
B

�

ACKLUND TRANSFORMATIONS FOR FINITE-DIMENSIONAL

INTEGRABLE SYSTEMS: A GEOMETRIC APPROACH

VADIM KUZNETSOV AND POL VANHAECKE

Abstrat. We present a geometri onstrution of B�aklund transformations

and disretizations for a large lass of algebrai ompletely integrable sys-

tems. To be more preise, we onstrut families of B�aklund transformations,

whih are naturally parametrized by the points on the spetral urve(s) of the

system. The key idea is that a point on the urve determines, through the

Abel-Jaobi map, a vetor on its Jaobian whih determines a translation on

the orresponding level set of the integrals (the generi level set of an alge-

brai ompletely integrable systems has a group struture). Globalizing this

onstrution we �nd (possibly multi-valued, as is very ommon for B�aklund

transformations) maps whih preserve the integrals of the system, they map

solutions to solutions and they are sympleti maps (or, more generally, Pois-

son maps). We show that these have the spetrality property, a property

of B�aklund transformations that was reently introdued. Moreover, we re-

over B�aklund transformations and disretizations whih have been up to now

been onstruted by ad-ho methods, and we �nd B�aklund transformations

and disretizations for other integrable systems. We also introdue another

approah, using pairs of normalizations of eigenvetors of Lax operators and

we explain how our two methods are related through the method of separation

of variables.
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1. Introdution

The theory of integrable maps got a boost, if was not virtually (re)started, a

deade ago, when Veselov developed a theory of Lagrange orrespondenes [24℄,

[25℄. Roughly speaking, integrable maps (also alled integrable Lagrange orrespon-

denes) are sympleti multi-valued mappings whih have enough integrals of mo-

tion, this de�nition being a proper analog of the lassial Liouville integrability. In

the main examples, studied by him and later by others, the integrable maps that are

onstruted are time-disretizations of some lassial Liouville integrable systems

(suh as the Neumann system, the geodesi ow on an ellipsoid, the Euler-Manakov

top, the Toda lattie, Calogero-Moser systems and other integrable families), see,

for instane, [10℄, [11℄, [12℄, [14℄, [18℄, [3℄, [17℄ and [4℄. It follows that these sym-

pleti maps assoiate to a given solution of the integrable system a new solution, a

property reminisent of B�aklund transformations for soliton equations; thus, one

speaks in this ontext often of a B�aklund transformation for the integrable system.

Reently [12℄ a new property of spetrality of B�aklund transformations was intro-

dued. Namely, it was observed that when one searhes for the simplest B�aklund

transformations of an integrable system, then one atually �nds a one-dimensional

family fB

�

j � 2 C g of them and, most importantly, that the variable � whih is

essentially the onjugate

1

to � is bound to � by the equation of an algebrai urve

(dependent on the integrals), whih is preisely the urve that appears in the lin-

earization (integration) of the integrable system. The term spetrality stems from

the fat that these urves arise most often as spetral urves, e.g. when the vetor

�elds of the integrable system are given by Lax equations.

The purpose of this paper is to present a systemati onstrution of B�aklund

transformations for a large lass of integrable systems whih inludes most lassial

integrable systems and many new ones. Some of the avors of our methods and

results are:

1. Our B�aklund transformations B

�

are given by expliit formulas rather than

impliit equations;

2. We �nd big families of maps: one an let the parameter � vary from one level

manifold of the integrals to another;

3. They are sympleti (or Poisson) with respet to several ompatible symple-

ti (or Poisson) strutures;

4. Although our maps are n-valued (two-valued in the examples), they lead to

single-valued maps on any level manifold of the integrals;

5. The resulting multi-point maps will disretize a family of ows of the inte-

grable system (and not just a partiular one).

6. The maps (and their iterates) are de�ned over an extension �eld Q (

p

p) of Q ,

where p depends on the initial onditions (values of the integrals) only.

These properties imply that our B�aklund transformations are very well suited as

sympleti integrators for the underlying integrable systems (see [15℄).

Our methods will be restrited to those integrable systems (de�ned over C ) whih

have \good" algebrai geometri properties. These systems, baptized algebrai

1

Sine B

�

is sympleti it is given by a anonial transformation F

�

, whih depends on �. The

onjugate of � is given by �F

�

=��.
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ompletely integrable systems (a..i. systems) by Adler and van Moerbeke (see [1℄)

have algebrai integrals and Poisson strutures, and the generi ommon level set of

the integrals is an aÆne part of a omplex algebrai torus (Abelian variety) on whih

the ow of the integrable vetor �elds evolves linearly. A B�aklund transformation

B

�

, as de�ned above, will leave eah suh level set invariant. But it is well-know that

Abelian varieties are rigid in the sense that a holomorphi map between Abelian

varieties is a group automorphism, followed by a translation. The automorphism

group of an Abelian variety being �nite, B

�

onsists of a pure translation if it

depends e�etively on � and is the identity map for some value of �. If one wants

to onstrut B�aklund transformations, one may therefore be tempted to presribe

for every level set a g-dimensional vetor (g is the dimension of the level set) but

one is ertainly doomed to fail when one wants to write down expliitly in algebrai

oordinates the map whih results from a translation over this family of vetors.

When the Abelian varieties that appear in the a..i. system are Jaobians then

there is a speial family of translations, given by pairs of points on the underlying

algebrai urve (the Jaobian of an algebrai urve of genus g is a g-dimensional

Abelian variety). Using the expliit orrespondene between the points of phase

spae and the points on a Jaobian (represented either as divisors or line bundles

on the underlying urve) we write down the meromorphi funtion on the urve

that realizes the linear equivalene

D + P �

l

~

D +Q;(1)

where P and Q are the two points on the urve and the divisors D and

~

D are the two

divisors whih orrespond to a generi point on phase spae and its image under the

B�aklund transformation (this funtion is unique up to a onstant fator). When

expressed in terms of the phase variables this provides us with the map that gives

the desired translation over the element [P � Q℄ of the Jaobian. If one �xes one

of the points, say Q, one reovers a 1-dimensional family of maps, indexed by a

point P on the urve. Notie that we an vary the points from one Jaobian to

the other; however, there is an unavoidable monodromy problem, whih makes that

the points P and Q may get interhanged (leading to preisely the opposite vetor,

hene the inverse B�aklund transformation), thus leading to a two-valued map.

For example, for the (g-dimensional) Mumford system (see [21℄), phase spae

is the aÆne spae of all matries L(x) =

�

v(x) w(x)

u(x) �v(x)

�

where u; v and w are

polynomials in x with u and w moni and

deg v(x) < degu(x) = degw(x) � 1 = g:

The family of maps that we onstrut are given by the similarity transformation

L(x) 7!M(x)L(x)M

�1

(x)(2)

with

M(x) =

�

� x� �

f

+ �

2

1 �

�

;(3)

where � =

�

f

�v(�

f

)

u(�

f

)

and (�

f

; �

f

) is the hosen point P (dependent on f) on the

spetral urve y

2

= f(x) = � detL(x) and Q is the point at in�nity of this urve.

It is easy to see that these maps satisfy properties 1, 2, 4 and 6 above.



4 VADIM KUZNETSOV AND POL VANHAECKE

By a diret omputation we �nd, in eah example, a large lass of Poisson maps.

In the ase of the Mumford system for example we show that when P varies suh

that its �rst oordinate depends on the Casimirs of the Poisson struture only, then

we get a Poisson map, thereby establishing property 3.

When the level manifolds of the a..i. system are not Jaobians then they are, in

all known examples where the integrals are known expliitly, overs of Jaobians,

and we get B�aklund transformations in an impliit form, i.e., we get Lagrangian

orrespondenes as in Veselov's original paper [24℄. See Paragraph 3.5 for an ex-

ample. The same applies to g.a..i. systems (a..i. in the generalized sense, see

[2℄). When the level manifolds are more general Abelian algebrai groups (a..i.

in the sense of Mumford) then they are extensions of Abelian varieties by one or

more opies of C

�

and our tehnique again applies, see Paragraphs 3.2 and 3.3 for

examples.

When we let Q ! P then we �nd at the �rst order a vetor �eld whih is on-

stant on every level manifold beause Q and P depend on the integrals only, so

their restritions to these level manifolds are linear ombinations of the integrable

vetor �elds. They need not be globally Hamiltonian, but we will present in our

examples one-parameter families of points (P;Q) whih lead to preisely the inte-

grable vetor �elds of the a..i. system (property 5). In these ases the B�aklund

transformations should be onsidered as disretizations of the integrable system.

Sine these B�aklund transformations ommute, by onstrution, one may think of

these as de�ning a disrete analog of an a..i. system.

Below we will also present another, but related, tehnique to onstrut the maps

that represent translations on the level manifolds (assumed to be aÆne parts of

Jaobians) of the integrals. For this it is assumed that phase spae is given by Lax

operators. We hoose two di�erent normalizations of the eigenvetors of the Lax

operator, leading to two di�erent separations of variables. This results in a map

whih is idential to the one that we onstruted before. The reason is that the two

di�erent normalizations, whih lead to linearly equivalent divisors, are hosen suh

that eah has a di�erent �xed point in the resulting divisor; if we all these points

P and Q then we reover preisely the above linear equivalene (1), and hene leads

to the same B�aklund transformation.

2. The Mumford system

2.1. Translations on hyperellipti Jaobians. For a �xed integer g � 1 the

phase spae M

g

of the (g-dimensional) Mumford system (see [16℄) is the aÆne

spae M

g

of Lax matries L(x) of the form

L(x) =

�

v(x) w(x)

u(x) �v(x)

�

;

where u(x); v(x) and w(x) are polynomials, subjet to the following onstraints:

u(x) and w(x) are moni and their degrees are respetively g and g+1; the degree

of v(x) is at most g � 1. Writing

u(x) = x

g

+ u

1

x

g�1

+ : : :+ u

g

;

v(x) = v

1

x

g�1

+ : : :+ v

g

;

w(x) = x

g+1

+ w

0

x

g

+ : : :+ w

g

;
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we an take the oeÆients of these three polynomials as oordinates on M

g

. In

partiular we will sometimes denote points of M

g

by triples (u(x); v(x); w(x)). Let

us denote by P

n

the aÆne spae of polynomials f 2 C [x℄ whih are moni and have

degree n. We will usually view P

2g+1

(or, in the next setion, P

2g+2

) as the spae

of hyperellipti urves with equation y

2

= f(x); when all roots of f are distint

then suh a urve is smooth and its genus is g. We denote suh an aÆne urve by

�

f

and denote its smooth ompati�ation, whih is a ompat Riemann surfae,

by

�

�

f

. It is well-known that every ompat hyperellipti Riemann surfae of genus

g is obtained in this way. The surjetive map � :M

g

! P

2g+1

de�ned by

�(L(x)) = � detL(x) = u(x)w(x) + v

2

(x)(4)

is the moment map of an algebrai ompletely integrable system (a..i. system).

This means in the �rst plae that there is a Poisson struture

2

onM

g

with respet to

whih �

�

(O(P

2g+1

)) is involutive (ommutative for the Poisson braket). Seondly,

it means that the tangent spae to a generi �ber �

�1

(f) of � is spanned by the

Hamiltonian vetor �elds assoiated to this involutive algebra; by the �rst ondition

these vetor �elds ommute. Third, a generi �ber of � is an aÆne part of a

ommutative algebrai group; in the present ase, when the roots of f are distint

then �

�1

(f) is an aÆne part of a omplex algebrai torus, namely it is isomorphi

to the Jaobian of

�

�

f

, minus its theta divisor. Finally, it means that the ow of the

ommuting Hamiltonian vetor �elds on eah omplex torus lifts to a linear ow on

its universal overing spae C

g

.

It is onvenient for our onstrutions to introdue the universal urve C

g

of

P

2g+1

. Intuitively speaking, C

g

is onstruted out of P

2g+1

by replaing every

point of P

2g+1

by the urve whih it represents. Expliitly, C

g

an be represented

as the aÆne variety

�

(x; y; f) j x; y 2 C ; f 2 P

2g+1

and y

2

= f(x)

	

;

the natural projetion C

g

! P

2g+1

will be denoted by �. The partial ompat-

i�ation of � : C

g

! P

2g+1

, whih is the quasi-projetive variety obtained by

ompatifying the �bers of �, will be denoted as

�

C

g

and we use the same notation

� for the extension of � to

�

C

g

.

The �rst useful observation that we make is that any setion � of � : C

g

! P

2g+1

leads to a family of transformations of phase spae, where eah transformation

restrits to a translation on every Jaobian of the system. This follows from the

fat that there is a natural setion �

1

of � :

�

C

g

! P

2g+1

, whih is given by

�

1

(f) = (1

f

; f), where 1

f

is the unique point needed to ompatify �

f

into

�

�

f

.

