

0 2z

4

�(z

6

� 2z

3

) 0 ��z

1

� �z

4

�z

5

�2z

4

0 ��z

5

� 2z

2

�(z

1

+ z

4

) 0

0 �(2z

3

� z

6

) �z

5

+ 2z

2

0 �z

3

��z

2

�z

3

+ 2z

6

0 (z

1

+ z

4

) ��z

3

0 2z

1

�(2z

5

� z

2

) �z

1

+ �z

4

0 �z

2

�2z

1

0

1

C

C

C

C

C

A

is the Poisson matrix of a Poisson struture P

��

on C

6

. If (�; �; ) 6= (0; 0; 0) then P

��

generates the Hamiltonian vetor �elds X

1

and X

2

as desribed in the following table;

generators for the algebra of Casimirs of these strutures P

��

also follow from the table.

H

1

H

2

H

3

H

4

P

100

0 0 2X

2

�2X

1

P

010

0 2(X

1

�X

2

) 0 2X

1

P

001

2X

1

0 0 8X

2

Table 1
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It was shown by Adler and van Moerbeke in [2, Setion 4℄ that, for any h = (h

1

; h

2

; h

3

; h

4

)

whih belongs to some

2

Zariski open subset H of C

4

, the aÆne surfae

A

h

= fz 2 C

6

j H

i

(z) = h

i

; i = 1; : : : ; 4g

is isomorphi to an aÆne part of the Jaobian of a ompat Riemann surfae

�

�

h

of genus

two (whih depends on h 2 H), A

h

�

=

Ja(

�

�

h

) n D

h

and that the vetor �elds X

1

and X

2

are linear

3

when restrited to these surfaes A

h

, thereby proving that the above system

is algebrai ompletely integrable (see [2, Setion 4℄). The aÆne part A

h

, the divisor D

h

and the Riemann surfae

�

�

h

an be desribed as follows. First notie that the group T of

involutions, generated by

�

1

(z

1

; : : : ; z

6

) = (�z

1

;�z

2

; z

3

;�z

4

;�z

5

; z

6

);

�

2

(z

1

; : : : ; z

6

) = (�z

1

; z

2

;�z

3

;�z

4

; z

5

;�z

6

);

(4)

ommutes with the vetor �elds X

1

and X

2

and leaves the aÆne surfaes A

h

invariant; in

fat they generate, for any h 2 H, a group T

h

of translations over half periods in the tori

Ja(

�

�

h

). As a onsequene, the divisors D

h

are also stable under these translations. For a

more preise desription of the divisors D

h

one applies Painlev�e analysis to the vetor �eld

X

1

(or any ombination of X

1

and X

2

). To do this one searhes Laurent solutions to the

di�erential equations (1), depending on �ve free parameters (prinipal balanes). There

are preisely four suh families, labeled by �

1

= �1; �

2

= �1, and they are expliitly given

as follows (a; b; : : : ; e are the free parameters).

z

1

=

(a� 1)�

1

t

�

1� bt+ (b

2

� d� e)t

2

+O(t

3

)

�

;

z

2

=

�

1

�

2

t

�

a� abt+ ((a� 1)(ae � � ab

2

) + a

2

d)t

2

+O(t

3

)

�

;

z

3

=

�

2

2t

�

1 + bt� ((a� 1)e+ ad� � ab

2

)t

2

+O(t

3

)

�

;

z

4

=

�

1

t

�

�a+ abt+ t

2

+O(t

3

)

�

;

z

5

=

�

1

�

2

2t

�

1 + bt+ dt

2

+O(t

3

)

�

;

z

6

=

(a� 1)�

2

t

�

�1 + bt� et

2

+O(t

3

)

�

:

(5)

When any of these families of Laurent solutions is substituted in the equations H

i

(z) = h

i

,

i = 1; : : : ; 4, the resulting expressions are independent of t. This leads to four algebrai

equations in the �ve free parameters, giving expliit equations for an aÆne part �

h

of

�

�

h

.

Eah of these equations is easily rewritten as

y

2

= x(1� x)

�

4x

3

h

1

� (4h

1

+ h

4

)x

2

+ (h

4

� h

3

� h

2

)x+ h

3

�

: (6)

In what follows, we will refer to the urve in C

2

, given by (6), as the urve �

h

. In order

to reover the Riemann surfae

�

�

h

from it one has to adjoin one point whih we denote

by 1

h

. Sine there are four families of Laurent solutions (5), the divisor D

h

onsists of

four opies

�

�

h

(�

1

; �

2

), �

2

1

= �

2

2

= 1, of the urve

�

�

h

, i.e.,

D

h

=

�

�

h

(1; 1) +

�

�

h

(1;�1) +

�

�

h

(�1; 1) +

�

�

h

(�1;�1):

2

Expliit equations for H will be given in the next setion.

