
THE VANISHING OF THE THETA FUNCTION IN THE KP

DIRECTION: A GEOMETRIC APPROACH
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Abstra
t. We give a geometri
 proof of a formula, due to Segal and Wilson,

whi
h des
ribes the order of vanishing of the Riemann theta fun
tion in the

dire
tion whi
h 
orresponds to the dire
tion of the tangent spa
e of a Riemann

surfa
e at a marked point. While this formula appears in the work of Segal

and Wilson as a by-produ
t of some non-trivial 
onstru
tions from the theory

of integrable systems (loop groups, in�nite-dimensional Grassmannians, tau

fun
tions, S
hur polynomials, : : : ) our proof only uses the 
lassi
al theory of

linear systems on Riemann surfa
es.
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1. Introdu
tion

The fundamental paper [SW℄ by Segal and Wilson on soliton equations leads to

an expli
it formula for 
omputing the vanishing of the Riemann theta fun
tion in

a dire
tion whi
h is natural from the geometri
 point of view. In order to present

this formula, let C be a 
ompa
t Riemann surfa
e (of genus g > 1), let p 2 C

and let � denote the theta divisor � � Pi


g�1

(C). Also let # denote Riemann's

theta fun
tion, for whi
h (#) = �. For a point L 2 �, 
onsider the embedding

C ! Pi


g�1

(C) : q 7! L(q � p). The natural dire
tion alluded to above is the

tangent spa
e X

p

to this embedded 
urve at L. Following [SW℄ the vanishing of

# at L in the dire
tion of X

p

, denoted ord

L

(#;X

p

) is obtained by 
onsidering the

in�nite subset of Z, de�ned by

S

L

= fs 2 Z j h

0

(L((s + 1)p)) = h

0

(L(sp)) + 1g:

In fa
t, the se
tions of L over C nfpg de�ne an in�nite-dimensional planeW , whi
h

is an element of the Sato Grassmannian and the vanishing of the tau fun
tion in

the KP-dire
tion is, a

ording to [SW, Prop. 8.6℄, given by the 
odimension of W ,
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2 CH. BIRKENHAKE AND P. VANHAECKE

whi
h is expli
itly given by the �nite sum

P

i�0

i � s

i

, upon writing S

L

= fs

0

<

s

1

< s

2

< � � � g. The tau fun
tion 
oin
ides, up to an exponential fa
tor, with

the Riemann theta fun
tion of C ([SW, Th. 9.11℄) and the tangent dire
tion X

p


oin
ides with the KP-dire
tion (see [S, Lemma 5 and Appendix 0℄). Therefore,

the order of vanishing is given by

ord

L

(#;X

p

) =

X

i�0

i� s

i

:

The purpose of this paper is to give an algebrai
-geometri
 proof of this result.

Our proof uses (only) the 
lassi
al theory of linear systems on Riemann surfa
es

and it highlights the geometri
 meaning of the order of vanishing. As is pointed

out in [SW, footnote p. 51℄ an independent (analyti
al) proof of this formula has

also been given by John Fay (see [F℄), by using the theory of theta fun
tions.

The �rst step of our approa
h 
onsists of an interpretation of the order of vanish-

ing as the interse
tion multipli
ity of the theta divisor with a 
opy of C, properly

embedded (at least around L) in Pi


g�1

(C). If we pull ba
k the theta divisor us-

ing this embedding we �nd a divisor R on C whi
h is the sum of the rami�
ation

divisors of the maps

'

k

L

: C �! Grass

k+1

(H

0

(L)

�

);

whi
h are the natural generalizations of the morphisms '

L

: C �! P(H

0

(L)

�

)

de�ned by the linear system jLj (assumed here base point free). It follows that the

order of vanishing is given by the multipli
ity of p in R, leading to

ord

L

(#;X

p

) =

n

X

i=1

m

i

� i:

where fm

1

< � � � < m

n

g is the gap sequen
e G

p

(L(np)) of L(np) at p. This

formula is independent of n, whi
h is assumed suÆ
iently large (e.g. n = g will

do). Noti
ing that for n = g one has s

i

= g�m

g�i

(for i = 0; : : : ; g�1) from whi
h

Formula (1) follows at on
e.

