
THE VANISHING OF THE THETA FUNCTION IN THE KP

DIRECTION: A GEOMETRIC APPROACH

CHRISTINA BIRKENHAKE AND POL VANHAECKE

Abstrat. We give a geometri proof of a formula, due to Segal and Wilson,

whih desribes the order of vanishing of the Riemann theta funtion in the

diretion whih orresponds to the diretion of the tangent spae of a Riemann

surfae at a marked point. While this formula appears in the work of Segal

and Wilson as a by-produt of some non-trivial onstrutions from the theory

of integrable systems (loop groups, in�nite-dimensional Grassmannians, tau

funtions, Shur polynomials, : : : ) our proof only uses the lassial theory of

linear systems on Riemann surfaes.
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1. Introdution

The fundamental paper [SW℄ by Segal and Wilson on soliton equations leads to

an expliit formula for omputing the vanishing of the Riemann theta funtion in

a diretion whih is natural from the geometri point of view. In order to present

this formula, let C be a ompat Riemann surfae (of genus g > 1), let p 2 C

and let � denote the theta divisor � � Pi

g�1

(C). Also let # denote Riemann's

theta funtion, for whih (#) = �. For a point L 2 �, onsider the embedding

C ! Pi

g�1

(C) : q 7! L(q � p). The natural diretion alluded to above is the

tangent spae X

p

to this embedded urve at L. Following [SW℄ the vanishing of

# at L in the diretion of X

p

, denoted ord

L

(#;X

p

) is obtained by onsidering the

in�nite subset of Z, de�ned by

S

L

= fs 2 Z j h

0

(L((s + 1)p)) = h

0

(L(sp)) + 1g:

In fat, the setions of L over C nfpg de�ne an in�nite-dimensional planeW , whih

is an element of the Sato Grassmannian and the vanishing of the tau funtion in

the KP-diretion is, aording to [SW, Prop. 8.6℄, given by the odimension of W ,
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2 CH. BIRKENHAKE AND P. VANHAECKE

whih is expliitly given by the �nite sum

P

i�0

i � s

i

, upon writing S

L

= fs

0

<

s

1

< s

2

< � � � g. The tau funtion oinides, up to an exponential fator, with

the Riemann theta funtion of C ([SW, Th. 9.11℄) and the tangent diretion X

p

oinides with the KP-diretion (see [S, Lemma 5 and Appendix 0℄). Therefore,

the order of vanishing is given by

ord

L

(#;X

p

) =

X

i�0

i� s

i

:

The purpose of this paper is to give an algebrai-geometri proof of this result.

Our proof uses (only) the lassial theory of linear systems on Riemann surfaes

and it highlights the geometri meaning of the order of vanishing. As is pointed

out in [SW, footnote p. 51℄ an independent (analytial) proof of this formula has

also been given by John Fay (see [F℄), by using the theory of theta funtions.

The �rst step of our approah onsists of an interpretation of the order of vanish-

ing as the intersetion multipliity of the theta divisor with a opy of C, properly

embedded (at least around L) in Pi

g�1

(C). If we pull bak the theta divisor us-

ing this embedding we �nd a divisor R on C whih is the sum of the rami�ation

divisors of the maps

'

k

L

: C �! Grass

k+1

(H

0

(L)

�

);

whih are the natural generalizations of the morphisms '

L

: C �! P(H

0

(L)

�

)

de�ned by the linear system jLj (assumed here base point free). It follows that the

order of vanishing is given by the multipliity of p in R, leading to

ord

L

(#;X

p

) =

n

X

i=1

m

i

� i:

where fm

1

< � � � < m

n

g is the gap sequene G

p

(L(np)) of L(np) at p. This

formula is independent of n, whih is assumed suÆiently large (e.g. n = g will

do). Notiing that for n = g one has s

i

= g�m

g�i

(for i = 0; : : : ; g�1) from whih

Formula (1) follows at one.

Notie that the Segal-Wilson formula for the vanishing of the tau funtion may

also be applied in the ase of tau funtions that ome from singular urves. It

would be interesting to adapt our geometri arguments to this ase, leading to a

formula for the vanishing of the theta funtions for singular urves, as proposed in

[SW, Remark 6.13℄.

