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Abstract. This paper discusses the notion of a deformation quantization for

an arbitrary polynomial Poisson algebra A. We compute an explicit third

order deformation quantization of A and show that it comes from a quantized

enveloping algebra. We show that this deformation extends to a fourth order

deformation if and only if the quantized enveloping algebra gives a fourth

order deformation; moreover we give an example where the deformation does

not extend. A correction term to the third order quantization given by the

enveloping algebra is computed, which precisely cancels the obstruction, so

that the modi�ed third order deformation extends to a fourth order one. The

solution is generically unique, up to equivalence.
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1. Introduction

Deformation theory for associative commutative algebras was �rst considered by

Gerstenhaber in [10]. Its relevance for quantum mechanics was �rst pointed out in

[1]; in the latter context one often speaks of deformation quantization. By de�nition

a (formal) deformation of an associative commutative algebra A is an associative
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multiplication ? on A

h

= A[[h]],

p ? q = pq + h�

1

(p; q) + h

2

�

2

(p; q) + � � � ;(1)

where pq denotes the original product of elements p; q 2 A. It is a fundamental fact

that the associativity of ? implies that the skew-symmetric part �

�

1

of �

1

de�nes a

Poisson bracket on A, making it into a Poisson algebra: �

�

1

is a biderivation, which

means that

�

�

1

(pq; r) = p�

�

1

(q; r) + q�

�

1

(p; r)

for any p; q; r 2 A, and it satis�es the Jacobi identity

�

�

1

(�

�

1

(p; q); r) + �

�

1

(�

�

1

(q; r); p) + �

�

1

(�

�

1

(r; p); q) = 0;

for any p; q; r 2 A. Since any deformation (1) is equivalent to a deformation

for which �

�

1

is skew-symmetric, the �rst fundamental question in this theory is

whether every Poisson bracket on A appears in this way. Although it was already

proven two decades ago that this is true when A is the Poisson algebra of functions

on a symplectic manifold (see [5]), the general case was only settled recently (see

[14]) as a consequence of the formality conjecture. In some sense, Kontsevich's

proof in the case of Poisson structures on C

1

(R

d

) consists of a god-given formula,

inspired by string theory, for which it is veri�ed that it does indeed do the job.

The present paper is devoted on the one hand to a systematic construction of

such a formula and on the other hand to an alternative approach, using enveloping

algebras, to deformation theory. Our approach being algebraic, we will suppose

that A is a polynomial algebra over a �eld F of characteristic zero, equipped with

a Poisson structure. Since, as in most papers on this subject, all our computations

are formal (i.e., the series p ? q is not required to be convergent in h), the �nal

formula also applies to C

1

(R

d

) as well.

Our computation of an explicit formula for �

2

is non-trivial in the sense that it

involves the Jacobi identity. Already at this step the formula we obtain deviates

from the one by Kontsevich: both formulas are equivalent in the sense that they

de�ne equivalent deformations, but a symmetric 2-cocycle has to be removed from

Kontsevich's second order term in order to get our, simpler, formula. Using this

simpler formula for �

2

we also arrive at a simple formula for �

3

, as a result of a

lot of non-trivial computations which not only involve the Jacobi identity but also

its derivative. It is di�cult to compare our third order term with Kontsevich's

third order term, because the third order term depends very much on the choice

of second order term and because Kontsevich's third order term has more than

one hundred terms, with coe�cients which are given by integrals that are hard to

compute. Surprisingly enough our seemingly \natural" deformation does not (in

general) extend to a fourth order deformation.

This fact is even more striking once one realizes that the third order deforma-

tion which we construct comes from a (quantized) universal enveloping algebra,

making this deformation very natural. We de�ne the enveloping algebra for any

polynomial Poisson algebra (A; f� ; �g) as follows. First note that A can be seen as

the symmetric algebra S(V ) over a vector space V ; then the Poisson bracket is a

linear map S(V )

N

S(V ) ! S(V ). We take the tensor algebra T (V ) of V and we

consider the two-sided ideal J

h

of T (V )

h

= T (V )[[h]] generated by all elements of

the form x 
 y � y 
 x � h�fx; yg, where x; y 2 V and � : S(V ) ! T (V ) is the
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symmetrization map, de�ned by

�

 

n

Y

i=1

a

i

!