Noti
e that the Segal-Wilson formula for the vanishing of the tau fun
tion may

also be applied in the 
ase of tau fun
tions that 
ome from singular 
urves. It

would be interesting to adapt our geometri
 arguments to this 
ase, leading to a

formula for the vanishing of the theta fun
tions for singular 
urves, as proposed in

[SW, Remark 6.13℄.

The stru
ture of this paper is as follows. In Se
tion 2 we �x the notation and

we re
all the notions of gap numbers for arbitrary line bundles. In Se
tion 3 we

translate the order of vanishing of the theta fun
tion in terms of interse
tion theory

and we show that this order is given as an in
e
tionary weight. This is used in

Se
tion 5 to obtain an expli
it formula, whi
h we show to be equivalent to the

formula by Segal and Wilson.

2. Preliminaries

In this se
tion we introdu
e the notation and 
olle
t some results on 
urve theory.

Throughout the whole paper C denotes a 
ompa
t Riemann surfa
e of genus g and

p 2 C a marked point.

For a divisor D on C we denote by O

C

(D) the 
orresponding line bundle and

for a line bundle L on C its linear system is denoted by jLj. We use the standard

abbreviations h

0

(L) for dimH

0

(C;L) and L(D) for L
O

C

(D), where L is any line
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bundle and D is any divisor on C. We will use the Riemann-Ro
h theorem in the

form

h

0

(L) = h

0

(!

C


L

�1

)� g + deg(L) + 1;

where L is any line bundle on C and !

C

is the 
anoni
al bundle of C.

We now re
all the notions of gap numbers and in
e
tionary weights. For proofs

and details we refer to [Mi, Se
t. VII.4℄ and to [ACGH, Ch. 1 Ex. C℄.

Let L be a line bundle on C of positive degree and let q 2 C. An integer m � 1

is 
alled a gap number for L at q if

h

0

(L(�mq)) = h

0

(L(�(m� 1)q))� 1;

and the set G

q

(L) of gap numbers for L at q is 
alled the gap sequen
e of L at q;

its 
ardinality is r = h

0

(L) and no gap number is larger than degL+ 1. Writing

G

q

(L) = f1 � m

1

< m

2

< � � � < m

r

� degL+ 1g;

we have that m

1

> 1 if and only if q is a base point of L and that m

r

= degL+ 1

if and only if L = O

C

(degL � q). For a general point q 2 C the gap sequen
e of L

at q is f1; 2; : : : ; h

0

(L)g; a point q for whi
h the gap sequen
e of L at q is not of

this form is 
alled an in
e
tion point for L. Noti
e that q is an in
e
tion point if

and only if h

0

(L(�rq)) 6= 0, where r = h

0

(L).

If the linear system jLj is base point free the in
e
tion points have the following

geometri
 interpretation. Consider the morphism '

L

: C �! P(H

0

(L)

�

) de�ned

by the linear system jLj. For a generi
 q 2 C there is a unique k-dimensional

os
ulating plane to '

L

(C) at '

L

(q), yielding a well-de�ned morphism

(1) '

k

L

: C �! Grass

k+1

(H

0

(L)

�

);


alled the k-th asso
iated map. This way one arrives at h

0

(L)� 1 asso
iated maps

'

i�1

L

; i = 1; : : : ; h

0

(L) � 1; ('

0

L

= '

L

). In these terms a point q is an in
e
tion

point if and only if q is a rami�
ation point of one of the maps '

k

L

. We denote the

rami�
ation divisor of '

k

L

by R

k

(L) and we de�ne

R(L) =

h

0

(L)�1

X

k=1

R

k�1

(L):

The multipli
ity w

q

(L) of q in R(L) is 
alled the in
e
tionary weight of q with

respe
t to L and is given by

(2) w

q

(L) =

h

0

(L)

X

i=1

(m

i

� i):

When L is not base point free we de�ne the in
e
tionary weights w

q

(L) by (2)

and the rami�
ation divisor R(L) by R(L) =

P

q

w

q

(L)q. This divisor admits an

alternative des
ription as the zero divisor ofW =W (z)(dz)

n(n�1)

2

where z is a lo
al


oordinate, n = h

0

(L) and W (z) =W (f

1

; : : : ; f

n

) is the Wronskian with respe
t to

any basis f

1

; : : : ; f

n

of H

0

(L). In parti
ular W is a holomorphi
 se
tion of the line

bundle L

n


 !

n(n�1)

2

C

.

Taking L = !

