DEFORMATION QUANTIZATION OF POLYNOMIAL POISSON
ALGEBRAS

MICHAEL PENKAVA AND POL VANHAECKE

ABSTRACT. This paper discusses the notion of a deformation quantization for
an arbitrary polynomial Poisson algebra A. We compute an explicit third
order deformation quantization of A and show that it comes from a quantized
enveloping algebra. We show that this deformation extends to a fourth order
deformation if and only if the quantized enveloping algebra gives a fourth
order deformation; moreover we give an example where the deformation does
not extend. A correction term to the third order quantization given by the
enveloping algebra is computed, which precisely cancels the obstruction, so
that the modified third order deformation extends to a fourth order one. The
solution is generically unique, up to equivalence.
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1. INTRODUCTION

Deformation theory for associative commutative algebras was first considered by
Gerstenhaber in [10]. Its relevance for quantum mechanics was first pointed out in
[1]; in the latter context one often speaks of deformation quantization. By definition
a (formal) deformation of an associative commutative algebra A is an associative
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multiplication + on A" = A[[h]],

(1) p*q=pq+ hmi(p,q) + h*m(p,q) + -,

where pq denotes the original product of elements p, ¢ € A. It is a fundamental fact
that the associativity of x implies that the skew-symmetric part m; of 7, defines a
Poisson bracket on A, making it into a Poisson algebra: ] is a biderivation, which
means that

™ (pg,r) = pry (¢,7) + g7y (p,7)
for any p,q,r € A, and it satisfies the Jacobi identity
m (my (p.q),r) + 7y (my (g,7),p) + 7y (7 (r,p),q) =0,

for any p,q,7 € A. Since any deformation (1) is equivalent to a deformation
for which 7 is skew-symmetric, the first fundamental question in this theory is
whether every Poisson bracket on A appears in this way. Although it was already
proven two decades ago that this is true when A is the Poisson algebra of functions
on a symplectic manifold (see [5]), the general case was only settled recently (see
[14]) as a consequence of the formality conjecture. In some sense, Kontsevich’s
proof in the case of Poisson structures on C°(R?) consists of a god-given formula,
inspired by string theory, for which it is verified that it does indeed do the job.

The present paper is devoted on the one hand to a systematic construction of
such a formula and on the other hand to an alternative approach, using enveloping
algebras, to deformation theory. Our approach being algebraic, we will suppose
that A is a polynomial algebra over a field F of characteristic zero, equipped with
a Poisson structure. Since, as in most papers on this subject, all our computations
are formal (i.e., the series p x ¢ is not required to be convergent in h), the final
formula also applies to C>(R?) as well.

Our computation of an explicit formula for 75 is non-trivial in the sense that it
involves the Jacobi identity. Already at this step the formula we obtain deviates
from the one by Kontsevich: both formulas are equivalent in the sense that they
define equivalent deformations, but a symmetric 2-cocycle has to be removed from
Kontsevich’s second order term in order to get our, simpler, formula. Using this
simpler formula for 7o we also arrive at a simple formula for 73, as a result of a
lot of non-trivial computations which not only involve the Jacobi identity but also
its derivative. It is difficult to compare our third order term with Kontsevich’s
third order term, because the third order term depends very much on the choice
of second order term and because Kontsevich’s third order term has more than
one hundred terms, with coefficients which are given by integrals that are hard to
compute. Surprisingly enough our seemingly “natural” deformation does not (in
general) extend to a fourth order deformation.

This fact is even more striking once one realizes that the third order deforma-
tion which we construct comes from a (quantized) universal enveloping algebra,
making this deformation very natural. We define the enveloping algebra for any
polynomial Poisson algebra (A, {-,-}) as follows. First note that A can be seen as
the symmetric algebra S(V') over a vector space V'; then the Poisson bracket is a
linear map S(V) Q@ S(V) — S(V). We take the tensor algebra 7(V') of V and we
consider the two-sided ideal J" of T (V)" = T(V)[[h]] generated by all elements of
the form z ® y — y ® x — ho{z,y}, where z,y € V and o : S(V) — T(V) is the
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symmetrization map, defined by

n
1
4 (H ai) == D (1) B y(2) @ B ().
=1

" peS,

The quantized universal enveloping algebra is defined as U(V)" = T(V)"/J" In
the case of a linear Poisson bracket we recover the usual definition of the enveloping
algebra of a Lie algebra. It is a well-known but non-trivial fact that for a linear
Poisson bracket the enveloping algebra does give a deformation quantization in
the following way: the natural map S(V)" — U(V)" is a linear isomorphism, so
the product on U(V)" determines a product on S(V)", which is a deformation
quantization. In general, i.e., for non-linear Poisson brackets, the map S(V)" —
U(V)" fails to be injective, but surprisingly enough, for a general Poisson bracket
it is injective precisely up to order three (in h). In fact, there is an obstruction
to the injectivity of the map, which turns out to coincide with the obstruction
which we found when trying to extend our third order deformation to a fourth
order deformation. Thus the third order deformation which we construct using
Hochschild cohomology extends to a fourth order deformation precisely when the
quantized enveloping algebra gives a fourth order deformation. An explanation of
this will be given in the text.

Since Kontsevich’s third order deformation extends to a fourth order deforma-
tion while ours doesn’t they cannot be equivalent. Indeed, we show how to add a
biderivation to our third order term, without destroying associativity, so that the
modified third order deformation can always be extended to a fourth order defor-
mation. The check that it does depends on the Jacobi identity, and its first and
second derivatives.

The structure of this paper is as follows. In Section 2 we fix the notation and
we collect the properties that will be used. An explicit third order deformation
for any polynomial Poisson algebra is computed and we find the obstruction to
extending this deformation to a fourth order deformation. In the last paragraph of
this section we show how to modify the third order deformation by a biderivation
so that after modification it does extend to a fourth order deformation. In Section 3
we introduce the quantized enveloping algebra of a polynomial Poisson algebra, we
prove a Poisson algebra version of the Poincaré-Birkhoff-Witt Theorem and we use
it to show that our third order deformation, without the biderivation, comes from
this enveloping algebra. In the final section a few examples with very different
characteristics are worked out; in particular we give an example which shows that
the third order deformation which is given by the quantized universal enveloping
algebra does not extend in general.

Acknowledgements. The authors would like to thank Alexander Astashkevich,
Pierre Bielavsky, Dmitry Fuchs, Josef Mattes, Bruno Nachtergaele and Alan We-
instein for useful conversations. The first author would also like to thank the
mathematics department at the University of California, Davis for its hospitality
during his two trips to Davis to work on this project.

2. CONSTRUCTION OF THE UNIVERSAL DEFORMATION

2.1. Preliminaries. In this paper A will always denote a polynomial Poisson al-
gebra (possibly in an infinite number of variables) over a field F of characteristic
zero. A will often be viewed as the symmetric algebra over a vector space V. We
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fix a basis for V| which amounts to realizing A as F[mj]jez. For polynomials p and
g we will denote their product pg by 7 (p,q) and their Poisson bracket by {p,¢q}.
Let h be a formal parameter and let A" (resp. F[[h]]) denote the algebra of formal
power series with coefficients in A (resp. in F). For n € N we will also use the
algebra AZ which is obtained from A" by dividing out by the ideal generated by
R"tL. For elements p, g € A" we write p = ¢ mod A"™! when they project to the
same element in AZ.

Definition 2.1. An F[[A]]-bilinear map 7, : A" x A" — A" is called a (formal)
deformation of A when it satisfies the associativity condition

(2) T (T (P, @), 7) = i (D, Ta(g, 7))

for all p, g and r in A" and reduces to 7 on A = Ag“; i.e., mx(p,q) = 7(p,q) mod h.
More generally, when associativity merely holds on AZ we say that 7, defines an
n-th order deformation.