3

Reall e.g. from [7, Chapter 2.7℄ or [8, Chapter 11℄ that the Jaobian of an algebrai

urve is a omplex torus.
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The Laurent solutions an also be used to ompute an expliit embedding of the tori

Ja(

�

�

h

) in P

15

: the setions of the line bundle on Ja(

�

�

h

), de�ned by D

h

, orrespond to

the meromorphi funtions on Ja(

�

�

h

) with a simple pole (at worst) at the divisor D

h

and,

in turn, these are found by onstruting those polynomials on C

6

whih have a simple

pole in t (at worst) when any of the four families of Laurent solutions are substituted in

them (see [14, Chapter V℄). Apart from the onstant funtion z

0

= 1 and the funtions z

i

,

i = 1; : : : ; 6, one easily �nds the following independent funtions with this property:

z

7

= z

5

(2z

3

� z

6

)� z

2

z

3

;

z

8

= z

1

(2z

3

� z

6

)� z

4

z

6

;

z

9

= z

4

(2z

5

� z

2

)� z

1

z

2

;

z

10

= (2z

5

� z

2

)

2

� z

2

6

;

z

11

= (2z

3

� z

6

)

2

� z

2

2

;

z

12

= z

1

z

2

z

3

� z

4

z

5

z

6

;

z

13

= z

2

z

3

z

6

� z

1

z

4

z

5

;

z

14

= z

2

z

5

z

6

� z

1

z

3

z

4

;

z

15

= z

1

z

2

z

5

� z

3

z

4

z

6

:

(7)

The embedding of Ja(

�

�

h

) in P

15

is given on the aÆne part A

h

by the map

� : A

h

! P

15

: P = (z

1

; : : : ; z

6

) 7! (1 : z

1

(P ) : � � � : z

15

(P )):

These setions will be used later to onstrut two maps whih are similar to � and whih

map two di�erent quotients of A

h

birationally into P

3

.

3. Linearizing variables

In this setion we show that from the point of view of moduli, the family of aÆne

surfaes A

h

, h 2 H, an be replaed by a family of polarized Abelian surfaes of type

(1; 4). In order to do this we will �rst onstrut an expliit map from the aÆne surfae A

h

(h 2 H) to an aÆne part of Ja(

�

�

h

). We do this by following an algorithm, outlined in

[12, Setion 3℄, whih leads to linearizing variables for any two-dimensional a..i. system.

We note that although the haraterization of the aÆne surfaes A

h

as aÆne parts of

hyperellipti Jaobians was already given by Adler and van Moerbeke in [2, Setion 4℄,

neither an expliit map nor linearizing variables follow from their results.

We de�ne H to be the set of those h = (h

1

; h

2

; h

3

; h

4

) 2 C

4

for whih the urve (6)

is a non-singular urve of genus two, i.e., that its right hand side is of degree 5 and has

no multiple roots; notie that this entails in partiular that h

1

h

2

h

3

6= 0 for all h 2 H. It

will follow from our onstrution that, for every h 2 H, A

h

is indeed an aÆne part of the

Jaobian, thereby justifying the notation H. In order to apply the proedure desribed

in [12, Setion 3℄, we �x an arbitrary element h 2 H and we hoose one omponent, say

C =

�

�

h

(1;�1), of the divisor D

h

on Ja(

�

�

h

). The meromorphi funtions on Ja(

�

�

h

)

whih have at worst a double pole along the divisor C an be obtained by onstruting

those polynomials on C

6

whih have at worst a double pole in t when the Laurent solutions

(5) orresponding to �

1

= 1, �

2

= �1 are substituted into them (and no poles when the

other solutions are substituted). It is easily omputed that the spae of suh polynomials

is spanned by

�

0

= 1; �

1

= (z

2

+ z

4

)(z

3

+ z

5

); �

2

= (z

3

+ z

5

)(z

1

+ z

6

); �

3

= (z

1

+ z

6

)(z

2

+ z

4

); (8)

where we think of these polynomials as being restrited to A

h

. The mapping �, given on

Ja(

�

�

h

) n C by

� : Ja(

�

�

h

) n C ! P

3

: P = (z

1

; z

2

; : : : ; z

6

) 7! (�

0

(P ) : �

1

(P ) : �

2

(P ) : �

3

(P ))

maps the surfae Ja(

�

�

h

) to its Kummer surfae, whih is a singular quarti in P

3

. An

equation for this quarti surfae an be omputed by eliminating the variables z

1

; : : : ; z

6

5



from the equations (3) and (8): solving the equations (8) and the �rst three equations in