Indeed, if � is a setion of � : �

g

! P

2g+1

then we get a ommutative diagram

�

C

g

M

g

P

2g+1

�

�

�

�

�	

�

6

�

2

There are in fat in the present ase many (ompatible) Poisson strutures whih make the

Mumford system into an a..i. system, see [19℄ and Paragraph 2.2 below.
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where � is de�ned as � = � Æ � and we get a map B

�

:M

g

!M

g

by

L 7! L
 [�(L) � �

1

(L)℄;(5)

(�

1

= �

1

Æ �). In this de�nition we use the fat that a generi point L(x) of M

g

(more preisely: eah point of any �ber �

�1

(f) for whih �

f

is smooth) admits a

natural interpretation as a holomorphi line bundle L of degree g over the Riemann

surfae

�

�

f

, where f = �(L(x)); thus L 2 Pi

g

(

�

�

f

)

�

=

Ja(�

f

). Also, [D℄ stands

for the line bundle assoiated to a divisor D. By onstrution, the restrition of

B

�

to a generi level �

�1

(f) of the moment map � is a translation over [�(f) �

�

1

(f)℄. On the one hand this implies that B

�

is isospetral: it leaves the �bers

of � invariant. On the other hand, translations in a ommutative group obviously

preserve translation invariant vetor �elds, hene B

�

leaves invariant all those vetor

�elds onM

g

whih restrit to translation invariant vetor �elds on a generi �ber of

�; in partiular eah B

�

leaves the integrable vetor �elds of the Mumford system

invariant. Notie that it is unavoidable for suh translation maps to have poles,

beause a non-zero translation moves the theta divisor, hene every �ber of � will

have a divisor of points whih are sent out of phase spae.

Our seond observation is that the maps B

�

an be e�etively omputed. In-

deed, following Mumford (who attributes this onstrution to Jaobi) the above

mentioned interpretation of a generi element L(x) 2M

g

as a line bundle L an be

arried out expliitly as follows: to the point L(x) = (u(x); v(x); w(x)) 2 �

�1

(f)

we assoiate the divisor D =

P

g

i=1

(x

i

; y

i

) on �

f

(hene the line bundle L = [D℄

on

�

�

f

, when f is supposed to have no multiple roots) using the following simple

presription:

x

1

; : : : ; x

g

are the zeros of u(x),(6)

y

i

= v(x

i

) for i = 1; : : : ; g:(7)

Assuming (u(x); v(x); w(x)) to be generi, we let

~

L(x) = B

�

(L(x)) whih we also

write as

(~u(x); ~v(x); ~w(x)) = B

�

(u(x); v(x); w(x)):

Sine (u(x); v(x); w(x)) is generi its image does indeed belong to M

g

. We denote

by D the divisor

P

g

i=1

(x

i

; y

i

) given by (6) and (7). Aording to (5) the line

bundle to whih [D℄ is mapped is obtained by tensoring with [�[D℄� �

1

[D℄℄. We

de�ne regular funtions � and � on P

2g+1

by �(f) = (�(f); �(f); f); in order to

simplify the notation we will write �

f

and �

f

for �(f) and �(f). Then (6) and

(7) assoiate to (~u(x); ~v(x); ~w(x)) the line bundle

~

L = [

~

D℄ for whih we have two

di�erent desriptions,

[

~

D℄ =

h

X

g

i=1

(~x

i

; ~y

i

)

i

=

h

X

g

i=1

(x

i

; y

i

) + (�

f

; �

f

)�1

f

i

:

The seond equality expresses that

P

g

i=1

(~x

i

; ~y

i

) +1

f

and

P

g

i=1

(x

i

; y

i

) + (�

f

; �

f

)

are linearly equivalent. This means that there is a rational funtion (unique up to

a non-zero onstant) on

�

� with poles at (x

i

; y

i

); (i = 1; : : : ; g) and (�

f

; �

f

) and

with a zero at 1

f

. For any � 2 C we onsider

F (x; y) =

y + v(x) + �u(x)

u(x)(x � �

f

)

:(8)

Taking a loal parameter t at 1

f

, suh as x = 1=t

2

and y = 1=t

2g+1

(1 + O(t)),

we �nd that F has a zero at 1

f

. Moreover, both the numerator and denominator
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vanish at the points (x

i

;�y

i

), hene it is suÆient to have that � is suh that the

numerator vanishes at (�

f

;��

f

) to have the required funtion. Thus we take � to

be given by

� =

�

f

� v(�

f

)

u(�

f

)

=

w(�

f

)

�

f

+ v(�

f

)

:(9)

Notie that � depends on the phase variables; one may think of � itself as being

a phase variable, depending on the other phase variables (see also Paragraph 2.3

below). The zeros of F on

�

�

f

are the points (~x

i

; ~y

i

) and annot be expliitly

omputed as suh. However, the polynomials (~u(x); ~v(x); ~w(x)) to whih they

orrespond, take a simple form. Consider

(y � v(x)� �u(x))F (x; y) =

y

2

� (v(x) + �u(x))

2

u(x)(x � �

f

)

=

w(x) � 2�v(x) � �

2

u(x)

x� �

f

:

Counting degrees we �nd that the last expression is moni of degree g in x and is

independent of y, hene it is

Q

g

i=1

(x � ~x

i

), i.e., it is ~u(x). Thus we have obtained

an expliit expression for the �rst omponent of B

�

:

~u(x) =

�

2

u(x) + 2�v(x)� w(x)

�

f

� x

:(10)

We laim that the seond omponent of B

�

is given by

~v(x) = �v(x)� �u(x) + �~u(x)

=

�(x � �

f

+ �

2

)u(x) + (x� �

f

+ 2�

2

)v(x) � �w(x)

�

f

� x

(11)

To show this, it suÆes to verify that for generi (u(x); v(x); w(x)) both sides take

the same value on g di�erent points (both sides are of degree at most g � 1 in x).

This is easily done by using the points (~x

j

; ~y

j

) (j = 1; : : : ; g); just express that

(~x

j

; ~y

j

) 2 �

f

and F (~x

j

; ~y

j

) = 0 for 1 � j � g, to �nd that

~y

j

= ~v(~x

j

) = �v(~x

j

)� �u(~x

j

);

for j = 1; : : : ; g. The formula for ~w(x) follows from

~u(x) ~w(x) + ~v

2

(x) = f(x) = u(x)w(x) + v

2

(x);

giving

~w(x) = �

(x� �

f

+ �

2

)

2

u(x) + 2�(x� �

f

+ �

2

)v(x) � �

2

w(x)

�

f

� x

(12)

Equations (10), (11) and (12) give expliit formulas for all maps B

�

(� any setion

of C

g

! P

2g+1

). We will investigate the poissoniity of the maps B

�

in Paragraph

2.2.

We �nish this setion by rewriting B

�

in terms of matries. Sine B

�

preserves by

onstrution the spetrum of the Lax matrix L(x), it must be given by a similarity

transformation of L(x),

~

L(x) =M(x)L(x)M(x)

�1

:(13)
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It is easy to verify that suh a matrix M is given by the formula

M(x) =

�

� x� �

f

+ �

2

1 �

�

:(14)

Notie that detM(x) = �

f

� x.

2.2. Poissoniity. There are many (ompabible) Poisson strutures for the Mum-

ford system on M

g

and they an be obtained from a redution of a natural lass of

R-brakets on the loop algebra of sl(2) (see [19℄) or from (almost) anonial brak-

ets on the linearizing variables (see [22℄). Expliitly, there is a Poisson struture

for any univariate polynomial '(x) of degree at most g and they are given by the

following Poisson brakets for the polynomials u(x); v(x) and w(x):

fu(x); u(y)g

'

= fv(x); v(y)g

'

= 0;

fu(x); v(y)g

'

=

u(x)'(y)� u(y)'(x)

x� y

;

fu(x); w(y)g

'

= �2

v(x)'(y)� v(y)'(x)

x� y

;(15)

fv(x); w(y)g

'

=

w(x)'(y) � w(y)'(x)

x� y

� u(x)'(y);

fw(x); w(y)g

'

= 2 (v(x)'(y) � v(y)'(x)) :

We will show that B

�

: (u(x); v(x); w(x)) ! (~u(x); ~v(x); ~w(x)) is a Poisson map

for those setions � for whih � depends on the Casimirs of f� ; �g

'

only. More

preisely, denoting the algebra of Casimirs of f� ; �g

'

by Z

'

we assume in the sequel

that � fators over the anonial

3

map p : P

2g+1

! SpeZ

'

, as in the following

diagram.

C

SpeZ

'

P

2g+1

�

�

�

�

�3

�

p

6

�

This assumption implies that � has trivial brakets with all phase variables; notie

that this does not imply that � has trivial brakets with all phase variables. One

partiular ase of interest is when � is onstant.

Using (15) it an be shown by diret omputation that the Poisson brakets

of the tilded variables are the same as those of the untilded variables | whih

proves that B

�

is a Poisson map | but suh omputations are very long and

tedious. However, by using the Poisson braket formalism that was introdued by

the Leningrad shool these omputations beome feasible. In this formalism one

omputes the 4� 4 matrix fL(x)




; L(y)g , whih is de�ned similarly as the tensor

produt of L(x) and L(y), but taking the Poisson braket of entries of L(x) with

entries of L(y) instead of their produt. Using this notation (15) an be written as

fL(x)




; L(y)g = [r(x � y); L

1

(x)'(y) + '(x)L

2

(y)℄� [�
�; L

1

(x)'(y) � '(x)L

2

(y)℄

(16)

3

p is dual to the algebra homomorphism Z

'

,!O(P

2g+1

)
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where L

1

(x) = L(x)
 Id, L

2

(y) = Id
L(y), � =

�

0 1

0 0

�

and

r(x) = �

1

x

0

B

B

�

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1

C

C

A

:

We need to verify that (16) also holds for the tilded variables, whih means, using

~

L(x) =M(x)L(x)M(x)

�1

, that

fM(x)L(x)M(x)

�1




; M(y)L(y)M(y)

�1

g =

�

r(x � y);M(x)L(x)M(x)

�1


 Id'(y) + '(x) Id
M(y)L(y)M(y)

�1

�

�(17)

�

�
�;M(x)L(x)M(x)

�1

'(y)
 Id� Id
'(x)M(y)L(y)M(y)

�1

�

:

In order to ompute the left hand side of this equation we need expliit formulas

for fL(x)




; M(y)g , for fM(x)




; L(y)g and for fM(x)




; M(y)g . It is easy to see

that fM(x)




; M(y)g = 0. In order to �nd the other brakets we need the brakets

of � with the other phase variables. They were omputed from the de�nition (9)

of �, using the identity f�

2

f

� u(�

f

)w(�

f

)� v

2

(�

f

); �g

'

= 0.

fu(x); �g

'

=

�

f

'(x)� '(�

f

)(v(x) + �u(x))

�

f

(x� �

f

)

;

fv(x); �g

'

= �

2�

f

�'(x) � '(�

f

)(�

2

u(x) + w(x) � u(x)(x � �

f

))

2�

f

(x� �

f

)

;

fw(x); �g

'

= �

(�

2

+ x� �

f

)�

f

'(x) + '(�

f

)(�

2

v(x) � �w(x) � v(x)(x � �

f

))

�

f

(x� �

f

)

:

Using these formulas it is easy to verify that

fL(x)




; M(y)g =

�

'(�

f

)

2�

f

�

L(x);M(x)

�1

�M

��

�

+ '(x)M(x)

�1

�

�




�M

��

fM(x)




; L(y)g = �

�M

��




�

'(�

f

)

2�

f

�

L(y);M(y)

�1

�M

��

�

+ '(y)M(y)

�1

�

�

;

where � = diag(1;�1). For future use we note the following identity

Ad

M(x)
M(y)

(r(x � y) + �
�) = r(x � y) + �
� � �M(x)

�1




�M

��

M(y)

�1

:(18)

Sine fM(x)




; M(y)g = 0 we get

fM(x)L(x)M(x)

�1




; M(y)L(y)M(y)

�1

g

= Id
M(y) fM(x)




; L(y)gL(x)M(x)

�1


M(y)

�1

+M(x)
 Id fL(x)




; M(y)gM(x)

�1


L(y)M(y)

�1

+M(x)
M(y) fL(x)




; L(y)gM(x)

�1


M(y)

�1

�M(x)
M(y)L(y)M(y)

�1

fL(x)




; M(y)gM(x)

�1


M(y)

�1

�M(x)L(x)M(x)

�1


M(y) fM(x)




; L(y)gM(x)

�1


M(y)

�1

:

From here on the omputation is straightforward: substitute the above expressions

for fL(x)




; L(y)g , fL(x)




; M(y)g and fM(x)




; L(y)g and use, besides the

identity (18) the following formulas, valid for arbitrary matries: (A
B)(C
D) =
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AC
BD and [A
B;C
D℄ = AC
BD�CA
DB. Notie that sine eah expres-

sion is either linear in '(�

f

), in '(x) or in '(y) the omputation an be split up in

three shorter veri�ations.

It follows that B

�

: (u(x); v(x); w(x)) ! (~u(x); ~v(x); ~w(x)) is a Poisson map for

those setions � for whih � depends on the Casimirs of f� ; �g

'

only. In view of the

preeeding setion they are B�aklund transformations.

2.3. The existene of a setion �. We have deliberately omitted the question

of the existene of a (global) setion � of � : C

g

! P

2g+1

. In fat it is easy to

show that in the ase of the Mumford system suh a (global) setion does not exist.