When a (formal) deformation has the additional property that for any p,qg € A
the product gp is obtained from px¢ by applying the involution of A" determined
by h+ —h, then we say that it defines a (formal) deformation quantization of A.

Two (n-th order or formal) deformations m, and 7 are called equivalent if there
exists an [F[[A]]-linear map F : A" — A" such that F(p) = p mod h for any p € A
and such that F(m(p,q)) = 7' (F(p), F(q)) for any p, g € A.

If one writes m, = m + hm; + h%my + -+ - then the associativity condition (2) can
be expressed by an infinite list of relations
(3) omy = % Z [mi, 75], n=0,1,2,...,
i+j=n
where [-,] denotes the Gerstenhaber bracket (see [9]) and 0 is the Hochschild
coboundary operator (see [11]). Let us assume that the 2-cochains m, 71, ..., Tpm_1
define an (m—1)-th order deformation of 7; then (3) is satisfied forn =1,...,m—1

and the deformation extends to an m-th order deformation if and only if the m-th
equation in (3) has a solution 7,,. The latter condition is cohomological: it expresses
that the 3-cocycle Zi_l_j:n[m, m;] is a coboundary; moreover, if a solution 7, exists
it is unique up to addition of any 2-coboundary.

For polynomial algebras the condition for a 3-cocycle ¥ to be a coboundary is
that its skew-symmetrization v~ vanishes; moreover, if a 3-coboundary v is given
by a tridifferential operator, then it is actually the coboundary of a bidifferential
operator. Thus it suffices, in principle, to go inductively through the list (3),
verifying at each step that the corresponding bidifferential operator m; exists and
then constructing such an ;. One problem, however, is that the particular m,
chosen for the extension of the deformation to order n will have a pronounced
impact on the further extendibility of the deformation. If the deformation does not
extend to order n + 1, it may be that a different choice of 7,, would allow such an
extension. Moreover, this effect is not limited to the next term in the extension,
so that the extendibility of an extension up to order n is influenced by all of the
choices of the cochains 7, for 1 < k < n.

For i € Z, we denote by 0° : A — A the partial derivative with respect to z; and
we use 91 for repeated derivatives. They are used here to generate elements
of Hom(A? A) and Hom(A?, A), called differential 2-cochains and differential 3-
cochains; the differential 2-cochains for example have the form p;, ;. . . Qirim @
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Qim+1--in  where we have used the summation convention and Diy.ip.in, € A
for any indices %;...%,. If ¢ is a 2-cochain or a 3-cochain we denote its skew-
symmetrization by ¢~. For example (0' ® §7)~ = % (Bi ®0 -0 ® Bi), which we
also write as ' A 8. Similarly (0' ® & ® 0%)~ = 9° A 7 A 9F. For symmetric
2-cochains and 3-cochains we use a dot, e.g., 8°- 07 = % (Bi ®07+ 07 ® Bi). In our
computations below we use X;; as a convenient notation for the Poisson bracket
{zs,x;} of the generators x; and z; of A. The Poisson bracket can be written as
X;;0" A 97, the Jacobi identity for m; reads

(4) ijXm + le-kXil + X}, X =0

(for any i, j, k € I), the derivative of the Jacobi identity with respect to z,, is
written as

(5) XU X+ X0 X + X0 X + XX+ X5 X+ X1, X7 =0,

(for any i, j, k, m € ), and there are similar expressions for higher derivatives.

Finally we record explicit formulas for the Gerstenhaber bracket and for the
Hochschild coboundary operator in terms of differential cochains. These formulas
will be indispensable for our future computations. For a multi-index I = (i1, - - , ;)
of order |I| = n and a polynomial p € A, denote 3/ = 9% and p! = 9/ (p).
For a pair I, J of multi-indices, IJ will denote the multi-index resulting from
concatenation. When summing over all multi-indices I and J such that IJ = K
it will be understood that there is only one term in the sum corresponding to the
permutations of the elements of K that leave I and J invariant. If we denote

(pah ® 612)] — Z pJuath ® afsz'
JoJ1J2=J

then the bracket of differential 2-cochains is given by
(6) [po" ©0%,q0" @07 =
p(qd” ® 872)" @ 0" — pd"t ® (¢80 ® 972"
+q(pd" ®0")" © 07 — ¢07 @ (p0” @ 0") 2.
The Hochschild coboundary operator for a differential 2-cochains is given by
(7) §(pd? ® 0%) = p(607) ® X — po’ ® (98%),
where

S(po")y=— > pd ot

LI=I
For an n-differential operator 6t ® -+ - ® §» | its type is the n-tuple (|I1|,--- ,|I,])-

2.2. The third order deformation. We will now show how a first order defor-
mation 7 + hmy, where m; = %Xijai A 07 is a Poisson bracket on A, can explicitly
be extended to a third order deformation. Notice that @ + hm; is indeed a first
order deformation, a consequence of the fact that 7 is a biderivation.

Proposition 2.2. Given a first order deformation w + hwy of A where m; =
%Xijal A 07, let Ty be the following symmetric cochain

1 T | L o
(8) Ty = Exfjxmal- o7k + gxijxkla“»- o,

Then m + hry + h®my is a second order deformation of A.
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Proof. For n=2 the right hand side of equation (3) is &[m,7;]. For any p, ¢, 7 €

2
A one has $[m,m]"(p,q,7) = 5(mi(m1(p,q),7) + mi(mi(q,7),p) + m(m(r,p), q)),
which is zero in view of the Jacobi identity. This shows that 7 + hm; extends to a

second order deformation. Using equation (6) and the Jacobi identity (4) we find
(9)  im,m]=3iX,X,;0000®0" + 1X; Xy (0720 00 —9'0d"0d").

The third order part of dmy (with 72 given by (8)) is computed using (7) to be given
by

1—12ijXlk (000" ®0"F +0'0d"©d — 0 @0F®d" — 0o’ ®0").
Since 7, j and k are just summation indices this can be rewritten as
1—12 (X)X + 2X0 X5 — X[, X0) 0' 007 00"
Using the Jacobi identity (4) this reduces to a single term
%kaleai@)aj@a’“,

which is the third order term of %[Wl,m]. For the fourth order term one makes a
similar computation (but the Jacobi identity is not used). O

One concludes from these computations that it is not obvious to guess a cochain
whose coboundary is given; compare carefully (9) and (8).

Our next task is to find an explicit solution for the third equation in (3), namely
the equation dms = [m1,m2]; the existence of a solution follows from the fact that
since 7y is skew-symmetric and 72 is symmetric, [m,7m2]” = 0. The explicit com-
putation of [my, 2] is long but straightforward. Writing the resulting tridifferential
operator as a coboundary of a bidifferential operator is non-trivial and we will con-
centrate on this aspect. Clearly every term in [m, 73] is a tridifferential operator
of (total) order 3, 4, 5 or 6. We will denote the i-th order part of a tridifferential
operator by a subscript (7). We start with the highest order, which is the easiest.

Lemma 2.3. The sizth order part of [r1,ma] is the coboundary of a skew-symmetric
2-cochain,

1 . .
(10) [T1, m2](6) = 0 (@Xinlemnamm A 8Jl"> .

Proof. The sixth order terms in [m, 7] are the ones for which none of the coeffi-
cients in m; or me are differentiated. There are twelve terms, they come from the
bracket of 7; and the fourth order term of 75 only, and eight of them cancel in
pairs, leaving the following expression for [m1, 72](s)-

EanXinkl(azhm@)a]l@an+an®a]l®azkm+azkm®an®ajl+a]l®an®azhm)_

To compute §(X;; X1 XpndF™ ®07"), use (7) and find twelve terms which come in
equal triples due to the order three symmetry (¢,5) — (k,1) — (m,n). Formula (10)
follows. O

Note that the computation did not involve the Jacobi identity. In the symplectic
case this is the only term which survives. Next, we consider the terms of order 5.
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Lemma 2.4. The fifth order term [my,m2](5) is also the coboundary of a skew-
symmetric 2-cochain, given by

1 , - -
[T1, T2](5) = E(S (Xi}”ijsznaﬂm AO™) .