=

1

n!

X

p2S

n

a

p(1)


 a

p(2)


 � � � 
 a

p(n)

:

The quantized universal enveloping algebra is de�ned as U(V )

h

= T (V )

h

=J

h

. In

the case of a linear Poisson bracket we recover the usual de�nition of the enveloping

algebra of a Lie algebra. It is a well-known but non-trivial fact that for a linear

Poisson bracket the enveloping algebra does give a deformation quantization in

the following way: the natural map S(V )

h

! U(V )

h

is a linear isomorphism, so

the product on U(V )

h

determines a product on S(V )

h

, which is a deformation

quantization. In general, i.e., for non-linear Poisson brackets, the map S(V )

h

!

U(V )

h

fails to be injective, but surprisingly enough, for a general Poisson bracket

it is injective precisely up to order three (in h). In fact, there is an obstruction

to the injectivity of the map, which turns out to coincide with the obstruction

which we found when trying to extend our third order deformation to a fourth

order deformation. Thus the third order deformation which we construct using

Hochschild cohomology extends to a fourth order deformation precisely when the

quantized enveloping algebra gives a fourth order deformation. An explanation of

this will be given in the text.

Since Kontsevich's third order deformation extends to a fourth order deforma-

tion while ours doesn't they cannot be equivalent. Indeed, we show how to add a

biderivation to our third order term, without destroying associativity, so that the

modi�ed third order deformation can always be extended to a fourth order defor-

mation. The check that it does depends on the Jacobi identity, and its �rst and

second derivatives.

The structure of this paper is as follows. In Section 2 we �x the notation and

we collect the properties that will be used. An explicit third order deformation

for any polynomial Poisson algebra is computed and we �nd the obstruction to

extending this deformation to a fourth order deformation. In the last paragraph of

this section we show how to modify the third order deformation by a biderivation

so that after modi�cation it does extend to a fourth order deformation. In Section 3

we introduce the quantized enveloping algebra of a polynomial Poisson algebra, we

prove a Poisson algebra version of the Poincar�e-Birkho�-Witt Theorem and we use

it to show that our third order deformation, without the biderivation, comes from

this enveloping algebra. In the �nal section a few examples with very di�erent

characteristics are worked out; in particular we give an example which shows that

the third order deformation which is given by the quantized universal enveloping

algebra does not extend in general.

Acknowledgements. The authors would like to thank Alexander Astashkevich,

Pierre Bielavsky, Dmitry Fuchs, Josef Mattes, Bruno Nachtergaele and Alan We-

instein for useful conversations. The �rst author would also like to thank the

mathematics department at the University of California, Davis for its hospitality

during his two trips to Davis to work on this project.

2. Construction of the universal deformation

2.1. Preliminaries. In this paper A will always denote a polynomial Poisson al-

gebra (possibly in an in�nite number of variables) over a �eld F of characteristic

zero. A will often be viewed as the symmetric algebra over a vector space V . We



4 MICHAEL PENKAVA AND POL VANHAECKE

�x a basis for V , which amounts to realizing A as F [x

j

]

j2I

. For polynomials p and

q we will denote their product pq by �(p; q) and their Poisson bracket by fp; qg.

Let h be a formal parameter and let A

h

(resp. F [[h]]) denote the algebra of formal

power series with coe�cients in A (resp. in F). For n 2 N we will also use the

algebra A

h

n

which is obtained from A

h

by dividing out by the ideal generated by

h

n+1

. For elements p; q 2 A

h

we write p = q mod h

n+1

when they project to the

same element in A

h

n

.