Indeed, let us suppose that � : P

2g+1

! C is given. Sine P

2g+1

onsists of all

moni polynomials of degree 2g+1 (g � 1) the regular funtion f 7! f(�

f

), de�ned

on P

2g+1

, is never a onstant map. Therefore it takes the value 0 at some point

f

0

, without being identially zero on any neighborhood of f

0

. If � is to be the �rst

omponent of a setion �, i.e., �(f) = (�

f

; �

f

; f) then �

f

must be a regular map on

the aÆne spae P

2g+1

, satisfying �

2

f

= f(�

f

). On any neighborhood of f

0

this is

however impossible. On the other hand it is lear that in a small neighborhood U of

any f 2 P

2g+1

a setion � exists: hoose � : P

2g+1

! C suh that f(�

f

) 6= 0. Thus

the onstruted B�aklund transformations should either be interpreted semi-loally

(i.e., on a neighborhood �

�1

(U) where U is a neighborhood of a �xed f

0

2 P

2g+1

),

or one has to think of the B�aklund transformation B

�

as a two-valued map. In

the latter interpretation it is worth to observe that the two translations whih one

obtains are opposite to eah other, as follows from

[(x; y) + (x;�y)� 21

f

℄ = 0;

valid for any (x; y) 2 �

f

. On the one hand this implies that in a sense B

�

is its

own inverse, on the other hand it implies that even an n-fold iteration of B

�

is only

2-valued, not 2

n

-valued.

If one insists on having a B�aklund transformation whih is single-valued then

one has to pass to a over of phase spae, preisely as in the lassial onstrution of

Riemann surfaes as the natural objets on whih multi-valued algebrai funtions

beome single-valued. We wish to show now that this larger phase spae inherits in

fat a Poisson struture and an a..i. system from the Mumford system, so that we

have, in fat, onstruted a single-valued map for an a..i. system, whih redues

to the Mumford system after taking the quotient by an involution. Our arguments

will be given here for the Mumford system, but apply also to other systems, the

involution being in general replaed by a higher order automorphism. We �x a

regular map � : P

2g+1

! C and de�ne the following quasi projetive variety,

M

�

g

=

�

(u; v; w; �) j (u; v; w) 2M

g

; (�u(�

f

) + v(�

f

))

2

= f(�

f

); u(�

f

) 6= 0

	

:

The natural map M

�

g

!M

g

is a two-fold rami�ed over, and the dynamis on this

larger spae, in partiular the Poisson brakets of u; v and w with � follow from

the relation

�

(�u(�

f

) + v(�

f

))

2

� f(�

f

); �

	

= 0;

(see [21℄ for general onstrutions of this type). Sine all our formulas for the

B�aklund transformation were expressed regularly in terms of u; v; w and � only,

the B�aklund transformation is single-valued on this larger spae. Obviously, the

funtions in involution of the Mumford system lead to an algebra of funtions in
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involution on the over and, sine the dimension did not hange, they still form an

integrable system. To show that it is atually an a..i. system we must investigate

the nature of the generi �ber of the moment map. For a generi f 2 P

2g+1

we

have that f(�

f

) 6= 0. If we denote the two square roots of f(�

f

) by ��

f

then the

�ber over f is reduible and its two omponents are given by

u(x)w(x) + v

2

(x) = f(x);

�u(�

f

) + v(�

f

) = ��

f

:

Notie that the two omponents do not interset. Sine we know that the variety in

M

g

, given by u(x)w(x)+v

2

(x) = f(x) is an aÆne part of the Jaobian Ja(

�

�

f

), we

�nd that eah omponent is an aÆne part of Ja(

�

�

f

); due to the fat that u(�

f

) = 0

along some divisor, the divisor whih is removed in the latter ase is slightly larger

than the one removed in the former ase. Sine the lifted vetor �elds are also linear

on these Jaobians this shows that the integrable system that we have onstruted

is atually an a..i. system (with reduible �bers).

Another way in whih a global setion � in the ase of the Mumford system an

be found is by passing to a subsystem, i.e., restriting phase spae and its Poisson

struture to a hyperplane on whih the algebra of funtions in involution restrits to

an a..i. system. This smaller a..i. system is also universal for hyperellipti urves

in the sense that, just as for the Mumford system, every hyperellipti Jaobian

(minus its theta divisor) appears as one of the �bers of its moment map. Suppose

that F is an aÆne subspae of P

2g+1

and � is a regular (or rational) funtion on

F suh that the f(�

f

) =  where  is a onstant,  2 C . It an be shown that

this implies that the map � is onstant. By adding � to all elements of f we

�nd that all these polynomials have a ommon root r. By replaing x ! x + r in

f(x) this amounts to saying that up to isomorphism the only reasonable subvariety

of M

g

on whih a global setion � an exist is the subspae

4

M

0

g

of polynomials

(u(x); v(x); w(x)) for whih u(0)w(0)+v

2

(0) = 0; the map � must then be the zero

map, the setion is given by �

f

= (0; 0; f) and the translation on every �ber is given

by [(0; 0)

f

�1

f

℄. Then � = �v

g

=u

g

= w

g

=v

g

and the B�aklund transformation

takes the following form

~u

i

= w

i�1

� 2

w

g

v

i�1

v

g

+

w

g

u

i�1

u

g

;

~v

i

= �v

i

+

v

g

u

g

u

i

�

v

g

w

i�1

u

g

+ 2

w

g

v

i�1

u

g

�

v

g

w

g

u

i�1

u

2

g

:

Sine (0; 0)

f

is a Weierstrass point for any f 2 F the divisor 2((0; 0)

f

�1

f

) is

linearly equivalent to zero, in other words (0; 0)

f

�1

f

is a half period (2-torsion

point) on eah Jaobian. This explains why the two opposite translations are

idential and it shows that this B�aklund transformation is an involution

5

.

2.4. Disretizations and ontinuum limits. We now wish to show that the

maps B

�

provide a disretization of the Mumford system. Mumford onstruts for

every element of P

1

a vetor �eld onM

g

whih is translation invariant (linear) when

4

This happens to be a Poisson subspae for many (but not all) of the Poisson strutures on

M

g

, see [19℄ or Paragraph 2.2 above.

5

The fat that this B�aklund transformation is an involution should not be onfused with our

earlier laim that in a sense the B�aklund transformation is its own inverse.
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restrited to eah �ber of �. His vetor �eld orresponding to 1 is reonstruted

here as the limit

lim

t!0

B

�

t

(u(x); v(x); w(x)) � (u(x); v(x); w(x))

t

where �

t

: P

2g+1

! C

g

onverges as t ! 0 to the onstant setion �

1

: P

2g+1

!

�

C

g

: f 7! 1

f

. The limit taken here is the one for whih the setions �

t

(f) =

(�

f

(t); �

f

(t); f) take the form

�

t

(f) =

�

1

t

2

;

1

t

2g+1

�

1 +

a

0

2

t

2

+O(t

4

)

�

; f

�

;(19)

a

0

= u

1

+ w

0

is the seond oeÆient of f , i.e., f(x) = x

2g+1

+ a

0

x

2g

+ � � � . Then

� =

1

t

�

1 +

w

0

� u

1

2

t

2

+O(t

3

)

�

;

hene (10), (11) and (12) take the form

~u(x) = u(x) + 2tv(x) +O(t

2

);

~v(x) = v(x) � t(w(x) � (x� u

1

+ w

0

)u(x)) +O(t

2

);(20)

~w(x) = w(x) � 2t(x� u

1

+ w

0

)v(x) +O(t

2

):

The oeÆient of t in (20) is (up to a fator of 2) preisely Mumford's vetor �eld

X

1

(see [16℄ page 3.43).

Let us now turn to Mumford's general vetor �elds X

a

(a 2 P

1

). These vetor

�elds have the property of being tangent to the urves P 7! [P + (g � 1)1℄ at the

points (a;�b

f

) on every urve f (here b

2

f

= f(a)), whih suggests that these more

general vetor �elds may be onstruted by taking an appropriate limit (�

f

; �

f

)!

(a; b

f

) of the omposition of two B�aklund transformations orresponding to a shift

[(�

f

; �

f

)� (a; b

f

)℄ = [(�

f

; �

f

) + (a;�b

f

)� 21

f

℄

on eah Jaobian. Our vetor �elds will be more general than Mumford's vetor

�elds beause we allow a

f

to depend on f . Conretely, we will �rst shift over

[(a

f

;�b

f

)�1

f

℄ and then over [(�

f

(t); �

f

(t))�1

f

℄; the matries going with these

transformations (as in (14)) will be denoted by P (x) and Q

t

(x). Then

P (x) =

�

�� x� a

f

+ �

2

1 ��

�

with

� =

b

f

+ v(a

f

)

u(a

f

)

=

w(a

f

)

b

f

� v(a

f

)

;(21)

the transformed L is denoted by

~

L as in (13). In partiular,

~u(x) =

w(x) + 2�v(x) � �

2

u(x)

x� a

f

;(22)

~v(x) = �v(x) + �u(x)� �~u(x):

Also,

Q

t

(x) =

�

�(t) x� �

f

(t) + �

2

(t)

1 �(t)

�
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with

�(t) =

�

f

(t)� ~v(�

f

(t))

~u(�

f

(t))

:

Notie that �(0) = � sine (�

f

(0); �

f

(0)) = (a

f

; b

f

). Let M

t

(x) = Q

t

(x)P (x)

be the matrix de�ning their omposition. To the deformation family

~

L

t

(x) =

M

t

(x)L(x)M

�1

t

(x) there orresponds a vetor �eld on M

g

, de�ned by

dL

dt

a

f

(x) =

d

dt

j

t=0

�

M

t

(x)L(x)M

�1

t

(x)

�

:

In terms of Q(x) this vetor �eld is given by (a prime denotes a derivative with

respet to t)

dL

dt

a

f

(x) =

�

M

0

0

(x)M

0

(x)

�1

; L(x)

�

=

�

Q

0

0

(x)Q

�1

0

(x); L(x)

�

:

We onsider the family of setions �

t

= (�

f

(t); �

f

(t); f) where �

f

(t) = a

f

+ t and

�

f

(t) =

p

f(a

f

+ t). We will show below that

�

0

(0) =

u(a

f

)

2b

f

:(23)

Then

Q

0

0

(x)Q

�1

0

(x) = �

1

2b

f

(x� a

f

)

�

u(a

f

) 2v(a

f

)

0 u(a

f

)

��

� a

f

� x� �

2

�1 �

�

=

1

2b

f

(x� a

f

)

�

v(a

f

)� b

f

w(a

f

) + u(a

f

)(x � a

f

)

u(a

f

) �v(a

f

)� b

f

�

:

Removing a diagonal matrix from this matrix we get the following Lax equations

dL

dt

a

f

(x) =

1

2b

f

�

L(a

f

)

x� a

f

+

�

0 u(a

f

)

0 0

�

; L(x)

�

;

whih redues, when a

f

= a is hosen independently of f , to Mumford's vetor �eld

X

a

(up to a fator 2b

f

whih an be absorbed in t).

Formula (23) remains to be shown.

�

0

(0) =

d

dt

j

t=0

�

f

(t)� ~v(�

f

(t))

~u(�

f

(t))

=

d

dt

j

t=0

�

f

(t) + v(a

f

+ t)� �u(a

f

+ t)

w(a

f

+ t) + 2�v(a

f

+ t)� �

2

u(a

f

+ t)

t

= lim

t!0

�

f

(t) + v(a

f

+ t)� �u(a

f

+ t)

w(a

f

+ t) + 2�v(a

f

+ t)� �

2

u(a

f

+ t)

=

�

0

f

(0) + v

0

(a

f

)� �u

0

(a

f

)

w

0

(a

f

) + 2�v

0

(a

f

)� �

2

u

0

(a

f

)

:

Taking the derivative of �

2

f

(t) = u(�

f

(t))w(�

f

(t)) + v

2

(�

f

(t)) at t = 0 we obtain

�

0

f

(0) =

1

2b

f

(u(a

f

)w

0

(a

f

) + u

0

(a

f

)w(a

f

) + 2v(a

f

)v

0

(a

f

))

and w(a

f

) is easily eliminated from this equation by using w(a

f

) = �2�v(a

f

) +

�

2

u(a

f

), a onsequene of (22). The announed formula for �

0

(0) follows after

substituting this value of �

0

f

(0), upon using (21).
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2.5. Normalizations of eigenvetors of Lax operators. In this setion we

desribe another approah to B�aklund transformations and we explain how the

two approahes are related. For this approah we assume that the a..i. system is

given in Lax form.