(3) for the variables z

1

; z

2

; : : : ; z

6

and substituting these values in the remaining equation,

the equation for the Kummer surfae of Ja(

�

�

h

) an be written in the form

�

2

3

((�

1

+ �

2

� 2h

1

)

2

+ 8h

1

�

1

) + f

3

(�

1

; �

2

)�

3

+ f

4

(�

1

; �

2

) = 0; (9)

where f

3

(respetively f

4

) is a polynomial of degree three (respetively four) in �

1

and �

2

.

It follows from (9) (see [12, Theorem 9℄) that a system of linearizing variables (x

1

; x

2

)

is given by the equations

�2h

1

(x

1

+ x

2

) = �

1

+ �

2

� 2h

1

; �2h

1

x

1

x

2

= �

1

: (10)

This is heked in the present ase as follows. First make use of (8), to rewrite the equations

(10) as

(z

3

+ z

5

)(z

2

+ z

4

) = �2h

1

x

1

x

2

; (z

3

+ z

5

)(z

1

+ z

6

) = 2h

1

(x

1

� 1)(x

2

� 1): (11)

Sine h 2 H the variables x

1

and x

2

are both di�erent from 1 and from 0 so that below

we an divide by x

i

and by x

i

� 1 as neessary. Deriving the equations (11) with respet

to the vetor �eld X

1

given by (1) we �nd that

_x

1

x

�1

1

+ _x

2

x

�1

2

= z

1

+ z

4

+ 2z

3

;

_x

1

(x

1

� 1)

�1

+ _x

2

(x

2

� 1)

�1

= z

1

+ z

4

+ 2z

5

:

(12)

Then we an solve the �rst three equations of (3), together with (11) and the di�erene of

the two equations in (12) for z

1

; : : : ; z

6

. Substituting these values in the seond equation

of (12) we �nd that

�

_x

1

x

1

(x

1

� 1)

�

2

�

�

_x

2

x

2

(x

2

� 1)

�

2

=

1

x

1

� x

2

�

4h

1

+

h

2

(x

1

� 1)(x

2

� 1)

+

h

3

x

1

x

2

�

: (13)

Notie that this equation is linear in _x

2

1

and _x

2

2

: Finally we substitute the values for

z

1

; : : : ; z

6

in the fourth equation of (3) to �nd another equation whih is linear in _x

2

1

and

_x

2

2

, leading to

_x

2

i

=

f(x

i

)

(x

1

� x

2

)

2

; i = 1; 2;

where

f(x) = x(1� x)[4h

1

x

3

� (4h

1

+ h

4

)x

2

+ (h

4

� h

2

� h

3

)x+ h

3

℄:

(We note that the urve y

2

= f(x) is preisely the urve �

h

given by (6).) It follows that,

in terms of the oordinates x

1

; x

2

given by (10), the di�erential equations (1) redue to

the Jaobi form

_x

1

p

f(x

1

)

+

_x

2

p

f(x

2

)

= 0;

x

1

_x

1

p

f(x

1

)

+

x

2

_x

2

p

f(x

2

)

= 1; (14)

so that x

1

and x

2

are indeed linearizing variables.

The onstrution of these linearizing variables leads to an expliit map into the Jao-

bian Ja(

�

�

h

) as follows. Realling that we denote by 1

h

the point whih is added to �

h

in order to omplete it into a ompat Riemann surfae, the map P 7! [P +1

h

℄ de�nes an

embedding of

�

�

h

into its Jaobian; we have de�ned here Ja(

�

�

h

) as the spae of divisors of

degree two on

�

�

h

modulo linear equivalene. We denote the image of this map by �

h

and

all it the theta divisor. It follows from Mumford's desription of hyperellipti Jaobians