De�nition 2.1. An F [[h]]-bilinear map �

?

: A

h

�A

h

! A

h

is called a (formal)

deformation of A when it satis�es the associativity condition

�

?

(�

?

(p; q); r) = �

?

(p; �

?

(q; r))(2)

for all p; q and r in A

h

and reduces to � onA

�

=

A

h

0

; i.e., �

?

(p; q) = �(p; q) mod h.

More generally, when associativity merely holds on A

h

n

we say that �

?

de�nes an

n-th order deformation.

When a (formal) deformation has the additional property that for any p; q 2 A

the product q ?p is obtained from p?q by applying the involution of A

h

determined

by h 7! �h, then we say that it de�nes a (formal) deformation quantization of A:

Two (n-th order or formal) deformations �

?

and �

0

?

are called equivalent if there

exists an F [[h]]-linear map F : A

h

! A

h

such that F (p) = p mod h for any p 2 A

and such that F (�

?

(p; q)) = �

0

?

(F (p); F (q)) for any p; q 2 A.

If one writes �

?

= � + h�

1

+ h

2

�

2

+ � � � then the associativity condition (2) can

be expressed by an in�nite list of relations

��

n

=

1

2

X

i+j=n

[�

i

; �

j

]; n = 0; 1; 2; : : : ;(3)

where [� ; �] denotes the Gerstenhaber bracket (see [9]) and � is the Hochschild

coboundary operator (see [11]). Let us assume that the 2-cochains �; �

1

; : : : ; �

m�1

de�ne an (m�1)-th order deformation of �; then (3) is satis�ed for n = 1; : : : ;m�1

and the deformation extends to an m-th order deformation if and only if the m-th

equation in (3) has a solution �

m

. The latter condition is cohomological: it expresses

that the 3-cocycle

P

i+j=n

[�

i

; �

j

] is a coboundary; moreover, if a solution �

m

exists

it is unique up to addition of any 2-coboundary.

For polynomial algebras the condition for a 3-cocycle  to be a coboundary is

that its skew-symmetrization  

�

vanishes; moreover, if a 3-coboundary  is given

by a tridi�erential operator, then it is actually the coboundary of a bidi�erential

operator. Thus it su�ces, in principle, to go inductively through the list (3),

verifying at each step that the corresponding bidi�erential operator �

i

exists and

then constructing such an �

i

. One problem, however, is that the particular �

n

chosen for the extension of the deformation to order n will have a pronounced

impact on the further extendibility of the deformation. If the deformation does not

extend to order n+ 1, it may be that a di�erent choice of �

n

would allow such an

extension. Moreover, this e�ect is not limited to the next term in the extension,

so that the extendibility of an extension up to order n is inuenced by all of the

choices of the cochains �

k

for 1 < k < n.

For i 2 I, we denote by @

i

: A! A the partial derivative with respect to x

i

and

we use @

i

1

:::i

n

for repeated derivatives. They are used here to generate elements

of Hom(A

2

;A) and Hom(A

3

;A), called di�erential 2-cochains and di�erential 3-

cochains; the di�erential 2-cochains for example have the form p

i

1

:::i

m

:::i

n

@

i

1

:::i

m
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@

i

m+1

:::i

n

, where we have used the summation convention and p

i

1

:::i

m

:::i

n

2 A

for any indices i

1

: : : i

n

. If  is a 2-cochain or a 3-cochain we denote its skew-

symmetrization by  

�

. For example (@

i


 @

j

)

�

=

1

2

�

@

i


 @

j

� @

j


 @

i

�

, which we

also write as @

i

^ @

j

. Similarly (@

i


 @

j


 @

k

)

