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Abstrat. The (�1)-involution on the Jaobian J

�

of an arbitrary Riemann

surfae � of genus two leads to a singular surfae, the Kummer surfae K

�

of J

�

, whih, after desingularization, de�nes a K-3 surfae

~

K

�

. We onsider

ample line bundles on

~

K

�

oming from the even or odd setions of [n�℄ with

presribed vanishing at the 2-division points of J

�

(� is the theta divisor of

J

�

). We use an integrable system to show that in the ases we study the linear

system is base-point-free, to determine whih urves are ontrated to singular

points and to ompute an expliit equation for the surfae in projetive spae.

Our expliit methods apply to the Kummer surfae of any Abelian surfae,

given as the �ber of the moment map of an algebrai ompletely integrable

system.
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1. Introdution

When studying quarti surfaes in three-spae with sixteen nodes, Kummer dis-

overed a very beautiful geometry, relating suh a surfae on the one hand to the

Jaobian of a hyperellipti urve (of genus two) and on the other hand to the singu-

lar surfae of a quadrati omplex (for a modern aount of this, see [10, Chapter

6℄). These singular surfaes, whih form a three-dimensional family, are alled (sin-

gular) Kummer surfaes. They reappeared reently in the ompati�ation of the
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moduli spae of stable rank two bundles (of �xed determinant) on a Riemann sur-

fae (see [20℄) and as the singular lous of a natural Poisson struture on a moduli

spae of at SU(2) onnetions on a Riemann surfae (see [13℄).

The easiest way to obtain abstratly the Kummer surfae K

�

whih is assoi-

ated to a ompat Riemann surfae � of genus two is as the singular quotient

J

�

=(�1) of the Jaobian J

�

of � by the (�1)-involution x 7! �x (reall that J

�

is a two-dimensional omplex torus). As suh the Kummer surfae has an obvious

generalization to other Jaobians (i.e., to Riemann surfaes of higher genus) and to

other omplex algebrai tori (Abelian varieties) (see [16, Setion 4.8℄). To obtain

the Kummer surfae onretely, i.e., as an algebrai surfae in projetive spae, one

onsiders the image of the regular map

�

[2�℄

: J

�

! PH

0

(J

�

; [2�℄)

�

yielding a quarti surfae in P

3

; the divisor � whih appears in this map is the

divisor of Riemann's theta funtion, and the 2 : 1 map �

[2�℄

assigns to any point

P 2 J

�

the hyperplane of setions of the line bundle [2�℄ that vanish at P . For

higher dimensional Jaobians the image of �

[2�℄

also provides a projetive image

of its Kummer varieties (see [16, Setion 4.8℄), but for other Abelian varieties,

even for Abelian surfaes, the situation is more ompliated (see [6℄). Getting

expliit equations for Kummer surfaes is still a di�erent matter and relies in all

situations that have been onsidered on arguments that depend heavily on the

spei� geometry of the Kummer surfae at hand (for higher dimensional Kummer

varieties no suh equations are known at present). One lassial omputation of

the equation of the Kummer surfae K

�

as a surfae in P

3

for example relies on the

symmetries of the level two Heisenberg group (a entral extension of the group of

half periods (2-division points) of J

�

) (see [12, Chapter 8℄); it is not lear how to

adapt this approah to other Kummer surfaes. The other lassial omputation

relies on the above mentioned fat that the minimal resolution of K

�

is the singular

surfae of the quadrati omplex (see [14, Set. 82℄) and is thus even more dependent

on the spei�s of the geometri situation.

The purpose of this paper is to show how equations for projetive images of

Kummer surfaes an be obtained in a systemati way. Although our tehniques

are valid for other Abelian varieties, we will restrit ourselves here to Kummer

surfaes of two-dimensional Jaobians, but we will onsider besides the lassial

Kummer surfae in P

3

also other, less singular, projetive models in P

3

; P

4

, and

P

5

. Abstratly, these Kummer surfaes are obtained by desingularizing K

�

at some

but not all of its singular points: note that on any Abelian surfae the (�1)-

involution has sixteen �xed points, hene the quotient K

�

has sixteen singular

points. The desingularization of K

�

is a K-3 surfae whih is denoted by

~

K

�

, and

the partial desingularizations are alled intermediate Kummer surfaes. Conretely,

as algebrai surfaes in projetive spae, the K-3 surfae and the intermediate

Kummer surfaes are obtained by onstruting line bundles on the (abstrat) K-3

surfae

~

K

�

. We onstrut suh line bundles as follows. Let

p :

~

J

�

! J

�

be the blow-up of J

�

at its sixteen half periods. The (�1)-involution on J

�

indues

an involution on

~

J

�

whih leads to a non-singular quotient � :

~

J

�

!

~

K

�

. We pik a

symmetri line bundle L on J

�

and denote the line bundle p

�

L on

~

J

�

by

~

L. For any

� = (�

i

)

i=1;:::;16

we onsider the spae j

~

Lj

+

�

(resp. j

~

Lj

�

�

) of even (resp. odd) setions
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of

~

L whih vanish at least �

i

times at the exeptional divisor E

i

whih lies over the

half period e

i

. These linear systems desend to omplete linear systems jM

+

�

j (resp.

jM

�

�

j) on

~

K

�

. Using standard algebrai geometri arguments we will determine the

dimension of suh linear systems (Proposition 3.2), i.e., the dimension of the target

spae of the map

�

M

�

�

:

~

K

�

! PH

0

(

~

K

�

;M

�

�

):

The main fous of the paper is then on studying the map �

M

�

�

and on obtaining

expliit equations for the image of this map. We do this by using an algebrai

ompletely integrable system (a..i. system) whose �bers of the (omplex) moment

map are aÆne parts of genus two Jaobians. Our methods do not depend on

the partiular a..i. system that we use and an hene be used to ompute expliit

equations for other Kummer varieties, as long as the orresponding Abelian varieties

appear as the �ber of the moment map of some a..i. system. Let us explain

shortly the role of this deus ex mahina (for more information, see [3℄ or [28℄). It

was observed by Kowalewski that an a..i. system on an n-dimensional spae M

must have one or several families of Laurent solutions depending on n � 1 free

parameters. A areful analysis shows that eah suh family F

i

orresponds to an

irreduible omponent D

i

of the divisor D to be adjoined to a generi �ber �

�1

()

of the moment map

� :M ! SpeA

(A is the algebra of �rst integrals of the a..i. system; D depends on ) in order

to omplete it into an Abelian variety. Moreover, for any funtion f on M the

restrition f

j�

�1

()

of f to this �ber has a pole along D

i

whih equals the pole

of the Laurent series of f , as omputed from the family F

i

. Sine (the �rst few

terms of) the Laurent solutions of an a..i. system an be e�etively omputed,

we have an e�etive way to ompute a basis for the meromorphi funtions having

presribed poles at a given divisor and hene an e�etive way to ompute expliitly

the setions of any of the line bundles L = [

P

n

i

D

i

℄. Sine the (�1)-involution

reverses the signs of all the integrable vetor �elds of the a..i. system the splitting

in even and odd setions an also be determined expliitly. Finally, having these

setions at hand one expresses easily the ondition that a setion has a presribed

vanishing at some of the half periods. Summarizing, starting from an a..i. system

whih has a given Jaobian J

�

(or, more generally, an Abelian variety) as one of

its �bers, we an �nd an expliit basis for H

0

(

~

K

�

;M

�

�

) and hene also expliit

formulas for the (non-linear) relations whih hold between those setions, i.e., for

the equations that de�ne the projetive image of

~

K

�

.

The integrable system omes in handy for many other things. We use it for

example to determine the base lous of the linear system under onsideration: in

the ases of interest to us, this base lous will be shown to be empty, showing

that our maps �

M

�

�

are regular maps. Moreover we an use it to determine whih

divisors are ontrated: in our ase the only possible ontrations will be divisors

on

~

K

�

whih orrespond to translates of the theta divisor (theta urves) or to the

exeptional divisors E

i

. Our arguments have the advantage that they onsist of an

algebrai omputation only, in ontrast with the more geometri arguments, whih

are spei� to the partiular lass of Abelian surfaes and to the linear system under

onsideration.
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Finally, using the expliit setions we an ompute the oordinates of the singular

points of the image, whih allows us to rewrite the equation(s) of the embedded

intermediate Kummer surfae in a very symmetri form. In those ases in whih no

vanishing at the half periods is presribed we will also provide an equation whose

oeÆients are expliitly expressed in terms of the oeÆients of the urve, de�ning

the Riemann surfae �; from the point of view of number theory suh equations

are more useful than equations that depend on the oordinates of the Weierstrass

points of the surfae. As far as we know suh equations for Kummer surfaes do not

appear in the lassial or modern literature. When rewritten in a more symmetri

form, depending on the oordinates of the Weierstrass points, we reover in some

ases known equations and otherwise new equations for projetive images of

~

K

�

. In

the following table we summarize some geometri information about the projetive

images that we onsider.

Table 1

L parity � P

N

sing. points eq. 1 eq. 2

[2�℄ even 0 P

3

16+0=16 (22) (25)

[3�℄ even 0 P

3

6+0=6 (27) (29)

[3�℄ odd 0 P

4

10+1=11 (30) (31)

[3�℄ odd (2,0, : : : ,0) P

3

9+1=10 | (34)

[4�℄ odd 0 P

5

0+0=0 (35) (36)

[4�℄ odd (1, : : : ,1,3) P

3

0+6=6 (27) (29)

[4�℄ even (2,2,2,2,0, : : : ,0) P

5

12+0=12 | (37)

The meaning of the �rst three olumns is lear. In the fourth olumn, P

N

=

PH

0

(

~

K

�

;M

�

�

)

�

. The �rst number appearing in the sum in olumn �ve is the

number of exeptional urves that get ontrated while the seond number is the

number of theta urves that get ontrated. The sum in olumn �ve is the total

number of irreduible divisors that get ontrated. In the last two olumns we give

a referene to the equations for the image of the Kummer surfae in P

N

, the �rst

equation being the one that does not involve the oordinates of the Weierstrass

points expliitly, while the seond equation is more symmetri but does depend

on the oordinates of the Weierstrass points. Equations (25) and (36) appear

already in [14℄ but all other equations are new. Using a related integrable system

the seond author has, in ollaboration with Jos�e Bertin, obtained equations for a

one-dimensional family of generalized Kummer surfaes in P

4

(see [9℄).

Aknowledgements. The �rst author wishes to thank the Universit�e Catholique

de Louvain for its hospitality. The seond author would like to thank Jos�e Bertin

for drawing his attention to the lassial paper [23℄ by Remy and is grateful to

Franeso Bottain for useful disussions; he also aknowledges the Universidad

Naional del Sur in Bah��a Blana for its hospitality.

2. Abelian and K-3 surfaes

In this setion we onsider some basi fats about omplex Abelian surfaes and

K-3 surfaes. These surfaes are nonsingular and their anonial bundles are trivial.
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For any surfae X we will write O

X

for its struture sheaf and K

X

for its anonial

divisor. When X is non-singular then the line bundle L (invertible sheaf) whih

orresponds to a divisor D will be denoted by [D℄ and the dimension of the i-th

ohomology group H

i

(X;L) is written as h

i

(L) or h

i

(D). When D is e�etive we

denote its omplete linear system PH

0

(X; [D℄) by jDj; for L = [D℄ we also write

jLj for jDj. An e�etive redued divisor on X will be alled a urve on X . Linear

equivalene of divisors is denoted by �.

For an Abelian or K-3 surfae X the birational invariants are summarized in the

following table.

Table 2

invariant notation de�nition K-3 Abelian

irregularity q(X) h

1

(O

X

) 0 2

arith. genus p

a

(X) �(O

X

)� 1 1 �1

geom. genus p

g

(X) h

2

(O

X

) 1 1

We will use line bundles on Abelian and K-3 surfaes to onstrut images of Kum-

mer surfaes and K-3 surfaes in projetive spae. Reall that to a line bundle

L = [D℄ there is assoiated a holomorphi map

�

L

: X nB(L)! PH

0

(X;L)

�

whih assigns to any point P (whih is not in the base lous B(L) of L) the spae

of setions of L that vanish at P . We all L (and D) very ample when � is an

embedding and B(L) = ;. If some positive power of L (multiple of D) provides an

embedding then we all L (or D) ample. Expliitly, if (s

0

; : : : ; s

N

) denotes a basis

of H

0

(X;L) then �

L

is given for P 2 X nB(L) by

�

L

(P ) = (s

0

(P ) : s

1

(P ) : � � � : s

N

(P )):

Let us assume that B(L) = ; and that the image of �

L

is a surfae. Then, by

Bertini's �rst theorem (see [26, p. 21℄), the general member of jLj is irreduible and

smooth. If �

L

ontrats a urve C (�

L

(C) is a point p), then L�C = 0 sine we an

hoose a urve D

0

2 jLj = jDj suh that �

L

(D

0

) avoids the point p. By Bertini's

seond theorem ([26, p. 24℄) suh a urve is smooth and it is lear that D

0

does not

interset C. However, if C is not ontrated then D � C is the degree of �

L

(C) in

PH

0

(X;L)

�

, multiplied by the degree of �

L

.

The adjuntion formula for nonsingular urves on a surfae implies that the

(virtual) genus of a urve C on an Abelian or K-3 surfae is given by g(C) =

C

2

=2 + 1: On the other hand, the Riemann-Roh formula

�(D) =

1

2

D � (D �K

X

) + 1 + p

a

(X)

simpli�es for a urve C on an Abelian or K-3 surfae to

h

0

(C) =

1

2

C

2

+ 1 + p

a

(X) + h

1

(C)

beause K

X

= 0 and the Euler harateristi of [C℄ is given by �(C) = h

0

(C) �

h

1

(C) + h

0

(K

X

� C) = h

0

(C) � h

1

(C). In lassial terminology h

1

(C) is alled
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the superabundane of C and is omputed by using a theorem by Kodaira (see [15,

Theorems 2.2 and 2.3℄).

Theorem 2.1. Let m be the number of onneted omponents of a urve C on a

surfae X. Then h

1

(K+C) = m�1+k, where the integer k denotes the dimension

of the kernel of the homomorphism

H

1

(X;O

X

)! H

1

(C;O

C

):

In the ase in whih X is K-3 we have from Table 2 that q(X) = h

1

(O

X

) = 0

so that k = 0 and h

1

(C) = m� 1, leading to the �nal formula

h

0

(C) =

1

2

C

2

+m+ 1 = g(C) + 1:(1)

In this ase onditions for an ample line bundle to lead to a birational map were

given by Saint-Donat (see [25, Theorem 5.2℄).