C

one re
overs the well-known notion of the gap sequen
e of q 2 C,

denoted by G

q

, and the above de�nition of the in
e
tionary points and weights

redu
es, by a simple appli
ation of Riemann-Ro
h, to the standard de�nition of

Weierstra� points and their weights.
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Finally let us �x our 
onventions about the Ja
obian J(C) of C. By de�ni-

ton J(C) = H

0

(!

C

)

�

=H

1

(C;Z), so that the ve
tor spa
e H

0

(!

C

)

�

is 
anoni
ally

identi�ed with the tangent spa
e of J(C) at every point. By the Abel-Ja
obi

theorem there is a 
anoni
al isomorphism J(C) ' Pi


0

(C). Moreover every line

bundle L on C of degree g � 1 indu
es an isomorphism J(C) ' Pi


0

(C) �!

Pi


g�1

(C); P 7! L 
 P . For our purposes it is 
onvenient to work with Pi


g�1

(C)

rather than Pi


0

(C). So in the sequel we identify J(C) with Pi


g�1

(C) with-

out further noti
e; the underlying isomorphism (respe
tively line bundle de�ning

the isomorphism) will always be evident from the 
ontext. The main advan-

tage working with J(C) = Pi


g�1

(C) is, that we have a 
anoni
al theta divisor

� = fL 2 J(C) j h

0

(L) > 0g. By Riemann-Ro
h, � is invariant with respe
t to

the natural involution

(3) � : J(C) �! J(C); �(L) = !

C


L

�1

:

More pre
isely we have h

0

(L) = h

0

(�(L)) for any L 2 �.

We denote by # the Riemann theta fun
tion on H

0

(!

C

)

�

for whi
h �

�

� is the

zero divisor of #, where � is the natural proje
tion H

0

(!

C

)

�

! J(C).

For any L 2 J(C) we have an embedding �

L;p

of C into J(C), given by �

L;p

(q) =

L(q � p). Clearly for di�erent L and p the maps �

L;p

only di�er by a translation

on J(C).

3. Geometri
 des
ription of the order of vanishing

Let L 2 J(C) and let X be a one-dimensional subve
tor spa
e of the tangent

spa
e H

0

(!

C

)

�

at L. Choose any point l in the �ber of � over L and 
onsider the

aÆne line l +X whi
h passes through l and whi
h has dire
tion X . The order of

vanishing of #j

l+X

at the point l is independent of the 
hoi
e of l 2 �

�1

(L). So

de�ne the order of vanishing of # at L in the dire
tion of X , denoted ord

L

(#;X),

as ord

l

#j

l+X

. If � does not 
ontain the straight line

�

X = �(l+X) then there exists

a small neighborhood U of l in l+X su
h that �(U)\� = fLg and ord

L

(#;X) =

(�(U) ��)

L

, the interse
tion multipli
ity of � with �(U) at L.

Let X

p

denote the tangent spa
e to �

L;p

(C) at L. Noti
e that, as a subve
tor

spa
e of H

0

(!

C

)

�

, X

p

does not depend on L but only on the point p 2 C. We

wish to 
ompute ord

L

(#;X

p

) for an arbitrary L 2 �; if L =2 � then this order is

trivially zero. It 
an be shown

1

that for all C, L and p that

�

X

p

is not 
ontained

in �, whi
h is 
learly true as soon as C, L or p is generi
. For this the idea is to

repla
e �(U) by a a 
omplete 
urve whi
h, around L, looks like �(U). Noti
e that

if L 2 � we 
annot use �

L;p

(C) be
ause the latter does not ne
essarily interse
t �

properly. Consider for any integer n 6= 0 the morphism

(4) �

L;p;n

: C �! J(C); �

L;p;n

(q) = L(nq � np):

Noti
e that �

L;p;n

(p) = L and that for a small neighborhood V of p in C the

tangent spa
e to �

L;p;n

(V ) at L is pre
isely X

p

.

Lemma 3.1. For all L 2 J(C) and n > 0 we have

(1) �

L;p;n

(C) and � interse
t properly if and only if h

0

(L(�np)) = 0;

(2) �

L;p;�n

(C) and � interse
t properly if and only if h

0

(�(L)(�np)) = 0.