Let us reall (see e.g., [8℄) that a generi Lax matrix L(x) 2 End(C

n+1

)[x℄ de�nes

a line bundle on the assoiated spetral urve � : det(L(x)�y Id) = 0; generi means

here that the aÆne urve � is assumed smooth and that for generi (x; y) 2 �

the eigenspae of L(x) orresponding to the eigenvalue y is 1-dimensional (both

onditions are veri�ed for the generi L(x) of the Mumford system). Assuming L(x)

to be generi we denote, as before, by

�

� the ompat Riemann surfae orresponding

to � and we onsider the eigenvetor map � :

�

� ! P

n

, whih is de�ned, on the

aÆne piee �, by

L(x)�(x; y) = y�(x; y):

An expliit desription of � on an aÆne piee of

�

� is given by the map

�

i

: (x; y) 7! (L(x)� y Id)

^

i

(24)

where 1 � i � n+1 is arbitrary, A

^

stands for the adjoint of the matrix A and A

i

stands for the i-th olumn of A. More preisely, every �

i

is de�ned on �nS

i

, where

S

i

is a olletion of points and \

i

S

i

= ;. We will see shortly that we need all loal

representatives �

i

(i = 1; : : : ; n+ 1) of � for our omputations. The line bundle L,

de�ned by L(x), is given by L = �

�

H, where H is the hyperplane bundle on P

n

.

The degree d of L follows from

degL = deg�(

�

�) deg �:(25)

It is a basi fat that pulling bak a setion s of H gives a setion �

�

s whose zero

lous is a divisor D on � suh that [D℄ = �

�

H (see [9℄ Ch. 1.1). Sine a setion

of H is just a hyperplane, this gives us an expliit way to ompute the line bundle

L 2 Pi

d

(

�

�) from the Lax matrix:

L =

�

�

�

(H \ �(

�

�))

�

;(26)

where H is any hyperplane in P

n

. Moreover, the isomorphism Pi

d

(

�

�)

�

=

Ja(

�

�) is

not anonial and depends on the hoie of an element in Pi

d�g

(

�

�), a fat that we

will now exploit to onstrut B�aklund transformations.

To do this we assume that the given L(x) is generi in the above sense; without

loss of generality we may also assume that the image urve �(

�

�) is non-degenerate

(i.e., it is not ontained in a hyperplane). Our main assumption, whih will be

relaxed in Setion 3, is that degL = g + n. Sine the hyperplane bundle H on P

n

is the line bundle whih orresponds to any hyperplane of P

n

, �xing a setion of H

is equivalent to �xing a hyperplane H of P

n

. By non-degeneray this an be done

by �xing n points p

i

on

�

� whih are in general position, and asking that H be suh

that

P

p

i

� �

�

H (when all p

i

are di�erent this means that H = span f�(p

i

)g).

Let us take another olletion of n points ~p

i

in general position. We denote the

orresponding hyperplane by

~

H . If

~

L(x) is another Lax matrix, isospetral to L(x),

with orresponding map ~� :

�

�! P

n

then we will say that

~

L(x) = B(L(x)) if

~�

�

(

~

H \ ~�(

�

�))�

n

X

i=1

~p

i

= �

�

(H \ �(

�

�))�

n

X

i=1

p

i

:(27)
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Notie that (27) implies that

~

L = L
 [~p

1

� p

1

℄
 � � � 
 [~p

n

� p

n

℄;(28)

where L is given by (26) and

~

L is de�ned analogously. One noties that this

equation is the n-point analog of equation (5). In fat, let us speialize this to

the ase n = 1 and globalize the onstrution to the phase spae of the Mumford

system and reover exatly the B�aklund transformations that we have onstruted

before.

If L(x) is a generi matrix of M

g

(the phase spae of the Mumford system) then

n = 1 and the two loal representatives (24) of the eigenvalue map � are given by

�

1

: (x; y) 7!

�

�v(x)� y

�u(x)

�

and �

2

: (x; y) 7!

�

�w(x)

v(x) � y

�

:

A hyperplane H of P is just a point: writing ~� = (r : s) we �nd the following

equations for the divisor D = �

�

(H \ �(�

f

)):

0 = (v(x) + y)r + u(x)s;

0 = �w(x)r + (v(x) � y)s:

The degree of the image urve being 1 it suÆes to determine the degree of � to

know the degree of the line bundle. Taking a (r : s) generi, we easily �nd preisely

g+ 1 solutions hene degL = g + 1, showing that our main assumption is satis�ed

for the Mumford system. Sine n = 1 we need to pik one point on every urve

�

�

f

to represent L as an element of the Jaobian Ja(

�

�

f

) = Pi

g

(

�

�

f

) and we need

two points on every urve to onstrut a B�aklund transformation as in (27). We

do this by piking the setions �

1

and � whih were onstruted in Paragraph 2.1.

For the �rst hoie, whih orresponds to piking the point 1

f

at every urve, we

�nd ~�

0

= (0: 1); we let this hoie orrespond to the untilded variables. We let

the seond hoie, whih is given by �(f) = (�

f

; �

f

; f), orrespond to the tilded

variables and we �nd

6

~� = (~u(�

f

) : �~v(�

f

)� �

f

) = (~v(�

f

)� �

f

: ~w(�

f

)):

In order to simplify the omputation we will write ~� as (1 : ��); it will follow later

that this de�nition of � agrees with the one given in (9). (28) now expresses that

the solutions of

u(x) = 0; v(x) = y;

are the same as the solutions of

�

1 ��

�

�

�~v(x)� y � ~w(x)

�~u(x) ~v(x) � y

�

= 0;(29)

exept that (29) also has (�

f

; �

f

) as a solution. If we eliminate y from (29) we �nd

that ~w(x) + 2�~v(x)� �

2

~u(x) = 0 has as solutions �

f

and the roots of u, so

u(x) =

�

2

~u(x) � 2�~v(x)� ~w(x)

�

f

� x

:(30)

In order to obtain the formula for v(x) we take the �rst equation in (29), �~v(x)�

y + �~u(x) = 0 whih has among its roots the solutions of u(x) = 0; v(x) = y. It

6

Given L(x) there are g (resp. g+1) values (�; �) where the �rst (resp. seond) representation

breaks down, i.e., it may be of the form ~� = (0 : 0). For generi L(x) those two sets of values are

disjoint, in the non-generi ase it suÆes to take a limit.
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follows that the same is true for the polynomial �~v(x)� v(x)��u(x)+�~u(x) = 0,

but sine this polynomial has degree less than g it is zero, giving

v(x) = �~v(x)� �u(x) + �~u(x):(31)

If we express that (�

f

; �

f

) is a solution to (29), then (31) implies

� =

~v(�

f

) + �

f

~u(�

f

)

=

�

f

� v(�

f

)

u(�

f

)

;

as in (9). It follows that formulas (30) and (31) desribe exatly the maps B

�

,

given by (10) and (11), in their inverse form. Notie that we would have obtained

an expression for the maps B

�

in their diret form by expressing that the solutions

to

~u(x) = 0; ~v(x) = y;

are the same as the solutions of

�

1 ��

�

�

�v(x)� y �w(x)

�u(x) v(x) � y

�

= 0;(32)

exept that (32) also has (�

f

;��

f

) as a solution (this follows from the linear equiv-

alene (�

f

; �

f

) + (�

f

;��

f

) �

l

21

f

).

It follows from [16℄ that the roots of the polynomial u(x) lead to a separation of

variables. This is one separation of variables; another one is given by the equations

(29) for the tilde-variables. Relating them by assuming that they have the same

divisor D as a solution, we reate a B�aklund transformation whih orresponds to

a shift on eah Jaobian parametrized by a point (�

f

; �

f

) on its underlying urve

�

f

. Thus, in the Lax approah, our onstrution of B�aklund transformations leads

to alternative separation of variables (given one separation of variables) and given

a pair of separations of variables we reover a B�aklund transformation for the

system.

2.6. Spetrality. We now ome to a remarkable property of our B�aklund trans-

formations, whih was baptized spetrality by [12℄. In order to establish this prop-

erty we will �rst onsider an isomorphism to another integrable system in whih

the Poisson struture takes a simple form. We �x an irreduible moni polynomial

'(x) of degree g,

'(x) = (x� a

1

)(x� a

2

) � � � (x� a

g

);

and we de�ne an aÆne map M

g

! C

3g+1

by

1

'(x)

(u(x); v(x); w(x)) =

 

1 +

g

X

i=1

f

i

x� a

i

;

g

X

i=1

h

i

x� a

i

; x+ e

0

+

g

X

i=1

e

i

x� a

i

!

:

Expliitly, the map an be omputed in terms of the oordinates e

0

; : : : ; h

g

on C

3g+1

by

f

i

=

u(a

i

)

Q

k 6=i

(a

i

� a

k

)

; h

i

=

v(a

i

)

Q

k 6=i

(a

i

� a

k

)

; e

i

=

w(a

i

)

Q

k 6=i

(a

i

� a

k

)

;

and e

0

= w

0

�

P

g

i=1

a

i

. Dividing both sides of the equations (15) by '(x)'(y) and

taking residues at x = a

i

and y = a

j

we �nd that the variables fh

i

; e

i

; f

i

g

g

i=1

are
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generators for the diret sum of g opies of the Lie-Poisson algebra of sl(2): for

i; j = 1; : : : ; g, we have fh

i

; h

j

g = ff

i

; f

j

g = fe

i

; e

j

g = 0 and

fe

i

; h

j

g = e

i

Æ

ij

; fh

i

; f

j

g = f

i

Æ

ij

; ff

i

; e

j

g = 2h

i

Æ

ij

:(33)

Let us denote the Casimir element oming from the i-th opy of sl(2) by C

i

, C

i

=

h

2

i

+ e

i

f

i

. Then the equation of the spetral urve looks as follows:

y

2

'

2

(x)

=

f(x)

'

2

(x)

= x+ C

0

+

g

X

i=1

�

C

i

(x� a

i

)

2

+

H

i

x� a

i

�

;(34)

where

H

i

=

X

j 6=i

2h

i

h

j

+ e

i

f

j

+ e

j

f

i

a

i

� a

j

+ e

i

+ (a

i

+ e

0

)f

i

and C

0

is an extra Casimir. If we de�ne �̂

f

= �

f

='(�

f

) then

�̂

2

f

= �

f

+ C

0

+

g

X

i=1

�

C

i

(�

f

� a

i

)

2

+

H

i

�

f

� a

i

�

;

and the relation (9) takes the form

� =

�̂

f

�

P

i

h

i

�

f

�a

i

1 +

P

i

f

i

�

f

�a

i

:(35)

Notie that on C

3g+1

the Poisson struture is independent of ', but that the Hamil-

tonians are now dependent on the onstants a

i

whih enode the Poisson struture

f� ; �g

'

on M

g

. In fat, the integrable system that we have obtained on C

3g+1

is the

�rst member of the deformed Gaudin magnet hierarhy from [7℄ and our B�aklund

transformations for the Mumford system are easily rewritten as B�aklund transfor-

mations for this system. Expliitly we �nd

~

f

i

=

�

2

f

i

+ 2�h

i

� e

i

�

f

� a

i

;

~

h

i

=

�(a

i

� �

f

+ �

2

)f

i

+ (a

i

� �

f

+ 2�

2

)h

i

� �e

i

�

f

� a

i

;(36)

~e

i

= �

(a

i

� �

f

+ �

2

)

2

f

i

+ 2�(a

i

� �

f

+ �

2

)h

i

� �

2

e

i

�

f

� a

i

;

where � is given by (35).

We �x a setion � of C

g

! P

2g+1

and we assume, as before, that �

f

depends on

the Casimirs of f� ; �g

'

only, where �(f) = (�

f

; �

f

). We restrit our B�aklund trans-

formation B

�

to a sympleti leaf of the Poisson struture by �xing generi values

of all Casimirs C

j

, j = 0; : : : ; g. Then we have only 2g independent (Darboux-

type) variables, whih we hoose to be fh

i

; f

i

g

g

i=1

, we an express the e

i

variables

in terms of those (the expression for e

0

was omputed from (34)),

e

i

=

C

i

� h

2

i

f

i

; e

0

= C

0

�

g

X

i=1

f

i

;

and �

f

beomes a onstant, so we drop the index f from the notation.