�

= @

i

^ @

j

^ @

k

. For symmetric

2-cochains and 3-cochains we use a dot, e.g., @

i

� @

j

=

1

2

�

@

i


 @

j

+ @

j


 @

i

�

. In our

computations below we use X

ij

as a convenient notation for the Poisson bracket

fx

i

; x

j

g of the generators x

i

and x

j

of A. The Poisson bracket can be written as

X

ij

@

i

^ @

j

, the Jacobi identity for �

1

reads

X

l

ij

X

kl

+X

l

jk

X

il

+X

l

ki

X

jl

= 0(4)

(for any i; j; k 2 I), the derivative of the Jacobi identity with respect to x

m

is

written as

X

lm

ij

X

kl

+X

lm

jk

X

il

+X

lm

ki

X

jl

+X

l

ij

X

m

kl

+X

l

jk

X

m

il

+X

l

ki

X

m

jl

= 0;(5)

(for any i; j; k; m 2 I), and there are similar expressions for higher derivatives.

Finally we record explicit formulas for the Gerstenhaber bracket and for the

Hochschild coboundary operator in terms of di�erential cochains. These formulas

will be indispensable for our future computations. For a multi-index I = (i

1

; � � � ; i

n

)

of order jI j = n and a polynomial p 2 A, denote @

I

= @

i

1

���i

n

and p

I

= @

I

(p).

For a pair I , J of multi-indices, IJ will denote the multi-index resulting from

concatenation. When summing over all multi-indices I and J such that IJ = K

it will be understood that there is only one term in the sum corresponding to the

permutations of the elements of K that leave I and J invariant. If we denote

(p@

I

1


 @

I

2

)

J

=

X

J

0

J

1

J

2

=J

p

J

0

@

I

1

J

1


 @

I

2

J

2

:

then the bracket of di�erential 2-cochains is given by

(6)

�

p@

I

1


 @

I

2

; q@

J

1


 @

J

2

�

=

p(q@

J

1


 @

J

2

)

I

1


 @

I

2

� p@

I

1


 (q@

J

1


 @

J

2

)

I

2

+ q(p@

I

1


 @

I

2

)

J

1


 @

J

2

� q@

J

1


 (p@

J

1


 @

I

2

)

J

2

:

The Hochschild coboundary operator for a di�erential 2-cochains is given by

�(p@

J


 @

K

) = p(�@

J

)
 @

K

� p@

J


 (�@

K

);(7)

where

�(p@

I

) = �

X

I

1

I

2

=I

p@

I

1


 @

I

2

:

For an n-di�erential operator �

I

1


 � � � 
 �

I

n

, its type is the n-tuple (jI

1

j; � � � ; jI

n

j).

2.2. The third order deformation. We will now show how a �rst order defor-

mation � + h�

1

, where �

1

=

1

2

X

ij

@

i

^ @

j

is a Poisson bracket on A, can explicitly

be extended to a third order deformation. Notice that � + h�

1

is indeed a �rst

order deformation, a consequence of the fact that �

1

is a biderivation.

Proposition 2.2. Given a �rst order deformation � + h�

1

of A where �

1

=

1

2

X

ij

@

i

^ @

j

, let �

2

be the following symmetric cochain

�

2

=

1

6

X

l

ij

X

lk

@

i

� @

jk

+

1

8

X

ij

X

kl

@

ik

� @

jl

:(8)

Then � + h�

1

+ h

2

�

2

is a second order deformation of A.
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Proof. For n=2 the right hand side of equation (3) is

1

2

[�

1

; �

1

]. For any p; q; r 2

A one has

1

2

[�

1

; �

1

]

�

(p; q; r) =

2

3

(�

1

(�

1

(p; q); r) + �

1

(�

1

(q; r); p) + �

1

(�

1

(r; p); q)),

which is zero in view of the Jacobi identity. This shows that � + h�

1

extends to a

second order deformation. Using equation (6) and the Jacobi identity (4) we �nd

1

2

[�

1

; �

1

] =

1

4

X

l

ik

X

lj

@

i


@

j


@

k

+

1

4

X

ij

X

kl

�

@

ik


@

l


@

j

� @

i


@

k


@

jl

�

:(9)