Proof. The bracket [m1,T2](s) has a lot of terms, they are of types (1,1,3), (1,3,1),
(3,1,1), (1,2,2), (2,1,2) and (2,2,1). The terms of type (1,3,1) cancel and in the
other ones there is some simplification. By symmetry we only need to consider
the terms of type (3,1,1), (1,2,2) and (2,1,2). We give the result below, omitting a
global factor 1/24. Note the non-triviality of the coefficients.

(3,1,1) : (Xpum X |, Xt + Xim X} Xpt) 0" 20' 00",
(1,2,2) (X5 Xt X +2X [ X Xij + X F X Xij + 3X 0 X Xi5) 0" 007 0™,
(2,1,2) + (X5 Xpa X = X5 X X1 +3X [ X Xt) 0 00" 007

It is surprising that all these terms integrate to a single term, i.e., as a whole they
can be written as

(11) 5 (XE Xy X (99 0 0 — 07 @ §91™)) .

Before checking this, note that (11) produces indeed precisely terms of the appro-
priate types. Clearly the (3,1,1) part of (11) is given by

X5 X X (0" 00'00" + 0" 20" 20")

and is easily rewritten in the form of the term of type (3,1,1). Type (2,1,2) involves
the Jacobi identity. The (2,1,2) part of (11) is given by

— XE X X (07! ©0™ 00 + 07 20! 90" + 0™ 00 9™
+ "R @I™ + IR0 ROI™ + I @I @A),
which is easily rewritten as
(Xi@'kaan + XZszan + ZXf}ansz
+ X0 X Xt + X5, X5y X0 00" 007

Now use the Jacobi identity (4) on the last two terms to obtain the term of type
(2,1,2). Finally, the (1,2,2) part of (11) is given by

—XE X X (0" @' 00 + 07 0000 + 0' 0™ 0d™) .
When this is rewritten as
(X5 Xp X + X X Xij + X Xpn X i) 0" @07 0™

then the first term matches with the first term of type (1,2,2) and the other two
match up with the three remaining terms of type (1,2,2). O

For the fifth order term we used the Jacobi identity. For the fourth order term we
will also use the derivative of the Jacobi identity (5).

Lemma 2.5. The fourth order term [my, 2] is the coboundary of a skew-sym-
metric 2-cochain,

1 X > 3 »
[7T1,7T2](4) = ﬂé (Xlka]lnXmamn AOY + Xf;anlemam A 6"”) .
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Proof. As in the previous case we treat the terms in [r, m2]4) by type. There are
just three types, to wit, (1,1,2), (1,2,1) and (2,1,1). By symmetry we only need to
counsider the terms of type (1,1,2) and (1,2,1). They have the following form (we
omit the global constant 1/48).

(1,1,2) : Xy (4X)0, X0, +2X5 X0 42X X, + 3X), X15) 0" 00" ®0Y,

(1, 2, 1) 12 (Xﬁanlem — XZ-IkaXln) 8m®8m®6j.
We already simplified these formulas by using the Jacobi identity (for type (1,2,1)

we used it twice). The verification for type (1,2,1) is now straightforward: the six
terms of type (1,2,1) in

8§ (Xpl XniXi;0™ © 0™ + X X Xin 0™ @ 07)
come in pairs and reduce to (1,2,1) above. The terms of type (1,1,2) in
8 (2X}, X1, X30™" @ 09 + XKL X3, X1;0™ @ 9"Y)
are given by
Xy (—2X0, X0, — 2X00, X, + X0, X5 + 2X00 X0, ) 97 00" 00
which reduces to

Xy (X5, X, +2XEXE +2x])

d le +3X7L;LlnXl]) 8m®5n®8”

l
J
by using the derivative of the Jacobi identity. O

Finally we consider the term of order 3. The proof does not involve the Jacobi
identity and is left to the reader.

Lemma 2.6. The third order term [my,m2](3) is also the coboundary of a skew-
symmetric 2-cochain,

1
T 12

Our previous results lead to the following theorem.

§( Xy Xi XIE o™ A 0'™).

(71, 2] (3)

Theorem 2.7. Let (A,{-, }) be a polynomial Poisson algebra with basis {x:}, 7
and denote m = X;;0° A 97, where X;; = {z;,x;}. Then the following formula
gives a third order deformation m + hmy + h2my + h37s of A,

b i, B2 ik b
me=m4 5 X0 A0+ o [4X]; X10" 0% +3X;; X0 071

12 - %[XMXMXM@“‘” AP 4+ 4XE Xy X7 A O
XL X1 X0 N0+ 2XE X0, X0 A 0
XX 07 A 9]

Up to equivalence every third order extension of m + hmwy is of the form

(13) 7+ hary + h2 (2 + 2) + B3 (w3 + 03 + b3)

with w2 and @3 skew-symmetric biderivations and ¥3 a symmetric 2-cochain sat-
isfying O3 = [m1,p2]. Conversely, for such @z, @3 and 3 (13) is always a third
order deformation.
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Proof. We proved already that (12) is a third order deformation. Suppose now that
7 + hmy + h%mh + h37, is another deformation which extends the same first order
deformation. Then ¢y = 7y — 7} is a cocycle which can be assumed to be a skew-
symmetric biderivation. Indeed, a symmetric 2-cocycle is always a coboundary
and altering one term in a deformation by a coboundary leads to an equivalent
deformation (of the same order). Since dm; = [m1, 72 + 2] is a coboundary, 0 =
[m1, 72 + 2] = [m1, p2]” and we can find a symmetric cochain whose coboundary
is [m1, p2]. Then 7§ — 13 must differ from 73 by a cocycle @3 which we may assume,
again without loss of generality, to be a skew-symmetric biderivation. O

2.3. The obstruction to a fourth order deformation. In this section we want
to investigate the fourth order term of the explicit deformation which is given by
(12). For a given polynomial Poisson algebra (A, {-,-}) we will denote the latter
deformation by m, = 7 + hmy + h?my + h3ms; as before 7 = %{ , b= %Xijai N

Theorem 2.8. The deformation (12) extends to a fourth (hence fifth) order de-
formation if and only if the following, non-trivial, condition is satisfied for any
a<b<cel:

(14) 2X;; X (XEr it + XEm Xl + Xk

m
+ Xy X (X0 X0, + X0 X, + X0 X)) = 0.
Proof. The deformation (12) extends to a fourth order deformation if and only if
0 = [m1, 73] + S[m2,m]” = [my, 73]~ The terms in [y, 73]~ have orders ranging
from 3 to 8 only. We claim that the terms of order at least four all vanish, sketching
the computation in the least trivial case when the order equals four. A direct
application of (6) gives the following expression for the coefficient of 9%¢ A 3° A 9°
in [my, 73] (some indices have been relabeled for later convenience and a global
constant has been omitted; note also that a and @ can be freely interchanged):

2X ;i X (Xan XM + X XIF 4 X XTI

+2X X (X XF, + Xy Xb, + X5X5)

+2X 0 (X (X X+ XaeXE) = XE (XX + XaiX3))
+ 22X XY (X X0+ X X0 — X Xph (Xoy X, + X1 X,)
— 20X (X0, X0 — X0, X5)

We now use the second derivative of the Jacobi identity, i.e., we use the formula
(Xan XD + Xpp X5+ Xeu X[, =0,

(valid for any indices a, b, ¢, j and [), to rewrite the first two lines (giving the first
line below) and we twice use a derivative of the Jacobi identity to rewrite the third
line (giving lines two and three below); the fourth line is simplified by a direct
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application of the Jacobi identity,
2Ky Xig + XaXja) (X0X07 + X§ X0 + X[ X33)