6



(see [9, Setion 3.1℄) that the aÆne surfae Ja(

�

�

h

) n �

h

is isomorphi to the spae of

pairs of polynomials (u(x); v(x)) suh that u(x) is moni of degree two, v(x) is of degree

less than two and f(x)� v

2

(x) is divisible by u(x). Let us desribe the map from A

h

into

Ja(

�

�

h

) in terms of these polynomials. We de�ne the polynomial u(x) by demanding that

its roots are x

1

and x

2

, i.e.,

u(x) = x

2

+

�

z

1

+ z

2

+ z

4

+ z

6

2(z

3

� z

5

)

� 1

�

x�

z

2

+ z

4

2(z

3

� z

5

)

: (15)

The polynomial v(x) is de�ned as the derivative of u(x) in the diretion of X

1

and an be

most easily desribed by the following formulas:

v(0) = u(0)(z

1

+ z

4

+ 2z

3

); v(1) = u(1)(z

1

+ z

4

+ 2z

5

): (16)

It is easy to hek that f(x)� v

2

(x) is divisible by u(x) so that the above formulas indeed

de�ne a point of Ja(

�

�

h

) n �

h

. Sine h 2 H, h

1

6= 0 and hene z

3

� z

5

6= 0, showing that

the above map is regular; moreover it is birational beause (16) gives

z

3

� z

5

=

1

2

�

v(0)

u(0)

�

v(1)

u(1)

�

; (17)

while, using (15), z

2

+ z

4

and z

1

+ z

6

an be rewritten as follows:

z

2

+ z

4

=

�

v(1)

u(1)

�

v(0)

u(0)

�

u(0);

z

1

+ z

6

=

�

v(0)

u(0)

�

v(1)

u(1)

�

u(1):

(18)

Using the invariants H

1

;H

2

and H

3

one easily �nds formulas for z

3

+z

5

, z

2

�z

4

and z

1

�z

6

showing that the map is birational. On the one hand this proves that when h 2 H, i.e.,

when �

h

is a non-singular urve of genus two, then A

h

is isomorphi to an aÆne part of

Ja(

�

�

h

). On the other hand it leads to expliit solutions for (1) with respet to initial

onditions whih orrespond to a point h 2 H, in terms of theta funtions, in view of the

following formulas

u(0) = 

0

�

�[Æ

0

℄(At+B)

�[Æ℄(At+B)

�

2

u(1) = 

1

�

�[Æ

1

℄(At+B)

�[Æ℄(At+B)

�

2

;

v(0) and v(1) are the derivatives of u(0) and u(1) with respet to t (see [9, page 3.81℄). The

onstants 

0

and 

1

an be written expliitly in terms of the oordinates of the Weierstrass

points and theta onstants (see [9, page 3.113℄) and the rational vetors Æ; Æ

0

and Æ

1

are

half-harateristis; the values of A and B depend in a transendental way on h and on

the initial onditions.

We see that the inverse map, given by (17) and (18), is holomorphi away from the

divisors u(0) = 0, u(1) = 0 and u(1)v(0) � u(0)v(1) = 0. When u(0) = 0 then 0 is one

of the roots of u so that the orresponding divisors are of the form W

0

+ P , where W

0

stands for the Weierstrass point over 0, x(W

0

) = 0 and P 2

�

�

h

. Similarly, u(1) = 0

orresponds to the divisors W

1

+P , where W

1

stands for the Weierstrass point over 1. In

order to avoid a rather involved expliit omputation for the third divisor we appeal to

the fat that the divisor at in�nity D

h

is invariant for the group T

h

. Knowing that D

h

onsists of the theta divisor (onsisting of divisors1

h

+P ) besides the two divisors that we

have just determined we an identify the elements of T

h

as translations over [W

1

�W

0

℄,

[1

h

� W

1

℄ and [W

0

� 1

h

℄. Thus, the divisor u(1)v(0) � u(0)v(1) = 0 orresponds to

7



the e�etive divisors in [W

0

+W

1

+ P �1

h

℄. It is now easy to see that the four points

21

h

;1

h

+W

0

;1

h

+W

1

and W

0

+W

1

(whih onstitute a single T

h

orbit) eah belong

to exatly three of the four urves and that these four urves have no other intersetion

points. Thus, as a byprodut, we have reovered

4

the following intersetion pattern of the

omponents of the divisor D

h

.