The third order part of ��

2

(with �

2

given by (8)) is computed using (7) to be given

by

1

12

X

l

ij

X

lk

�

@

i


@

j


@

k

+ @

i


@

k


@

j

� @

j


@

k


@

i

� @

k


@

j


@

i

�

:

Since i; j and k are just summation indices this can be rewritten as

1

12

�

X

l

ij

X

lk

+ 2X

l

ik

X

lj

�X

l

kj

X

li

�

@

i


@

j


@

k

:

Using the Jacobi identity (4) this reduces to a single term

1

4

X

l

ik

X

lj

@

i


@

j


@

k

;

which is the third order term of

1

2

[�

1

; �

1

]. For the fourth order term one makes a

similar computation (but the Jacobi identity is not used).

One concludes from these computations that it is not obvious to guess a cochain

whose coboundary is given; compare carefully (9) and (8).

Our next task is to �nd an explicit solution for the third equation in (3), namely

the equation ��

3

= [�

1

; �

2

]; the existence of a solution follows from the fact that

since �

1

is skew-symmetric and �

2

is symmetric, [�

1

; �

2

]

�

= 0. The explicit com-

putation of [�

1

; �

2

] is long but straightforward. Writing the resulting tridi�erential

operator as a coboundary of a bidi�erential operator is non-trivial and we will con-

centrate on this aspect. Clearly every term in [�

1

; �

2

] is a tridi�erential operator

of (total) order 3, 4, 5 or 6. We will denote the i-th order part of a tridi�erential

operator by a subscript (i). We start with the highest order, which is the easiest.

Lemma 2.3. The sixth order part of [�

1

; �

2

] is the coboundary of a skew-symmetric

2-cochain,

[�

1

; �

2

]

(6)

= �

�

1

48

X

ij

X

kl

X

mn

@

ikm

^ @

jln

�

:(10)

Proof. The sixth order terms in [�

1

; �

2

] are the ones for which none of the coe�-

cients in �

1

or �

2

are di�erentiated. There are twelve terms, they come from the

bracket of �

1

and the fourth order term of �

2

only, and eight of them cancel in

pairs, leaving the following expression for [�

1

; �

2

]

(6)

.

1

16

X

mn

X

ij

X

kl

(@

ikm


@

jl


@

n

+@

n


@

jl


@

ikm

+@

ikm


@

n


@

jl

+@

jl


@

n


@

ikm

):

To compute �(X

ij

X

kl

X

mn

@

ikm


@

jln

); use (7) and �nd twelve terms which come in

equal triples due to the order three symmetry (i; j)! (k; l)! (m;n). Formula (10)

follows.

Note that the computation did not involve the Jacobi identity. In the symplectic

case this is the only term which survives. Next, we consider the terms of order 5.
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Lemma 2.4. The �fth order term [�

1

; �

2

]

(5)

is also the coboundary of a skew-

symmetric 2-cochain, given by

[�

1

; �

2

]

(5)

=

1

12

�

�

X

k

ij

X

kl

X

mn

@

jlm

^ @

in

�

:

Proof. The bracket [�

1

; �

2

]

(5)

has a lot of terms, they are of types (1,1,3), (1,3,1),

(3,1,1), (1,2,2), (2,1,2) and (2,2,1). The terms of type (1; 3; 1) cancel and in the

other ones there is some simpli�cation. By symmetry we only need to consider

the terms of type (3,1,1), (1,2,2) and (2,1,2). We give the result below, omitting a

global factor 1=24. Note the non-triviality of the coe�cients.