The struture of this paper is as follows. In Setion 2 we �x the notation and

we reall the notions of gap numbers for arbitrary line bundles. In Setion 3 we

translate the order of vanishing of the theta funtion in terms of intersetion theory

and we show that this order is given as an inetionary weight. This is used in

Setion 5 to obtain an expliit formula, whih we show to be equivalent to the

formula by Segal and Wilson.

2. Preliminaries

In this setion we introdue the notation and ollet some results on urve theory.

Throughout the whole paper C denotes a ompat Riemann surfae of genus g and

p 2 C a marked point.

For a divisor D on C we denote by O

C

(D) the orresponding line bundle and

for a line bundle L on C its linear system is denoted by jLj. We use the standard

abbreviations h

0

(L) for dimH

0

(C;L) and L(D) for L
O

C

(D), where L is any line
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bundle and D is any divisor on C. We will use the Riemann-Roh theorem in the

form

h

0

(L) = h

0

(!

C


L

�1

)� g + deg(L) + 1;

where L is any line bundle on C and !

C

is the anonial bundle of C.

We now reall the notions of gap numbers and inetionary weights. For proofs

and details we refer to [Mi, Set. VII.4℄ and to [ACGH, Ch. 1 Ex. C℄.

Let L be a line bundle on C of positive degree and let q 2 C. An integer m � 1

is alled a gap number for L at q if

h

0

(L(�mq)) = h

0

(L(�(m� 1)q))� 1;

and the set G

q

(L) of gap numbers for L at q is alled the gap sequene of L at q;

its ardinality is r = h

0

(L) and no gap number is larger than degL+ 1. Writing

G

q

(L) = f1 � m

1

< m

2

< � � � < m

r

� degL+ 1g;

we have that m

1

> 1 if and only if q is a base point of L and that m

r

= degL+ 1

if and only if L = O

C

(degL � q). For a general point q 2 C the gap sequene of L

at q is f1; 2; : : : ; h

0

(L)g; a point q for whih the gap sequene of L at q is not of

this form is alled an inetion point for L. Notie that q is an inetion point if

and only if h

0

(L(�rq)) 6= 0, where r = h

0

(L).

If the linear system jLj is base point free the inetion points have the following

geometri interpretation. Consider the morphism '

L

: C �! P(H

0

(L)

�

) de�ned

by the linear system jLj. For a generi q 2 C there is a unique k-dimensional

osulating plane to '

L

(C) at '

L

(q), yielding a well-de�ned morphism

(1) '

k

L

: C �! Grass

k+1

(H

0

(L)

�

);

alled the k-th assoiated map. This way one arrives at h

0

(L)� 1 assoiated maps

'

i�1

L

; i = 1; : : : ; h

0

(L) � 1; ('

0

L

= '

L

). In these terms a point q is an inetion

point if and only if q is a rami�ation point of one of the maps '

k

L

. We denote the

rami�ation divisor of '

k

L

by R

k

(L) and we de�ne

R(L) =

h

0

(L)�1

X

k=1

R

k�1

(L):

The multipliity w

q

(L) of q in R(L) is alled the inetionary weight of q with

respet to L and is given by

(2) w

q

(L) =

h

0

(L)

X

i=1

(m

i

� i):

When L is not base point free we de�ne the inetionary weights w

q

(L) by (2)

and the rami�ation divisor R(L) by R(L) =

P

q

w

q

(L)q. This divisor admits an

alternative desription as the zero divisor ofW =W (z)(dz)

n(n�1)

2

where z is a loal

oordinate, n = h

0

(L) and W (z) =W (f

1

; : : : ; f

n

) is the Wronskian with respet to

any basis f

1

; : : : ; f

n

of H

0

(L). In partiular W is a holomorphi setion of the line

bundle L

n


 !

n(n�1)

2

C

.

Taking L = !