02

00

12

01

We will now use the above results to study the moduli spae M de�ned by

M = fA

h

j h 2 Hg=isomorphism;

where isomorphism means isomorphism of aÆne algebrai surfaes. We will relate this

moduli spae to a moduli spae M

(1;4)

of Abelian surfaes of type (1; 4) whih is de�ned

as follows. If T is an Abelian surfae and L is a line bundle whih indues a polarization

! = 

1

(L) of type (1; 4) on T then the indued map �

L

: T ! P

3

is birational onto an

oti surfae (the generi ase), or it is a double over of a quarti surfae. We de�ne

M

(1;4)

= f(T ;L) j �

L

: T ! P

3

is birational onto an otig=isomorphism;

in whih an isomorphism (T ;L)

�

=

(T

0

;L

0

) is a biholomorphi map 	 : T ! T

0

whih

preserves the polarization, 	

�

(

1

(L

0

)) = 

1

(L). This moduli spae was expliitly desribed

in [13℄ as a Zariski open subset of a one in weighted projetive spae P

(1;2;2;3;4)

(see

Setion 4 below). In the following two propositions we show how M and M

(1;4)

are

related.

Proposition 1. For any h 2 H the quotient A

h

=T

h

is an aÆne part of an Abelian

surfae T

h

. The line bundle L

h

= [D

h

=T

h

℄ indues a polarization of type (1; 4) on T

h

and

the indued map �

L

h

: T

h

! P

3

is birational onto an oti surfae.

Proof. It is a general fat that the quotient of Ja(

�

�

h

) by a group of half periods is an

Abelian surfae. For a group of half periods of order four it was shown in [13, Setion 5℄

that the quotient is an Abelian surfae of type (1; 4) if and only if the group of half

periods is of the form f0; [W

2

�W

1

℄; [W

1

�W

0

℄; [W

0

�W

2

℄g, where W

0

;W

1

and W

2

are

Weierstrass points on the underlying urve; we have shown above that T

h

is indeed of

this form. The divisor D

h

desends to the irreduible divisor D

h

=T

h

whih has a triple

point whih orresponds to the singular points of D

h

. Sine D

h

indues a polarization of

type (4; 4) on Ja(

�

�

h

), D

h

=T

h

indues a polarization of type (1; 4) on T

h

. In order to see

4

This intersetion pattern was �rst determined in [2, Figure 4.3℄ by using the Laurent

solutions to the vetor �eld X

1

.

8



that the indued map �

L

h

is birational onto its image one onsiders T

h

=K

h

where K

h

is

the group of two-torsion elements inside the kernel of the natural isogeny from T

h

to its

dual Abelian surfae

^

T

h

. Sine T

h

= Ja(

�

�

h

)=T

h

the map Ja(

�

�

h

)! T

h

=K

h

is an isogeny

whose kernel onsists of the sixteen half periods of Ja(

�

�

h

). This means that this isogeny

is multipliation by 2 in Ja(

�

�

h

) and hene that T

h

=K

h

is a Jaobi surfae. This implies

that the map �

L

h

: T

h

! P

3

is birational onto its image (see [6, Setion 4℄).

Proposition 2. The above orrespondene between aÆne surfaes A

h

and Abelian

surfaes T indues a bijetion � :M!M

(1;4)

.

Proof. For h 2 H we know that T

h

is a group of four translations of Ja(

�

�

h

) over half

periods leaving D

h

invariant. Sine the group of translations over half periods ats tran-

sitively on the set of theta urves (translates of the theta divisor over half periods) this

property haraterizes T

h

. It follows that isomorphi surfaes A

h

and A

k

lead to iso-

morphi quotients A

h

=T

h

and A

k

=T

k

and hene to isomorphi polarized Abelian surfaes

(T

h

;L

h

) and (T

k

;L

k

). This shows that the given orrespondene between aÆne surfaes

A

h

and Abelian surfaes T indues a map � :M!M

(1;4)

.

Starting from any polarized Abelian surfae (T ; �

L

) of type (1; 4) for whih the in-

dued map is birational there exists a Riemann surfae

�

� and a partitionW =W

1

[W

2

=

fW

0

;W

1

;W

2

g[fW

3

;W

4

;W

5

g of its Weierstrass points suh that T = Ja(

�

�)=T, where T

is the group of translations, given by T = f0; [W

0

�W

1

℄; [W

1

�W

2

℄; [W

2

�W

0

℄g. Moreover

the triple (

�

�;W

1

;W

2

) is uniquely determined up to isomorphism (see [13, Theorem 4℄).