Theorem 2.2. Let L be a line bundle on a K-3 surfae X suh that L

2

� 4. If

the linear system jLj = PH

0

(X;L) has no �xed omponents then L = [C℄ for an

irreduible urve C of genus g(C) = L

2

=2 + 1 and the map

�

L

: X ! PH

0

(X;L)

�

= P

g(C)

;

is regular. Moreover, � is birational unless X ontains an irreduible urve C

0

suh

that g(C

0

) = 1 and C

0

� C = 2 or suh that g(C

0

) = 2 and C � 2C

0

:

The following result, whih is also due to Saint-Donat (see [25, Theorems 6.1

and 7.2℄), gives some information about the equations whih de�ne the image.

Theorem 2.3. Let L = [C℄ be a line bundle on a K-3 surfae whih satis�es the

onditions of Theorem 2.2, exluding the exeptional ases, i.e., � is birational.

Then the natural map

 : S

�

H

0

(X;L) �!

M

n�0

H

0

(X;L

n

)

is surjetive. If L

2

= 4 then the kernel of  is generated by an element of degree

four while if L

2

= 6 it is generated by a pair of elements of degrees two and three.

If L

2

� 8 then the kernel of  is generated by its elements of degree two unless X

ontains an irreduible urve C

0

suh that g(C

0

) = 1 and C

0

�C = 3 or X ontains

a pair of irreduible urves C

0

; C

00

suh that g(C

0

) = 2; g(C

00

) = 0; C

0

�C

00

= 1 and

C � 2C

0

+ C

00

.

3. Projetive images of Kummer surfaes

A natural lass of K-3 surfaes appears as follows. Let A be an Abelian surfae.

The (�1)-involution on A (reetion with respet to the origin), whih will be

denoted by (�1)

A

, leads to a singular quotient K

A

= A=(�1)

A

whih is alled the

(singular) Kummer surfae of A. It has sixteen singular points whih orrespond

to the half periods e

1

; : : : ; e

16

of A. The desingularization of K

A

an be desribed

as follows. Let p :

~

A! A be the blow-up of A at all its half periods and denote the

orresponding exeptional divisors by E

i

. (�1)

A

extends to an involution (�1)

~

A

on

~

A and the quotient

~

K

A

=

~

A=(�1)

~

A

is a K-3 surfae (see [8, Proposition VIII.11℄).
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~

K

A

is the desingularisation (minimal resolution) of K

A

and we have the following

ommutative diagram.

~

A

A

~

K

A

K

A

-

p

?

�

?

-

Assoiated to A there are also several intermediate Kummer surfaes whih are

desingularizations of K

A

at some but not all singular points.

We will be interested in projetive embeddings of smooth, singular and interme-

diate Kummer surfaes. Therefore we need to know how to onstrut ample line

bundles on

~

K

A

. Let L be a symmetri line bundle on A, (�1)

�

A

L

�

=

L. Then (�1)

A

lifts uniquely to an involution (�1)

L

on the total spae of L whih is C -linear on

the �bers of L and whih is identity on the �ber over the origin of A (see [16,

Lemma 4.6.3℄). Sine the involution whih (�1)

L

indues on the �ber over eah

half period is linear it is either identity or multipliation by �1. If it is identity

the orresponding half period is alled even, otherwise it is alled odd ; in partiular

the origin is always an even half period. The indued involution s! (�1)

L

s(�1)

A

on H

0

(A;L) leads to a splitting of H

0

(A;L) into (+1) and (�1) spaes, whose

elements are alled even setions and odd setions,

H

0

(A;L) = H

0

(A;L)

+

�H

0

(A;L)

�

:

Everything an be pulled bak using p: we have a line bundle

~

L = p

�

L on

~

A

with an indued involution (�1)

~

L

and an indued splitting of H

0

(

~

A;

~

L); learly p

�

realizes isomorphisms between the even resp. odd setions of

~

L and those of L. Most

importantly, these even and odd setions of

~

L orrespond to the setions of two line

bundles on

~

K

A

: the rank two sheaf �

�

~

L splits under the ation s ! (�1)

~

L

s(�1)

~

A

into (+1) and (�1) spaes

�

�

~

L =M

+

�M

�

;

and there are isomorphisms [6, Proposition 1.1℄

H

0

(

~

A;

~

L)

�

�

=

H

0

(

~

K

A

;M

�

):

So, we an realize odd (even) setions of L on the Abelian variety A as setions of

M

�

(M

+

) on the smooth Kummer surfae

~

K

A

. The above onstrution an be

generalized by de�ning for any vetor � = (�

1

; : : : ; �

16

) 2 N

16

the line bundle

~

L

�

by

~

L

�

= p

�

L 


h

X

(��

i

)E

i

i

:(2)

We think of setions of

~

L

�

as setions of L with presribed vanishing at the half

periods e

i

. The involution (�1)

~

L

�

on the total spae of

~

L

�

is de�ned as the tensor

of (�1)

~

L

with the identity on eah [E

i

℄. Thus, �

�

~

L

�

splits under the ation '(s) =

(�1)

~

L

�

s(�1)

~

A

into (+1) and (�1) line bundles on

~

K

A

, whih we denote by M

+

�

and M

�

�

.

When working out onrete examples it is useful to know in advane the dimen-

sion of H

0

(

~

K

A

;M

�

�

), to know whether the map to projetive spae, given by the

setions, is birational and whether some divisors (exeptional or not) are ontrated
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by this map. Sine the symmetri line bundles L whih we will onsider ome from

expliitly given divisors, we will state the result in the language of divisors. A

divisor (or urve) D on A is alled symmetri if (�1)

�

A

D = D. The line bundle

of a symmetri divisor is symmetri and the even and odd setions of a symmetri

line bundle are symmetri divisors ([16, Lemma 4.7.1℄); therefore, working with

symmetri divisors is just as general as working with symmetri line bundles. We

will all a symmetri divisor even or odd aording to whether it is de�ned by an

even or odd setion. It is easy to see that an even (resp. odd) divisor D has even

(resp. odd) multipliity preisely at the even half periods (in partiular at the ori-

gin). We denote the multipliity of D at the half period e

i

by �

i

(D). Let us �x a

symmetri urve D on A for whih [D℄ = L. By passing to a linearly equivalent

divisor (if neessary) we may assume that D is suh that the hosen numbers �

i

satisfy �

i

� �

i

(D) for any i, beause if a divisor with the required vanishing at the

half periods does not exist, then

~

L

�

has no setions and is not of interest for our

purposes. As we will show in the next proposition the divisor p

�

D �

P

16

i=1

�

i

E

i

is

symmetri if and only if the multipliities �

i

are either all even or all odd; we will

say in these ases that � is even or odd. If we denote the proper transform of D by

^

D then p

�

D =

^

D +

P

�

i

(D)E

i

so that

~

L

�

=

h

^

D +

X

(�

i

(D)� �

i

)E

i

i

:

Let

1

C =

1

2

�

�

^

D +

1

2

16

X

i=1

(�

i

(D)� �

i

)B

i

;(3)

where B

i

= �

�

E

i

and �

i

is de�ned by �

i

= �

i

if �

i

(D)� �

i

is even, and �

i

= �

i

+ 1

if �

i

(D)� �

i

is odd (i = 1; : : : ; 16). The urves B

i

are alled (�2)-urves beause

B

2

i

=

1

2

(�

�

B

i

)

2

= 2E

2

i

= �2:

Proposition 3.1. Suppose that D 2 jLj be symmetri, let � 2 N

16

be even or odd

and let the urve C on

~

K

A

be de�ned by (3). Then [C℄ =M

+

�

if D and � have the

same parity, otherwise [C℄ =M

�

�

.

Proof. Let s resp. s

�

be setions that vanish at D

0

=

^

D +

P

16

i=1

(�

i

(D) � �

i

)E

i

resp. at p

�

D =

^

D +

P

16

i=1

�

i

(D)E

i

. We hoose a loal de�ning equation x

i

for E

i

.

Using the fat that x

i

(�1)

~

A

= �x

i

and that loally the two setions are related by

s = s

�

=x

�

i

i

we �nd

'(s) = (�1)

~

L

�

s(�1)

~

A

= (�1)

~

L

�

s

�

(�1)

~

A

=(�1)

�

i

x

�

i

i

= �s=(�1)

�

i

;

where +=� orresponds to s

�

even/odd. This implies that s is symmetri if and

only if � is even or odd, and it shows how the parity of s is related to the parity

of s

�

(i.e., of D) and of �. We want to see how s desends to the Kummer surfae

~

K

A

. Let us assume that s is an even setion, s 2 H

0

(

~

A;

~

L

�

)

+

, so that 1=s loally

generates the O

~

K

A

-moduleM

+

�

; a proof for an odd setion goes along similar lines.

1

Notie that sine

^

D is symmetri eah irreduible omponent of its diret image �

�

^

D appears

an even number of times.
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The anonial map O

~

K

A

! �

�

O

~

A

leads, by taking a diret limit over neighbour-

hoods of q 2

~

A, to a map

�

q

: O

~

K

A

;�(q)

! �

�

O

~

A;q

! O

~

A;q

:

and indues an isomorphism O

~

K

A

�

=

(�

�

O

~

A

)

G

, where G is the group generated by

(�1)

�

~

A

([19, page 66℄). Away from the rami�ation lous of �, whih onsists of the

set of exeptional urves E

i

, the map �

q

is an isomorphism. Therefore, if q 2

~

A

does not belong to an exeptional urve then �

q

sends the loal equation of C to the

equation s = 0 of D

0

. It remains to be shown that this is also true when q belongs to

an exeptional urve. Let q be a point in E

i

; we may assume that q does not belong

to any other E

j

. If we denote a loal de�ning equation for E

i

by x

i

, as before, and

we onsider a oordinate system (x

i

; t), then (u = x

2

i

; t) is a oordinate system

around �(q) and the map �

q

is the immersion C [[u; t℄℄ = C [[x

2

; t℄℄ ! C [[x; t℄℄. An

equation for D

0

about the point q is given by s = f(x; t) = x

m

i

g(x; t), where g is a

loal equation for the proper transform

^

D and m

i

= �

i

(D) � �

i

. The loal setion

g is even ([6, Proposition 1.2℄), so that g(x; t) = ~g(x

2

; t), and

'(s) = '(x

m

i

~g) = (�1)

m

i

x

m

i

~g = (�1)

m

i

s:

Sine s is an even setion the above equation shows that e

i

is an even half period

preisely if m

i

is even. Now, 1=f is a generator of the O

~

A;q

-module

~

L

q

and the

linear map � splits the rank two O

~

K

A

-module

~

L

q

into (�1) spaes M

�

�(q)

. Then,

for this generator

'(1=f) = (�1)

m

i

=f; '(x=f) = �(�1)

m

i

x=f:

It follows that if e

i

is an even half period then 1=f is a generator of M

+

�

around

q; otherwise M

+

�

is generated by x

i

=f around q. In the �rst ase an equation

for a divisor on

~

K

�

orresponding to the line bundle M

+

�

is given by f(x

i

; t) =

x

2k

i

~g(x

2

i

; t) = u

k

~g(u; t) = 0. In the seond ase suh an equation is given by

f(x

i

; t)=x

i

= x

2k+1

i

~g(x

2

i

; t)=x

i

= u

k

~g(u; t) = 0. In both ases this gives a loal

equation (around q 2 E

i

) for the divisor C, given by (3).

In the following proposition we use Kodaira's Theorem to ompute h

0

(C). We also

ompute the intersetion of C with other urves (in partiular the (�2)-urves)

beause this allows us to determine whih urves are ontrated by the map � :

~

K

A

! PH

0

(

~

K

A

; [C℄) and to ompute the degree of the image urve.

Proposition 3.2. Let D a symmetri urve on an Abelian surfae A whih indues

a polarization of type (Æ

1

; Æ

2

). Suppose that � 2 N

16

is symmetri and satis�es

�

i

� �

i

(D) for i = 1; : : : ; 16. Let C be the urve on

~

K

A

de�ned by (3) and assume

that jCj has no �xed omponents. Then

C

2

= Æ

1

Æ

2

�

1

2

16

X

i=1

�

2

i

;(4)

h

0

(C) =

Æ

1

Æ

2

2

�

1

4

16

X

i=1

�

2

i

+m+ 1;(5)

where �

i

= �

i

if �

i

(D)� �

i

is even and �

i

= �

i

+ 1 otherwise; the integer m is the

number of onneted omponents of C. If C

0

is any urve in

~

K

A

whih does not
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ontain any of the urves B

i

as one of its irreduible omponents, then

C � C

0

=

D �D

0

2

�

1

2

16

X

i=1

�

i

�

i

(D

0

);(6)

where D

0

is the symmetri divisor on A suh that �

�

C

0

= p

�

D

0

�

P

16

i=1

�

i

(D

0

)E

i

.

Also C � B

i

= �

i

for any i.

Proof. We know from Formula (1) that

h

0

(C) =

C

2

2

+m+ 1;(7)

where m is the number of onneted omponents of C. Sine � is of degree two we

get from (3) that

2C

2

=

 

^

D +

16

X

i=1

(�

i

(D)� �

i

)E

i

!

2

=

 

p

�

D �

16

X

i=1

�

i

E

i

!

2

:

Using the fat that (p

�

D)

2

= D

2

= 2Æ

1

Æ

2

we �nd the announed formula (4).

Combined with (7) this gives the right number for h

0

(C). The veri�ation of (6) is

similar:

C � C

0

=

1

2

 

^

D +

16

X

i=1

(�

i

(D) � �

i

)E

i

!

�

 

p

�

D

0

�

16

X

i=1

�

i

(D

0

)E

i

!

=

1

2

 

p

�

D �

16

X

i=1

�

i

E

i

!

�

 

p

�

D

0

�

16

X

i=1

�

i

(D

0

)E

i

!

=

D �D

0

2

�

1

2

16

X

i=1

�

i

�

i

(D

0

):

Finally,

C � B

i

=

1

2

 

^

D +

16

X

i=1

(�

i

(D)� �

i

)E

i

!

� 2E

i

= �

i

:

Our formula for h

0

(C) generalizes the formula given in [6, Theorem 3.1℄. In the

latter formula all �

i

are zero whih implies m = 1 beause at any half period whih

belongs to two irreduible omponents of D we have �

i

(D) � 2. If D is even (resp.

odd) then �

i

= 1 for the odd (resp. even) half periods and �

i

= 0 for the even (resp.

odd) half periods. Thus our formula speializes to Bauer's formula,

h

0

(C) =

Æ

1

Æ

2

2

�

n

4

+ 2(8)

where n is the number of even half periods if D is odd and n is the number of odd

half periods if D is even.
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4. The Mumford system

In this setion we introdue an integrable system and we use it to ompute

expliit bases for the setions of di�erent natural line bundles on the Jaobian as

well as parametrizations of the divisors that are ut out by these setions. In the

next setion we will use these setions to ompute several projetive images of its

Kummer surfae.