C

one reovers the well-known notion of the gap sequene of q 2 C,

denoted by G

q

, and the above de�nition of the inetionary points and weights

redues, by a simple appliation of Riemann-Roh, to the standard de�nition of

Weierstra� points and their weights.
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Finally let us �x our onventions about the Jaobian J(C) of C. By de�ni-

ton J(C) = H

0

(!

C

)

�

=H

1

(C;Z), so that the vetor spae H

0

(!

C

)

�

is anonially

identi�ed with the tangent spae of J(C) at every point. By the Abel-Jaobi

theorem there is a anonial isomorphism J(C) ' Pi

0

(C). Moreover every line

bundle L on C of degree g � 1 indues an isomorphism J(C) ' Pi

0

(C) �!

Pi

g�1

(C); P 7! L 
 P . For our purposes it is onvenient to work with Pi

g�1

(C)

rather than Pi

0

(C). So in the sequel we identify J(C) with Pi

g�1

(C) with-

out further notie; the underlying isomorphism (respetively line bundle de�ning

the isomorphism) will always be evident from the ontext. The main advan-

tage working with J(C) = Pi

g�1

(C) is, that we have a anonial theta divisor

� = fL 2 J(C) j h

0

(L) > 0g. By Riemann-Roh, � is invariant with respet to

the natural involution

(3) � : J(C) �! J(C); �(L) = !

C


L

�1

:

More preisely we have h

0

(L) = h

0

(�(L)) for any L 2 �.

We denote by # the Riemann theta funtion on H

0

(!

C

)

�

for whih �

�

� is the

zero divisor of #, where � is the natural projetion H

0

(!

C

)

�

! J(C).

For any L 2 J(C) we have an embedding �

L;p

of C into J(C), given by �

L;p

(q) =

L(q � p). Clearly for di�erent L and p the maps �

L;p

only di�er by a translation

on J(C).

3. Geometri desription of the order of vanishing

Let L 2 J(C) and let X be a one-dimensional subvetor spae of the tangent

spae H

0

(!

C

)

�

at L. Choose any point l in the �ber of � over L and onsider the

aÆne line l +X whih passes through l and whih has diretion X . The order of

vanishing of #j

l+X

at the point l is independent of the hoie of l 2 �

�1

(L). So

de�ne the order of vanishing of # at L in the diretion of X , denoted ord

L

(#;X),

as ord

l

#j

l+X

. If � does not ontain the straight line

�

X = �(l+X) then there exists

a small neighborhood U of l in l+X suh that �(U)\� = fLg and ord

L

(#;X) =

(�(U) ��)

L

, the intersetion multipliity of � with �(U) at L.

Let X

p

denote the tangent spae to �

L;p

(C) at L. Notie that, as a subvetor

spae of H

0

(!

C

)

�

, X

p

does not depend on L but only on the point p 2 C. We

wish to ompute ord

L

(#;X

p

) for an arbitrary L 2 �; if L =2 � then this order is

trivially zero. It an be shown

1

that for all C, L and p that

�

X

p

is not ontained

in �, whih is learly true as soon as C, L or p is generi. For this the idea is to

replae �(U) by a a omplete urve whih, around L, looks like �(U). Notie that

if L 2 � we annot use �

L;p

(C) beause the latter does not neessarily interset �

properly. Consider for any integer n 6= 0 the morphism

(4) �

L;p;n

: C �! J(C); �

L;p;n

(q) = L(nq � np):

Notie that �

L;p;n

(p) = L and that for a small neighborhood V of p in C the

tangent spae to �

L;p;n

(V ) at L is preisely X

p

.

Lemma 3.1. For all L 2 J(C) and n > 0 we have

(1) �

L;p;n

(C) and � interset properly if and only if h

0

(L(�np)) = 0;

(2) �

L;p;�n

(C) and � interset properly if and only if h

0

(�(L)(�np)) = 0.