We will use the theory of anonial transformations to show that B

�

has the

spetrality property and we will �nd along the way an alternative, simpler, proof

that B

�

is a Poisson map. Reall that a transformation (bijetive map) between
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(2g-dimensional) sympleti manifolds is anonial (sympleti) if and only if it

has a loal generating funtion F , i.e., in terms of anonial variables (x

i

; y

i

) and

(~x

i

; ~y

i

) one has a funtion F (x

1

; : : : ; x

g

j~x

1

; : : : ; ~x

g

) suh that

y

i

=

�F

�x

i

and ~y

i

= �

�F

�~x

i

:(37)

In turn this is equivalent to the ompatibility relations

�y

i

�x

j

=

�y

j

�x

i

;

�~y

i

�~x

j

=

�~y

j

�~x

i

;

�~y

i

�x

j

= �

�y

j

�~x

i

;

where i; j = 1; : : : ; g; in these formulas one views the transformation loally as

a map (x

1

; : : : ; x

g

; ~x

1

; : : : ; ~x

g

) ! (y

1

; : : : ; y

g

; ~y

1

; : : : ; ~y

g

). In the present ase this

means that we have to view h

1

; : : : ; h

g

;

~

h

1

; : : : ;

~

h

g

as funtions of f

1

; : : : ; f

g

;

~

f

1

; : : : ;

~

f

g

and that we need to verify the following ompatibility relations

f

j

�h

i

�f

j

= f

i

�h

j

�f

i

;

~

f

j

�

~

h

i

�

~

f

j

=

~

f

i

�

~

h

j

�

~

f

i

; f

j

�

~

h

i

�f

j

= �

~

f

i

�h

j

�

~

f

i

:(38)

To do this we need to express the variables h

i

;

~

h

i

and � in terms of the variables f

i

and

~

f

i

. Multiplying both sides of (10) by ��x and omparing the leading terms in

x we �nd �

2

= �+w

0

� u

1

, leading to the following expression for � as a funtion

of f

~

f

i

; f

i

g

g

i=1

:

�

2

= �+ C

0

�

g

X

i=1

(

~

f

i

+ f

i

):(39)

Exluding the e-variables from the equations (36) of the map B

�

: fh

i

; f

i

g

g

i=1

7!

f

~

h

i

;

~

f

i

g

g

i=1

we �nd the following 2g equations:

(h

i

+ �f

i

)

2

� (�� a

i

)

~

f

i

f

i

� C

i

= 0;(40)

~

h

i

= �h

i

+ �(

~

f

i

� f

i

):(41)

Notie that with � from (39) the �rst equation de�nes h

i

and then the seond

equation de�nes

~

h

i

, both as impliit funtions of the variables f

~

f

i

; f

i

g

g

i=1

. Straight-

forward omputation leads to

�h

i

�f

j

=

f

i

2�

and

�

~

h

i

�

~

f

j

= �

~

f

i

2�

for i 6= j and to

�h

i

�

~

f

j

=

f

i

2�

+

(� � a

i

)f

i

2(h

i

+ �f

i

)

Æ

ij

and

�

~

h

i

�f

j

= �

~

f

i

2�

�

(�� a

i

)

~

f

i

2(h

i

+ �f

i

)

Æ

ij

;

for any i; j. The ompatibility onditions (38) follow at one.

In fat, in the same way we an prove another property of the B�aklund transfor-

mation, its spetrality, whih means that the variables �̂ and � are also anonial,

in a sense, or more preisely, that the parameter � enters in the generating funtion

F = F

�

in suh a way that for the �̂ being expressed in terms of f

~

f

i

; f

i

g

g

i=1

variables

we have a similar expression as in (37):

�̂ =

�F

�

��

:
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It follows that the following ompatibility onditions are suÆient for proving the

spetrality property of the B�aklund transformation:

f

i

��̂

�f

i

=

�h

i

��

and

~

f

i

��̂

�

~

f

i

= �

�

~

h

i

��

:(42)

It is easily heked from (35) that these ompatibility onditions indeed hold; the

values of the two expressions in (42) are given by

�

f

i

2�

+

f

i

~

f

i

2(h

i

+ �f

i

)

and �

~

f

i

2�

+

f

i

~

f

i

2(h

i

+ �f

i

)

:

We have shown that our B�aklund transformations are Poisson maps and have the

spetrality property when ' is moni of degree g and is irreduible. Obviously the

fat that ' is moni is inessential. Moreover, all Poisson brakets are polynomial

in terms of the roots a

i

of ' hene these properties hold when ' is any polynomial

of degree at most g.

2.7. Addition formulas for the } funtion. In this paragraph we show that our

formulas (10) and (11) generalize the lassial addition formulas for the Weierstra�

} funtion to the ase of (families of) hyperellipti urves. Let � be an ellipti

urve, written in the Weierstra� form

Y

2

= 4X

3

� g

2

X � g

3

:

Points on this urve are parametrized by } and its derivative }

0

: for any (X;Y ) 2 �

there is a z 2 C suh that (X;Y ) = (}(z); }

0

(z)). We write the equation of � as

y

2

= f(x) = x

3

�(g

2

=4)x�(g

3

=4), thereby �xing f 2 P

3

. We take two generi points

on � and their sum (� is its own Jaobian, hene a group): (�

f

; �

f

)+(p; q) = (~p; ~q).

On the one hand we an assoiate to the points (p; q) and (~p; ~q) the orresponding

polynomials of the Mumford system, on the other hand we an write them in terms

of the } funtion. As for the former we get

u(x) = x+ u

1

= x� p;

v(x) = v

1

= q;

w(x) = x

2

� u

1

x+ w

1

= x

2

+ px+ (4p

2

+ g

2

)=4;

for (p; q) and we get similar formulas for (~p; ~q) by putting tildes over all variables.

In terms of p; q; ~p and ~q formulas (10), (11) and (9) (in that order) take the form

�

2

= p+ ~p+ �; � = �

q + ~q

p� ~p

=

�� q

�

f

� p

:(43)

As for the latter, let (p; q) = (}(z); }

0

(z)=2); (~p; ~q) = (}(~z); }

0

(~z)=2) and (�

f

; �

f

) =

(}(z

0

); }

0

(z

0

)=2). Then (43) redues, after eliminating � to the following lassial

formulas:

1

4

�

}

0

(z) + }

0

(~z)

}(z)� }(~z)

�

2

= }(z) + }(~z) + }(z

0

);

1

4

�

}

0

(z

0

)� }

0

(z)

}(z

0

)� }(z)

�

2

= }(z) + }(~z) + }(z

0

);

with ~z = z + z

0

:
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3. B

�

aklund transformations in more omplex situations

3.1. The even Mumford system. The Mumford system has a twin whih was

introdued by the seond author in [23℄, where it was alled the even master system;

in this text we will all it the even Mumford system. The phase spae M

g

of the

even Mumford system onsists of Lax operators

L(x) =

�

v(x) w(x)

u(x) �v(x)

�

;

where u(x); v(x) and w(x) are now subjet to the following onstraints: u(x) and

w(x) are moni and their degrees are respetively g and g+2; the degree of v(x) is

at most g � 1. In this ase we write

u(x) = x

g

+ u

1

x

g�1

+ � � �+ u

g

;

v(x) = v

1

x

g�1

+ � � �+ v

g

;

w(x) = x

g+2

+ w

�1

x

g+1

+ � � �+ w

g

:

The map � : M

g

! P

2g+2

is de�ned as in (4); notie that � takes its values now

in the aÆne spae of moni polynomials of degree 2g + 2, explaining the adjetive

even. The main di�erene between the even and the odd Mumford system is that

the spetral urves �

f

: y

2

= f(x) = u(x)w(x) + v

2

(x) have now two points at

in�nity, a fat whih has drasti onsequenes for the geometry of the integrable

system (see [21℄).

Let us �rst onstrut B�aklund transformations for this system by using the

approah desribed in Paragraph 2.1. We denote by C

g

the universal urve over

P

2g+2

and we onsider setions of the natural projetion � : C

g

! P

2g+2

, as in

Paragraph 2.1. In this ase there is no natural setion of � :

�

C

g

! P

2g+2

, so we

need to hoose two setions of � to onstrut a B�aklund transformation (for the

existene of suh setions the remarks from Paragraph 2.3 apply). To simplify the

formulas for the B�aklund transformation and to make them very similar to the

formulas in the odd ase we pik one of the setions suh that every f 2 P

2g+2

gets mapped to one of the two points at in�nity, i.e. in

�

�

f

n �

f

. We denote this

setion by �

1

and we pik another setion �. Sine Mumford's presription (6) and

(7) applies unhanged, the following variant to (8) realizes the linear equivalene

whih is needed in order to express a shift over [�(f)� �

1

(f)℄ on Ja(

�

�

f

),

F (x; y) =

y + v(x) + u(x)(�(x� �

f

) + �)

u(x)(x � �

f

)

(44)

=

y + v(x) + �u(x)

u(x)(x � �

f

)

� 1 ;

where � is suh that the numerator vanishes at (�

f

;��

f

), so that

� =

�

f

� v(�

f

)

u(�

f

)

:(45)

The � in (44) depends on the hosen setion �

1

, its atual value, for a given f

being determined by expressing x and y in terms of a loal parameter at the point
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�

1

(f). The rest of the omputation is similar to the one in Paragraph 2.1, giving

~u(x) =

u(x)(x � �

f

� �)

2

� 2v(x)(x � �

f

� �)� w(x)

(u

1

� w

�1

� 2�

f

� 2�)(x� �

f

)

;

~v(x) = �v(x)� u(x)(x � �

f

� �)� ~u(x)(x � �

f

+ u

1

� ~u

1

� �) ;(46)

~w(x) = (u(x)w(x) + v

2

(x) � ~v

2

(x))=~u(x) ;

� =

�

f

� v(�

f

)

u(�

f

)

:

The value of the variable ~u

1

in terms of the original variables is omputed from the

�rst equation in (46) to be given by

~u

1

= �

f

+

u

2

� 2v

1

� w

0

� 2u

1

(� � �

f

) + (� � �

f

)

2

u

1

� w

�1

� 2�

f

� 2�

:

The matrix M(x), de�ned as in (13) an in this ase be taken as

�

x� �

f

+ u

1

� ~u

1

� � �(u

1

� ~u

1

� �)� (x � �

f

)(x + �

f

+ w

�1

� ~u

1

)

�1 x� �

f

� �

�

:

(47)

Notie that detM(x) = (x� �

f

)(u

1

� w

�1

� 2�

f

� 2�).

The integrable vetor �elds of the even Mumford system are Hamiltonian with

respet to a family of Poisson brakets, similar to the brakets (15): if ' is a

univariate polynomial of degree at most g then one �nds preisely the brakets

(15), exept for the following two brakets

fv(x); w(y)g

'

=

1

x� y

(w(x)'(y) � w(y)'(x)) � �(x; y)u(x)'(y);

fw(x); w(y)g = 2�(x; y) (v(x)'(y) � v(y)'(x)) ;

�(x; y) = x+ y + w

�1

� u

1

;

de�ne a Poisson struture on M

g

. Assuming '(x) moni and irreduible, '(x) =

(x� a

1

)(x� a

2

) � � � (x � a

g

), we de�ne an aÆne map M

g

! C

3g+2

by

�

u(x)

'(x)

;

v(x)

'(x)

;

w(x)

'(x)

�

=

 

1 +

g

X

i=1

f

i

x� a

i

;

g

X

i=1

h

i

x� a

i

; x

2

+ e

�1

x+ e

0

+

g

X

i=1

e

i

x� a

i

!

:

As in the ase of the Mumford system we �nd that the variables fh

i

; e

i

; f

i

g

g

i=1

are

generators for the diret sum of g opies of the Lie-Poisson algebra of sl(2). The

equation of the spetral urve takes the form

y

2

'

2

(x)

=

f(x)

'

2

(x)

= x

2

+ C

�1

x+ C

0

+

g

X

i=1

�

C

i

(x � a

i

)

2

+

H

i

x� a

i

�

;

where C

i

= h

2

i

+ e

i

f

i

, the Casimir element oming from the i-th opy of sl(2);

moreover C

�1

= e

�1

+

P

g

i=1

f

i

and C

0

= e

0

+

P

g

i=1

f

i

(C

�1

+ a

i

) � (

P

g

i=1

f

i

)

2

are extra Casimirs. Fixing a generi sympleti leaf, these Casimirs are used to

eliminate the variables e

�1

; : : : ; e

g

giving the following equations for the map (i =
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1; : : : ; g)

 

g

X

i=1

2f

i

� 2�� 2� � C

�1

!

(� � a

i

)f

i

~

f

i

+ (f

i

(a

i

� �� �)� h

i

)

2

� C

i

= 0;

~

h

i

= �h

i

� (f

i

�

~

f

i

)(a

i

� �� �)�

~

f

i

g

X

i=1

(f

j

�

~

f

j

)

and the following equation for �

�

2

� 2(u

1

� ~u

1

)� � �

2

+ �(2~u

1

� w

�1

� u

1

)� u

1

~u

1

� w

0

+ u

2

+ ~u

1

w

�1

� 2v

1

= 0;

where

u

1

=

g

X

i=1

(f

i

� a

i

); v

1

=

g

X

i=1

h

i

u

2

=

X

i<j

a

i

a

j

�

X

i 6=j

a

i

f

j

w

�1

= C

�1

�

g

X

i=1

(a

i

+ f

i

)

w

0

= C

0

� C

�1

g

X

i=1

(a

i

+ f

i

) +

 

g

X

i=1

f

i

!

2

+

X

i<j

a

i

a

j

+

X

i 6=j

a

i

f

j

:

Using these formulas the veri�ation of (38) and (42) (where �̂

f

is in this ase again

de�ned by �̂

f

= �

f

='(�

f

) and it is assumed that �

f

depends on the Casimirs only)

is now straightforward (but lenghty). This shows again that our maps B

�

are

Poisson maps and have the spetrality property when �

f

depends on the Casimirs

of f� ; �g

'

only.