(3; 1; 1) :

�

X

nm

X

l

ij

X

kl

+X

im

X

l

nj

X

kl

�

@

jkm


@

i


@

n

;

(1; 2; 2) :

�

X

k

ij

X

kl

X

mn

+2X

k

ln

X

km

X

ij

+X

k

nm

X

kl

X

ij

+ 3X

k

ml

X

kn

X

ij

�

@

n


@

jl


@

mi

;

(2; 1; 2) :

�

X

k

ij

X

kl

X

mn

�X

k

ij

X

km

X

ln

+3X

k

ij

X

kn

X

ml

�

@

im


@

n


@

jl

:

It is surprising that all these terms integrate to a single term, i.e., as a whole they

can be written as

�

�

X

k

ij

X

kl

X

mn

�

@

jlm


 @

in

� @

in


 @

jlm

��

:(11)

Before checking this, note that (11) produces indeed precisely terms of the appro-

priate types. Clearly the (3,1,1) part of (11) is given by

X

k

ij

X

kl

X

mn

�

@

jlm


@

i


@

n

+ @

jlm


@

n


@

i

�

and is easily rewritten in the form of the term of type (3,1,1). Type (2,1,2) involves

the Jacobi identity. The (2,1,2) part of (11) is given by

�X

k

ij

X

kl

X

mn

(@

jl


@

m


@

in

+ @

jm


@

l


@

in

+ @

lm


@

j


@

in

+ @

in


@

j


@

lm

+ @

in


@

l


@

jm

+ @

in


@

m


@

jl

);

which is easily rewritten as

(X

k

ij

X

km

X

nl

+X

k

ij

X

kl

X

mn

+ 2X

k

ij

X

kn

X

ml

+X

k

nj

X

ki

X

ml

+X

k

in

X

kj

X

ml

)@

im


@

n


@

jl

:

Now use the Jacobi identity (4) on the last two terms to obtain the term of type

(2,1,2). Finally, the (1,2,2) part of (11) is given by

�X

k

ij

X

kl

X

mn

�

@

m


@

jl


@

in

+ @

j


@

lm


@

in

+ @

l


@

jm


@

in

�

:

When this is rewritten as

�

X

k

ij

X

kl

X

mn

+X

k

mn

X

kl

X

ij

+X

k

ml

X

kn

X

ij

�

@

n


@

jl


@

mi

then the �rst term matches with the �rst term of type (1,2,2) and the other two

match up with the three remaining terms of type (1,2,2).

For the �fth order term we used the Jacobi identity. For the fourth order term we

will also use the derivative of the Jacobi identity (5).

Lemma 2.5. The fourth order term [�

1

; �

2

]

(4)

is the coboundary of a skew-sym-

metric 2-cochain,

[�

1

; �

2

]

(4)

=

1

24

�

�

X

k

lm

X

l

jn

X

ki

@

mn

^ @

ij

+X

kl

mn

X

lj

X

ki

@

m

^ @

nij

�

:
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Proof. As in the previous case we treat the terms in [�

1

; �

2

]

(4)

by type. There are

just three types, to wit, (1,1,2), (1,2,1) and (2,1,1). By symmetry we only need to

consider the terms of type (1,1,2) and (1,2,1). They have the following form (we

omit the global constant 1/48).

(1; 1; 2) : X

ki

�

4X

k

ml

X

l

jn

+ 2X

k

lj

X

l

mn

+ 2X

kl

nj

X

lm

+ 3X

kl

mn

X

lj

�

@

m


@

n


@

ij

;

(1; 2; 1) : 2

�

X

kl

mn

X

lj

X

ki

�X

kl

ij

X

km

X

ln

�

@

m


@

ni


@

j

:

We already simpli�ed these formulas by using the Jacobi identity (for type (1,2,1)

we used it twice). The veri�cation for type (1,2,1) is now straightforward: the six

terms of type (1,2,1) in

�

�

X

kl

mn

X

ki

X

lj

@

m


 @

nij

+X

kl

ij

X

km

X

ln

@

mni


 @

j

�

come in pairs and reduce to (1,2,1) above. The terms of type (1,1,2) in

�

�

2X

k

lm

X

l

jn

X

ki

@

mn


 @

ij

+X

kl

mn

X

ki

X

lj

@

m


 @

nij

�

are given by

X

ki

�

�2X

k

ln

X

l

jm

� 2X

k

lm

X

l

jn

+X

kl

mn

X

lj

+ 2X

kl

mj

X

ln

�

@

m


@

n


@

ij

which reduces to

X

ki

�

4X

k

ml

X

l

jn

+ 2X

k

lj

X

l

mn

+ 2X

kl

nj

X

lm

+ 3X

kl

mn

X

lj

�

@

m


@

n


@

ij

by using the derivative of the Jacobi identity.