1

This follows from [SW, Prop. 8.6 and Th. 9.11℄ but a geometri proof of this (geometri!)

property is unknown.
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Proof. We prove (1), the proof of (2) is similar. Reall that an irreduible urve

intersets a divisor properly preisely when the urve is not ontained in the support

of the divisor. So �

L;p;n

(C) and � do not interset properly if and only if h

0

(L(nq�

np)) > 0 for all q 2 C. We laim that this is equivalent to h

0

(L(�np)) > 0. Indeed,

by Riemann-Roh

h

0

(L(nq � np)) = h

0

(�(L)(np� nq)); and

h

0

(�(L)(np)) = h

0

(L(�np)) + n:

So h

0

(L(np� nq)) > 0 for all q 2 C if and only if h

0

(�(L)(np)) > n, leading to our

laim. �

In partiular, when jnj � g then

ord

L

(#;X

p

) = (� � �

L;p;n

(V ))

L

;

where V is a small neighborhood of p in C. Pulling this intersetion bak to C we

get that for any jnj � g

ord

L

(#;X

p

) = mult

p

(�

�

L;p;n

�):

This multipliity will be omputed in the next setion.

4. The divisor �

�

L;p;�n

�

The aim of this setion is to prove the following

Theorem 4.1. For all L 2 J(C), p 2 C, and n > 0 with h

0

(�(L)(�np)) = 0

�

�

L;p;�n

� = R(L(np)):

For the proof we need the following

Proposition 4.2. For all L 2 J(C); p 2 C and n > 0

�

�

L;p;�n

O

J(C)

(�) = (L(np))

n


 !

n(n�1)

2

C

:

Proof.

Step I: The ase n = 1 follows exatly from [LB℄ Lemma 11.3.4 with x = 0; � =

L, and  = p.

Step II: For n � 1 onsider the di�erene map

Æ

n

L

: C

2n

�! J(C); Æ

n

L

(p

1

; q

1

; : : : ; p

n

; q

n

) = L(

P

i

p

i

� q

i

)

and denote by �

n

i

: C

2n

�! C the i-th projetion. We show by indution on n that

for all n � 1 and all L 2 J(C)

Æ

n

L

�

O

J(C)

(�) =

n

O

i=1

�

�

n

2i�1

�

(!

C


L

�1

)
 �

n

2i

�

L

�


O

C

2n

�

X

1�i<j�2n

(�1)

i+j+1

(�

n

i

; �

n

j

)

�

�

�

;

(5)

where � denotes the diagonal in C

2

.

For n = 1 we have to show that

Æ

1

L

�

O

J(C)

(�) = �

1

1

�

(!

C


L

�1

)
 �

1

2

�

L
O

C

2

(�)

for all L 2 Pi

g�1

(C). Aording to the Seesaw Priniple (see [LB℄ A.9) it suÆes

to show that the restritions to C � fqg and fqg �C of both sides of the equation
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oinide for all q 2 C. But sine the omposition of Æ

1

L

with the natural embedding

C ' C � fqg �! C � C is the map � Æ �

!

C


L

�1

;q;�1

and �

�

� = � we have, using

Step I,

Æ

1

L

�

O

J(C)

(�)jC � fqg = �

�

!

C


L

�1

;q;�1

O

J(C)

(�) = !

C


L

�1

(q)

= �

1

1

�

(!

C


L

�1

)
 �

1

2

�

L 
O

C

2

(�)jC � fqg;

and similarly for the restrition to fqg � C.

Now suppose n > 1 and equation (5) holds for all n

0

< n. Restriting both

sides of equation (5) to C

2n�2

� fp; qg and fp

1

; q

1

; : : : ; p

n�1

; q

n�1

g � C

2

for all

p; q; p

1

; q

1

; : : : ; p

n�1

; q

n�1

2 C, and using the indution hypothesis for n

0

= n � 1

and n

0

= 1 respetively, the Seesaw Priniple implies that also equation (5) holds.

Step III: Consider the embedding |

p

: C �! C

2n

; |

p

(q) = (p; q; : : : ; p; q) and

notie that Æ

n

L

Æ |

p

= �

L;p;�n

, so that

�

�

L;p;�n

O

J(C)

(�) = |

�

p

Æ

n

L

�

O

J(C)

(�):

It follows that �

�

L;p;�n

O

J(C)

(�) an be omputed from (5). Sine

(�

n

i

; �

n

j

) Æ |

p

(q) =

8

<

:

(p; p) i; j odd

(q; q) i; j even

(p; q) or (q; p) otherwise,

we have that

|

�

p

(�

n

i

; �

n

j

)

�

O

C

2
(�) =

8

<

:

O

C

i; j odd

!