Consider a hyperellipti urve of genus two, given by the equation

�

2

= f(�) where f(�) =

5

Y

i=1

(� � �

i

) =

5

X

i=0

�

i

�

5�i

(9)

and assume that it is smooth, i.e., all �

i

are di�erent. This urve an be ompleted

into a non-singular omplete urve (ompat Riemann surfae) � by adding a single

point whih we will denote by 1. The map � ! P whih is given on the aÆne

part � n f1g by (�; �) 7! � expresses � as a two-sheeted over of P. It has six

rami�ation points !

i

(i = 0; : : : ; 5) whih are alled Weierstrass points. They

are the �xed points of the hyperellipti involution { whih is given on � n f1g by

(�; �) 7! (�;��). At1 the Riemann surfae is desribed in terms of a uniformizing

parameter t by

�(t) = t

�2

; �(t) = t

�5

�

1 +

�

1

2

t

2

+

4�

2

� �

2

1

8

t

4

+O(t

6

)

�

;(10)

showing that 1 is one of the Weierstrass points; we will always label these points

suh that 1 = !

0

and suh that �(!

i

) = �

i

for 1 � i � 5. At !

i

the urve is

parametrized by

�(t) = �

i

+ t

2

; �(t) =

s

Y

j 6=i

(�

i

� �

j

)

�

t+O(t

3

)

�

:(11)

(the partiular hoie of square root is irrelevant beause we an replae t by �t).

We denote the Jaobian of � (its group of divisors of degree zero modulo linear

equivalene; equivalently its group of line bundels of degree zero) by J

�

and we

denote the element of J

�

that orresponds to a divisor D of degree zero on � by

[D℄. It is a fundamental fat that J

�

is an Abelian surfae and that the map

P 7! [P �1℄ is an embedding of the urve in its Jaobian. We denote the image

of this map by � and all it the theta divisor; � is indeed a divisor and �

2

= 2.

The hyperellipti involution { on � extends linearly to an involution on the group

of divisors on � whih in turn desends to the (�1)-involution on J

�

. It follows

that the sixteen half periods on J

�

are given by e

ij

= [!

i

� !

j

℄ and their group

struture is governed by the formulas

e

ij

+ e

jk

+ e

ki

= 0; for any i; j; k;

e

ij

+ e

kl

+ e

mn

= 0; for i; j; k; l;m; n all di�erent;

(for the proof of the seond formula, use the meromorphi funtion (� � �

i

)(� �

�

k

)(�� �

m

)=� to realize the linear equivalene !

i

+ !

k

+ !

m

� !

j

+ !

l

+ !

n

). We

also introdue the sixteen translates �

ij

= � + e

ij

of the theta divisor whih we

will all theta urves. The theta urves �

ij

are symmetri, the odd ones are the

six urves �

0i

whih pass through the origin and the remaining ones are even.
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To every point of J

�

we an uniquely assoiate a matrix of polynomials (in �)

0

�

v(�) u(�)

w(�) �v(�)

1

A

=

0

�

v

1

�+ v

2

�

2

+ u

1

�+ u

2

�

3

+ w

0

�

2

+ w

1

�+ w

2

�v

1

�� v

2

1

A

(12)

whose harateristi polynomial equals �

2

�f(�) as follows (see [18℄). Every element

of J

�

is of the form [P +Q� 21℄ for some P; Q 2 � and the unorderd pair (P;Q)

is unique if and only if P 6= {(Q). In this ase, if both P and Q are di�erent form

1 we take the entries of the matrix (12) to be given by (note that w(�) is indeed

a polynomial beause v(�(P )) = �(P ) and v(�(Q)) = �(Q))

u(�) = (�� �(P ))(� � �(Q));

v(�) =

�(P )� �(Q)

�(P )� �(Q)

�+

�(P )�(Q)� �(Q)�(P )

�(P )� �(Q)

;(13)

w(�) =

f(�)� v

2

(�)

u(�)

:

For example, for the ten half periods e

ij

= [!

i

� !

j

℄ (1 � i < j � 5); we get

0

�

0 (�� �

i

)(� � �

j

)

Q

k 6=i;j

(�� �

k

) 0

1

A

:(14)

The above formula for v(�) is to be interpreted in the right way when P = Q:

taking the limit Q! P in the above formula for v(�) we �nd the following formula

for v(�) when P = Q,

v(�) =

f

0

(�(P ))(� � �(P )) + 2f(�(P ))

2�(P )

:(15)

Note that the denominator does not vanish beause P 6= {P , i.e., P is not a Weier-

strass point. Still assuming that P 6= {(Q), if Q = 1 then the matrix is given

by

0

B

�

�(P ) �� �(P )

Q

5

i=1

(�� �

i

)�

Q

5

i=1

(�(P ) � �

i

)

�� �(P )

��(P )

1

C

A

:(16)

For example, for the �ve half periods e

i0

= [!

i

�1℄ ; i = 1; : : : ; 5 we have

0

�

0 �� �

i

Q

j 6=i

(�� �

j

) 0

1

A

:

The divisors P + {(P )� 21 form a linear system that orresponds to the origin of

the Jaobian; its matrix is given by

0

�

0 1

Q

5

i=1

(�� �

i

) 0

1

A

:(17)

For future use we will now ompute the set of matries whih orrespond to the

divisors �

ij

; more preisely we will give a parametrization of all of the divisor minus

one point. In order to make our formulas more ompat we introdue the following
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expressions in the �

i

whih generalize the elementary symmetri polynomials �

i

(introdued in (9)),

��

k;i

1

:::i

n

= �

kj�

i

1

=���=�

i

n

=0

; (1 � n+ k � 5);

�

k;i

1

:::i

n

= ��

k;j

1

:::j

5�n

; (fj

1

; : : : ; j

5�n

g = f1; : : : ; 5g n fi

1

; : : : ; i

n

g):

For example �

1;12

= ��

1

� �

2

and ��

3;12

= ��

3

�

4

�

5

.

Clearly, a parametrization for the theta divisor � = �

00

is given by all matries

(16) where P runs over �. For the other divisors �

0i

we get

0

B

�

�(P )

�� �

i

�(P )� �

i

(�� �(P ))(� � �

i

)

?

i

��(P )

�� �

i

�(P )� �

i

1

C

A

;(18)

where ?

i

is found by expressing that the harateristi polynomial of the matrix is

equal to �

2

� f(�),

?

i

= �

3

+ �

2

(��

1;i

+ �(P )) + �(��

2;i

+ �(P )��

1;i

+ �(P )

2

)

�

1

�(P ) � �

i

�

��

4;i

+ �

i

��

3;i

+ �

i

�(P )��

2;i

+ �

i

�(P )

2

��

1;i

+ �

i

�(P )

3

�

:

The formulas for omputing the other �

ij

(with 0 < i < j � 5) require some more

work. The points on �

ij

are of the form [P + !

i

+ !

j

� 31℄, whih we �rst need to

rewrite in the standard form [Q+R� 21℄ (Q and R will depend on P ). Consider

for �xed P the following meromorphi funtion on �,

'

P

(�; �) =

�+ �(P )

(�� �

i

)(� � �

j

)

(�(P ) � �

i

)(�(P ) � �

j

)

(�� �(P ))(� � �

i

)(�� �

j

)

:

It realises the linear equivalene P + !

i

+ !

j

� Q + R +1, the points Q and R

being given as the non-trivial zeros of the numerator. To �nd these zeros, multiply

this numerator by

�� �(P )

(�� �

i

)(�� �

j

)

(�(P ) � �

i

)(�(P )� �

j

)

to �nd the following equation in � whose solutions are �(Q) and �(R),

5

Y

k=1

(�� �

k

)(�(P )� �

i

)

2

(�(P ) � �

j

)

2

=

5

Y

k=1

(�(P ) � �

k

)(�� �

i

)

2

(�� �

j

)

2

:

Note that we are not required to solve this for �(Q) and �(R) individually: we an

solve it linearly for �(Q) + �(R) and �(Q)�(R) and this is enough to determine

the polynomial u(�) whih is assoiated to an arbitrary point on �

ij

, in fat these

are preisely the oeÆients of u(�) sine u(�) = (� � �(Q))(� � �(R)). Solving

linearly we get

u

1

=

�

2

(P )�

1;ij

+ �(P )(�

2

� 2��

2;ij

) + �

2;ij

��

1;ij

� ��

3;ij

(�(P )� �

i

)(�(P ) � �

j

)

;

u

2

=

�

2

(P )�

2;ij

+ �(P )(�

2;ij

��

1;ij

� ��

3;ij

) + �

2;ij

��

2;ij

� �

1;ij

��

3;ij

(�(P )� �

i

)(�(P ) � �

j

)

:(19)
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In order to �nd the polynomial v(�) whih is assoiated to an arbitrary point on

�

ij

we use the vanishing of the numerator of '

P

to �nd

�(Q)� �(R)

�(Q)� �(R)

= ��(P )

�(Q) + �(R)� �

i

� �

j

(�(P )� �

i

)(�(P )� �

j

)

;

�(Q)�(R)� �(R)�(Q)

�(Q)� �(R)

= �(P )

�(Q)�(R) � �

i

�

j

(�(P ) � �

i

)(�(P ) � �

j

)

:

The right hand side only involves �(P ) + �(Q) and �(P )�(Q) hene it suÆes to

plug in the expressions (19) for these to �nd the polynomial v(�) assoiated to

[P + !

i

+ !

j

� 31℄,

v

1

= �(P )

u

1

+ �

i

+ �

j

(�(P )� �

i

)(�(P ) � �

j

)

;

v

2

= �(P )

u

2

� �

i

�

j

(�(P )� �

i

)(�(P ) � �

j

)

:(20)

The orresponding polynomial w(�) is found from w(�) = (f(�) � v

2

(�))=u(�).

The above formulas for the divisors give a parametrization but do not desribe

the setions whih ut them out. Nor do we have, at this point, a way to om-

pute a basis for the odd or even setions of [n�℄ whih lead to projetive images

of the Kummer surfae. To get these we onsider the (two-dimensional) Mum-

ford system (see [18℄), whih onsists of a pair of ommuting vetor �elds on the

seven dimensional aÆne spae M of matries (12). Coordinates on M are given by

u

1

; u

2

; v

1

; v

2

; w

0

; w

1

and w

2

.

Let H denote the map

H :M ! C [�; �℄ : A(�) 7! jA(�) � �I j;

whih assoiates to suh a matrix A(�) its harateristi polynomial. Then the

�ber of H over a polynomial �

2

� f(�) (f moni of degree �ve and square-free) is

isomorphi to the aÆne variety J

�

n� where � is the urve de�ned by �

2

= f(�);

expliitly the isomorphism is given by (13). Equations for this aÆne variety thus

follow from the equations of the �ber,

u

1

+ w

0

= �

1

;

u

2

+ u

1

w

0

+ w

1

= �

2

;

u

2

w

0

+ u

1

w

1

+ w

2

+ v

2

1

= �

3

;(21)

u

2

w

1

+ u

1

w

2

+ 2v

1

v

2

= �

4

;

u

2

w

2

+ v

2

2

= �

5

;

where we denoted the oeÆients of the urve �

2

= f(�) by �

i

, as in (9). Two

independent ommuting vetor �elds on M are given by
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_u

1

= v

1

; u

0

1

= v

2

;

_u

2

= v

2

; u

0

2

= u

1

v

2

� u

2

v

1

;

_v

1

= �

1

2

(w

1

+ u

2

1

� u

1

w

0

� u

2

); v

0

1

= �

1

2

(w

2

+ u

1

u

2

� u

2

w

0

);

_v

2

= �

1

2

(w

2

+ u

1

u

2

� u

2

w

0

); v

0

2

= �

1

2

(u

1

w

2

+ u

2

2

� u

2

w

1

);

_w

0

= �v

1

; w

0

0

= �v

2

;

_w

1

= u

1

v

1

� v

1

w

0

� v

2

; w

0

1

= u

2

v

1

� v

2

w

0

;

_w

2

= u

1

v

2

� v

2

w

0

; w

0

2

= u

2

v

2

+ v

1

w

2

� v

2

w

1

:

Mumford shows that these vetor �elds restrit to linear vetor �elds on the Jao-

bians whih appear as �bers of the map H (it is easy to hek that these vetor

�elds are indeed tangent to the �bers of H). Fixing the setion whih uts out n�,

the setions of [n�℄ an be desribed by the meromorphi funtions with a pole of

order at most n at in�nity, i.e., at �. To �nd these meromorphi funtions one

looks for Laurent solutions to the di�erential equations whih desribe one of the

linear vetor �elds (see [28, Chapter 5.3℄), more preisely one looks for all fami-

lies of Laurent solutions of the maximal dimension (i.e., ontaining the maximal

number of free parameters). In the ase at hand we pik the �rst vetor �eld (the

Laurent solutions for this vetor �elds are easier to �nd beause that vetor �eld is

weight homogeneous, see [28, lo. it.℄) We �nd that there is only one suh family of

Laurent solutions and that its dimension is six. We display here preisely as many

terms of the Laurent solutions as we need for our omputations below; moreover

we only display them for u

1

and u

2

beause the Laurent solutions for the other

aÆne variables follow at one from them by using the di�erential equations (e.g.,

v

1

= _u

1

, et.).

u

1

= �

4

t

2

+ a+ 2t

2

+ 40dt

3

+ et

4

+ 3d(a+ 2b)t

5

+ ft

6

+ � � � ;

u

2

=

4b

t

2

� b(a+ b)� 240dt� 2bt

2

+ 8d(3a+ b)t

3

+ (18f + 6

2

� be)t

4

+ � � � :

A basis for the funtions with a pole of order two at most at � is given by

z

0

= 1; z

1

= u

1

; z

2

= u

2

; z

3

= u

1

u

2

� w

2

:

To see that the restrition of z

3

to J

�

is linearly independent of the other funtions

it suÆes to ompute the leading term of z

3

, whih is given by 4b(3a+2b)=t

2

. The

orresponding setions embed the singular Kummer surfae into P

3

(see the next

setion). A basis for the funtions with a triple pole along � is given by adding the

following �ve funtions

z

4

= v

1

; z

5

= v

2

; z

6

= u

1

v

2

� u

2

v

1

; z

7

= v

2

w

1

� v

1

w

2

+ u

1

(u

1

v

2

� u

2

v

1

);

z

8

= u

1

w

2

+ u

2

w

1

+ 2u

1

u

2

w

0

:

Their leading terms are given by

(z

4

; z

5

; z

6

; z

7

; z

8

) =

8

t

3

�

1;�b; b

2

; b

2

(3a+ 2b); 1440d

�

;

showing their independene. These nine funtions allow to embed the Jaobian into

projetive spae P

8

. Finally, to get a basis for the spae of funtions with a pole of
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order at most four along �, one also adds the following funtions:

z

9

= u

2

1

; z

10

= u

1

u

2

; z

11

= u

2

2

; z

12

= v

1

w

2

+ u

1

w

0

v

2

;

z

13

= u

1

u

2

v

2

� v

2

w

2

� u

2

2

v

1

� u

2

v

2

w

0

; z

14

= u

2

(u

1

u

2

� w

2

);

z

15

= (u

1

u

2

� w

2

)

2

:

Their leading terms are given by

(z

9

; z

10

; : : : ; z

15

) =

16

t

4

�

1;�b; b

2

;�720d;�720bd; b

2

(3a+ 2b); b

2

(3a+ 2b)

2

�

;

hene these setions are also independent (on the Jaobian of any smooth urve

�). Sine the hyperellipti involution on � is given by (�; �) 7! (�;��) the (�1)-

involution on J

�

is given by

(u

1

; u

2

; v

1

; v

2

; w

0

; w

1

; w

2

) 7! (u

1

; u

2

;�v

1

;�v

2

; w

0

; w

1

; w

2

);

and we easily see that eah of the funtions z

i

; i = 0; : : : ; 15 is either even or odd

with respet to this involution. In order to onsider suh a funtion z

i

as a setion

of [n�℄ we need to multiply z

i

by the setion that uts out n�, whih is even for

n even and whih is odd for n odd. Therefore we �nd the following table for the

funtions z

i

whih represent the even and odd setions of [2�℄; [3�℄ and [4�℄. An

expliit basis for the even and odd setions for [n�℄ with n � 5 are obtained in a

ompletely analogous way but will not be used here.