1

This follows from [SW, Prop. 8.6 and Th. 9.11℄ but a geometri
 proof of this (geometri
!)

property is unknown.
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Proof. We prove (1), the proof of (2) is similar. Re
all that an irredu
ible 
urve

interse
ts a divisor properly pre
isely when the 
urve is not 
ontained in the support

of the divisor. So �

L;p;n

(C) and � do not interse
t properly if and only if h

0

(L(nq�

np)) > 0 for all q 2 C. We 
laim that this is equivalent to h

0

(L(�np)) > 0. Indeed,

by Riemann-Ro
h

h

0

(L(nq � np)) = h

0

(�(L)(np� nq)); and

h

0

(�(L)(np)) = h

0

(L(�np)) + n:

So h

0

(L(np� nq)) > 0 for all q 2 C if and only if h

0

(�(L)(np)) > n, leading to our


laim. �

In parti
ular, when jnj � g then

ord

L

(#;X

p

) = (� � �

L;p;n

(V ))

L

;

where V is a small neighborhood of p in C. Pulling this interse
tion ba
k to C we

get that for any jnj � g

ord

L

(#;X

p

) = mult

p

(�

�

L;p;n

�):

This multipli
ity will be 
omputed in the next se
tion.

4. The divisor �

�

L;p;�n

�

The aim of this se
tion is to prove the following

Theorem 4.1. For all L 2 J(C), p 2 C, and n > 0 with h

0

(�(L)(�np)) = 0

�

�

L;p;�n

� = R(L(np)):

For the proof we need the following

Proposition 4.2. For all L 2 J(C); p 2 C and n > 0

�

�

L;p;�n

O

J(C)

(�) = (L(np))

n


 !

n(n�1)

2

C

:

Proof.

Step I: The 
ase n = 1 follows exa
tly from [LB℄ Lemma 11.3.4 with x = 0; � =

L, and 
 = p.

Step II: For n � 1 
onsider the di�eren
e map

Æ

n

L

: C

2n

�! J(C); Æ

n

L

(p

1

; q

1

; : : : ; p

n

; q

n

) = L(

P

i

p

i

� q

i

)

and denote by �

n

i

: C

2n

�! C the i-th proje
tion. We show by indu
tion on n that

for all n � 1 and all L 2 J(C)

Æ

n

L

�

O

J(C)

(�) =

n

O

i=1

�

�

n

2i�1

�

(!

C


L

�1

)
 �

n

2i

�

L

�


O

C

2n

�

X

1�i<j�2n

(�1)

i+j+1

(�

n

i

; �

n

j

)

�

�

�

;

(5)

where � denotes the diagonal in C

2

.

For n = 1 we have to show that

Æ

1

L

�

O

J(C)

(�) = �

1

1

�

(!

C


L

�1

)
 �

1

2

�

L
O

C

2

(�)

for all L 2 Pi


g�1

(C). A

ording to the Seesaw Prin
iple (see [LB℄ A.9) it suÆ
es

to show that the restri
tions to C � fqg and fqg �C of both sides of the equation
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oin
ide for all q 2 C. But sin
e the 
omposition of Æ

1

L

with the natural embedding

C ' C � fqg �! C � C is the map � Æ �

!

C


L

�1

;q;�1

and �

�

� = � we have, using

Step I,

Æ

1

L

�

O

J(C)

(�)jC � fqg = �

�

!

C


L

�1

;q;�1

O

J(C)

(�) = !

C


L

�1

(q)

= �

1

1

�

(!

C


L

�1

)
 �

1

2

�

L 
O

C

2

(�)jC � fqg;

and similarly for the restri
tion to fqg � C.

Now suppose n > 1 and equation (5) holds for all n

0

< n. Restri
ting both

sides of equation (5) to C

2n�2

� fp; qg and fp

1

; q

1

; : : : ; p

n�1

; q

n�1

g � C

2

for all

p; q; p

1

; q

1

; : : : ; p

n�1

; q

n�1

2 C, and using the indu
tion hypothesis for n

0

= n � 1

and n

0

= 1 respe
tively, the Seesaw Prin
iple implies that also equation (5) holds.

Step III: Consider the embedding |

p

: C �! C

2n

; |

p

(q) = (p; q; : : : ; p; q) and

noti
e that Æ

n

L

Æ |

p

= �

L;p;�n

, so that

�

�

L;p;�n

O

J(C)

(�) = |

�

p

Æ

n

L

�

O

J(C)

(�):

It follows that �

�

L;p;�n

O

J(C)

(�) 
an be 
omputed from (5). Sin
e

(�

n

i

; �

n

j

) Æ |

p

(q) =

8

<

:

(p; p) i; j odd

(q; q) i; j even

(p; q) or (q; p) otherwise,

we have that

|

�

p

(�

n

i

; �

n

j

)

�

O

C

2
(�) =

8

<

:

O

C

i; j odd

!