�1

C

i; j even

O

C

(p) otherwise.

It follows that the pull bak by |

p

of the right hand side of (5) equals L

n

(n

2

p) 


!

n(n�1)

2

C

. This ompletes the proof. �

Proof of Theorem 4.1. By the hoie of n we have h

0

(L(np)) = n and the urve

�

L;p;�n

(C) intersets the divisor � properly. The line bundle (L(np))

n


 !

n(n�1)

2

C

has two distinguished divisors, namely �

�

L;p;�n

� (aording to Proposition 4.2) and

R(L(np)) (aording to Setion 2). Moreover these divisors have the same support,

sine by de�nition q 2 �

�

L;p;�n

� if and only if �

L;p;�n

(q) 2 �, i.e., h

0

(L(np�nq)) >

0, and this is the ase if and only if q is an inetion point for the line bundle L(np).

For generi L and p the line bundle L(np) admits only normal inetion points,

so R(L(np)) =

P

n

2

g

i=1

q

i

with pairwise di�erent points q

i

, and hene R(L(np)) =

�

�

L;p;�n

�. This equality extends to all L and p for whih �

�

L;p;�n

� exists and by

Lemma 3.1 this is exatly the set f(L; p) 2 J(C)� C jh

0

(�(L)(�np)) = 0g. �

Remark 1. Similarly one an show that if �

L;p;n

(C) intersets � properly, then

�

�

L;p;n

� = R(�(L)(np)).

5. Formula(s) for the order of vanishing

In this setion we prove the following theorem:

Theorem 5.1. For every L 2 �

(6) ord

L

(#;X

p

) =

X

m

m� g + h

0

(L((g �m)p));
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where the sum runs over the g integers m satisfying h

0

(L((g �m)p)) = h

0

(L((g �

m+ 1)p))� 1.

We will obtain it as a diret onsequene of the following proposition.

Proposition 5.2. With n hosen suh that �

L;p;�n

(C) intersets � properly (e.g.,

n = g), the order of vanishing of # at L in the diretion X

p

is the inetionary

weight of p with respet to L(np). Therefore,

(7) ord

L

(#;X

p

) =

n

X

i=1

m

i

� i:

where fm

1

< � � � < m

n

g is the gap sequene G

p

(L(np)) of L(np) at p.

Proof. Aording to Setion 3 and Theorem 4.1 we have that

ord

L

(#;X

p

) = mult

p

(�

�

L;p;�n

�) = w

p

(L(np)) =

n

X

i=1

m

i

� i:

�

Proof of Theorem 5.1. By de�nition the sum in equation (6) runs over the set

G

p

(L(gp)) = fm

1

< � � � < m

g

g of gap numbers of L(gp) at p. An immediate

omputation shows that h

0

(L((g �m

i

)p)) = g� i for i = 1; : : : ; g. So the assertion

follows from Proposition 5.2 with n = g. �

We now relate Theorem 5.1 to the Formula (1), given by Segal and Wilson.

Reall from the introdution the in�nite set

S

L

= fs 2 Z j h

0

(L((s + 1)p)) = h

0

(L(sp)) + 1g:

Proposition 5.3. Denote S

L

= fs

0

< s

1

< s

2

< � � � g. Then

ord

L

(#;X

p

) =

X

i�0

i� s

i

:

Proof. Note �rst that s

0

� � degL � 1 = �g. For �g � s � g � 1 we have that

s 2 S

L

if and only if g� s 2 G

p

(L(gp)) = fm

1

< � � � < m

g

g, so that s

i

= g �m

g�i

for i = 0; : : : ; g � 1. On the other hand n 2 S

L

for any n � g so that s

n

= n for

any n � g. Summing up we �nd

X

i�0

i� s

i

=

g�1

X

i=0

i� g +m

g�i

=

g

X

i=1

m

i

� i:

Hene Formula (1) follows from Proposition 5.2. �
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