+ 20 X (XX + X5 X + X XE)

b
b a ct
- QXUX%(XZiXIza + Xéngk + ng‘ ab)
+ 2X5, X (Xa Xpp + X XE5 + Xej Xgp)
- 2XliX;k(ngXfé - XgaXz];é)-
Most terms in this expression cancel out in pairs, leaving
2(X XY+ X5 X], + X X)) X X0
+ 2(X X + Xja X)) X X
+ 2(X X + XX, + X X)) X XU
which is zero, by a single application of the Jacobi identity on every line. It follows
that the only non-zero terms in [m;, 73]~ are terms of type (1,1,1). Using (6) we
find that the coefficient of % A ° A 8¢ in [my, 73] is given, (up to a constant) by
the left hand side of (14); since this expression is skew-symmetric in a, b, ¢ it will
hold in general when it holds for a < b < ¢ € Z. Moreover, if (14) vanishes then

w4 can be chosen to be symmetric, which implies the existence of 75, solution to
Oms = [m1, ma] + [m2, T3] because then [my,my|” = [ma,m3]” = 0. O

We will see later an example for which (14) is non-zero, showing that our deforma-
tion (12) in general does not extend to a fourth order deformation.

2.4. The extension to a fourth order deformation. We now show how the
third order deformation that we have obtained needs to be modified in order to
extend to a fourth order deformation. We denote the third order deformation
quantization that we obtained in (12) by 7, = 7 + hmy + h?my + h37s where m; =
%{ ,-}. We have shown in Theorem 2.7 that we get, up to equivalence, all possible
third order deformations of (A, {-,-}) by adding any biderivations ¢, and @3 to m,
and 73 and adding any symmetric cochain 3 satisfying dips = [m1, @2]) to m3. Let
us denote such an alternative deformation by . = m + hmy + h?x), + h37,. If 7
extends to a fourth order deformation by adding a term h*m, then 4 is a solution
to
! ]‘ ! !
omy = [71’1,7T3] + 5[’”2’71—2]7
and the skew-symmetrization of the right hand side must vanish, leading to

(15) [7T1,7T3]_+[7T1,<P3]_+%[‘P2,<P2]_ =0.
In view of the following lemma, all terms in the left hand side of (15) are of type
(1,1,1).
Lemma 2.9. If ¢ and ¢ are two biderivations then [@,v]~ has type (1,1,1).
Proof. Let ¢ = Y;;0° A 97 and ¢ = Z3;0% A 0'. Then the piece of [p,1)] that does
not contain terms of type (1,1,1) is given by

(YijZpt + Y Zi;) (0% @0' 007 — 0'@0"@0").

After skew-symmetrization every term appears twice with opposite signs hence they
all cancel out. O



DEFORMATION QUANTIZATION OF POLYNOMIAL POISSON ALGEBRAS 11

By computing the terms of type (1
fourth order deformation for a given
skew-symmetric biderivations ¢o =
foranya<b<ceZl

(16)  XpeZlh 4 Zpe X0+ 6Y Y — Xy X XM XIL —2X, X1 XEm x It
+ cycl (a,b,¢) =0.
Lemma 2.10. The 2-cocycles Y. =0 and

1,1) in (15) we find that the existence of a
A ,{-,-}) is equivalent to the existence of two
Y;;0' ®

(
i 0’ and @3 = sZwal ® 07 such that

(17) Zap X”gXl X}, - X0X X, (a,b€T)
solve equation (16) hence yzeld the correction term
@3 = (X”” XLx], - 2XN X X)om Ao

to w3 in (12) in order for the deformation quantization to extend to a fourth order
deformation quantization.

Proof. Consider the following four equations, which are all a consequence of the
Jacobi identity.

1/2(X, bXCZ)ﬂX "X[ 4+ cycl (a,b,c) =0,
(X7, X+ XL Xja + X0 X ) X5 X + cyel (a,b,¢) = 0,
(X1 Xk + XMXJC + X)X X! le + cycl (a,b,¢) =0,
(X2 X0 + X[ Xje + X[ X50) X X, + cyel (a,b,¢) =
Expand now X, Z7} + Zpe X[ 4+ cycl (a,b,¢), (where Zg; is given by (17)) and
add the above four equations. After the smoke clears up you will find
Xij X X5m Xt +2X; X5 XEmXIL 4+ cydl (a,b,c)
as needed to solve (16). O

3. DEFORMATION QUANTIZATION VIA ENVELOPING ALGEBRAS

In this section we will show that the third order deformation which we con-
structed in Paragraph 2.2 for any polynomial Poisson algebra comes from a “quan-
tized” enveloping algebra. The fact that an enveloping algebra appears here is not
surprising. The symmetric algebra of a Lie algebra is a polynomial Poisson algebra
in a natural way and it is well known that the quantized universal enveloping alge-
bra of a Lie algebra is a deformation quantization of this Poisson algebra (see [1],

[2])-

3.1. The quantized universal enveloping algebra. In order to describe the en-
veloping algebra of a polynomial Poisson algebra we will view polynomial algebras as
symmetric algebras over a vector space. Let V' be a (possibly infinite-dimensional)
vector space over a field I of characteristic zero. For simplicity of notation we will
denote elements in V' by lowercase roman letters. For any positive integer n we let
V=V ®V®...0V (n copies) and V° = F. The tensor algebra over V is the
Z-graded associative algebra (with unit) defined by

&
n=0
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The symmetric algebra S(V') is the quotient S(V') = T(V')/I, where I is the ho-
mogeneous ideal in 7 (V') generated by elements of the form z ® y — y ® . The
symmetric algebra is isomorphic to the polynomial algebra F[xj]jez where {z; }jeI
is any basis for V. (Of course, any polynomial algebra can be represented in this
form.) In particular, we will use juxtaposition to denote the product in S(V'), just
as we did for a polynomial algebra.

Any skew-symmetric map V@V — S(V) extends to a unique skew-symmetric
biderivation on S(V'). When this biderivation satisfies the Jacobi identity then
(S(V),{-,-}) becomes a polynomial Poisson algebra, and every polynomial Poisson
algebra arises in this fashion. The quotient map p : 7(V) — S(V) has a F-linear
right inverse o : (V') — 7 (V) which is defined by

n 1
i (H ai) “ ol Z p(1) © Op(z) @ - -+ & Gp(n),
i=1

PESH

where S, is the symmetric group on n elements and ai,...,a, € V. We call
o the symmetrization map. Note that p is an algebra homomorphism but the
symmetrization map o is not. Let 7 (V)" (S(V)") be the formal power series with
coefficients in 7(V) (S(V)). Then 7 (V)" and S(V)" are naturally F[[h]]-algebras,
p extends to an F[[h]]-algebra homomorphism p : 7 (V)" — S(V)", and o extends
to a F[[h]]-linear map o : S(V)* — T(V)". Now we introduce a natural candidate
for a deformation quantization of a polynomial Poisson algebra (S(V'),{-,-}).

Definition 3.1. Let J" denote the two-sided ideal of 7 (V)", generated by all
elements

(18) Ty —y®z—ho{z,y} (z,y eV).

The quantized universal enveloping algebra of (S(V),{-,-}) is given by

(19) UV =1V J"

The induced product on (V)" is denoted by ® and the quotient map by
p: TV = uUWv)h.

Thus, we have associated to a polynomial Poisson algebra (S(V),{-, }) a new
(non-commutative) associative algebra (U(V)", ®) and they are linked by the F[[h]]-
linear map (not a homomorphism!)