Table 3

line bundle even setions odd setions

[2�℄ 1; z

1

; z

2

; z

3

no

[3�℄ z

4

; z

5

; z

6

; z

7

1; z

1

; z

2

; z

3

; z

8

[4�℄ 1; z

1

; z

2

; z

3

; z

8

; z

9

; z

10

; z

11

; z

14

; z

15

z

4

; z

5

; z

6

; z

7

; z

12

; z

13

5. Kummer surfaes of Jaobians

In this setion we will use the results of the previous setion to ompute di�erent

projetive images of the Kummer surfae K

�

of J

�

. The linear systems whih we

will use onsist of the even or odd setions of [n�℄ (with n = 2; 3; 4) with presribed

vanishing at the half periods. Reall from Setion 3 that we denote the line bundle

p

�

L 
 [

P

(��

i

)E

i

℄ on

~

J

�

by

~

L

�

and that we denote the line bundles on

~

K

�

whih

orrespond to the even and odd setions of

~

L

�

by M

�

�

. In order to ompute these

indued linear systems on

~

K

�

we will use divisors in jn�j whih onsist entirely

of translates �

ij

of �. We will all suh divisors totally reduible divisors. These

divisors have the onvenient property of having large multipliity at several half

periods and it is for these divisors easy to �gure out its multipliity at any half

period. The following lemma will tell us whih divisors in jn�j are totally reduible.

Lemma 5.1. The divisor �

i

1

j

1

+ � � �+�

i

n

j

n

is in jn�j if and only if e

i

1

j

1

+ � � �+

e

i

n

j

n

= 0.

Proof. The proof of the only if part follows easily from [16, Lemma 4.1.5℄. The

if part then follows from the fat that two di�erent translates of � are never be

linearly equivalent.
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We will in every ase onsidered below show that the linear systems M

�

�

have no

base points, so that the orresponding map �

M

�

�

is regular, we will ompute an

equation of its image and we will determine whih urves are ontrated (leading

to a singular point of the image). We will denote the image of the (�2)-urve B

ij

by E

ij

and the image of �

�

(

^

�

ij

) by T

ij

. These images an be points, straight lines

or urves of higher degree. The inidene relations between the thirty-two objets

E

ij

and T

ij

will follow easily from the inidene relations on

~

J

�

(see [12, Chapter

1℄) whih were lassially represented in the following ompat form.

Table 4

00 01 12 02

34 25 05 15

35 24 04 14

45 23 03 13

The way in whih the inidene is enoded in this table is this: the divisors E

ij

are

pairwise disjoint as well as the divisors

^

�

kl

. Every divisor E

ij

meets preisely six

divisors

^

�

kl

and vie versa. E

ij

and

^

�

kl

will meet preisely when the indies ij

and kl appear in Table 4 either in the same row or in the same olumn (but not

both!).

5.1. The linear system j2�j. The �rst ase is that of D = 2�; L = [2�℄. Some

of the results in this paragraph are lassial but the proofs that we give provide

the reader with a good illustration of our approah, whih also applies to the more

omplex situations studied in the subsequent paragraphs.

The divisor D has multipliity two at the six half-periods e

00

; e

01

; : : : ; e

05

and

has multipliity zero at the other half periods, in partiular D is even and all half

periods are even. We piture D as follows.

00

01

02

03

04

05

By (8) every setion of [2�℄ is even, in agreement with Table 3, leading to a line

bundle M

+

on

~

K

�

. If s denotes the setion of [2�℄ that uts out 2� then Table 3

tells us that �

0

= s; �

1

= su

1

; �

2

= su

2

and �

3

= s(u

1

u

2

� w

2

) span the spae of

setions of [2�℄.

Proposition 5.2. The linear system j2�j is base-point-free hene leads to a regular

map �

M

+
:

~

K

�

! P

3

. The image of �

M

+
is a quarti surfae whose equation is
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given, in terms of the oordinates �

i

; i = 0; : : : ; 3, by

0 = (4�

3

�

5

� �

2

4

)�

4

0

+ 2[�2�

2

�

5

�

1

+ (�

2

�

4

� 2�

1

�

5

)�

2

+ 2�

5

�

3

℄�

3

0

+ [4�

1

�

5

�

2

1

� (2�

4

+ �

2

2

)�

2

2

+ (4�

5

� 2�

1

�

4

)�

1

�

2

� 2�

4

�

1

�

3

+ 4�

3

�

2

�

3

℄�

2

0

(22)

+ 2[�2�

5

�

3

1

+ �

2

�

3

2

+ 2�

4

�

2

1

�

2

+ (�

1

�

2

� 2�

3

)�

1

�

2

2

+ 2�

2

�

2

3

� �

2

�

1

�

2

�

3

� 2�

1

�

2

2

�

3

℄�

0

� (�

2

2

� �

1

�

1

�

2

+ �

1

�

3

)

2

:

The map �

M

+
ontrats the sixteen (�2)-urves B

ij

and maps the sixteen theta

urves to sixteen onis, leading to the lassial 16

6

-on�guration on the Kummer

surfae K

�

. No other irreduible divisor is ontrated by �

M

+
.

Proof. Let us show that there are no points on J

�

where all setions of [2�℄ vanish.

First, if suh a point X exists then s(X) = 0 hene X 2 �. We know that the

points on the theta divisor are of the form [P �1℄ where P 2 �. Let us suppose

�rst that P 6= 1 and onsider the urve X(t) = P +Q(t) � 21 where Q(0) = 1

and Q(t) = (�(t); �(t)) is given by (10) for t small and di�erent from zero. The

polynomials u(�); v(�) and w(�) whih orrespond toX(t) are (for t 6= 0) omputed

from (13). The image of X = X(0) in projetive spae is then given by

lim

t!0

(1 : u

1

(t) : u

2

(t) : u

1

(t)u

2

(t)� w

2

(t)) = (0 : �1 : �(P ) : �(P )(�

1

+ �(P )));

in partiular not all setions vanish at X . If X is the origin then we onsider a

urve X(t) = [P (t) +Q(t)� 21℄ where P (t) and Q(t) are given as Q(t) above and

we �nd in a similar way that the origin gets mapped to (0 : 0 : 0 : 1). This shows

that j2�j is base-point-free, hene jM

+

j is also base-point-free.

We now indiate how the equation (22) was found. Sine �

0

= 0 annot be a

omponent of the image it suÆes to �nd a relation between the funtions z

0

; : : : ; z

3

(see Table 3). This is easily done from the equations (21) whih de�ne the aÆne part

of the Jaobian: use the �rst two equations of (21) to eliminate w

0

and w

1

linearly

from the other equations and eliminate v

1

and v

2

from these by expressing that the

obvious identity (v

1

v

2

)

2

= v

2

1

v

2

2

holds. The resulting equation for between u

1

; u

2

and w

2

is rewritten at one in terms of z

0

; : : : ; z

3

. If we let �

i

= sz

i

; i = 0; : : : ; 3 then

we �nd (22). In order to onlude from this omputation that the image is always

(i.e., for all values of the parameters �

i

whih de�ne a smooth urve) a quarti

surfae we only need to show that the quarti polynomial in equation (22) is not

a omplete square, beause the image is ertainly irreduible and has degree four.

Let us suppose that the right hand side Q of (22) is a omplete square, Q = P

2

.

Sine the oeÆient of �

4

1

in Q vanishes there is no term �

2

1

in P and hene no term

�

0

�

3

1

in Q, i.e., �

5

= 0. But then also the oeÆient of �

2

0

�

2

1

in Q vanishes, hene

the oeÆient of �

0

�

1

in P vanishes. This implies in turn that the oeÆient 2�

4

of �

0

�

2

1

�

2

in Q vanishes. The two onditions �

4

= �

5

= 0 are however impossible

when � is smooth.

Sine �

ij

= 0 for 0 � i; j � 5 we have from Proposition 3.2 that C � B

ij

= 0 for

any i; j, i.e., all (�2)-urves B

ij

are ontrated, so that every E

ij

is a point. On

the other hand, if we denote by C

ij

the projetion of the proper transform of any

of the theta urves �

ij

then C � C

ij

= � ��

ij

= 2 so the sixteen theta urves map

to sixteen onis T

ij

and we get Kummer's 16

6

on�guration of lines and onis on

K

�

� P

3

. Expliit oordinates of the points E

ij

and the onis T

ij

will be omputed

below.
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Finally, we use the expliit setions to show that no other irreduible divisor in

J

�

is ontrated by �

[2�℄

. Sine suh a divisor lies in the aÆne part J

�

n� we an

write it as [P (t)+Q(t)�21℄ where P (t) = (�

1

(t); �

1

(t)) and Q(t) = (�

2

(t); �

2

(t)).

If we assume that this urve is ontrated by � then u

0

1

= u

0

2

= (u

1

u

2

� w

2

)

0

= 0

where the prime denotes derivative with respet to t. Then

�

0

1

(t) + �

0

2

(t) = 0;

�

2

(t)�

0

1

(t) + �

1

(t)�

0

2

(t) = 0;

so that �

0

1

(t) = �

0

2

(t) = 0 or �

1

(t) = �

2

(t). The �rst ase does not orrespond

to a divisor. In the seond ase we have that �

1

(t) = �

2

(t) beause the pair of

points (P;Q) whih orresponds to any point of J

�

, di�erent from the origin, has

the property that P 6= {Q; from the expliit equations for � it follows that � does

not map suh a urve to a single point.

It should be remarked that the oeÆients of the quarti (22) are expressed in terms

of the oeÆients �

i

of the equation �

2

= f(�) for � and not in terms of the roots

�

i

of f(�). As far as we know suh an equation does not appear in the lassial

literature.

In omputing an equation for the quarti surfae we ould have used another

basis for the setions of [2�℄; note that eah suh hoie orresponds to the hoie

of a basis for P

3

. We will �nd a more symmetri equation by using the singular

points E

ij

, whih are the images of the sixteen (�2)-urves B

ij

. For 0 < i < j � 5

we �nd from (14) that the polynomials whih orrespond to e

ij

are given by

u(�) = �

2

+ u

1

�+ u

2

= (�� �

i

)(�� �

j

);

v(�) = 0;

w(�) = �

3

+ w

0

�

2

+ w

1

�+ w

2

=

Y

k 6=i;j

(�� �

k

)

so that for 0 < i < j � 5 the image E

ij

of B

ij

is given by the point

E

ij

= (1 : �

1;ij

: �

2;ij

: �

1;ij

�

2;ij

� ��

3;ij

):

The oordinates of the other six points E

0i

; (0 � i � 5) are found as follows.

The sixteen translations over half periods desend to sixteen automorphisms of

the Kummer surfae and of its image. Any suh automorphism is indued by an

automorphism of the ambient spae P

3

. With the ten half periods at hand we an

ompute the matries of these automorphisms: in order to ompute the matrix

�

0k

whih goes with translation over e

0k

, it suÆes to express the fat that the

translation interhanges the following three pairs of points: E

ij

$ E

mn

; E

im

$ E

jn

and E

in

$ E

jm

(here fi; j; k;m; ng = f1; 2; 3; 4; 5g). It leads to the following formula

for �

0k

�

0k

=

0

B

B

B

B

B

�

�

2

k

�

k

1 0

�

k

��

2;k

+ �

2

k

��

1;k

��

2

k

�

1

�1

��

4;k

+ �

k

��

3;k

0 ��

k

��

1;k

�

k

�

1

(��

4;k

+ �

k

��

3;k

) ���

4;k

� �

k

��

3;k

2�

3

k

+ (�

2

� �

2

1

)�

k

�

k

��

1;k

1

C

C

C

C

C

A

:

The matries for the other translations �

kl

are found from �

kl

= �

0k

�

0l

. From

�

0k

(E

ik

) = E

0i

we �nd that E

0i

= (0 : 1 : ��

i

: ��

i

��

1;i

) from whih we also get



20 LUIS A. PIOVAN AND POL VANHAECKE

that the origin in J

�

is mapped to E

00

= (0 : 0 : 0 : 1). This provides us with the

expliit oordinates of all singular points. Expliit equations for the hyperplanes

whih ut out the onis T

0i

and T

ij

are found from the expliit parametrization of

these urves: using (18) we �nd at one that the setion

f

i

= �

2

i

�

0

+ �

i

�

1

+ �

2

(23)

vanishes one (hene twie) on �

0i

giving the following equation for the oni T

0k

(as sitting in the hyperplane f

i

= 0).

(�

1

+ �

k

�

0

)(�

3

+ �

k

��

1;k

�

1

� �

k

(�

2

k

� �

k

��

1;k

+ ��

2;k

)�

0

)

+ �

0

(�

k

�

3

+ (��

4;k

+ �

k

��

3;k

)�

0

) = 0:

Using (19) and (20) we �nd that

f

ij

= (�

2;ij

��

1;ij

+ ��

3;ij

)�

0

� �

2;ij

�

1

� ��

1;ij

�

2

+ �

3

(24)

vanishes twie on �

ij

giving the following equations for the quadris T

ij

; (0 < i; j �

5) (as sitting in the hyperplane f

ij

= 0).