Finally we consider the term of order 3. The proof does not involve the Jacobi

identity and is left to the reader.

Lemma 2.6. The third order term [�

1

; �

2

]

(3)

is also the coboundary of a skew-

symmetric 2-cochain,

[�

1

; �

2

]

(3)

=

1

12

�(X

ij

X

i

kl

X

jk

mn

@

n

^ @

lm

):

Our previous results lead to the following theorem.

Theorem 2.7. Let (A; f� ; �g) be a polynomial Poisson algebra with basis fx

i

g

i2I

and denote �

1

= X

ij

@

i

^ @

j

, where X

ij

= fx

i

; x

j

g. Then the following formula

gives a third order deformation � + h�

1

+ h

2

�

2

+ h

3

�

3

of A,

�

?

= � +

h

2

X

ij

@

i

^ @

j

+

h

2

24

�

4X

l

ij

X

lk

@

i

� @

jk

+ 3X

ij

X

kl

@

ik

� @

jl

�

+

h

3

48

[X

ij

X

kl

X

mn

@

ikm

^ @

jln

+ 4X

k

ij

X

kl

X

mn

@

jlm

^ @

in

(12)

+ 2X

kl

mn

X

lj

X

ki

@

m

^ @

nij

+ 2X

k

lm

X

l

jn

X

ki

@

mn

^ @

ij

+ 4X

ij

X

i

kl

X

jk

mn

@

n

^ @

lm

]:

Up to equivalence every third order extension of � + h�

1

is of the form

� + h�

1

+ h

2

(�

2

+ '

2

) + h

3

(�

3

+ '

3

+  

3

)(13)

with '

2

and '

3

skew-symmetric biderivations and  

3

a symmetric 2-cochain sat-

isfying @ 

3

= [�

1

; '

2

]. Conversely, for such '

2

; '

3

and  

3

(13) is always a third

order deformation.
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Proof. We proved already that (12) is a third order deformation. Suppose now that

� + h�

1

+ h

2

�

0

2

+ h

3

�

0

3

is another deformation which extends the same �rst order

deformation. Then '

2

= �

2

� �

0

2

is a cocycle which can be assumed to be a skew-

symmetric biderivation. Indeed, a symmetric 2-cocycle is always a coboundary

and altering one term in a deformation by a coboundary leads to an equivalent

deformation (of the same order). Since ��

0

3

= [�

1

; �

2

+ '

2

] is a coboundary, 0 =

[�

1

; �

2

+'

2

]

�

= [�

1

; '

2

]

�

and we can �nd a symmetric cochain whose coboundary

is [�

1

; '

2

]. Then �

0

3

� 

3

must di�er from �

3

by a cocycle '

3

which we may assume,

again without loss of generality, to be a skew-symmetric biderivation.

2.3. The obstruction to a fourth order deformation. In this section we want

to investigate the fourth order term of the explicit deformation which is given by

(12). For a given polynomial Poisson algebra (A; f� ; �g) we will denote the latter

deformation by �

?

= � + h�

1

+ h

2

�

2

+ h

3

�

3

; as before �

1

=

1

2

f� ; �g =

1

2

X

ij

@

i

^ @

j

.