In order to show that our maps B

�

give a disretization of the even Mumford

system, we proeed as in Paragraph 2.4. We let �

f

= 1=t so that the �rst few terms

of � are given by

� = �

1

t

�

1 +

w

�1

� u

1

2

t+

1

8

(3u

2

1

� 2u

1

w

�1

� w

2

�1

� 4u

2

+ 4w

0

� 8v

1

)t

2

+O(t

3

)

�

A diret substitution in (46) yields

~u(x) = u(x)� v(x)t+O(t

2

) ;

~v(x) = v(x)�

1

2

(�w(x) + u(x)(x

2

+ (w

�1

� u

1

)x+

u

2

1

+ w

0

� u

2

� u

1

w

�1

))t+O(t

2

) ;

~w(x) = w(x) � v(x)(x

2

+ (w

�1

� u

1

)x+ u

2

1

+ w

0

� u

2

� u

1

w

�1

)t+O(t

2

) :

Moreover we an onstrut the analogs of Mumford's vetor �elds X

a

. We proeed

as in Paragraph 2.4, but speial are has to be taken beause now the urve has

two points at in�nity, namely 1

f

and the point that orresponds to 1

f

under the

hyperellipti involution; the latter point will be denoted by 1

0

f

. Fixing a setion

�, we write �(f) = (a

f

; b

f

) and we do a translation over [(a

f

;�b

f

) � 1

f

℄. The

matrix going with this transformations is denoted by P (x). Then we translate over

[(�

f

(t); �

f

(t))�1

0

f

℄; its matrix is denoted by Q

t

(x). The produt then orresponds
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to a translation over [(�

f

(t); �

f

(t))�(a

f

; b

f

)℄. Expliitly, for P (x) we take the lower

signs in (47) to get

P (x) =

�

x� a+ u

1

� ~u

1

+ � �(~u

1

� u

1

� �)� (x� a)(x+ a+ w

�1

� ~u

1

)

�1 x� a+ �

�

with

~u

1

= a

f

+

u

2

� 2v

1

� w

0

� 2u

1

(a

f

� �) + (a

f

� �)

2

u

1

� w

�1

� 2a

f

+ 2�

;

� =

b

f

+ v(a

f

)

u(a

f

)

=

w(a

f

)

b

f

� v(a

f

)

:

For Q

t

(x) we take the upper sign and we �nd

Q

t

(x) =

�

x� �

f

(t) + ~u

1

�

~

~u

1

+ �(t) ?

1 x� �

f

(t) + �(t)

�

where ? = �(t)(~u

1

�

~

~u

1

+ �(t)) + (x� �

f

(t))(x + �

f

(t) + ~w

�1

�

~

~u

1

) and

~

~u

1

= �

f

(t) +

~u

2

+ 2~v

1

� ~w

0

+ 2~u

1

(�(t)� �

f

(t)) + (�(t) + �

f

(t))

2

~u

1

� ~w

�1

� 2�

f

(t) + 2�(t)

;

�(t) =

�

f

(t)� ~v(�

f

(t))

~u(�

f

(t))

:

In order to express

~

~u

1

in terms of the original phase variables, as needed in the

omputation, one needs expliit formulas for ~u

2

; ~v

1

; ~w

�1

and ~w

0

. For ~u

2

and ~v

1

we

�nd by expanding the �rst B�aklund transformation in terms powers of t

~u

2

= a~u

1

+

u

3

� 2(a� �)u

2

+ (a� �)

2

u

1

� 2v

2

+ 2(a� �)v

1

� w

1

u

1

� w

�1

� 2a

f

+ 2�

;

~v

1

= �v

1

+ u

2

� (a� �)u

1

� ~u

2

+ ~u

1

(a� u

1

+ ~u

1

� �):

We �nd as in the ase of the Mumford system that �(0) = u

1

� ~u

1

+ � and that

�

0

(0) = 1� (u

1

� w

�1

� 2a+ 2�)

u(a)

2b

:

As we have seen in the Mumford ase the vetor �eld whih orresponds to the

deformation family is given by

dL

dt

a

f

(x) =

�

Q

0

0

(x)Q

�1

0

(x); L(x)

�

;

whih leads by diret substitution to

dL

dt

a

f

(x) =

1

2b

f

�

L(a

f

)

x� a

f

+

�

0 u(a

f

)(x + a

f

+ u

1

� w

�1

)

0 0

�

; L(x)

�

:

As far as we ould hek these vetor �elds are new.
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3.2. Generalized Jaobians (odd ase). We now onsider a �rst ase in whih

the �bers of the moment map are aÆne parts of generalized (hyperellipti) Jao-

bians. The main di�erene between the generalized Jaobian ase and the usual

ase is that generalized Jaobians have a larger symmetry group, leading to more

general B�aklund transformations.

We �rst de�ne phase spae, whih is denoted by

^

M

g

, a moment map �̂ :

^

M

g

!

P

2g+1

, we onstrut a natural map � :

^

M

g

! M

g

onto the phase spae of the

Mumford system, and we give a geometri desription of the �bers of �. For any

g � 1;

^

M

g

is the spae of all Lax matries of the form

L(x) =

�

V (x) W (x)

U(x) �V (x)

�

;

where the entries of L(x) are now subjet to the following onstraints: U(x) and

W (x) are moni and their degrees are respetively g and g + 1; the degree of V (x)

is at most g. Writing

U(x) = x

g

+ U

1

x

g�1

+ : : :+ U

g

;

V (x) = V

0

x

g

+ : : :+ V

g

;

W (x) = x

g+1

+W

0

x

g

+ : : :+W

g

;

we take the oeÆients of these three polynomials as oordinates on

^

M

g

. It is lear

that the group of matries of the form

N

�

=

�

1 ��

0 1

�

(48)

ats on

^

M

g

by the adjoint ation, where � is any funtion on

^

M

g

. In partiular,

taking � = V

0

we get a map onto a subspae whih is exatly the phase spaeM

g

of

the Mumford system; we denote this natural map by � and denote the omposition

� Æ � by �̂; expliitly �̂ is given by L(x) 7! � detL(x). For f 2 P

2g+1

suh

that �

f

is smooth the �ber �

�1

(f) is an aÆne part of Sym

g+1

�

�

f

, the (g + 1)-th

symmetri produt of

�

�

f

(reall that

�

�

f

has genus g). To see this, one assoiates to

(U(x); V (x);W (x)) 2 �

�1

(f) the divisor D =

P

g+1

i=1

(x

i

; y

i

), where x

i

are the roots

of W (x) and y

i

= �V (x

i

). It is easy to show that this realizes a bijetion between

�

�1

(f) and an aÆne part of Sym

g+1

(

�

�

f

)

7

. The rational funtion

y � V (x)

W (x)

=

U(x)

y + V (x)

shows that D is linearly equivalent to the divisor D

0

+1

f

=

P

g

i=1

(x

0

i

; y

0

i

) +1

f

,

where x

0

i

are the zeros of U(x) and V (x

0

i

) = y

0

i

for i = 1; : : : ; g. This gives a

geometri interpretation of the map �, and it shows that, under the above or-

respondene between points of

^

M

g

and divisors, the adjoint ation by N

�

maps

divisors to linearly equivalent divisors.

We will show that this geometri piture leads, via our geometri onstrution

of B�aklund transformations, to a family of B�aklund transformations B

�;�

:

^

M

g

!

^

M

g

whih makes the following diagram ommutative.

7

From this desription it follows easily that the �ber �

�1

(f) an also be desribed as an aÆne

part of the generalized Jaobian of �

f

with respet to the divisor 21

f

. See [20℄.
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^

M

g

^

M

g

M

g

M

g

p p p p p p p-

B

�;�

?

�

?

�

-

B

�

(49)

It should be lear that, sine we are fored to work with divisors, we annot write (5)

as a de�nition for B

�;�

beause the e�etive divisor of degree g+1 that orresponds

to a line bundle of degree g+1 is not unique. Aordingly we write down a general

formula for a map satisfying (5) and then we speialize the arbitrary funtion that

�gures in it so as to obtain a B�aklund transformation. Expliitly, we let �(f) =

(�

f

; �

f

; f), as before, and we onsider for a generi point (U(x); V (x); W (x)) 2

^

M

g

the following funtion

F (x; y) =

(y � V (x))(x � �

f

+ ��) + �W (x)

W (x)(x � �

f

)

:

We have hosen a ombination of the parameters � and � suh that, when we

express that the numerator of F vanishes at (�

f

;��

f

), then we �nd

� =

W (�

f

)

�

f

+ V (�

f

)

=

�

f

� V (�

f

)

U(�

f

)

;

so that � is formally given by the same formula (9) as in the Mumford system. With

this hoie of � we �nd for any � that F (x; y) has D + (�

f

; �

f

) =

P

g+1

i=1

(x

i

; y

i

) +

(�

f

; �

f

) as its polar divisor and vanishes at in�nity. It follows that the other zeros

of F (x; y) give a divisor

~

D whih is linearly equivalent to the divisor D whih is

assoiated to (U(x); V (x); W (x)), up to a shift over (�

f

; �

f

) �1

f

. Multiplying

F (x; y) by (y + V (x))(x � �

f

+ ��) � �W (x) and using y

2

= U(x)W (x) + V

2

(x)

we �nd an equation for the x-oordinates of the image divisor and we dedue, as

in the ase of the Mumford system,

~

W (x) = �

(x� �

f

+ ��)

2

U(x) + 2�(x� �

f

+ ��)V (x) � �

2

W (x)

�

f

� x

:(50)

By interpolation at the zeros of

~

W we also �nd

~

V (x) =

�(x � �

f

+ ��)U(x) + (x� �

f

+ 2��)V (x)� �W (x)

�

f

� x

;(51)

and the formula for

~

U(x) follows from

~

U(x)

~

W (x) +

~

V

2

(x) = U(x)W (x) + V

2

(x),

~

U(x) =

�

2

U(x) + 2�V (x)�W (x)

�

f

� x

:(52)

This gives expliit formulas for the map B

�;�

. In terms of matries, B

�;�

is given

by L 7!MLM

�1

, where M an be taken as follows:

M(x) =

�

� x� �

f

+ ��

1 �

�

:(53)
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The ommutativity of (49) is a diret onsequene of the equality N

�V

0

+���

M =

�

MN

V

0

, where

�

M is given by

�

M(x) =

�

� + V

0

x� �

f

+ (� + V

0

)

2

1 � + V

0

�

:

If we ompare (14) and (53) then we see that both matries oinide when � = �,

but, as we will see, the hoie � = � does not lead to a B�aklund transformation

(when � = � it is not a Poisson map).

We now ome to poissoniity of the maps that we have onstruted. The Poisson

struture of the generalized Mumford system is given, in the notation of Paragraph

2.2, by

fL(x)




; L(y)g = [r(x � y); L

1

(x)'(y) + '(x)L

2

(y)℄ ;(54)

where '(x) is a polynomial of at most degree g. We take �

f

to be dependent on

the Casimirs only and we ompute, as before, the brakets with �, giving

fU(x); �g

'

=

�

f

'(x) � '(�

f

)(V (x) + �U(x))

�

f

(x� �

f

)

;

fV (x); �g

'

= �

2�

f

�'(x) � '(�

f

)(�

2

U(x) +W (x))

2�

f

(x� �

f

)

;(55)

fW (x); �g

'

= ��

��

f

'(x) + '(�

f

)(�V (x)�W (x))

�

f

(x� �

f

)

:

Using these formulas we an determine for whih hoies of � (whih ould, a priori,

be any funtion on phase spae) the map (U(x); V (x); W (x)) ! (

~

U(x);

~

V (x);

~

W (x))

is a Poisson map. A (quite long) omputation leads to the following onditions on

�.

f�;U(x)g = �C

V (x) + �U(x)

x� �

f

;

f�; V (x)g = �C

W (x) + �

2

U(x)

2(x� �

f

)

+D;

f�;W (x)g = C�

W (x) � �V (x)

x� �

f

+ '(x);

f�; �g = '(�

f

)=(2�

f

):

In these formulas C and D are any funtions on phase spae. However, sine the

left hand side of the �rst three expressions is polynomial in x, the same must be

true for the right hand side, whih implies that C = 0. Using the last equation and

the de�nition of � we �nd that D = 0 and we are left with

f�;U(x)g = f�; V (x)g = 0;

f�;W (x)g = '(x);(56)

f�; �g = '(�

f

)=(2�

f

):

It turns out that there is suh an �, namely � = V

0

; to obtain the most general

solution it suÆes to add any Casimir of ' to V

0

. A diret hek that one gets

for those values of � indeed a Poisson map an be done quite easily by using the
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following formulas, whih follow from (54), (55) and (56).

fL(x)




; M(y)g =

�

'(�

f

)

2�

f

[L(x); N(x)℄ + '(x)N(x)

�




�M

��

� '(x)

�

2

M

����




�M

��

;

fM(x)




; L(y)g = �

�M

��




�

'(�

f

)

2�

f

[L(y); N(y)℄ + '(y)N(y)

�

+ '(y)

�M

��




�

2

M

����

;

fM(x)




; M(y)g = �

'(�

f

)

2�

f

0

B

B

�

0 � �� 0

0 1 0 �

0 0 �1 ��

0 0 0 0

1

C

C

A

where N(x) =

1

�

f

�x

�

� �

2

�1 ��

�

. In onlusion we have shown that when �

f

and

��V

0

depend only on the Casimirs then the map B

�;�

is a B�aklund transformation

for the generalized Mumford system.