(�

2;ij

�

1

� �

1;ij

�

2

)(�

1

� ��

1;ij

�

0

) + (�

2

� �

2;ij

�

0

)(�

2

� ��

2;ij

�

0

)

+ ��

3;ij

�

0

(�

1

� �

1;ij

�

0

) = 0:

A natural way to pik oordinates whih make the equation of the quarti more

symmetri is it take them suh that four of the translations �

ij

orrespond to

interhanging the base points of P

3

in pairs. Clearly these four translations must

form a subgroup of the group of all translations over half periods. These subgroups

ome in two types: either one piks as generators two half periods on a single

theta urve or one piks two generators on two distint theta urves. If four half

periods are linked by a subgroup of the �rst type they are lassially said to form

a Rosenhain tetrad; learly there are eighty suh tetrads. Otherwise they are said

to form a G�opel tetrad; there are sixty suh tetrads. There is a signi�ant di�erene

between these two types: if the verties of a Rosenhain tetrad are taken as base

points then eah of the four oordinate planes ontains one of the onis T

ij

, whih

is not true in the ase of a G�opel tetrad. Indeed, sine eah oordinate plane of a

Rosenhain tetrad ontains three points of one of the onis T

ij

it must ontain the

whole oni.

For example, the images of the half periods e

00

; e

0i

; e

0j

and e

ij

form a Rosenhain

tetrad. If we take these as base points for P

3

and we all t

0

; t

1

; t

2

; t

3

the new

oordinates and we write �

ij

= �

i

� �

j

then

0

B

B

B

B

B

�

�

0

�

1

�

2

�

3

1

C

C

C

C

C

A

=

0

B

B

B

B

B

�

1 0 0 0

�

1;ij

1 1 0

�

2;ij

��

j

��

i

0

�

1;ij

�

2;ij

� ��

3;ij

��

j

��

1;j

��

i

��

1;i

1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

a

0

t

0

a

1

t

1

a

2

t

2

a

0

a

1

a

2

t

3

1

C

C

C

C

C

A

;
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where a

2

0

= �

ij

; a

2

1

= �

ik

�

im

�

in

and a

2

2

= �

jk

�

jm

�

jn

. The other twelve singular

points have now the following oordinates (i; j; k;m; n are all di�erent),

E

0k

: (0 : ��

ik

a

2

: �

jk

a

1

: �

ik

�

jk

a

0

)

E

ik

: (�

ik

a

2

: 0 : �

ik

�

jk

a

0

: �

jk

a

1

)

E

jk

: (�

jk

a

1

: �

ik

�

jk

a

0

: 0 : �

ik

a

2

)

E

mn

: (�

ik

�

jk

a

0

: �

jk

a

1

: ��

ik

a

2

: 0)

and the equation of the quarti takes the symmetri form

a

2

1

(t

2

0

t

2

2

+ t

2

1

t

2

3

) + a

2

2

(t

2

0

t

2

1

+ t

2

2

t

2

3

) + a

6

0

(t

2

0

t

2

3

+ t

2

1

t

2

2

)

+ 2a

1

a

2

(t

0

t

1

� t

2

t

3

)(t

0

t

2

� t

1

t

3

) + 2a

3

0

a

2

(t

0

t

1

+ t

2

t

3

)(t

0

t

3

� t

1

t

2

)(25)

� 2a

3

0

a

1

(t

0

t

2

+ t

1

t

3

)(t

0

t

3

+ t

1

t

2

) + 2Æt

0

t

1

t

2

t

3

= 0;

where Æ = �2��

3;ij

+ (�

2

1;ij

� 6�

2;ij

)��

1;ij

+ �

1;ij

(��

2;ij

� 2�

2

1;ij

+ 9�

2;ij

). Notie that

this equation is preisely Equation (5) in [16, p. 301℄ whih was found by using

theta group tehniques with an appropriate basis of setions of [2�℄, in whih the

ation of the theta group related to this bundle is given by permutations and sign

hanges.

The equation with respet to a G�opel tetrad, suh as e

00

; e

0k

; e

ij

; e

mn

(all indies

di�erent) is found in the same way.

It is lear that in the ase of j2�j no birational images of the Kummer surfae

are obtained by looking at setions whih vanish at one or several half periods.

5.2. The linear system j3�j. In the ase D = 3� we will �nd several di�erent

projetive images of the Kummer surfae

~

K

�

of J

�

. Sine D has odd multipliity

at the origin it is an odd setion and the half periods e

00

; e

01

; : : : ; e

05

are even

while the other ten half periods are odd. If follows from Lemma 5.1 that the linear

system j3�j ontains besides 3� another �fty totally reduible divisors:

D

+

: �

0i

+�

0j

+�

ij

(0 < i < j � 5),

D

0

+

: �

ij

+�

jk

+�

ki

(0 < i < j < k � 5);

D

�

: �

ij

+�

kl

+�

mn

(i; j; : : : ; n all 6=);

D

0

�

: � + 2�

ij

(0 � i < j � 5):

The ten divisors D

+

and the ten divisors D

0

+

are even sine their multipliity at

the origin is two or zero, while the �fteen divisors D

�

and the �fteen divisors D

0

�

are odd, their multipliity at the origin being one or three. Here is a piture of a

partiular D

+

and D

�

.

23

24

25

00

12

02

13

14

35

45

15

01

34

12

1445

2315

13

0005

04 01

0203
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We denote their projetions on

~

K

�

by C

+

and C

�

. It follows from (4) that h

0

(C

+

) =

4 and h

0

(C

�

) = 5. This leads to two maps �

M

+
:

~

K

�

! P

3

and �

M

�
:

~

K

�

! P

4

;

we will investigate later in this paragraph the subsystem de�ned by odd setions

that vanish at one of the odd half periods.

We �rst investigate the map �

M

+
. We �nd from Table 3 four independent even

setions in [3�℄ and aordingly we de�ne

�

0

= sv

1

;

�

1

= sv

2

;(26)

�

2

= s(u

1

v

2

� u

2

v

1

);

�

3

= s((w

1

+ u

2

1

)v

2

� (w

2

+ u

1

u

2

)v

1

);

where s denotes the setion that uts out 3�. The six half periods on � are even

and the other ten half periods are odd.

Proposition 5.3. The linear system j3�j

+

has only the ten odd half periods as

base points; however, it de�nes a regular map �

M

+
:

~

K

�

! P

3

. Its image is a

quarti surfae whose equation is given in terms of the oordinates �

i

; i = 0; : : : ; 3

by

0 = ��

5

(�

1

�

2

� �

3

)�

3

0

+ [(�

1

�

4

+ 3�

5

)�

1

�

2

� �

4

(�

2

2

+ �

1

�

3

)℄�

2

0

(27)

+ [�2�

5

�

3

1

� (�

1

�

3

+ �

4

)�

2

1

�

2

+ 2�

3

�

1

�

2

2

� �

2

�

3

2

+ �

3

�

2

1

�

3

+ �

1

�

2

2

�

3

� �

2

�

2

3

℄�

0

+ �

4

�

4

1

+ (�

1

�

2

�

2

� �

3

�

2

� �

2

�

3

)�

3

1

� (�

2

1

�

2

2

� �

2

3

)�

2

1

+ (2�

1

�

2

� �

3

)�

1

�

2

2

� �

4

2

:

�

M

+ ontrats the (�2)-urves B

i

whih orrespond to the six even half periods and

maps the ten other (�2)-urves B

i

to lines. The image of � has degree three while

the other theta urves map to lines. No other urves are ontrated by �

M

+
.

Proof. If X 2 J

�

is a half period that does not belong to � then (13) implies that

the orresponding polynomial v(�) is zero, so that all setions, given by (26) vanish

and X belongs to the base lous of j3�j

+

. Suppose that we have another aÆne

point X where all setions vanish, X = [P +Q� 21℄. If �(P ) 6= �(Q) then v

1

=

(�(P )��(Q))=(�(P )��(Q)) = 0 implies �(P ) = �(Q). Further v

2

= (�(P )�(Q)�

�(Q)�(P ))=(�(P )��(Q)) = 0 implies that �(P ) = �(Q) = 0, whih ontradits the

fat that X is not a half period. If �(P ) = �(Q) then v

1

= f

0

(�(P ))=(2�(P )) = 0

implies f

0

(�(P )) = 0 and v

2

= �(P )��(P )f

0

(�(P ))=(2�(P )) = 0 implies �(P ) = 0,

again a ontradition. In order to see what happens to the orresponding linear

systemM

+

at B

ij

we take a urve X(t) = [P (t) +Q(t)� 21℄, with P (0) = !

i

and

Q(0) = !

j

,

P (t) =

�

�

i

+ t

2

; 

i

t+O(t

2

)

�

;

Q(t) =

�

�

j

+ (�t)

2

; �

j

t+O(t

2

)

�

;

where 

2

i

=

Q

j 6=i

(�

i

� �

j

) 6= 0. The fator � was introdued here to represent the

di�erent diretions at e

ij

, whih beome points of the exeptional divisor E

ij

and

of B

ij

. Computing (13) for these urves and taking the limit t! 0 for their images

in P

3

we �nd

(�

0

: �

1

: �

2

: �

3

) = (

i

� �

j

: �

j

�

i

� 

i

�

j

: 

i

�

2

j

� �

j

�

2

i

: ?);
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(? is a �nite number that is easily omputed but whose value is not important

for us) so that for any � there is at least one setion whih is non-zero. Notie

that we don't need to onsider the value � = 1 beause of the symmetri role

of P and Q. To show that no base point of j3�j

+

lies on �, proeed as in the

proof of Proposition 5.2: �rst onsider X(t) = [P +Q(t)� 21℄ where P 2 �nf1g

and take Q(t) = (�(t); �(t)) 2 �) to be given by (10). If we evaluate the map

(v

1

: v

2

: u

1

v

2

� u

2

v

1

: (w

1

+ u

2

1

)v

2

� (w

2

+ u

1

u

2

)v

1

) at X(t) and take the limit

for t ! 0 then we �nd (1 : ��(P ) : �(P )

2

: ?) (again the (�nite) value of ? is

irrelevant). This shows that, besides possibly the origin, no point on the theta

divisor is ontained in the base lous of jM

+

j. Letting P (t) as well as Q(t) be

given by (10) one hek in a similar way that the origin is also not ontained in the

base lous, i.e., the base lous of jM

+

j is empty and �

M

+
is regular.

An equation for the image of �

M

+
is omputed as follows. Use the �rst three

equations in (21) to eliminate all w

i

linearly and use the �rst three equations of

(26) to eliminate v

1

; v

2

and u

2

. From the remaining equations in (21) and (26)

eliminate �rst s to obtain two equations in u

1

one of whih is linear. Elimination

of u

1

gives the announed equation for the quarti. It an be shown as in the proof

of Proposition 5.2 that this quarti is not a omplete square; this will be however

most obvious after we have rewritten the equation in a more symmetri form, so

we will not do this veri�ation at this point.

We have that �

i

= 0 at the six even half periods e

oi

and �

i

= 1 at the ten odd

half periods so, using Proposition 3.2, we �nd that the image of �

M

+
will have six

singular points and will ontain ten disjoint lines, oming from the (�2)-urves.

Sine � does not ontain any of the odd half periods, Formula (6) implies that

the image of � under �

M

+
is a ubi urve whih passes through the six singular

points; the other theta urves all ontain preisely four odd half periods so these

urves map to �fteen lines.

Finally, suppose that some irreduible urve, whih is di�erent from the (�2)-

urves, is ontrated. Sine it is di�erent from the theta divisor it intersets the

aÆne part J

�

n� and an be written as X(t) = [P (t) +Q(t)� 21℄ where P (t) =

(�

1

(t); �

1

(t)) and Q(t) = (�

2

(t); �

2

(t)). As in the proof of Proposition 5.2 we may

assume that �

1

(t) 6= �

2

(t) and �

1

(t) 6= �

2

(t). Let us assume that the whole urve

is mapped to the single point (1 : 

1

: 

2

: 

3

): Solving for �

2

and �

2

we �nd that

�

2

(t) = �



1

�

1

(t) + 

2

�

1

(t) + 

1

�

2

(t) =



2

1

� 

2

(�

1

(t) + 

1

)

2

�

1

(t):

Sine �

2

i

(t) = f(�

i

(t)) for i = 1; 2 we �nd that �

1

(t) satis�es an algebrai equation

of degree eight with leading term (

2

� 

2

1

)�

8

1

(t). Then 

2

= 

2

1

beause otherwise

�

1

(t) and hene also �

1

(t); �

2

(t) and �

2

(t) are onstant. However, if 

2

= 

2

1

then

�

2

(t) = 0 so that the urve orresponds to one of the theta urves. As we have

seen, these theta urves map to lines, not to points. Therefore no suh urve is

ontrated by �

M

+
.

We will now onstrut oordinates for P

3

with respet to whih the equation of

the quarti takes a ompletely symmetri form. First we show that any four of the

singular points E

00

; E

01

; : : : ; E

05

an be taken as base point for P

3

. Sine T

00

is a

ubi urve and passes through all six singular points it will be planar as soon as

four of the singular points are oplanar. Then all six points singular are oplanar

and hene also the �fteen lines T

ij

; 0 � i < j � 5; whih join these singular points.
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Then these lines would have intersetion points besides the singular points, whih is

impossible. We will take the points E

01

; : : : ; E

04

as base points for P

3

, so we need to

�nd the oordinates of these points. Notie that they are given by E

0i

= T

ij

\ T

oj

.