Let us pik one partiular triple (

�

�;W

1

;W

2

) and let us hoose oordinates for P

1

suh

that the image of W

1

under the natural double over

�

� ! P

1

is given by 0; 1 and 1 (in

some order). Then we �nd an equation of the form

y

2

= x(1� x)(Ax

3

+Bx

2

+ Cx+D)

in whih the right hand side has no double roots. Obviously then we an �nd at least

one h 2 H suh that this above urve orresponds to the urve �

h

, given by (6). By

onstrution (the isomorphism lass of) the aÆne surfae A

h

is ontained in the �ber

�

�1

(T ;L), showing the surjetivity of �. Finally, a triple (

�

�

0

;W

0

1

;W

0

2

) whih is isomorphi

to (

�

�;W

1

;W

2

) leads to an isomorphi surfae A

k

beause A

h

is intrinsially desribed in

terms of the triple (

�

�;W

1

;W

2

) as being the aÆne part of the Jaobian of

�

�, obtained by

removing the translates of the theta divisor, orresponding to the half periods f0; [W

0

�

W

1

℄; [W

1

�W

2

℄; [W

2

�W

0

℄g, where W

1

= fW

0

;W

1

;W

2

g.

4. The map to moduli spae

It follows from Setion 2 that for any h 2 H the line bundle L

h

whih orresponds to

D

h

=T

h

de�nes a birational map �

L

h

from T

h

to an oti surfae in P

3

. We will ompute

an equation of this oti beause the oeÆients of this equation, whih depend on h,

will allow us to solve the moduli problem. Sine T

h

= Ja(

�

�

h

)=T

h

the vetor spae of

funtions whih provide this map onsists of the T

h

-invariant funtions on Ja(

�

�

h

) with a

simple pole along D

h

(at worst), i.e., the T-invariant funtions in the span of fz

0

; : : : ; z

15

g.

Using (4) and (7) one �nds the following four independent invariant funtions:

�

0

= z

0

= 1;

�

1

= z

10

= (z

2

� 2z

5

)

2

� z

2

6

;

�

2

= z

11

= (2z

3

� z

6

)

2

� z

2

2

;

�

3

= z

12

= z

1

z

2

z

3

� z

4

z

5

z

6

:

(19)

9



In order to ompute an equation for the oti it suÆes | in priniple | to eliminate

the variables z

1

; : : : ; z

6

from the equations (3) and (19). In pratie, doing the alulation

in a straightforward way leads to disastrous results, even when using a omputer algebra

pakage suh as Maple. Therefore we will desribe in some detail how this omputation an

be done. As a �rst step we notie that the oti whih we want to ompute is isomorphi

to the variety de�ned by the following equations:

h

1

= X

3

�X

5

; 0 = X

1

X

4

� Z

2

1

;

h

2

= X

1

�X

6

; 0 = X

2

X

5

� Z

2

2

;

h

3

= X

2

�X

4

; 0 = X

3

X

6

� Z

2

3

;

h

4

= X

1

+X

4

+ 2Z

1

+ 4X

3

� 4Z

2

� 4Z

3

;

�

1

= 4X

5

� 4Z

2

+X

2

�X

6

;

�

2

= 4X

3

� 4Z

3

+X

6

�X

2

;

�

2

3

= X

1

X

2

X

3

+X

4

X

5

X

6

� 2Z

1

Z

2

Z

3

:

(20)

To see this, we onsider a regular map ' from the variety given by (3) and (19) to the

variety given by (20). The map ' is given by X

i

= z

2

i

and Z

j

= z

j

z

j+3

, where i = 1; : : : ; 6

and j = 1; 2; 3. On the one hand ' is onstant on the orbits of T beause all X

i

and Z

j

are

T-invariant; on the other hand it is easy to hek that every �ber of ' ontains preisely

four points, hene the degree of ' is four. This shows that (20) represents the image of

A

h

=T

h

in projetive spae, obtained by using the setions of the line bundle assoiated to

D

h

=T

h

.