In order to hek spetrality of the map B

�;�

when �

f

and � � V

0

depend only

on the Casimirs one proeeds as in the ase of the Mumford system. We �x a moni

polynomial '(x) of degree g with distint roots a

1

; : : : ; a

g

and we de�ne an aÆne

map

^

M

g

! C

3g+2

by

�

U(x)

'(x)

;

V (x)

'(x)

;

W (x)

'(x)

�

=

 

1 +

g

X

i=1

f

i

x� a

i

; h

0

+

g

X

i=1

h

i

x� a

i

; x+ f

0

+

g

X

i=1

e

i

x� a

i

!

:

(57)

In this ase we get the brakets (33) with in addition one non-trivial braket,

fh

0

; f

0

g = 1. We denote the Casimir element oming from the i-th opy of sl(2) by

C

i

, C

i

= h

2

i

+ e

i

f

i

and we denote the Casimir ��V

0

by C. We �x a sympleti leaf

and we express the variables f

0

; : : : ; f

g

;

~

f

0

; : : : ;

~

f

g

in terms of h

0

; : : : ; h

g

;

~

h

0

; ; : : : ;

~

h

g

and �. To do this, �rst notie that

� = h

0

+ C; and � = C �

~

h

0

;

as follows easily from (57) and (51). The formulas for the variables f

1

; : : : ; f

g

follow

from

(�f

i

+ h

i

)

2

� f

i

~

f

i

(� � a

i

)� C

i

= 0;(58)

~

h

i

+ h

i

� �

~

f

i

+ �f

i

= 0;(59)

whih one derives from the equations (50), (51) and (52) for B

�

, expressed in terms

of the variables f

i

and h

i

. Indeed, if we use the seond equation to eliminate

~

f

i

from the �rst equation we get

f

2

i

~

h

0

(a

i

� �� h

0

~

h

0

) + f

i

((� � a

i

)(

~

h

i

+ h

i

) + 2h

i

h

0

~

h

0

) + h

0

(C

i

� h

2

i

) = 0;(60)

and this de�nes f

1

; : : : ; f

g

as a funtion of the variables h

j

and

~

h

j

; the seond

equation in (58) then de�nes

~

f

1

; : : : ;

~

f

g

as a funtion of these variables. As for f

0
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and

~

f

0

, they are given by

f

0

= ��+

g

X

i=1

~

f

i

+

~

h

2

0

� 2h

0

~

h

0

;

~

f

0

= ��+

g

X

i=1

f

i

+ h

2

0

� 2h

0

~

h

0

;

as follows also from (50), (51) and (52). Using these formulas it is straightforward

to verify the following integrability onditions (i; j = 1; : : : ; g)

�f

i

��

= �f

i

��̂

�h

i

= �

�f

i

~

f

i

(�� a

i

)(�f

i

+ �

~

f

i

)� 2��(h

i

+ �f

i

)

;

�

~

f

i

��

=

~

f

i

��̂

�h

i

= �

�f

i

~

f

i

(�� a

i

)(�f

i

+ �

~

f

i

)� 2��(h

i

+ �f

i

)

;

�f

0

��

= �

��̂

�h

0

= �1� �

g

X

i=1

f

i

~

f

i

(�� a

i

)(�f

i

+ �

~

f

i

)� 2��(h

i

+ �f

i

)

;

�

~

f

0

��

=

��̂

�

~

h

0

= �1� �

g

X

i=1

f

i

~

f

i

(�� a

i

)(�f

i

+ �

~

f

i

)� 2��(h

i

+ �f

i

)

:

This shows that the maps B

�

have the spetrality property. In the same way one

an verify the ompatibility onditions

f

j

�f

i

�h

j

= f

i

�f

j

�h

i

;

~

f

j

�

~

f

i

�

~

h

j

=

~

f

i

�

~

f

j

�

~

h

i

; f

j

�

~

f

i

�h

j

= �

~

f

i

�f

j

�

~

h

i

;

giving an alternative proof that the maps B

�

are Poisson maps.

We now show that these B�aklund transformation disretize the underlying inte-

grable system. The omputation is similar as in the previous ases, exept that one

has to hoose the Casimir �� V

0

arefully so as to obtain the identity transforma-

tion in the limit �

f

! 1. Sine the point at in�nity of the urve is a Weierstrass

point we let � = t

�2

and we hoose � = V

0

+ 1=t. Then

� =

1

t

� V

0

+

1

2

(W

0

� U

1

+ V

2

0

)t+O(t

2

);

and we �nd by diret substitution

~

U(x) = U(x) + 2t(V (x)� V

0

U(x)) +O(t

2

);

~

V (x) = V (x) + t(U(x)(2x +W

0

� U

1

� V

2

0

)=2�W (x))) +O(t

2

);

~

W (x) =W (x)� t(V (x)(2x +W

0

� U

1

� V

2

0

)� 2V

0

W (x)) +O(t

2

);

from whih we an read o� the vetor �eld. For the vetor �eldsX

a

the omputation

is very similar to the one in the ase of the Mumford system. Namely we take

P (x) =

�

� x� a

f

� ��

1 ��

�

with � = V

0

and � =

b

f

+v(a

f

)

u(a

f

)

; moreover we take

Q

t

(x) =

�

�(t) x� �

f

(t) + ��(t)

1 �(t)

�
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where �(t) =

~

V

0

= � (so that in fat � is independent of t) and �(t) =

�

f

(t)�

~

V (�

f

(t))

~

U(�

f

(t))

;

so that �(0) = ��. Using �

0

(0) = U(a)=(2b

f

) we �nd

Q

0

0

(x)Q

�1

0

(x) =

1

2b

f

(x � a)

�

V (a)� b

f

W (a)

U(a) �V (a)

�

;

so that, after removal of a diagonal matrix, we �nd the following Lax equation

dL

dt

a

f

(x) =

1

2b

f

�

L(a

f

)

x� a

f

; L(x)

�

:

We shortly indiate how the above maps B

�;�

an also be found from the eigen-

vetors of the Lax operator. Taking ~�

0

= (1; 0) and ~� = (; Æ � x) we express that

the solutions to

�

1 0

�

�

�~v(x)� y � ~w(x)

�~u(x) ~v(x)� y

�

= 0;(61)

are the same as the solutions of

�

 Æ � x

�

�

�v(x)� y �w(x)

�u(x) v(x)� y

�

= 0;(62)

exept that (62) also has (�

f

;��

f

) as a solution. By eliminating y from (62) we

�nd that

~

W (x) =

(x� Æ)

2

U(x)� 2(x� Æ)V (x) � 

2

W (x)

x� �

f

;

beause the numerator of the above right hand side is moni of degree g + 2 and

vanishes at the roots of W as well as at x = �

f

. By interpolation at the zeros of

~

W we �nd that

~

V (x) =

(x� Æ)(Æ � �

f

)U(x) + (2Æ � �

f

� x)V (x) + 

2

W (x)

(x� �

f

)

:

We reover our formulas (50) and (51) (hene also (52)) by taking  = � and

Æ = �� ��).

3.3. Generalized Jaobians (even ase). In this ase phase spae

^

M

g

is given

by the spae of triples of polynomials (U(x); V (x);W (x)) with the following degree

onstraints

U(x) = x

g+1

+ U

0

x

g

+ : : :+ U

g

;

V (x) = V

0

x

g

+ : : :+ V

g

;

W (x) = x

g+1

+W

0

x

g

+ : : :+W

g

:

In this ase the spetral urve is of the form y

2

= f(x) where f(x) = U(x)W (x) +

V

2

(x) is moni of degree 2g + 2. When f is irreduible the orresponding �ber of

the moment map �̂ (whih is given as in the other ases by �̂(L(x)) = � detL(x)) is

an aÆne part of Sym

g+1

�

�

f

; this is shown by assoiating to (U(x); V (x);W (x)) 2

�

�1

(f) the divisor D =

P

g+1

i=1

(x

i

; y

i

), where x

i

are the roots of U(x) and y

i

=

V (x

i

). We hoose a setion � and we let �(f) = (�

f

; �

f

; f). For a generi point

(U(x); V (x); W (x)) 2

^

M

g

we onsider the funtion

F (x; y) =

(y + V (x))(x � �

1

)� U(x)(x � �

2

)

U(x)(x � �

f

)

;
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where �

1

and �

2

satisfy the following linear equation (zero of the numerator of F

at the point (�

f

;��

f

)):

(��

f

+ V (�

f

))(�

f

� �

1

)� U(�

f

)(�

f

� �

2

) = 0:

F (x; y) has D+(�

f

; �

f

) =

P

g+1

i=1

(x

i

; y

i

)+ (�

f

; �

f

) as its polar divisor and vanishes

at in�nity. It follows that the other zeros of F (x; y) give a divisor

~

D whih is linearly

equivalent to the divisor D whih is assoiated to (U(x); V (x); W (x)), up to a shift

over (�

f

; �

f

)�1

f

. It leads to the following formulas for the map B

�

~

U(x) =

U(x)(x � �

2

)

2

� 2V (x)(x � �

1

)(x � �

2

)�W (x)(x � �

1

)

2

C(x � �

f

)

;

~

V (x) =

1

C(x� �

f

)

[�(x� �

2

)(x � �

4

)U(x)

+((x� �

2

)(x � �

3

) + (x� �

1

)(x� �

4

))V (x)� (x � �

1

)(x� �

3

)W (x)℄ ;

~

W (x) =

�U(x)(x� �

4

)

2

� 2V (x)(x � �

3

)(x� �

4

) +W (x)(x � �

3

)

2

C(x� �

f

)

;

where

C = 2(�

1

� �

2

) + U

0

� 2V

0

�W

0

(63)

and

�

3

= �

1

� C

�

1

� �

f

�

1

� �

2

; �

4

= �

2

� C

�

2

� �

f

�

1

� �

2

:(64)

The above transformation an be rewritten in the form of the matrix equation

M(x)L(x) =

~

L(x)M(x) with the following matrix M :

M(x) =

�

x� �

3

�(x� �

4

)

�(x� �

1

) x� �

2

�

;(65)

where the variables �

1

; : : : ; �

4

are given by

�

i

= �

f

+

(�

i

C � U

0

� 2V

0

+W

0

)((�1)

i�1

C �

~

U

0

� 2

~

V

0

+

~

W

0

)

4C

;(66)

with �

i

= 1 for i = 1; 2 and �

i

= �1 otherwise.

Let us now turn to poissoniity and spetrality. For every polynomial ' of degree

at most g+1 we �nd a Poisson struture f� ; �g

'

whih is given formally by preisely

the same formulas as in the ase onsidered in Paragraph 3.2. We an see from the

above formulas that it will be muh easier to do further alulations if we make a

simple similarity transform:

M(x) 7! SM(x)S

�1

; L(x) 7! SL(x)S

�1

;(67)

where

S =

�

1 �1

1 �1

�

:(68)

Let us denote the transformed matries L(x) and M(x) by small letters `(x) and

m(x), respetively:

`(x) = SL(x)S

�1

;

~

`(x) = S

~

L(x)S

�1

; m(x) = SM(x)S

�1

;

and orrespondingly,

`(x) =

�

v(x) w(x)

u(x) �v(x)

�

;

~

`(x) =

�

~v(x) ~w(x)

~u(x) �~v(x)

�

:
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The triple of new polynomials is as follows:

u(x) = u

0

x

g

+ : : :+ u

g

;

v(x) = �x

g+1

+ v

0

x

g

+ : : :+ v

g

;

w(x) = w

0

x

g

+ : : :+ w

g

;

and the matrix m(x) has the following form:

m(x) =

1

2C

�

4(C(x� �) + w

0

~u

0

) �2Cw

0

�2C~u

0

C

2

�

:

Note that the determinant of the matrix m(x), as well as of the matrix M(x), is

expressed in terms of C:

detM(x) = detm(x) = C(x� �):

Suppose now that the polynomial '(x) is moni and has distint roots a

0

; : : : ; a

g

and onsider the map de�ned by

1

'(x)

(u(x); v(x); w(x)) =

 

g

X

i=0

f

i

x� a

i

;�1 +

g

X

i=0

h

i

x� a

i

;

g

X

i=0

e

i

x� a

i

!

:

It is an isomorphism between

^

M

g

, equipped with the Poisson struture f� ; �g

'

, and

the diret sum of g + 1 opies of the Lie-Poisson algebra of sl(2). Notie that

u

0

=

P

g

i=0

f

i

and w

0

=

P

g

i=0

e

i

; so that m(x) depends only on variables e

i

and

~

f

i

.

Therefore we take (e

i

;

~

f

i

), i = 0; : : : ; g, as independent variables. Then, it is easy

to �nd the following formulas for the variables (h

j

;

~

h

j

), j = 0; : : : ; g:

C

2

h

2

j

� 4C~u

0

e

j

h

j

+ 4e

j

(C(a

j

� �)

~

f

j

+ ~u

2

0

e

j

)� C

2

C

j

= 0;

C

2

~

h

2

j

� 4Cw

0

~

f

j

~

h

j

+ 4

~

f

j

(C(a

j

� �)e

j

+ w

2

0

~

f

j

)� C

2

C

j

= 0;(69)

C(h

j

�

~

h

j

) = �2(~u

0

e

j

� w

0

~

f

j

):

As for the ompatibility onditions:

e

k

�h

j

�e

k

= e

j

�h

k

�e

j

;

~

f

k

�

~

h

j

�

~

f

k

=

~

f

j

�

~

h

k

�

~

f

j

;

~

f

k

�h

j

�

~

f

k

= e

j

�

~

h

k

�e

j

:

we have from (69) that

�h

j

�e

k

=

�

~

h

j

�

~

f

k

= 0; j 6= k:

whih leads at one to the �rst two equations and to the third equation for j 6= k.