We do this by �rst omputing the setions whih ut out the divisors D

+

. If we

express that a setion

��

0

+ ��

1

+ �

2

+ Æ�

3

vanishes on �

0i

and �

0j

(using the parametrization (18) of �

0i

) then we �nd

� = �

i

� � �

2

i

 = �

j

� � �

2

j

; Æ = 0;

and we obtain that

f

+

ij

= �

2;ij

�

0

� �

1;ij

�

1

+ �

2

(28)

is (up to a onstant) the only even setion that vanishes on �

0i

and �

0j

. Sine

we know that there exists an even setion whih vanishes in addition on �

ij

this

setion must also vanish on �

ij

. The latter fat an of ourse also be veri�ed diretly

using (19) and (20). If we interset the quarti surfae (27) with the hyperplane

�

2

= �

1;ij

�

1

� �

2;ij

�

0

then we �nd the equations for the four lines T

0i

; T

0j

; T

ij

and

E

ij

. On the one hand we get from it that a parametrization for T

0i

(1 � i � 5) is

given by (t 2 P)

T

0i

: (1 : ��

i

: �

2

i

: t):

On the other hand we �nd two fators whih give the following equations for for T

ij

and E

ij

(to see that it is the �rst one whih orresponds to T

ij

and not the seond

one, one an use e.g. (19) and (20)):

T

ij

: (1 : t� �

i

: �

2

i

+ �

1;ij

t : �

2

i

��

1;i

+ t(�

1;ij

��

1;ij

+ �

2;ij

)):

E

ij

: (1 : t+ �

1;ij

: �

1;ij

t+ �

2

1;ij

� �

2;ij

:

(�

2

1;ij

+ ��

2;ij

)t+ �

3

1;ij

+ (��

2;ij

� �

2;ij

)�

1;ij

� ��

3;ij

):

This leads to E

0i

= T

0i

\ T

ij

= (1 : ��

i

: �

2

i

: �

2

i

��

1;i

) and E

00

= T

0i

\ T

0j

= (0 : 0 :

0 : 1): Now take the points E

01

; : : : ; E

04

as base points and all the orresponding

oordinates t

1

; : : : ; t

4

then the quarti takes the following symmetri form

4

X

i=1

X

1�j<k�4

j;k 6=i

�

2

ij

�

2

jk

�

2

ki

�

im

�

in

t

2

i

t

j

t

k

= 0;(29)

where fi; j; k;m; ng = f1; 2; 3; 4; 5g: Sine all terms in the new equation of the

quarti are of the form t

2

i

t

j

t

k

this equation an never be an exat square providing

a simple proof for our earlier laim that the image of �

M

+ is a quarti. With

respet to the new basis for P

3

the singular points E

00

and E

05

have the following

oordinates:

E

00

: (�

23

�

34

�

42

: �

31

�

14

�

43

: �

41

�

12

�

24

: �

13

�

32

�

21

);

E

05

:

�

1

�

12

�

13

�

14

�

15

:

1

�

21

�

23

�

24

�

25

:

1

�

31

�

32

�

34

�

35

:

1

�

41

�

42

�

43

�

45

�

:

Using the oordinates of E

00

; : : : ; E

05

the new equations of the lines T

ij

are imme-

diately omputed beause T

ij

passes through E

0i

and E

0j

.
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We now investigate the map �

�

. Table 3 gives us �ve independent setions of

[3�℄. Still denoting by s the setion that uts out 3�, we de�ne �

0

= s; �

1

=

su

1

; �

2

= su

2

; �

3

= s(u

1

u

2

� w

2

) and �

4

= s(u

1

w

2

+ u

2

w

1

+ 2u

1

u

2

w

0

)=2:

Proposition 5.4. The linear system j3�j

�

is base-point-free, hene �

M

�
:

~

K

�

!

P

4

is a regular map. The image of this map is a omplete intersetion of a quadri

and a ubi hypersurfae whose equations are given, in terms of the oordinates

�

i

; i = 0; : : : ; 4 by

0 = 2�

0

�

4

+ �

1

�

3

� (�

2

�

0

+ �

1

�

1

� �

2

)�

2

;(30)

and

0 = (4�

3

�

5

� �

2

4

)�

3

0

� 4(�

2

�

5

�

1

+ �

1

�

5

�

2

� �

5

�

3

� �

4

�

4

)�

2

0

+ 4[�

1

�

5

�

2

1

+ (�

5

� �

1

�

4

)�

1

�

2

+ �

3

�

2

�

3

� �

2

4

℄�

0

(30)

� 4(�

5

�

2

1

� �

4

�

1

�

2

+ �

3

�

2

2

)�

1

+ 4�

2

(�

1

�

2

� �

3

)(�

2

�

1

� �

3

):

The theta divisor � and the ten (�2)-urves B

ij

; 1 � i < j � 5 orresponding

to the even half periods are the only divisors whih are ontrated by �

M

�
, while

the other six exeptional divisors B

0i

; 0 � i � 5; map to lines and the other theta

urves map to onis.

Proof. The proof that the linear system j2�j

+

is base-point-free applies verbatim

to the present ase beause the setions �

0

; : : : ; �

3

are de�ned in exatly the same

way. The de�ning equation of �

4

is easily rewritten in terms of the other �

i

giving

the above equation of the quadri. Now obviously the quarti equation (22) holds

between the setions, but that does not mean that the homogeneous ideal of the

image is generated by the quadrati and the quarti polynomials. Indeed, if we

add the quadrati polynomial in (30), multiplied by ��

1

�

1

�

2

+ �

1

�

3

+ �

2

2

+2�

4

�

2

0

�

�

2

�

0

�

2

� 2�

0

�

4

, to the left hand side of the quarti (22) then the result is divisible

by �

0

and we are left with the ubi equation (30). Sine the degree of the image

is six the image is the omplete intersetion of the quadri and ubi hypersurfae.

Moreover, sine �

[2�℄

does not ontrat any urves besides the urves B

i

we an at

least onlude that besides the B

i

no urve that intersets the aÆne part J

�

n� is

ontrated. In this ase �

ij

= 0 for 1 � i < j � 5 (orresponding to the ten odd

half periods) and �

0i

= 1 for 0 � i � 5 (orresponding to the other half periods).

(6) shows that � is ontrated by �

M

�
and the same is true for the exeptional

divisors B

ij

; 1 � i < j � 5. The remaining theta urves and exeptional divisors

map to �fteen onis and six lines respetively. Notie that these six lines pass

through a single singularity of the image.

Again a more symmetri equation is obtained by hoosing some of the singular

points as base points, namely we hoose E

12

; E

23

; E

34

; E

45

and E

15

as base points.

Using (14) we �nd that the old oordinates of E

ij

are given by

E

ij

: (1 : �

1;ij

: �

2;ij

: �

1;ij

�

2;ij

� ��

3;ij

: (�

1;ij

��

3;ij

+ �

2;ij

��

2;ij

)=2 + �

2;ij

�

1;ij

��

1;ij

):

If we de�ne t

i

to be the oordinates with respet to these �ve points then the

equation of the quadri beomes

�

24

�

25

(�

2

13

t

2

+ �

14

�

15

t

4

)t

1

+ yl (1; 2; 3; 4; 5) = 0;(31)
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while the equation of the ubi beomes

�

�

13

�

14

t

2

+

�

23

�

25

t

3

+

�

15

�

13

t

4

+

�

25

�

24

t

5

�

t

2

1

+ (At

3

+Bt

4

)t

1

t

2

+ yl (1; 2; 3; 4; 5) = 0:

(31)

Sine the onstants A and B are quite ompliated when expressed in terms of the

�

i

we do not reord their expressions here. Finally, let us ompute the setions

that ut out the image of the divisors D

�

. This is done as in the ase of D

+

: suh

a setion must be of the form

�+ �u

1

+ u

2

+ Æ(u

1

u

2

� w

2

) + �(u

1

w

2

+ u

2

w

1

+ 2u

1

u

2

w

0

);

and it should vanish on T

ij

; T

0k

and T

mn

, where fi; j; k;m; ng = f1; 2; 3; 4; 5g. If

we normalize � = 1 then we get by using (19) and (20)

� = 2�

2

k

(�

2;ij

+ �

2;mn

)� �

k

��

3;k

� ��

4;k

;

� = 2�

k

(�

2;ij

+ �

2;mn

);

 = �2��

1;ij

��

1;mn

;

Æ = �2�

k

;

� = 1:

In the ase of j3�j

�

we an restrit ourselves to the setions with presribed van-

ishing at the half periods. Every setion of j3�j

�

vanishes an odd number of times

at the even half periods so that a presribed vanishing at one of these half periods

would imply that we onsider M

�

�

for � = (0; : : : ; 3; : : : ; 0). Then formula (3.2)

leads to dim jM

�

�

j = 9=2 + 1 � 14=4 = 2, so the orresponding map an never

be birational. Therefore we onsider an odd half period e

ij

; 1 � i; j � 5 and de-

�ne � = (0; : : : ; 2; : : : ; 0) (the 2 being at position ij). Formula (3.2) now leads to

dim jM

�

�

j = 4, hene �

M

�

�

maps to P

3

. Using the fat that u

1

= ��

i

� �

j

= �

1;ij

and u

2

= �

i

�

j

= �

2;ij

at e

ij

we �nd from Table 3 that the following four indepen-

dent setions vanish at e

ij

.

�

0

= s(u

1

� �

1;ij

);

�

1

= s(u

2

� �

2;ij

);

�

2

= s(u

1

u

2

� w

2

� �

1;ij

�

2;ij

+ ��

3;ij

);(32)

�

3

= s(u

1

w

2

+ u

2

w

1

+ 2u

1

u

2

w

0

� �

1;ij

��

3;ij

� �

2;ij

��

2;ij

� 2�

1;ij

�

2;ij

��

1;ij

):

We desribe �

M

�

�

and its image in the following proposition.

Proposition 5.5. The linear system jM

�

�

j is base-point-free, hene �

M

�

�

:

~

K

�

!

P

3

is regular. It ontrats ten divisors, to wit the nine exeptional divisors B

kl

orresponding to the even half periods, but not B

ij

, and the theta divisor �. The

image is a quarti whih ontains six lines E

0i

(0 � i � 5) whih are ollinear at T

and it ontains sixteen onis, one of whih is the image E of B

00

.

Proof. Using (11) for the half period e

ij

it follows at one that the image of B

ij

is a oni; alternatively this is seen from �

ij

= �

ij

= 2. Then (32) implies that

the only possible base points oorespond to s = 0, the theta divisor. Using (10)

we see that the theta divisor gets mapped to the single point (0 : 0 : 0 : 1); using

(11) for any of the other nine even half periods it follows that eah gets ontrated.

The veri�ation that the odd half periods map to lines and that the other theta
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urves map to onis is similar. Let us assume that some other divisor D gets

mapped to the point (a : b :  : d) 2 P

3

and let us show how this leads to a

ontradition (assuming � smooth). We an parametrize D as [P (t) +Q(t)� 21℄

where P (t) = (�

1

(t); �

1

(t)) and Q(t) = (�

2

(t); �

2

(t)). Then we look for solutions of

a�(t) = u

1

(t)� �

1;ij

;

b�(t) = u

2

(t)� �

2;ij

;

�(t) = u

1

(t)u

2

(t)� w

2

(t)� �

1;ij

�

2;ij

+ ��

3;ij

;(33)

d�(t) = u

1

(t)w

2

(t) + u

2

(t)w

1

(t) + 2u

1

(t)u

2

(t)w

0

(t)

� �

1;ij

��

3;ij

� �

2;ij

��

2;ij

� 2�

1;ij

�

2;ij

��

1;ij

):

with a; : : : ; d onstant. The ase a = b = 0 an be exluded at one beause it does

not orrespond to a urve. Similarly when �

1

(t) = �

i

and a = 0. If �

1

(t) = �

i

,

so that �

i

(t) = 0 then we may therefore assume that a = 1. Then the �rst two

equations in (33) imply b = �

i

and �(t) = �

2

(t) � �

j

. The third equation in (33)

then leads to �

2

(t) = �

i

or �

2

(t) = �

j

, whih are both unaeptable, or to the

following linear equation in �

2

(t):

�

2

(�

i

��

1;i

� ) + �

i

(�

2

i

+ �

2;ij

+ ��

2;ij

+ ) + ��

3;ij

= 0:

If �

2

(t) is not onstant then it an only satisfy the above equation of both oeÆients

are zero, whih happens for no value of . By symmetry we an also exlude the ase

�

1

(t) = l

j

. Also the ase b = ��

1

an be exluded beause it leads to the previous

ases b = �

i

or b = �

j

. We treated these speial ases beause �

1

(t)��

i

, �

1

(t)��

j

and b+ �

1

appear frequently as fators in the two ases onsidered next. The �rst

one orresponds to the general ase in whih a = 0. Then we an take b = 1 and the

�rst two equations lead to �

1

= ��

2

+ �

i

+ �

j

and � = �(�

2

� �

i

)(�

2

� �

j

). If we

substitute this in the third equation of (33), we �nd a moni equation in �

2

(t) with

onstant oeÆients, whih leads to �

1

(t) and �

2

(t) being onstant, a ontradition.

The seond ase orresponds to the generi ase a 6= 0. Taking a = 1 we �nd

�(t) = �(�

1

(t)��

i

)(�

1

(t)��

j

)=(�

1

(t)+b) and �

2

(t) = (�

i

+b)(�

j

+b)=(�

1

+b)�b.

If we substitute this in the third equation of (33), we �nd an equation for �

2

(t)

whih depends on b and . As before one �nds that if � is non-singular there are

no values for b and  suh that all oeÆients of this polynomial are zero. A proof

that the image is a quarti and an expliit equation for it will be given below.

Sine the roots �

i

of f will appear expliitly in the equation of the quarti we

will not write down the equations in terms of the �

i

but we pass at one to a set

of natural oordinates, whih will give the equation of the quarti a symmetri

form. The oni E

ij

intersets the lines T

0i

; T

0j

and T

ij

in three points (whih are

not ollinear) and these points are independent of the image T of � (whih is a

singular point). We will take these points as basis points for P

3

. To do this we �rst

need to �nd their oordinates, whih is done in this ase as follows. We use (18) to

ompute the images of �

0i

and we take the limit for �! �

j

(i 6= j). This gives us

the following oordinates:

E

ij

\ T

0i

: (�

ij

: ��

i

�

ij

: �

i

(�

2

i

+ �

i

�

j

� �

2

j

) + �

2;ij

��

1;ij

+ �

i

��

2;ij

+ ��

3;ij

: 2�

i

[�

2

i

�

j

� (�

2

j

� �

i

�

j

� �

2

i

)��

1;ij

+ �

j

��

2;ij

+ ��

3;ij

℄):
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Using (19) and (20) we �nd the image of �

ij

and the limit for � ! 1 gives the

following intersetion point:

E

ij

\ T

ij

: (���

2;ij

+ �

1;ij

(��

1;ij

� �

1;ij

) + �

2;ij

: ���

3;ij

+ �

2;ij

(��

1;ij

� �

1;ij

)

: ���

3;ij

��

1;ij

+ �

2;ij

(��

2

1;ij

� ��

2;ij

� �

2

1;ij

+ �

2;ij

)

: 2[���

3;ij

(��

2;ij

+ �

2

1;ij

� �

2;ij

) + ��

1;ij

�

1;ij

�

2;ij

(��

1;ij

� �

1;ij

)℄)

Also reall that � is mapped to T = (0 : 0 : 0 : 1). If we take the following points

as base points for P

3

(in that order)

T ; E

ij

\ T

0i

; E

ij

\ T

0j

; E

ij

\ T

ij

and we denote the orresponding oordinates (properly saled) by t

0

; : : : ; t

3

then

we �nd the following equation for the quarti:

(t

1

t

2

+ t

2

t

3

+ t

3

t

1

� t

2

0

)[�

j

t

2

1

� �

i

t

2

2

+ �t

2

3

+ (�

j

� �

i

+ �)(t

1

t

2

+ t

2

t

3

+ t

3

t

1

)℄

+ t

0

(t

1

t

2

+ t

2

t

3

+ t

3

t

1

+ t

2

3

)[�(t

1

� t

2

) + �(t

1

+ t

2

) + 2t

3

℄

(34)

� 2t

0

t

3

[�

j

t

2

1

+ �

i

t

2

2

+ t

2

3

)℄ = 0

where

� = �

3

ij

; �

l

=

Y

k 6=i;j

�

lk

;

� = 4(��

3;ij

+ �

2;ij

��

1;ij

) + �

1;ij

(�

2

1;ij

� 2��

2;ij

� 6�

2;ij

);

 = �

1;ij

(��

2;ij

� �

2;ij

)� 2��

3;ij

+ (�

2

1;ij

� 2�

2;ij

)(�

1;ij

� ��

1;ij

):

Now we an easily see that �

0

�

is birational: if the equation of the quarti is a

square then the oeÆient in t

0

of degree zero is a square hene �

j

t

2

1

��

i

t

2

2

+�t

2

3

+

(�

j

��

i

+�)(t

1

t

2

+ t

2

t

3

+ t

3

t

1

) and t

1

t

2

+ t

2

t

3

+ t

3

t

1

are proportional. In partiular

� = 0 so that �

i

= �

j

whih is impossible sine � is non-singular.