�1

C

i; j even

O

C

(p) otherwise.

It follows that the pull ba
k by |

p

of the right hand side of (5) equals L

n

(n

2

p) 


!

n(n�1)

2

C

. This 
ompletes the proof. �

Proof of Theorem 4.1. By the 
hoi
e of n we have h

0

(L(np)) = n and the 
urve

�

L;p;�n

(C) interse
ts the divisor � properly. The line bundle (L(np))

n


 !

n(n�1)

2

C

has two distinguished divisors, namely �

�

L;p;�n

� (a

ording to Proposition 4.2) and

R(L(np)) (a

ording to Se
tion 2). Moreover these divisors have the same support,

sin
e by de�nition q 2 �

�

L;p;�n

� if and only if �

L;p;�n

(q) 2 �, i.e., h

0

(L(np�nq)) >

0, and this is the 
ase if and only if q is an in
e
tion point for the line bundle L(np).

For generi
 L and p the line bundle L(np) admits only normal in
e
tion points,

so R(L(np)) =

P

n

2

g

i=1

q

i

with pairwise di�erent points q

i

, and hen
e R(L(np)) =

�

�

L;p;�n

�. This equality extends to all L and p for whi
h �

�

L;p;�n

� exists and by

Lemma 3.1 this is exa
tly the set f(L; p) 2 J(C)� C jh

0

(�(L)(�np)) = 0g. �

Remark 1. Similarly one 
an show that if �

L;p;n

(C) interse
ts � properly, then

�

�

L;p;n

� = R(�(L)(np)).

5. Formula(s) for the order of vanishing

In this se
tion we prove the following theorem:

Theorem 5.1. For every L 2 �

(6) ord

L

(#;X

p

) =

X

m

m� g + h

0

(L((g �m)p));
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where the sum runs over the g integers m satisfying h

0

(L((g �m)p)) = h

0

(L((g �

m+ 1)p))� 1.

We will obtain it as a dire
t 
onsequen
e of the following proposition.

Proposition 5.2. With n 
hosen su
h that �

L;p;�n

(C) interse
ts � properly (e.g.,

n = g), the order of vanishing of # at L in the dire
tion X

p

is the in
e
tionary

weight of p with respe
t to L(np). Therefore,

(7) ord

L

(#;X

p

) =

n

X

i=1

m

i

� i:

where fm

1

< � � � < m

n

g is the gap sequen
e G

p

(L(np)) of L(np) at p.

Proof. A

ording to Se
tion 3 and Theorem 4.1 we have that

ord

L

(#;X

p

) = mult

p

(�

�

L;p;�n

�) = w

p

(L(np)) =

n

X

i=1

m

i

� i:

�

Proof of Theorem 5.1. By de�nition the sum in equation (6) runs over the set

G

p

(L(gp)) = fm

1

< � � � < m

g

g of gap numbers of L(gp) at p. An immediate


omputation shows that h

0

(L((g �m

i

)p)) = g� i for i = 1; : : : ; g. So the assertion

follows from Proposition 5.2 with n = g. �

We now relate Theorem 5.1 to the Formula (1), given by Segal and Wilson.

Re
all from the introdu
tion the in�nite set

S

L

= fs 2 Z j h

0

(L((s + 1)p)) = h

0

(L(sp)) + 1g:

Proposition 5.3. Denote S

L

= fs

0

< s

1

< s

2

< � � � g. Then

ord

L

(#;X

p

) =

X

i�0

i� s

i

:

Proof. Note �rst that s

0

� � degL � 1 = �g. For �g � s � g � 1 we have that

s 2 S

L

if and only if g� s 2 G

p

(L(gp)) = fm

1

< � � � < m

g

g, so that s

i

= g �m

g�i

for i = 0; : : : ; g � 1. On the other hand n 2 S

L

for any n � g so that s

n

= n for

any n � g. Summing up we �nd

X

i�0

i� s

i

=

g�1

X

i=0

i� g +m

g�i

=

g

X

i=1

m

i

� i:

Hen
e Formula (1) follows from Proposition 5.2. �
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