The proof of the third equation for i = k is easy by diret omputation. The

spetrality property also holds, as one easily veri�es the following formulas:

e

j

��̂

�e

j

= �

�h

j

��

;

~

f

j

��̂

�

~

f

j

= �

�

~

h

j

��

;

where �̂ = �='(�):

We �nish by omputing the ontinuum ows, obtained by taking the limit t! 0

of the family of setions �

t

given by � = 1=t and � = �(1 + (U

0

+ W

0

)t=2 +
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O(t

2

))=t

g+1

. In order for the limit to exist we must take the Casimir C of the form

C

0

� 4�, where C

0

does not depend on �. Then

a

1

=

C

0

� 2U

0

+ 2(�1� 1)V

0

+ 2W

0

4

;

a

2

=

2

t

�

C

0

� 2(1� 1)V

0

4

;

and in the limit our B�aklund transformations lead, as in the other ases, to a

vetor �eld whih has the Lax form L

0

(x) = [L(x); N(x)℄, where N(x) is given (up

to a onstant fator 1=8) by

�

(2� 2)V

0

�(4x� C

0

� 2U

0

� (2� 2)V

0

+ 2W

0

)

�(4x� C

0

+ 2U

0

+ (2� 2)V

0

� 2W

0

) �(2� 2)V

0

�

:

In terms of l(x) this beomes l

0

(x) = [l(x); n(x)℄, where n(x) = V N(x)V

�1

is given

by

n(x) = �

1

8

�

4x� C

0

4w

0

4u

0

C

0

� 4x

�

:

The above vetor �elds is the analog of the vetor �eld X

1

of the Mumford system.

The analogs of the vetor �elds X

a

; a 2 P

1

are onstruted in the same way as in

the other ases.

3.4. Geodesi ow on SO(4). We now look at the ase of an integrable geodesi

ow on SO(4), whose underlying metri appears as metri II in the lassi�ation of

integrable geodesi ows on SO(4). In suitable oordinates, the basi vetor �eld

X

1

of this a..i. system is given by the di�erential equations

_z

1

= 2z

5

z

6

; _z

2

= 2z

3

z

4

; _z

3

= z

5

(z

1

+ z

4

);

_z

4

= 2z

2

z

3

; _z

5

= z

3

(z

1

+ z

4

); _z

6

= 2z

1

z

5

:

and it admits the following quadrati �rst integrals:

H

1

= z

2

3

� z

2

5

;

H

2

= z

2

1

� z

2

6

;

H

3

= z

2

2

� z

2

4

;(70)

H

4

= (z

1

+ z

4

)

2

+ 4(z

2

3

� z

2

z

5

� z

3

z

6

):

Following [5℄ we let

u(x) = x

2

+

�

z

1

+ z

2

+ z

4

+ z

6

2(z

3

� z

5

)

� 1

�

x�

z

2

+ z

4

2(z

3

� z

5

)

;

and we let v(x) be the polynomial of degree at most 1, haraterized by

v(0) = u(0)(z

1

+ z

4

+ 2z

3

); v(1) = u(1)(z

1

+ z

4

+ 2z

5

):

This map assoiates to any point P in C

6

an unordered pair of points on the

algebrai urve

� : y

2

= f(x) = x(1� x)

�

4x

3

h

1

� (4h

1

+ h

4

)x

2

+ (h

4

� h

3

� h

2

)x + h

3

�

;(71)

where h

i

denotes the value ofH

i

at P . Notie that the polynomial f whih de�nes �

is not moni, its leading term being dependent on the integrals. As a onsequene,

the polynomial w, de�ned by w(x) = f(x)� v

2

(x)=u(x), will not be moni and the
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map does not de�ne a map to the Mumford system (indeed, for most of the Poisson

strutures of this system this leading term is not even a Casimir). For future use,

notie that w(0) = �u(0)(z

1

+z

4

+2z

3

)

2

and w(1) = �u(1)(z

1

+z

4

+2z

5

)

2

, beause f

has 0 and 1 as roots. Conversely, given three suh polynomials u; v; w whih satisfy

v

2

(x)+u(x)w(x) = f(x), where f has the above form (71), the orresponding point

(z

1

; : : : ; z

6

) 2 C

6

is reonstruted by using the following formulas.

z

3

� z

5

=

1

2

�

v(0)

u(0)

�

v(1)

u(1)

�

;

z

2

+ z

4

=

�

v(1)

u(1)

�

v(0)

u(0)

�

u(0);(72)

z

1

+ z

6

=

�

v(0)

u(0)

�

v(1)

u(1)

�

u(1);

in addition to the �rst three equations in (70).

In order to onstrut B�aklund transformations for this system we onsider, for

a �xed point P 2 C

6

, the following rational funtion

F (x; y) =

y + v(x) + �u(x)

u(x)(x � �

f

)

;(73)

and we demand that the numerator of F vanishes at the point (�

f

;��

f

), as in the

ase of the Mumford system. It leads to

~u(x) =

�

2

u(x) + 2�v(x)� w(x)

�4h

1

(�

f

� x)

;

~v(x) =

(�

3

� 4h

1

�(x � �

f

))u(x) + (2�

2

� 4h

1

(x� �

f

))v(x) � �w(x)

4h

1

(x� �

f

)

;(74)

the value of ~w(x) is not needed for the omputation. Writing (72) in terms of tilded

variables and substituting (74) in it we �nd

~z

3

� ~z

5

z

3

� z

5

= 2(z

3

+ z

5

)

�

�

f

z

1

+ z

4

+ 2z

3

+ �

�

�

f

� 1

z

1

+ z

4

+ 2z

5

+ �

�

;

~z

2

+ ~z

4

z

2

+ z

4

= �

1

4

~z

3

� ~z

5

z

3

� z

5

(z

1

+ z

4

+ 2z

3

+ �)

2

h

1

�

f

;

~z

1

+ ~z

6

z

1

+ z

6

= �

1

4

~z

3

� ~z

5

z

3

� z

5

(z

1

+ z

4

+ 2z

5

+ �)

2

h

1

(�

f

� 1)

:

Sine the map preserves the Hamiltonians the above three expressions are (in that

order) also equal to

z

3

+ z

5

~z

3

+ ~z

5

;

z

2

� z

4

~z

2

� ~z

4

;

z

1

� z

6

~z

1

� ~z

6

;
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so that the above equations an be solved linearly in terms of the variables ~z

i

. The

Poisson matrix of a Poisson struture for this system is given by

0

B

B

B

B

B

B

�

0 z

6

�z

5

0 �z

3

z

2

� 2z

5

�z

6

0 0 z

6

� 2z

3

0 �z

1

� z

4

z

5

0 0 �z

5

0 0

0 2z

3

� z

6

z

5

0 z

3

�z

2

z

3

0 0 �z

3

0 0

2z

5

� z

2

z

1

+ z

4

0 z

2

0 0

1

C

C

C

C

C

C

A

:

If � depends on the Casimirs of this Poisson struture only, then the above map is

a Poisson map, so it is a B�aklund transformation; moreover it has the spetrality

property. This an be veri�ed diretly by omputing the brakets f~z

i

; ~z

j

g and

verifying the ompatibility relations. Alternatively one uses the fat that the map

whih is indued on the triples of polynomials (u(x); v(x); w(x)), as above, is a

B�aklund transformation for an a..i. system obtained by removing in the Mumford

system the restrition that the polynomial w be moni (the Poisson strutures are

obtained from (16) by replaing �
� with �w � �
�, where �w denotes the leading

oeÆient of w(x)). It suÆes then to verify that the map whih sends (z

1

; : : : ; z

6

)

to (u(x); v(x); w(x)) is a Poisson map and has the spetrality property when one

takes on the target spae the Poisson struture orresponding to '(x) = x(x� 1).

3.5. The H�enon-Heiles potential. In this paragraph we show on an example

how one gets B�aklund transformations for a..i. systems whose generi level set

of the integrals is a �nite over of a Jaobian. We do this by lifting the B�aklund

transformation for the underlying family of Jaobians to the over; sine suh a

lifting is not unique we get, in general, an impliitly de�ned orrespondene, rather

than an expliit map.

We treat the ase of the H�enon-Heiles system, whih is given by the following

Hamiltonian on C

4

, equipped with the standard sympleti struture,

H =

1

2

�

p

2

1

+ p

2

2

�

+ 8q

3

2

+ 4q

2

1

q

2

:

A �rst integral is given by

F = �q

2

p

2

1

+ q

1

p

1

p

2

+ q

2

1

(q

2

1

+ 4q

2

2

):

We use the map de�ned by

u(x) = x

2

� 2q

2

x� q

2

1

;

v(x) =

i

p

2

(p

2

x+ q

1

p

1

);(75)

w(x) = x

3

+ 2q

2

x

2

+ (q

2

1

+ 4q

2

2

)x�

p

2

1

2

;

whih is a morphism to the Mumford system, the latter being equipped with the

Poisson struture orresponding to '(x) = x. It follows from the results of Setion

2 that for any onstant � 2 C we get a B�aklund transformation, given by

~

L =

MLM

�1

, where

L(x) =

 

i

p

2

(p

2

x+ q

1

p

1

) x

3

+ 2q

2

x

2

+ (q

2

1

+ 4q

2

2

)x�

p

2

1

2

x

2

� 2q

2

x� q

2

1

�

i

p

2

(p

2

x+ q

1

p

1

)

!
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and

M(x) =

�

� x� �

f

+ �

2

1 �

�

; where � =

p

2�

f

� i(p

2

�

f

+ q

1

p

1

)

p

2(�

2

� 2q

2

�� q

2

1

)

:

Also �

2

f

= f(�

f

) with

f(x) = u(x)w(x) + v

2

(x) = x(x

4

� hx� g);

where h and g are the values of H and G at the point (q

1

; q

2

; p

1

; p

2

). Poissoniity

and spetrality are a onsequene of the fat that the map (q

1

; q

2

; p

1

; p

2

)! (u; v; w),

given by (75) is a Poisson map. One noties that in this ase one does not get expliit

formulas for ~q

1

; ~q

2

; ~p

1

; ~p

2

but for ~q

2

1

; ~q

2

; ~q

1

p

1

; ~p

2

, whih stems from the fat that the

generi level manifolds of the integrals are 2 : 1 unrami�ed overs of Jaobians.

4. Conluding remarks

We have onstruted B�aklund transformations for a large lass of integrable

systems. Basially, we have onsidered four large families of integrable systems

that are of interest in mathematial physis. Indeed, if we hoose the following

parametrization of the generators (h

j

; e

j

; f

j

) of a diret sum of g or g + 1 opies

of the Lie-Poisson algebra of sl(2), in terms of the anonial Darboux variables

(oordinates and momenta), (p

j

; q

j

), fp

j

; q

k

g = Æ

jk

:

h

j

=

1

2

p

j

q

j

; f

j

=

1

2

q

2

j

; e

j

= �

1

2

p

2

j

+

2C

j

q

2

j

;

then we deal with the following Hamiltonian systems.

(1) In the ase of the Mumford system the Hamiltonian is of the form:

H =

1

2

g

X

i=1

p

2

i

�

g

X

i=1

2C

i

q

2

i

�

1

2

g

X

i=1

q

2

i

(a

i

+ C

0

) +

1

4

 

g

X

k=1

q

2

k

!

2

;

so this ase is a generalization of the g-dimensional Garnier system.

(2) For the even Mumford system the Hamiltonian funtion desribes the motion

of a partile in a potential of order 6:

H =

1

2

g

X

i=1

p

2

i

�

g

X

i=1

2C

i

q

2

i

�

1

2

g

X

i=1

(a

2

i

+ a

i

C

�1

+ C

0

)q

2

i

+

1

4

 

g

X

k=1

q

2

k

!

g

X

i=1

(C

�1

+ 2a

i

)q

2

i

�

1

8

 

g

X

k=1

q

2

k

!

3

:

(3) In the odd generalized ase we have an integrable system with linear potential

H =

1

2

g

X

i=0

p

2

i

�

g

X

i=1

2C

i

q

2

i

+

1

2

q

0

:

(4) In the even generalized ase we have a g-dimensional harmoni osillator

H =

1

2

g

X

i=0

p

2

i

�

g

X

i=0

2C

i

q

2

i

�

1

2

g

X

i=0

q

2

i

:

In other words we have showed how to onstrut in a systemati way B�aklund

transformations for integrable systems linearisable on hyperellipti Jaobians or

generalized hyperellipti Jaobians. Sine for many lassial integrable systems it is
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known how to embed them into Mumford systems [21℄, our onstrution produes

many new integrable disretizations of Liouville integrable systems, suh as the

Kowalevski, Goryahev-Chaplygin and Euler tops, Toda latties and the Gaudin

magnet.
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