TSV s U

given by 7 = poo. The maps 7, p and o induce maps 7, p, and o,, on the quotient
spaces 7 (V) S(V)! and U(V)" obtained by dividing out by the ideal (h"+1). We
also use the notation J! for J"/(h"t1), so that U(V )" = T(V)r/Jh. We will see
that in some important cases the map 7 is a bijection, but that in general 7, is
only injective for n < 3. If 7 is injective up to some order, the enveloping algebra
provides a deformation quantization of (S(V'),{-,-}) of the same order, as given by
the following theorem.

Theorem 3.2. If 7: S(V)" — U(V)" (resp. 7,,) is injective then the unique prod-
uct x on S(V)* which makes T (resp. 1,) into a homomorphism is a deformation
quantization (resp. of order n) of the Poisson algebra (S(V),{-,-}).
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Proof. T is always surjective: simply note that ¢(V)? is canonically isomorphic to
S(V), so that for any q € U(V)" there exists a p € S(V) such that 7(p) = ¢ mod h.
Then 7(p) — ¢ = hqy, for some ¢, € U(V)". Continuing this process, we obtain a
sequence of polynomials p; such that 7(p + hp, + - -+ + hFp) — ¢ = h¥q;, for some
qr € U(V)". Then 7(p + hpy + ...) = ¢. It follows that 7, is also surjective.

If 7,, is injective then the associative product which is induced by 7, is given for

p,q € S(V) by
pxq= Trjl(Tn(p) © 7(q))-

We show that it defines a deformation of (S(V'),{-,-}) and that it is alternating.
It is easy to see that

Tn(p) © 7.(q) = 70(pg) mod h

so that pxq = pg mod h; the associativity of x on S(V')" implies that pxq = pq +
hmi(p,q) mod h? for some cocycle 7. If we can show that 7 is skew-symmetric
then it is a biderivation and the fact that 7 = %{ ,-} follows from the following
check for elements x,y € V,

1 h .
hm(x,y) = E(x*y —y*x)= E{x,y} mod h?.

Now we show that « is alternating (up to order n), which proves in particular that
7, is skew-symmetric. Let T be the anti-involution on 7 (V)" induced by the map
which reverses the order of elements in a tensor product, and let ¢ be the involution
of F[[h]] which is given by the map h — —h. Then t determines involutions of
S(V)" and T(V)", which we will also denote by t. Let t =T ot =toT, so ¢ is an
anti-involution of 7 (V). Note that T oo = 0. Thus ((z ® y —y ® x — h{z,y}) =
y®z —x®y— h{y,r}, sot maps the ideal J" to itself inducing an anti-involution
1. We also have the relations 10 p, = p, 01 and 7, 0t =107,. Now x is alternating
precisely when t(px q) = g+ p for all p, ¢ in S(V'). But note that

Tn(t(p* q)) = t(ta(p* @) = UTn(p) © Ta(q)) = tlpn(on(P)) © pr(on(q)))
= U(pn(on(p) ® 00(q))) = pn(tlon(p) ® on(q))) = prlon(a) ® on(p))
and similarly 7,(¢ x p) = pn(on(q) ® on(p)). Since 7, is an isomorphism, the

conclusion follows. O

3.2. The Poincaré-Birkhoff~-Witt Theorem. Theorem 3.2 demonstrates that
the injectivity of 7, is crucial. We show in the next theorem how injectivity of
7, can be rephrased as an identity in 2(V)". Our proof is modeled on Birkhoff’s
proof of the Poincaré-Birkhoff-Witt Theorem (see [3]). Define a skew-symmetric
map A : V3 — U(V)" by

Alz,y,z) =z 01{y,z} +y O 1{z,2} + z © T{x,y}
—m{y,z} 0z —7{z,2} 0y —1{zr,y} © 2

and call A = 0 the diamond relation. For any n there is an induced map A, :
V3 > U(V)h | and we call A,, = 0 the n-th diamond relation. Note that for any

z,y,z €V,
hto1{y,z}=20ye0z—z020y,

so that hA = 0, and similarly hA,, = 0 for all n. It is precisely the possibility
of multiplying a nonzero element in ¢(V)" by h to obtain zero that can cause T
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to fail to be injective, as we show in the theorem below. For the proof we need
the notion of ordered elements in the tensor product. Fixing an ordered basis
{wi};c7 for V we call an element @ = ;, ® ¥4, ® - @ x;,, € T(V) an ordered
monomial if 77 < iy < -+ < 4, and strictly ordered if the inequalities above
are strict inequalities. Let O(V') be the subspace of 7 (V') spanned by the ordered
monomials, O(V)" be the induced subspace of 7(V)", and O(V)h = O(V)"/(h"*1)
be the subspace of ordered elements in 7 (V). Also, for an element v € 7 (V)%

n

denote by (0) its 0-th order part, so that v — y(0) € hT (V).

Theorem 3.3. Forn > 1 the following four statements are equivalent.
1. 7, s injective;
2. For any a € U(V)" ha =0 implies « =0 mod h";
3. * satisfies the n-th diamond relation A, = 0;
4. The restriction of p, to O(V)! is injective.

n

Moreover, each of these statements is true for n = 0.

Proof. Let us first treat the case of n = 0 because this is used later in the proof.
The fact that 7 is injective follows immediately from the fact that the image of J"
in 7(V') is the ideal I, so that 7o is essentially the identity map, from which it also
follows that the restriction of py to O(V) is injective. Statements 2) and 3) hold
vacuously for n = 0, so all statements are true for n = 0.

Let us suppose that 7, is injective and let & € U(V)" be an element such that
ha = 0. Since 7, is surjective there exists 3 € S(V)! such that 7,(8) = a. Then
Tn(hB) = hrp(B) =0, so that h3 = 0 and 8 € (h™). Then a = 7,,(8) =0 mod h",
which shows that 1) implies 2).

That 2) implies 3) follows from the fact that hA, = 0.

We now show that 4) implies 1), so we assume that the restriction of p,, to O(V)?
is injective. We show that 7, is injective. By induction, we can assume that this
theorem is true for n — 1, so that 7,1 is injective, since A,_; = 0 if A,, = 0.
Therefore, if 7,,(y) = 0 for some v € S(V)%, then since 7,,_1(y) = 0, we must
have ¥ =0 mod h™. Thus v = h™p for some p € S(V'). But if z;, - - x;, satisfies
iy <o <y, then 7, (A", -+ - x4,) = h"pp(zi, ® - - @ x4, ), because we can always
reorder the terms appearing in a tensor at the price of adding h times something.
If we express p =), a'z;, -+ x;, , where we sum over all increasing multi-indices
I = (i1, - ,ig), and B = k"> ;alz;, ® - @ x;,, then B € O(V)! and satisfies
pn(B) = 1(y) = 0, so that 8 = 0, by injectivity of p,, on O(V),,. It follows that p
must also vanish, and thus v = 0. This shows that 4) implies 1).

The rest of the proof is devoted to showing that 3) implies 4). We fix any n > 1
and assume that A,, = 0. Since the kernel of p,, restricted to O(V) is O(V)h n J",
it suffices to show that O(V)! n J! C hJ!. An arbitrary element 7 of ker p,, is of
the form v = ' + hy" where v/,+" € J" and

(20) 7, = Z ap ® (xil Q@ Tj — Tj, QT4 — ha{xil 1y Ljp }) ® B
1<ISN

for some monomials ag, f; in 7(V'), basis elements x;,, and z; and some positive
integer N. We need to show that if v is ordered then 7/ € hJ. We first show that
~'(0) = 0. Since p,(y) = 0 also po((0)) = 0 which implies that v(0) = 0 because 7y
and hence also v(0) is ordered. Then +'(0) also vanishes because v(0) = +'(0). Now
consider a fixed multi-index I and define v} by (20) but summing only over those
[ for which the indices in oy ® z;, ® z;, ® f; coincide with the ones in I (including
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multiplicities). Then evidently 77(0) = 0. We will show that this implies that
v} € hJ!, from which it follows that 7' € hJ" because v/ =Y, 7}.