Six of the equations in (20) are linear and we an use these equations to eliminate

X

2

;X

3

;X

5

;X

6

; Z

2

and Z

3

from the four non-linear equations. Apart from X

1

X

4

= Z

2

1

,

this leaves us with the following three equations (we have used X

1

X

4

= Z

2

1

to simplify

them)

2

�

h

3

X

2

1

� h

2

X

2

4

� (h

2

� h

3

� �

1

� �

2

)Z

2

1

�

� 2(4h

1

+ h

2

� h

3

� h

4

+ �

1

)X

4

Z

1

� 2(h

2

� h

3

� h

4

+ �

2

)X

1

Z

1

+ 2h

3

(4h

1

� h

4

+ �

1

+ �

2

)X

1

+ 2h

2

(h

4

� �

1

� �

2

)X

4

� (h

2

+ h

3

� h

4

+ �

2

)(4h

1

� h

2

� h

3

� h

4

+ �

1

)Z

1

� 8�

2

3

= 0;

4h

3

X

1

� 4(h

2

� �

1

)(h

3

+X

4

) + 4X

1

X

4

� (h

2

� h

3

� h

4

+ �

2

+ 2Z

1

)

2

= 0;

4(h

3

+ �

2

)(X

1

� h

2

)� 4X

4

h

2

+ 4X

1

X

4

� (4h

1

+ h

2

� h

3

� h

4

+ �

1

+ 2Z

1

)

2

= 0:

(21)

The �rst trik that we use to make the rest of the omputation feasible stems from the

following observation. If we multiply the seond equation by X

1

and the third equation

by X

4

to remove from the �rst equation in (21) those terms whih ontain X

2

1

and X

2

4

,

then the resulting equation is a linear equation in X

1

;X

4

and Z

1

(the relation X

1

X

4

= Z

2

1

is again used to simplify this expression) so that (21) is equivalent to a linear system of

equations in X

1

;X

4

and Z

1

, whih is solved at one. An equation for the oti is then

given by substituting the expressions for X

1

;X

4

and Z

1

in the only remaining equation

X

1

X

4

= Z

2

1

.

The resulting equation is monstrous (it has 2441 terms), in ontrast with the follow-

ing equation for the oti, orresponding to an Abelian surfae of type (1; 4) proposed

in [6, Setion 2℄

5

:

�

2

y

2

0

y

2

1

y

2

2

y

2

3

+ �

2

1

(y

4

0

y

4

1

+ y

4

2

y

4

3

) + �

2

2

(y

4

1

y

4

3

+ y

4

0

y

4

2

) + �

2

3

(y

4

0

y

4

3

+ y

4

1

y

4

2

)+

� 2�

1

�

2

(y

2

0

y

2

1

+ y

2

2

y

2

3

)(y

2

0

y

2

2

� y

2

3

y

2

1

)� 2�

2

�

3

(y

2

0

y

2

2

+ y

2

3

y

2

1

)(y

2

0

y

2

3

� y

2

1

y

2

2

)

� 2�

3

�

1

(y

2

0

y

2

3

+ y

2

1

y

2

2

)(y

2

0

y

2

1

� y

2

2

y

2

3

) = 0:

(22)

5

We have resaled some of the oordinates by roots of �1 so as to obtain a more

symmetri equation.

10



The di�erene between these two equations lies of ourse in the hoie of oordinates.

In order to ompute the oordinate transformation whih redues our equation to the

symmetri form (22) we use the following geometri fat. Sine the oti that we obtained

has the form A�

4

3

+B�

2

3

+C

2

= 0 the oti has a singular point of order four at (0 : 0 : 0 : 1)

and suh a singular point neessarily omes from four of the sixteen half periods on Ja(

�

�

h

).

Clearly, (22) also has a singular point of order four at (0 : 0 : 0 : 1). On the other hand,

we remark that the tangent one to (22) at (0 : 0 : 0 : 1), is the union of four hyperplanes

beause the zero lous of the oeÆient of y

4

3

in (22) has the form

(Y

0

+ Y

1

+ Y

2

)(Y

0

� Y

1

+ Y

2

)(Y

0

+ Y

1

� Y

2

)(Y

0

� Y

1

� Y

2

)

where Y

0

=

p

�

3

y

0

, Y

1

=

p

�

2

y

1

and Y

2

= i

p

�

1

y

2

(the partiular hoies made for

eah square root are irrelevant). The oeÆient A of �

4

3

in our equation for the oti

must also fator in four linear fators, but these are harder to determine beause this an

only be done by passing to an extension �eld of the �eld C[h

1

; h

2

; h

3

; h

4

℄. However, if

one uses the setions of a symmetri line bundle to map a Jaobian in projetive spae,

then symmetri equations for the image are usually obtained by expliitly introduing the