It was pointed out to us by the referee that a quarti Kummer surfae in P

3

with ten singular points was onsidered reently by J. E. Rosenberg (see [24℄). Our

surfaes are however di�erent, beause our surfaes orrespond to blowing down 9

exeptional divisors E

i

and the theta divisor, while the ones that appear in [24℄

orrespond to blowing down 10 exeptional divisors E

i

.

5.3. The linear system j4�j. In this ase all half periods are even and Lemma

5.1 implies that up to a translation over a half period the only totally reduible

divisors in j4�j are, besides 4�, the following

D

+

: � + �

ij

+�

kl

+�

mn

(i; j; : : : ; n all 6=),

D

0

+

: 2�+ 2�

ij

(0 � i < j � 5),

D

�

: � + �

0i

+�

0j

+�

ij

(0 < i < j � 5),

D

0

�

: � + �

ij

+�

jk

+�

ki

(0 < i < j < k � 5).

Below we give a piture of partiular divisors D

+

and D

�

. One sees that the four

urves in D

+

interset in twelve nodes while the urves in D

�

interset in four triple

points. The divisors D

+

and D

0

+

are even while the divisors D

�

and D

0

�

are odd.
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13

14

15

01

35

02

23

24

25

0503

00

12

04

34 45

05 00

12

14

02

13

2315

04

03

01
45

We denote by C

�

the projetion of p

�

D

�

on

~

K

�

and we write �

�

for �

[C

�

℄

. By

(3.2) we have that h

0

(

~

X;C) = 6. We denote by s the setion that uts out [4�℄.

and we �nd from Table 3 that the following setions �

0

; : : : ; �

5

provide a basis for

the odd setions of 4�.

�

0

= sv

1

;

�

1

= sv

2

;

�

2

= s(u

1

v

2

� u

2

v

1

);

�

3

= s((w

1

+ u

2

1

)v

2

� (w

2

+ u

1

u

2

)v

1

);

�

4

= s(v

1

w

2

+ u

1

w

0

v

2

);

�

5

= s(u

1

u

2

v

2

� v

2

w

2

� u

2

2

v

1

� u

2

v

2

w

0

):

In this ase we easily �nd

Proposition 5.6. The map �

�

:

~

X ! P

5

is an isomorphism onto its image. The

images E

ij

and T

ij

form two groups of sixteen disjoint lines, eah line interseting

six lines of the other group.

Proof. Comparing the setion �

0

; : : : ; �

5

to the setions that were used in the ase

of �

+

for 3� we see that no aÆne point an be a base point. We will ompute

below an equation for the image of theta, whih is a line sine �

i

= 1 for all i. So

jCj is basepoint-free. Moreover, sine the only divisor whih was ontrated by �

+

in the ase of 3� was �, whih is not ontrated in this ase, �

�

is an isomorphism.

�

i

= 1 for all i, hene all (�2)-urves are mapped to (disjoint) lines; their equations

will be omputed below. Also C ��

ij

= 4� 6=2 = 1 so all theta urves are mapped

to sixteen disjoint lines.

We will �nd the relations between the �

i

by expressing the fat that the image

ontains a whole on�guration of lines, oming from the theta urves �

ij

and the

(�2)-urves B

i

. The lines T

ij

(where i and j are not both zero) an be omputed

expliitly using the parametrizations for the divisors �

ij

. For T

0i

(i 6= 0) we �nd

by using (18) the following parametrization (t 2 P):

�

1 : ��

i

: �

2

i

: t : �t� �

i

(�

2

+ �

2

i

) : ��

i

t� �

2

i

(�

2

i

+ ��

2;i

)

�

:

For T

ij

(i; j 6= 0) use (19) and (20) to �nd

(t : 1 : �

1;ij

� �

2;ij

t : �

2;ij

+ �

1;ij

��

1;ij

� ��

1;ij

�

2;ij

t : �

1;ij

��

1;ij

+ ��

3;ij

t :

�

2;ij

�

1;ij

� �

2;ij

��

1;ij

� ��

3;ij

� �

2

2;ij

t)

Note that we annot ompute the lines E

ij

in this way beause all the funtions

v

i

vanish at the half periods. However, any quadri whih vanishes at the lines

T

ij

must also vanish at the lines E

ij

beause every line E

ij

has six points lying on
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the lines T

ij

. It is now easy to �nd and solve the (linear) onditions on �

ij

for

P

i�j

�

ij

v

i

v

j

to vanish on the lines T

ij

: we get the following set of independent

quadris:

�

2

2

� �

1

�

1

�

2

+ �

1

�

4

+ �

0

�

5

= 0;

�

5

�

2

0

+ �

3

�

2

1

� �

4

�

0

�

1

� �

2

�

1

�

2

+ �

1

�

5

+ �

2

�

4

= 0;(35)

�

4

(�

2

1

+ �

0

�

2

) + �

2

(�

2

2

� �

1

�

3

) + �

2

3

� 2�

5

�

0

�

1

+

(�

1

�

2

� 2�

3

)�

1

�

2

� �

1

�

2

(�

3

+ �

4

) + �

3

�

4

� �

2

�

5

= 0:

Note that again these equations do not involve the roots �

i

of f(�) expliitly. We

will see that by using the �

i

expliitly we an make the equations muh more

symmetri. Before we an do this we need to ompute the equations for the other

lines (T

00

and all E

ij

) and the ninety-six intersetion points of the on�guration.

The following lemma provides an e�etive way to do this.

Lemma 5.7. The hyperplane setion whih vanishes on the lines T

00

; T

0i

; T

0j

and

T

ij

also vanishes on the lines E

00

; E

0i

; E

0j

and E

ij

Proof. The points e

00

; e

0i

; e

0j

and e

ij

are triple points of the divisor �

00

+�

0i

+

�

0j

+ �

ij

hene the lines E

00

; E

0i

; E

0j

and E

ij

have three points in ommon with

the hyperplane that vanishes on T

00

; T

0i

; T

0j

and T

ij

.

In fat, sine the degree of �

�

(

~

K

�

) is eight the hyperplane setion must onsist

exatly of these eight lines. It is now easy to do the omputation: sine this

hyperplane setion is given as in (28) by �

2;ij

�

0

� �

1;ij

�

1

+ �

2

= 0 it suÆes to

interset the quadris with the hyperplane

�

2

= �

1;ij

�

1

� �

2;ij

�

0

whih amounts to solving the equations of the quadris linearly for the remaining

variables. Besides the lines T

0i

; T

0j

and T

ij

for whih we gave the equations above

we also �nd the following lines

T

00

: (0 : 0 : 0 : 0 : 1 : t);

E

00

: (0 : 0 : 0 : 1 : �1 : t);

E

0i

: (1 : ��

i

: �

2

i

: �

2

i

��

1;i

: t : �

i

t� �

3

i

��

1;i

);

E

0j

: (1 : ��

j

: �

2

j

: �

2

j

��

1;i

: t : �

j

t� �

3

j

��

1;i

);

E

ij

: (t : 1 : �

1;ij

� �

2;ij

t : �

2

1;ij

+ ��

2;ij

� (�

1;ij

�

2;ij

+ ��

3;ij

)t : �

1;ij

��

1;ij

+ ��

3;ij

t :

�

2;ij

(�

1;ij

� ��

1;ij

)� ��

3;ij

� �

2

2;ij

t):

We have added the right labels already: to identify whih is whih one may onsider

di�erent values of i and/or j, identifying the last three lines; to distinguish T

00

from

E

00

it suÆes to hek that T

00

does not interset any of the lines T

ij

.

Our next task is to �nd the oordinates of the ninety-six intersetion points of

the on�guration. We will need them to simplify the equations of our quadris. If

we denote

p

mn

ij

= E

ij

\ T

mn
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then we �nd for any indies suh that fi; j; k;m; ng = f1; 2; 3; 4; 5g

p

00

00

= (0 : 0 : 0 : 0 : 0 : 1);

p

00

0i

= (0 : 0 : 0 : 0 : 1 : �

i

);

p

0i

00

= (0 : 0 : 0 : 1 : �1 : ��

i

);

p

0i

0i

= (1 : ��

i

: �

2

i

: �

2

i

��

1;i

: ��

i

(�

2

i

+ ��

2;i

) : ��

2

i

(��

2;i

+ �

i

��

1;i

+ �

2

i

));

p

ij

0i

= (1 : ��

i

: �

2

i

: �

2

i

��

1;i

: ��

3;ij

+ �

2;ij

��

1;ij

+ �

2

i

��

1;ij

:

�

i

(��

3;ij

+ �

2;ij

�

i

+ �

2;ij

��

1;ij

));

p

0i

ij

= (1 : ��

i

: �

2

i

: ��

3

i

� �

i

(�

2;ij

+ ��

2;ij

)� ��

3;ij

: ��

3;ij

+ �

2;ij

��

1;ij

+ �

2

i

��

1;ij

:

�

i

(��

3;ij

+ �

2;ij

�

i

+ �

2;ij

��

1;ij

));

p

ij

ij

= (�

1;ij

��

1;ij

� ��

2;ij

� �

2

1;ij

+ �

2;ij

: ���

3;ij

� �

1;ij

�

2;ij

+ ��

1;ij

�

2;ij

:

� �

2

2;ij

+ �

2;ij

��

2;ij

� �

1;ij

��

3;ij

: �

2;ij

�

1;km

�

1;kn

�

1;mn

� �

1;ij

�

2

2;ij

�

��

3;ij

�

1;ij

��

1;ij

: ��

3;ij

(�

2;ij

� ��

2;ij

� �

2

1;ij

) + �

1;ij

�

2;ij

��

1;ij

(��

1;ij

� �

1;ij

) :

��

2

3;ij

� �

2

2;ij

(��

2

1;ij

� ��

2;ij

� �

1;ij

��

1;ij

+ �

2;ij

));

p

mn

ij

= (�

1;mn

� �

1;ij

: �

2;mn

� �

2;ij

: �

1;ij

�

2;mn

� �

2;ij

�

1;mn

: �

2

2;mn

�

�

2;mn

(�

2;ij

� �

2

1;ij

)� �

1;ij

�

1;mn

�

2;ij

� �

k

(�

1;ij

�

2;mn

� �

2;ij

�

1;mn

) :

(�

1;ij

�

2;ij

� �

1;mn

�

2;mn

)�

k

+ �

1;ij

�

1;mn

(�

2;mn

� �

2;ij

) :

(�

2

2;mn

� �

2

2;ij

)�

k

+ �

2;ij

�

2;mn

(�

1;ij

� �

1;mn

)):

These points are used to ompute the sixteen projetive tranformations �

ij

whih

ome from the sixteen translations on J

�

over half periods; it atually suÆes to

ompute the �

0i

. The transformation �

0i

should map the following seven points

p

00

00

; p

0i

00

; p

00

0i

; p

0i

0i

; p

0j

0j

; p

0m

0m

; p

0n

0n

to

p

0i

0i

; p

00

0i

; p

0i

00

; p

00

00

; p

ij

ij

; p

im

im

; p

in

in

(in that order), and similar for the other translations. If we introdue the following

abbreviation

�

k

ij

=

k

X

l=0

��

j+l;i

�

k�l

i

;

then we �nd that the matrix for �

0i

is given by

�

A

i

B

i

�

; where

A

i

=

0

B

B

B

B

B

B

B

B

B

B

�

�

2

i

�

2

i0

�

i

�

1

i1

��

i

�

1

i0

�

i

�

1

i3

�

4

i

+ �

1

i3

�

2

i

�

1

i0

��

2

i

�

1

i3

�

3

i

�

1

i1

�

2

i2

���

1;i

�

2

i

�

1

i3

�

1

i;1

�

3

i

��

1;i

+ �

4

i;0

�

2

�

1

�

2

i2

� �

1

i0

�

4

i

�

i

�

1

i3

(�

2

i

+ ��

2;i

) ��

2

i

�

1

i1

(�

2

i

+ ��

2;i

) �

2

i

�

1

i0

(�

2

i

+ ��

2;i

)

�

�

�

1

i3

�

2

�

i

�

1

i3

�

1

i1

��

i

�

1

i3

�

1

i0

1

C

C

C

C

C

C

C

C

C

C

A
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B

i

=

0

B

B

B

B

B

B

B

B

B

B

�

0 �

i

�1

0 ��

2

i

�

i

0 �

3

i

��

2

i

��

4

i0

��

4

i

� �

2

i2

���

1;i

�

2

i

0 ��

1;i

�

3

i

+ �

1

i3

�

i

(�

2

i

+ ��

2;i

)

0 �

i

�

1

i3

�

2

i

�

2

i0

1

C

C

C

C

C

C

C

C

C

C

A

:

The matries �

ij

ommute pairwise so they an be simultaneously diagonalized.

The eigenvalues of �

i

are given by �'

i

where '

i

=

Q

j 6=i

�

ij

and a omplete set of

ommon eigenvetors for all �

ij

is given by

W

0

= (0; 0; 0; 1; 0; 0);

W

i

= (1;��

i

; �

2

i

; ��

1;i

�

2

i

;��

i

(�

2

i

+ ��

2;i

); ��

4;i

+ �

i

��

3;i

)

where i = 1; : : : ; 5. If we let W denote the matrix whose olumns are the vetors

W

i

(properly normalized) and de�ne X =W

�1

V then then equations of the three

quadris V

T

Q

i

V = 0 take the following symmetri form.