First we consider the case when [ is strictly ordered, in which case we may
assume that I = (1,---,m) for some m. We denote by S,, the symmetric group
and we consider its standard presentation with generators 0y, k=1,...,m —1, (6
corresponds to the transposition (k,k + 1)) and relations 6%, (6,6,41)° and (0:6,)?
for |[i — j| > 2. For A € Sy, let o\ = 2)(1) ® -+ ® Ty(;n). Then we may express 77
as

m—1
(21) Y=Y ) ank (ma—zoon — hxak)

AESy k=0

where ay; € F and xax = Zx1) @ -+ ® 0{Zr(r), Ta(ks1)} @ - @ Ty(m). Now
consider the Cayley graph I',, of the above presentation for S,,. The vertices of
T',, are given by the elements in S,,, with an edge connecting two vertices precisely
when the permutations defining them differ by a transposition. The oriented edge
connecting A and 0\ is denoted by ey i, so that d(ey ;) = A — 0 \. We define a
linear map ¥ from the group C*(I',,, F) of (oriented) 1-chains on Iy, to 7 (V)" by
letting

Y(err) =xn — T — hXo k-

Notice that ¥ is well-defined because although eg, 1 is the same edge as ey , but
with the opposite orientation, it gets mapped to —¥(ey ). Then obviously

m—1
=Y ( Z Z a>\7k€/\,k>

AES,, k=0

and the fact that 77(0) vanishes means that ers,,,, 22:11 ay kexk is a cycle in
the homology of the Cayley graph. By the universal coefficient theorem, every
cycle (with coefficients in an arbitrary group) on a graph can expressed as a sum
of multiples of closed edge paths in the graph; moreover, any cycle on the Cayley
graph of a presentation is a sum of cycles (with integral coefficients) which cor-
respond to the basic relations which appear in the presentation. It follows that
Zkes Zzzz_ll axkexk = Zle byr; where each r; corresponds to one of the basic

m

relations appearing in the presentation and (3; € F. Therefore we have that

t
Ve =Y bi¥(r),
=1

and it suffices to show that ¥(f) € hJ" for any cycle f which corresponds to
a basic relation. First, notice that the cycle f which corresponds to 67 is zero
because it consists of the sum of two copies of an edge with opposite orientation.
Second, let ¢ and j be such that |¢ — j| > 1 and let f;; be the corresponding cycle,
fij =exi+eqr;+eooni+esn . Then

W(fi;) = —h(xXni + X075 + X0,0.7,  X0;7,5)-
Now both xx: +X0,;6,7,i and —Xg;x,; — Xo,,j are given, up to an element of Jg, by

Ta1) ® - @ {Zx@), DA+ @ - D {ZAG) TaG+1) ] @ @ Tagm),
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showing that ¥(f;;) € hJP. Finally, let us assume that f; corresponds to the
relation (6;6,11)%. Then

fl = e>\7l + 60[>\7l+1 + 60[+191/\,l + 69191+191>\7l+1 + 60[0[+1/\,l + 691+1/\,l+1
so that

U(f1) = hoyq) ® - @ (Tr0) @ 0{@r@41), Ta42) }
= o{TA(141), Tai42) ) @ Trq) +eyel) @ -+ @ T\ ().

Since A, = 0 the term between parentheses lies in J" ;. But now note that if
a € J' |, then a = 3 + h™y for some (3 € J!, so that ha € hJ". Thus we can
conclude that U(f;) € hJ".

This completes the proof that 3) implies 4) in case [ is strictly ordered. If I =
(41,---,%m) is merely ordered then the proof can repeated verbatim after replacing
S, with a quotient group, whose presentation is obtained from the above standard
presentation of S, by adding the relations 8 for any k for which ¢, = ¢541. The
corresponding Cayley graph is obtained from the one for S,,, by collapsing the edges
which correspond to those 6. [l

The above theorem gives us an analytic criterion to check injectivity at some order.
When we assume that injectivity at order n — 1 has been checked then we may
think of the n-th diamond relation as being a relation in S(V)". Since this is the
way in which we will use the diamond relation below, we formulate this fact in a
separate theorem.

Theorem 3.4. If 7, : S(V)" — U(V)! is injective (hence bijective) then T,41 is

n n
also injective if and only if the diamond relation

To *{Tp,x} — {Tp, 2} * T4 + cycl(a,b,c) =0

holds for any a,b,c € Z. In this formula % is the product on S(V ) which is induced

n
uStNg T,
In this formulation the theorem will turn out to be very useful. For example we
note that px g = g*p mod h and conclude from it that 7 is injective.

3.3. The x-enveloping algebra. In order to use the theorem to prove injectivity
of the higher 7; we need an explicit formula for the x-bracket which comes from
the enveloping algebra. We will show now that such a formula is given exactly by
(12) and derive injectivity of 72 and 73 from it. For this purpose we associate an
enveloping algebra U(V)" to a deformation (S(V)" x) of S(V); in general U (V)"
and U(V)" will be different.

Definition 3.5. Let (S(V)", %) be a deformation (of finite order or formal) of S(V)
and denote the commutator in (S(V)", %) by [-,],. Define J! to be the two-sided
ideal of 7 (V)" generated by all elements of the form

a®b—b®a—ola,bl, (a,beV)
and define the x-enveloping algebra U(V)? of (S(V)*,x) by U(V)t = T (V)] Ik,

For a given deformation (S(V)",x) the enveloping algebras U(V)" and U(V)"
coincide if and only if

(22) [xay]* = h{xay} (x,y € V)
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We call a deformation which satisfies (22) bracket-ezact. In terms of the cocycles
7; this means that

'/Ti(m;y)ZO (w7y€V7i>]')'

For example, our general formula (12) defines a bracket-exact deformation quantiza-
tion; adding any non-zero skew-symmetric biderivation to 73 defines a deformation
quantization which is not bracket-exact.

We now give a property which characterizes x-enveloping algebras; in the case of
bracket-exact deformations it characterizes enveloping algebras, showing that the
*-product which comes from the enveloping algebra is given by (12).

Definition 3.6. Let (S(V)",x) be a deformation of S(V). The F[[h]]-linear map,
ox : SV = S(V)!
which is defined by

. 1
O 4 <H ai> = m Z ap(l) *ap(2) * o *ap(n).
i=1

" peS(n)

is called x-symmetrization; as in the definition of ¢ the elements ay,...,a, belong
to V. We will say that % is s-balanced if o, is the identity when restricted to
elements of S(V') of degree < s. If (S(V)", %) is a deformation (of order n) of S(V)
then we call it a balanced deformation if x is s-balanced, where s is the degree of
[,]«, i-e., the supremum of the degrees of all coefficients of [z, y],, where z, y run
over V (this degree may be infinite).

Note that when a deformation is bracket-exact then the degree of [-, -], is the
degree of the corresponding Poisson bracket {-,-}.

Example 1. Any deformation is equivalent to a 2-balanced deformation. Indeed,
such an equivalence is given precisely by oy, i.e., define an equivalent product o by

poq=o,"(0x(p) xou(q))-
Then

1 1
golay) = (woy+yow) = 5o, (e xy +yxe)=ay,
for any z, y € V, so that o is 2-balanced.

Lemma 3.7. Formula (12) gives, for any polynomial Poisson algebra, a bracket-
exact balanced deformation of order 3.