Weierstrass points on the urve, rather than working with the oeÆients of a polynomial

that de�nes the underlying urve (see [11, Setion 6℄). In view of the equation (6) for �

h

we are therefore led to de�ning

6

4x

3

h

1

� (4h

1

+ h

4

)x

2

+ (h

4

� h

3

� h

2

)x+ h

3

= �(x� �

1

)(x� �

2

)(x� �

3

):

Indeed, in terms of the �

i

one �nds the following fatorization for A,

A = �

0

3

Y

i=1

[��

i

(�

i

� 1)�

0

� �

i

�

1

� (�

i

� 1)�

2

℄:

In order to �nd the required oordinate transformation, we an now use the following

ansatz:

Y

0

+ Y

1

+ Y

2

= �

0

;

�Y

0

� Y

1

+ Y

2

= �

1

(��

1

(�

1

� 1)�

0

� �

1

�

1

� (�

1

� 1)�

2

);

�Y

0

+ Y

1

� Y

2

= �

2

(��

2

(�

2

� 1)�

0

� �

2

�

1

� (�

2

� 1)�

2

);

Y

0

� Y

1

� Y

2

= �

3

(��

3

(�

3

� 1)�

0

� �

3

�

1

� (�

3

� 1)�

2

):

(23)

The oeÆients �

i

are uniquely determined by the ompatibility equations, whih stem

from the vanishing of the sum of the left hand sides of these four equations. If we denote

�(x) = �(x��

1

)(x��

2

)(x��

3

) then the solution to the ompatibility equations is given

by �

i

= �1=�

0

(�

i

), (i = 1; : : : ; 3). Substituting these values for �

i

in (23) we an rewrite

our equation for the oti in terms of the oordinates Y

0

; : : : ; Y

3

. Putting Y

i

= �

i

y

i

we

an determine the �

i

suh that we obtain preisely (22). It gives the following values for

�; �

1

; �

2

; �

3

:

�

2

i

= �

i

(1� �

i

)(�

i+1

� �

i+2

)

3

;

�

2

= 12(�

2

2

� �

2

1

�

3

) + 2(�

2

� �

1

)(�

1

�

2

+ 9�

3

);

(24)

where �

i

is the i-th symmetri funtion of �

1

; �

2

; �

3

and �

4

= �

1

; �

5

= �

2

. This determines

the parameters �

i

expliitly in terms of the Weierstrass points of the urve

�

�

h

. The sign

of the parameters � and �

i

is not important. Indeed, the oeÆients (�; �

1

; �

2

; �

3

) are

only intermediate moduli for Abelian surfaes of type (1; 4), the moduli themselves being

6

The �nal result will be symmetri in �

1

; �

2

; �

3

, hene does not depend on the order

of these parameters.
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given by the following expressions whih realize the moduli spae as the one C : f

2

4

=

f

1

(4f

3

2

� 27f

2

3

) in weighted projetive spae P

(1;2;2;3;4)

(see [13, Theorem 3℄):

f

0

= �

2

;

f

1

= (�

2

1

+ �

2

2

+ �

2

3

)

2

;

f

2

= �

4

1

+ �

4

2

+ �

4

3

� �

2

1

�

2

2

� �

2

2

�

2

3

� �

2

3

�

2

1

;

f

3

= (�

2

2

� �

2

1

)(�

2

3

� �

2

2

)(�

2

1

� �

2

3

);

f

4

= (�

2

1

+ �

2

2

+ �

2

3

)(�

2

1

+ �

2

2

� 2�

2

3

)(�

2

2

+ �

2

3

� 2�

2

1

)(�

2

3

+ �

2

1

� 2�

2

2

):

The standard ation of the symmetri group S

3

on C[�

1

; �

2

; �

3

℄ indues on C[�

2

1

; �

2

2

; �

2

3

℄

an ation whih is determined by (1; 2) � (�

2

1

; �

2

2

; �

2

3

) = (��

2

2

;��

2

1

;��

2

3

) and (1; 2; 3) �

(�

2

1

; �

2

2

; �

2

3

) = (�

2

2

; �

2

3

; �

2

1

). Therefore, every symmetri funtion in C[�

2

1

; �

2

2

; �

2

3

℄ is either

invariant or anti-invariant with respet to this indued ation and it follows that the above

polynomials f

0

; : : : ; f

4

are symmetri in �

1

; �

2

; �

3

. They are easily expressed in terms of

h = (h

1

; h

2

; h

3

; h

4

); the resulting map M ! C � P

(1;2;2;3;4)

solves the moduli problem,

posed in the introdution.
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