'

�1

1

t

2

1

+ '

�1

2

t

2

2

+ '

�1

3

t

2

3

+ '

�1

4

t

2

4

+ '

�1

5

t

2

5

= 0;

'

�1

1

�

1

t

2

1

+ '

�1

2

�

2

t

2

2

+ '

�1

3

�

3

t

2

3

+ '

�1

4

�

4

t

2

4

+ '

�1

5

�

5

t

2

5

= 0;(36)

'

�1

1

�

2

1

t

2

1

+ '

�1

2

�

2

2

t

2

2

+ '

�1

3

�

2

3

t

2

3

+ '

�1

4

�

2

4

t

2

4

+ '

�1

5

�

2

5

t

2

5

= t

2

0

:

Of ourse one an get rid of all fators '

i

but we will not do this beause it makes

the oordinates of the ninety-six points more omplex. It is easy to ompute that

these points have now the following oordinates.

(0 : �1 : �1 : �1 : �1 : �1)

(1 : �(�

1

� �

i

) : �(�

2

� �

i

) : �(�

3

� �

i

) : �(�

4

� �

i

) : �(�

5

� �

i

))

where the plus signs orrespond to the origin resp. the points p

0i

00

. For the other

points p

kl

ij

the i-th and j-th oordinates get a minus sign; notie that in this way

all possible signs appear! The translation over a half period !

i

+ !

j

is now just

given by ipping the sign of the i-th and j-th oordinates. This fat is useful in

omputing the new parametrizations of the thirty-two lines: one easily �nds that

E

00

and �

00

are given by

E

00

: (u : �

1

u+ r : �

2

u+ r : �

3

u+ r : �

4

u+ r : �

5

u+ r);

�

00

: (�u : �

1

u+ r : �

2

u+ r : �

3

u+ r : �

4

u+ r : �

5

u+ r);

and for the other lines E

ij

and �

ij

it suÆes to add a minus sign in the i-th and

j-th oordinates. In partiular we have the following proposition:

Proposition 5.8. The involution (t

0

; t

1

; t

2

; t

3

; t

4

; t

5

; t

6

) 7! (�t

0

; t

1

; t

2

; t

3

; t

4

; t

5

; t

6

)

restrits to an automorphism of the K-3 surfae whih interhanges the two families

of sixteen lines.

In the ase of the odd setions of [4�℄ one an ask for higher vanishing at one of

the half periods e

ij

and �nd a quarti in P

3

. It is easy to very that in this ase the

image has six singular points whih ome from the six theta urves passing through

that point. The exeptional divisor E

ij

maps to a urve of degree three and all
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the theta urves and exeptional divisors are mapped to lines. Compare this to the

ase of �

+

for 3�: it is exatly the \dual". Computing the image one �nds exatly

the same image as in the latter ase. The reason for this is that, as we have seen,

the K-3 surfae arries an automorphism whih interhanges the two families of

sixteen lines.

We �nally onsider the ase of even setions of 4�. Sine �

+

leads to a Kummer

surfae in P

9

we will restrit us here to a ase in whih we presribe the vanishing

(of order at least two sine all half periods are even) at the points e

00

; e

0i

; e

0j

and

e

ij

. Notie that these points form a group. The orresponding Kummer surfae was

extensively studied by Tomasz Szemberg (see [27℄). We will give here the expliit

alulation of the projetive image, beause the equations whih were obtained by

algebrai geometri methods in [27℄ are less expliit and its oeÆients are not

expressed in terms of the underlying urve. We de�ne � = (2; 2; 2; 2; 0; : : : ; : : : ; 0)

(the �rst four half periods being e

00

; e

0i

; e

0j

and e

ij

). It is easy to verify that

formula (3.2) leads to dim jM

+

�

j = 6, hene �

M

+

�

maps to P

5

.

Proposition 5.9. The linear system jM

+

�

j is base-point-free, hene �

M

+

�

:

~

K

�

!

P

5

is regular. It ontrats twelve divisors, to wit all exeptional divisors B

kl

ex-

ept B

00

; B

0i

; B

0j

and B

ij

, whih are mapped to onis. The image is a omplete

intersetion of three quadris whih an be taken as follows.

0 = '(�

i

)u

1

v

1

� '(�

j

)u

2

v

2

;

0 = �

3

ij

u

2

v

2

+ '(�

i

)u

3

v

3

;(37)

0 = (u

1

+ u

2

+ u

3

+ v

1

+ v

2

+ v

3

)

2

� 4�

�2

ij

'

0

(�

i

)u

3

v

3

� 4[(u

1

+ v

2

)u

2

+ v

2

(u

2

+ v

1

) + v

3

(u

2

+ v

2

)℄;

where '(�) = (�� �

k

)(�� �

m

)(� � �

n

).

Proof. We only indiate how (37) was omputed and refer for the other statements

to [27℄. There is a natural hoie for the six setions, namely for eah pair of the

urves �

00

;�

0i

;�

0j

and �

ij

we onsider the even setion of 4� whih vanishes

twie at this pair of urves. Sine suh a pair passes through the points e

00

; e

0i

; e

0j

and e

ij

these setions have the right vanishing properties. Notie that these setions

an be onstruted from the setions of [2�℄ by taking the tensor produts t

i


 t

j

,

0 � i < j � 3, where t

0

; t

1

; t

2

; t

3

are the setions that vanish twie at one of

the four urves. If we de�ne ~u

i

= t

0


 t

i

for i = 1; 2; 3 and ~v

i

= t

j


 t

k

where

fi; j; kg = f1; 2; 3g then we have two obvious quadrati equations ~u

1

~v

1

= ~u

2

~v

2

=

~u

3

~v

3

. It remains to �nd a third quadri. The quikest way to do this is by using the

equation of the Kummer surfae (22), rewritten in terms of the basis ft

0

; t

1

; t

2

; t

3

g

for H

0

(J

�

; [2�℄). It follows from (23) and (24) that these leads to the following

hange of oordinates:

0

B

B

B

B

B

�

t

0

t

1

t

2

t

3

1

C

C

C

C

C

A

=

0

B

B

B

B

B

�

1 0 0 0

�

2

i

�

i

1 0

�

2

j

�

j

1 0

�

2;ij

��

1;ij

+ ��

3;ij

��

2;ij

���

1;ij

1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

�

0

�

1

�

2

�

3

1

C

C

C

C

C

A

:
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If we substitute this in (25) and de�ne '(�) = (� � �

k

)(� � �

m

)(� � �

n

) then we

�nd the following equation for the lassial Kummer quarti.

�

'(�

j

)t

0

t

1

+ '(�

i

)t

0

t

2

+ �

2

ij

t

0

t

3

+ �

ij

t

1

t

2

� t

2

t

3

� t

3

t

1

�

2

� 4'(�

i

)t

0

t

1

t

2

('(�

j

)t

0

+ �

ij

t

2

� 2t

3

)

+ 4t

1

t

2

t

3

(�

ij

t

1

� t

3

)� 4�

ij

'

0

(�

i

)t

0

t

1

t

2

t

3

= 0:

By de�ning u

i

and v

i

as appropriate multiples of ~u

i

and ~v

i

we get (37).

6. Appendix

For omparison we give a more oneptual (but longer) proof of the fat that

in the ase L = 4�, � = 0 the map �

�

is an isomorphism and that its image is

the omplete intersetion of three quadris (see Setion 5.3). This proof is based

on Saint-Donat's theorem 2.2 and works only in the generi ase. We will use the

notation of Setion 5.3.

Proposition 6.1. If A = J

�

is generi then the linear system jC

�

j has no base

points and leads to a regular map �

�

:

~

K

�

! P

5

.

Proof. It follows from (4) that C

2

�

= 8 so it suÆes to show, aording to Theorem

2.2, that jC

�

j has no �xed omponents. None of the urves B

i

an belong to

the base lous beause, if we inrease one of the �

i

to three then the number of

setions drops. If some other divisor is a �xed omponent of jC

�

j then there is a

symmetri divisor D on A suh that every odd setion of H

0

([D

�

℄) vanishes on D.

Sine D is atually totally symmetri it is linearly equivalent to �; 2�; 3� or 4�

and we have a basis fss

1

; : : : ; ss

6

g of H

0

([D

�

℄), D being ut out by s. Then the

setions fs

1

; s

2

; s

3

; s

4

; s

5

; s

6

g represent a linearly independent set of setions with

the same parity (either even or odd) in either H

0

(3�), H

0

(2�) or H

0

(�). Whih

is impossible.

Proposition 6.2. If A = J

�

is a generi Jaobi surfae then the map �

�

:

~

K

�

!

P

5

is birational.

Proof. We show that we are not in one of the exeptional ases of Saint-Donat's

Theorem (Theorem 2.2). Let us �rst assume that

~

K

�

ontains an irreduible urve

C

0

for whih g(C

0

) = 1 and C

0

� C

�

= 2. Then there is a symmetri divisor D

0

on

A suh that

p

�

D

0

= �

�

C

0

+

16

X

i=1

�

i

(D

0

)E

i

:(38)

Sine C

0

2

=2 + 1 = g(C

0

) = 1 we get C

0

2

= 0 and D

0

2

=

P

16

i=1

�

i

(D

0

)

2

. Then

Formula (6) implies (for D = D

�

� 4�) that the intersetion � �D

0

is given by

� �D

0

= 1 +

1

4

16

X

i=1

�

i

(D

0

):(39)

The Hodge inequality (see [11, p. 368℄) �

2

D

0

2

� (� �D

0

)

2

and the Cauhy-Shwarz

inequality (

P

16

i=1

�

i

(D

0

))

2

� 16

P

16

i=1

�

i

(D

0

)

2

then lead to

2

16

X

i=1

�

i

(D

0

)

2

= �

2

D

0

2

� 1 +

1

2

16

X

i=1

�

i

(D

0

) +

16

X

i=1

�

i

(D

0

)

2

;
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an equality, whih is easily rewritten as

16

X

i=1

�

�

i

(D

0

)�

1

4

�

2

� 2:(40)

This means that eah of the �

i

(D

0

) must be either zero or one; if n of them are

equal to one and the other ones are equal to zero then (40) redues to n � 2. Then

� �D

0

is only an integer for n = 0 in whih ase � �D

0

= 1, an impossibility if A is

generi. This exludes the �rst ase of the Saint-Donat Theorem.

We now assume that

~

K

�

ontains a divisor C

0

suh that g(C

0

) = 2 and C

�

� 2C

0

.

Then C

�

� C

0

= 2C

0

2

= 4. If we de�ne D

0

as in (38) then we �nd as before

D

0

2

= 4 +

16

X

i=1

�

i

(D

0

)

2

; � �D

0

= 2 +

1

4

16

X

i=1

�

i

(D

0

):

and proeed as in the �rst part of the proof: we apply the Hodge and Cauhy-

Shwarz inequalities to get

2

 

4 +

16

X

i=1

�

i

(D

0

)

2

!

= �

2

D

0

2

� 4 +

16

X

i=1

�

i

(D

0

) +

16

X

i=1

�

i

(D

0

)

2

:

This inequality is easily rewritten as

16

X

i=1

�

�

i

(D

0

)�

1

2

�

2

� 0;

whih has no solution. Thus, both exeptional ases of Theorem 2.2 are exluded

and �

�

is birational.

Proposition 6.3. If A = J

�

is generi then the birational map �

�

:

~

K

�

! P

5

is

an embedding of the smooth Kummer surfae

~

K

�

in P

5

.

Proof. Sine we know from the previous proposition that �

�

is birational it suÆes

to show that no urve is ontrated. If B

j

= �

�

(2E

j

) were ontrated then

0 = C

�

�B

j

=

1

2

 

p

�

D

�

�

16

X

i=1

E

i

!

� (2E

j

) = 1;

a ontradition. Assume now that an irreduible divisor C

0

on

~

K

�

, di�erent from

the urves B

j

, is ontrated. There exists a symmetri divisor D

0

on A suh that

�

�

(C

0

) = p

�

(D

0

)�

P

16

i=1

�

i

(D

0

)E

i

. This leads to the following ontradition:

2

 

16

X

i=1

�

i

(D

0

)

!

2

� 32

16

X

i=1

�

i

(D

0

)

2

� 32D

0

2

� (D

�

�D

0

)

2

=

 

16

X

i=1

�

i

(D

0

)

!

2

:(41)

In the �rst inequality in (41) we used the Cauhy-Shwarz inequality and in the

seond one we used that C

0

2

� 0. The third inequality follows from Hodge's

inequality (fr. supra) and the equality in (41) follows from

0 = C

�

�D =

1

2

 

D

�

�D

0

�

16

X

i=1

�

i

(D

0

)

!

:

This shows that no urve is ontrated hene �

�

is an isomorphism onto his image.
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We �nally show that the image is of �

�

is de�ned by quadrati equations.

Proposition 6.4. If A = J

�

is generi then the image of �

�

in P

5

is given by an

intersetion of quadris, in partiular it is a omplete intersetion.

Proof. We exlude the exeptional ases of Theorem 2.3. First, assume that there

exists an irreduible urve C

0

suh that g(C

0

) = 1 and C

0

� C

�

= 3. There exists a

symmetri divisor D

0

on A suh that �

�

(C

0

) = p

�

(D

0

)�

P

16

i=1

�

i

(D

0

)E

i

and we �nd

C

0

2

= 0; H

2

=

P

16

i=1

�

2

i

and � �D

0

=

3

2

+

1

4

P

16

i=1

�

i

(D

0

), leading to the following

inequality for the �

i

(D

0

)

16

X

i=1

�

�

i

(D

0

)�

3

8

�

2

�

9

2

:(42)

Sine every term is at least equal to 9=64 all �

i

(D

0

) must be equal to 0 or 1. If we

assume that n of them are equal to 1 and the others are zero then (42) redues to

n � 9 whih gives only integer solution for � � H when n = 2 or n = 6. If n = 6

then � �D

0

= 3 whih is impossible on a generi Jaobian. If n = 2 then � �D

0

= 2

so that D

0

is algebraially equivalent to �, so D

0

is a translate of �. Sine D

0

is symmetri it must be a translate of � over a half period. Now the equation

p

�

H = �

�

D + E

1

+ E

2

tells us that H has even multipliity at all half periods

exept at two half periods, whih is impossible, exluding the �rst exeptional ase.

Seond, let us assume that

~

K

�

ontains two urves C

0

and C

00

suh that g(C

0

) =

2; g(C

00

) = 0; C

0

� C

00

= 1 and C

�

� 2C

0

+ C

00

. Then

C

�

� C

00

= (2C

0

+ C

00

) � C

00

= 2� 2 = 0

implying that C

00

is a ontrated urve for �

�

. We have seen however in Proposition

6.3 that no urve is ontrated, exluding the seond exeptional ase.

For a generalization to higher genus we refer to [7℄.
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