Proof. The proof of balancing is by induction. Obviously any deformation is 1-
balanced, so we assume that the deformation, given by Formula (12), is n-balanced
and prove that it is (n + 1)-balanced. To do this, take a monomial a of degree n+1
and write @ = ajaz - -+ an+1. We denote the associative product (12) on S(V)# by
* and the corresponding cochains by m;. Using the associativity of x one has

n+1 n+1

Z Qr(1) X Qr(2) X -~ X Qr(nt1) = Zai* H a;
i=1

TE€Snt1 J#i
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so * is (n + 1)-balanced when

n+1

Z Tk | G, H a; = 0,
i=1 j#i
for k =1, 2, 3. The verification is immediate. O

3.4. Relating the deformations. The following theorem gives a precise relation
between balanced deformations and the x-enveloping algebra.

Theorem 3.8. If (S(V)" %) is a balanced deformation of S(V') then the F[[h]]-
algebra homomorphism

F(T(V)",®) = (S(V)",%)
which is induced by the natural inclusion V. — S(V') induces an F[[h]]-algebra iso-
morphism

frUW)L )= (SIV)",%).
When (S(V)",%) is moreover bracket-ezact then U(V)? = U(V)" and we have an
tsomorphism

frUV)"0) = (SIV)",%).
The corresponding statements for n-th order deformations also hold.
Proof. We will only prove the first statement. If we denote the canonical map
T (V)" - U(V)" by p, then it suffices to prove that ker ' = ker p, and that F is
surjective. Let us first show that F' is surjective. If p € S(V') then there exists an

element « € 7 (V) such that p = F(«) mod h. Indeed, since * is a deformation we
have for any monomial []!" | a; that

n
Haizal*@*---*an:F(al ®az®...®a,) mod h.
=1

More generally, for any k € N, since F'is F[[h]]-linear we can find ag, ...,ar € T(V)
such that p = F(ap + ajh + -+ + aih®) mod h**1. Tt follows that S(V) C SF,
which is sufficient to prove that F' is surjective.

Let us show that ker p, = ker F'. Take a, b € V and compute

Fla®b—-b®a—ola,bly) = F(a) * F(b) — F(b) x F(a) — Fola, b]«
=a*xb—bxa— o,]a,b,
=axb—bxa—[a,bl,

which is zero; we used in the computation that o, = Fo and that oy[a, b]« = [a, D]«
(because the deformation is balanced). This shows that ker p, C ker F'.
To show that ker F' C ker p, we pick any X € 7 (V)" for which F(X) = 0 and

show the existence of Y € 7 (V)" such that p,(X) = p«(Y’) and whose degree (in h)
is larger than the degree of X. This will imply that for any 7 € N the composition

T(V)" UV — UV /(W)

maps X to 0, hence p,(X) = 0. To prove it, let d denote the degree of X, i.e.,
X = Xph? mod h?t!. Let X, denote the unique element in So N7 (V) for which

px(Xo) = p(Xo) mod h



DEFORMATION QUANTIZATION OF POLYNOMIAL POISSON ALGEBRAS 19

For simplicity of the notation, let us assume that Xy is of the form

1
Xo=— D apa) © () @+ @ i
" pESn

in general X, will be a finite sum of such expressions. Then

1
F(Xo) = — > Flapn)) * Flapz) * - x F(agn)
" pES,

1
= = D () X p2) K K Ay
pPESH

=ai1as...a, mod h.

Thus F(X) = 0 implies that Xy = 0. So there exists a Y; such that p,(Xy) =
px(hYy) mod h? and hence there exists an element Y € 7 (V)" of the form Y =
Yoh®tt mod h4*t? such that p,(X) = p.(Y). O

We have seen that Formula (12) defines a bracket-exact balanced deformation (of
order three). Theorem 3.8 implies that this deformation comes from the enveloping
algebra, via the symmetrization map. This fact has the important consequence that
we can use (12) to check injectivity of the maps 7,,. We already used the first term
of our formula; i.e., we have used p*x ¢ = pg mod h to show that 7 is injective.
Furthermore,

y! (waa {mb; mc}) - Wl({xba mC}a CEa) + Cyd(aa b; C)

= {Ia, {xbaxC}} + {xba {xﬁxa}} + {xw {l‘a,l‘b}}

which is zero in view of the Jacobi identity. This proves injectivity of 7. Also

2 (xq, {xp, 2 }) — ma({zp, xc }, 2a) + cycl(a,b,c) =0
since 7y is symmetric, hence 73 is also injective. The fact that this step is easy is
similar to the fact that the existence of 73 is automatic (given the fact that my is

skew-symmetric and that 72 is symmetric). Finally, let us examine the injectivity
of 4.

73(zq, {xp, xc}) — m3({@p, T}, T4) + cycl(a, b, c)
= 2—1(inngng5an? + XM X X X)) + eyel(a, b, ¢)
= Xy XXX, + XX, + XA XL
+ Z—ZXinkl(Xéllijgffn + Xpm X+ XéZmXifn)

which is identical to the obstruction (14) which we found when trying to extend
the deformation given by (12). We will see in the examples that in general the
obstruction is non-zero, hence 74 is not injective and the enveloping algebra leads
in general only to a deformation of order three.

4. EXAMPLES

In this section we will investigate some general and some more specific exam-
ples. We use the diamond relations to show that for constant and linear brackets
the quantized enveloping algebra always gives a formal deformation quantization.
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For the quadratic case we give a few examples in which the quantized enveloping al-
gebra gives a fifth order deformation (at least) and we give an example in which the
quantized enveloping algebra gives a formal deformation quantization. In the cubic
case we give a few examples for which the quantized enveloping algebra gives a de-
formation of order three but not of higher order thereby showing the non-injectivity
of 74 in general. All these examples are in F* (with coordinates z;,...,z4; Fis a
field of characteristic zero) but they have higher-dimensional counterparts. We will
describe the Poisson structure by a 4 x 4 matrix whose (4, j)-th entry is the Poisson
bracket {x;,x;}. We refer to this matrix as the Poisson matriz.

The simplest case is the one in which all X;; are constant (i.e., they belong to F).
It is well-known that in this case a deformation quantization always exists. This
follows also immediately from the diamond relations: since in this case

zOT{y,z} —m{y,z} ©x =0

for any z,y,z € V we conclude that A = 0 hence that 7 is injective. Alternatively
it is immediate to check that the following explicit formula defines a deformation
quantization in this case,

n

o0
h
_ ki..kon Iyl
=T+ ) Sk Xk, 0 ® o
n=1

If a linear map V ® V' — V satisfies the Jacobi identity then its extension to S(V)
also satisfies the Jacobi identity, hence a Lie algebra leads in a natural way to a
polynomial Poisson algebra. We call it linear because the bracket of any two basis
elements is a linear combination of the basis elements. In this case it is known
that the quantized enveloping algebra defines a formal deformation quantization.
This is checked immediately using the diamond relations: in this case the fact that
{y,z} € V for any y, z € V implies that

(23) zOT{y,z} —m{y,z} ©x = h{z,{y, 2}}

so that the diamond relation holds in view of the Jacobi identity. Note also that,
as a corollary of Theorem 3.8 all bracket-exact deformations of a linear bracket are
isomorphic (to the one given by the enveloping algebra).

We can also consider brackets which have both linear and constant terms. Since
the constant terms define a central extension of the linear terms this case is also
covered by the linear case and the quantum enveloping algebra defines a deformation
quantization. Alternatively, it is easy to see that (23) also holds in this case so that
again the diamond relation is satisfied.

A major source of examples of non-linear polynomial Poisson brackets can be

found on page 70 of [20]. Cousider C2? as the linear space of pairs of polynomials
(u(A),v(A)) with u(\) monic of degree d and v(\) of degree less than d. If we write

u(A) = A+ u N7 b ugo g A+ ug,
v(A\) = v AT vgi N+ v,

then the following formula defines for any polynomial ¢ in two variables a Poisson
bracket on C?¢,

{U(/\),Uj} = {U()‘)vvj} =0,

u(A)

e = o0 [F2] medun, 1<s<d
+
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The subscript + means take the polynomial part and the expression p(A) mod u(A)
means take the remainder obtained by Euclidean division. Since in these particular
0 U
-U 0
the matrix U and the polynomial it derives from. Let us explain briefly how to
compute U from (24) for a given bracket ¢ on C*. The coordinates are uy,us, vy
and wy; also w(A) = A2 + u3 A + uy and v(A) = v, A + ve. Then the first row of U
cousists of the coefficients of (A, v(A)) mod u(A) (just do Euclidean division) and
the second row is given by the coefficients of (X, v(A))(A + u1) mod u(A). For
example, take ¢ = z3. Then

po (o ),
UiUu2 Uy
In this case direct substitution in the left hand side of (14) gives zero so that

the deformation, as given by (12), extends to a fifth order deformation. Another
quadratic bracket is found by taking ¢ = y. Then U is given by

U1 U2
U= .
V2 U1V — U2V

Again (14) is satisfied. The same is also true for the sum, ¢ = 3 + y, which
corresponds to taking the sum of the above U matrices. Another quadratic example
of interest is the quadratic bracket on gl(2) (see [15]). It has Poisson matrix

examples the Poisson matrix is always of the form < we will only give

0 T1T2 0 T2X3
—X1T2 0 0 Lol g
0 0 0 0

—Tox3 —X2X4 0 0

(14) is satisfied and the deformation extends to order five. In the following ex-
ample of a quadratic bracket the quantized universal enveloping algebra gives a
formal deformation quantization. If (a;;) is a skew-symmetric matrix of size 4 then
{zi,z;} = a;jz,x; defines a quadratic Poisson bracket on C*. In this case the
relation

T, OT; —T; Oy = hT{iL"Z‘,iL"j} = haij(mi Oz; +z; @iL'Z‘)

can be rewritten as z; ® x; = Aj;x; © x; where A;; = (1 — hay;)/(1 + hay;). The
verification of diamond relation then reduces to the following computation.
zi © {l‘j,&?k} - {l'j,&?k} Oz + CyCl(i;ja k)

=z;,02;® a:k(ajk — aij) +T;, Oxr © a:j(ajk — am‘) +2; 07,0 a:k(a;“- — aij)
+T; Orp O xi(ag; — ajk) + T Ox; ® xj(aij —ag;) + T © T;© xi(aij — ajk)
=z; O x5 © Tr((aze — ai) + (ajn — aki) Ajk + (ari — ag;) Ay
+ (ari — aji) A Aij + (35 — ari) A Aji + (ai; — ajp)Aij A Ajr)
= 0.

Therefore the quantized enveloping algebra of this quadratic Poisson bracket gives
a formal deformation quantization.
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Next we consider a few higher order brackets. As in the quadratic case, if you
take o = x* then

2

U_ —ui + 2uius Ui — uius
u? — u?us —u u? )

In this case we find again that (14) is satisfied so that the enveloping algebra leads
to a fifth order deformation. However, if you take ¢ = y? then U is given by
U= < 20109 — Uy U3 03 — uyv? > '

vE—uov?  wyv? — 2ugvivp

and (14) is not satisfied: if we denote 1 = uy, T2 = uz, 3 = v; and x4 = vy then
the left hand side of (14) is given by

4 3 2, 2 3 2,22 2 4\91 A 52 A 4
=963 (Ty — 201 X3%) + 2X2x5x — 2T X258 + T]T5T] + T323) 00 A0 A O

It follows that in this case the quantized enveloping algebra only defines a third
order deformation quantization. The choice ¢ = y? + 2y gives another non-zero
term; basically any higher order polynomial leads to an obstruction. Also the cubic
bracket on gl(2) (see [15]), which is given by

0 w31y Tox? Tox3(T1 + T4)
U— —mfa:; 0 Tow3(Ty — 1) To12
— o132 Tow3(Ty — T4) 0 Tow2
—Tox3(T1 + T4) —T13 —To13 0

leads to a non-zero obstruction, upon evaluating (14). Explicitly it is given by

96757327174 + T273) (T4 — T1)
(230" ANO? NO® + (x4 — x1)0" ANO? AO* — 230° A D N OY).

It follows that for most brackets the enveloping algebra only leads to a third order
deformation.

REFERENCES

1. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory
and quantization I and II, Annals of Physics 111 (1977), 61-151.

2. F. Berezin, Quantization, Math USSR Izv. (1974), 1109-1165.

3. G. Birkhoff, Representability of Lie algebras and Lie groups by matrices, Annals of Mathe-
matics 33 (1937), no. 2, 526-532.

4. V. Chari and A. Pressley, A gutde to quantum groups, Cambridge University Press, 1994.

5. M. De Wilde and P. Lecomte, Ezistence of star-product and of formal deformations of the
Poisson Lie algebra of arbitrary symplectic manifold, Letters in Mathematical Physics 7
(1983), 487-496.

6. A. Douady, Obstruction primaire & la déformation, Familles D’Espaces Complexes et Fonde-
ments de la Géométrie Analytique (11 rue Pierre Curie, PARIS 5e), Séminaire Henri CAR-
TAN, 13e année : 1960/61, vol. 1, Ecole Normale Supérieure, Secrétariat mathématique, 1962,
Exposé 4.

7. V.G. Drinfeld, On some unsolved problems in quantum group theory, Quantum groups, Pro-
ceedings of Workshops held in the Euler International Mathematical Institute 1990, Lecture
Notes in Mathematics, Springer Verlag, 1992, pp. 1-8.

8. B.V. Fedosov, A simple geometric construction of deformation quantization, J. Diff. Geom.
40 (1994), 213-238.

9. M. Gerstenhaber, The cohomology structure of an associative ring, Annals of Mathematics
78 (1963), 267-288.

10. , On the deformation of rings and algebras, Annals of Mathematics 79 (1964), 59-103.




11

12.

13.
14.

15.

16.

17.

18.

19.

20.

21

86

DEFORMATION QUANTIZATION OF POLYNOMIAL POISSON ALGEBRAS 23

. G. Hochschild, On the cohomology groups of an associative algebra, Annals of Mathematics
46 (1945), 58-67.

J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math 408 (1990),
57-113.

J. Humphreys, Introduction to Lie algebras and representation theory, Springer Verlag, 1972.
M. Kontsevich, Deformation quantization of Poisson manifolds, I, Preprint:q-alg/9709040,
1997.

S. Li, L. Parmentier, Non-linear Potsson structures and R-matrices, Comm. Math. Phys. 125
(1989), 545-563.

W. S. Massey, Symposium internacional de topologia algebraica, La Universidad Nacional
Auténoma de México, UNESCO, 1958.

H. Omori, Y. Maeda, and A. Yoshioka, A construction of a deformation quantization of a
Poisson algebra, Geometry and Its Applications (Singapore), World Scientific, 1993, pp. 201—
218.

, Deformation quantizations of Poisson algebras, Contemporary Mathematics 179
(1994), 213-240.

, A Poincaré-Birkhoff- Witt theorem for infinite dimensional Lie algebras, Journal of
the Mathematical Society of Japan 46 (1) (1994), 25-50.

P. Vanhaecke, Integrable systems in the realm of algebraic geometry, Lecture Notes in Math-

ematics, vol. 1638, Springer Verlag, 1996.
. A. Weinstein, Deformation quantization, vol. 789, Séminaire Bourbaki, 1993-94.

UNIVERSITY OF WISCONSIN, DEPARTMENT OF MATHEMATICS, EAU CLAIRE, WI 54702-4004
E-mail address: penkavmr@uwec.edu

UNIVERSITE DE POITIERS, MATHEMATIQUES, SP2MI, BOULEVARD 3  TELEPORT 2 BP 179
960 FUTUROSCOPE CEDEX, FRANCE
E-mail address: Pol.Vanhaecke@mathlabo.univ-poitiers.fr