Theorem 2.8. The deformation (12) extends to a fourth (hence �fth) order de-

formation if and only if the following, non-trivial, condition is satis�ed for any

a < b < c 2 I:

2X

ij

X

i

kl

(X

km

ab

X

jl

cm

+X

km

bc

X

jl

am

+X

km

ca

X

jl

bm

)(14)

+X

ij

X

kl

(X

ikm

ab

X

jl

cm

+X

ikm

bc

X

jl

am

+X

ikm

ca

X

jl

bm

) = 0:

Proof. The deformation (12) extends to a fourth order deformation if and only if

0 = [�

1

; �

3

]

�

+

1

2

[�

2

; �

2

]

�

= [�

1

; �

3

]

�

. The terms in [�

1

; �

3

]

�

have orders ranging

from 3 to 8 only. We claim that the terms of order at least four all vanish, sketching

the computation in the least trivial case when the order equals four. A direct

application of (6) gives the following expression for the coe�cient of @

a�a

^ @

b

^ @

c

in [�

1

; �

3

]

�

(some indices have been relabeled for later convenience and a global

constant has been omitted; note also that a and �a can be freely interchanged):

2X

ji

X

i

l�a

(X

ak

X

jkl

bc

+X

bk

X

jkl

ca

+X

ck

X

jkl

ab

)

+ 2X

ji

X

i

l�a

(X

lj

ak

X

k

bc

+X

lj

bk

X

k

ca

+ X

lj

ck

X

k

ab

)

+ 2X

jl

�

X

ij

�ab

(X

ck

X

kl

ia

+X

ak

X

kl

ci

)�X

kl

ca

(X

bi

X

ij

k�a

+X

�ai

X

ij

bk

)

�

+ 2X

i

k�a

X

j

li

(X

bj

X

kl

ca

+X

cj

X

kl

ab

)�X

i

k�a

X

kl

bc

(X

aj

X

j

il

+X

lj

X

j

ia

)

� 2X

li

X

i

jk

(X

j

�ab

X

kl

ca

�X

j

ca

X

kl

�ab

):

We now use the second derivative of the Jacobi identity, i.e., we use the formula

(X

ak

X

k

cb

+X

bk

X

k

ac

+X

ck

X

k

ba

)

jl

= 0;

(valid for any indices a; b; c; j and l), to rewrite the �rst two lines (giving the �rst

line below) and we twice use a derivative of the Jacobi identity to rewrite the third

line (giving lines two and three below); the fourth line is simpli�ed by a direct
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application of the Jacobi identity,

2(X

ij

X

i

l�a

+X

il

X

i

j�a

)(X

j

ak

X

kl

bc

+X

j

bk

X

kl

ca

+X

j

ck

X

kl

ab

)

+ 2X

lj

X

ij

ab

(X

l

ck

X

k

i�a

+X

l

�ak

X

k

ci

+X

l

ik

X

k

�ac

)

� 2X

lj

X

kl

ca

(X

j

bi

X

i

k�a

+X

j

�ai

X

i

bk

+X

j

ki

X

i

�ab

)

+ 2X

i

k�a

X

j

li

(X

aj

X

kl

bc

+X

bj

X

kl

ca

+X

cj

X

kl

ab

)

� 2X

li

X

i

jk

(X

j

�ab

X

kl

ca

�X

j

c�a

X

kl

ab

):

Most terms in this expression cancel out in pairs, leaving

2(X

jl

X

j

ci

+X

ji

X

j

lc

+X

jc

X

j

il

)X

i

k�a

X

kl

ab

+ 2(X

jl

X

j

ai

+X

ja

X

j

il

)X

i

k�a

X

kl

bc

+ 2(X

jl

X

j

bi

+X

ji

X

j

lb

+X

jb

X

j

il

)X

i

k�a

X

kl

ca

which is zero, by a single application of the Jacobi identity on every line. It follows

that the only non-zero terms in [�

1

; �

3

]

�

are terms of type (1; 1; 1). Using (6) we

�nd that the coe�cient of @

a

^ @

b

^ @

c

in [�

1

; �

3

]

�

is given, (up to a constant) by

the left hand side of (14); since this expression is skew-symmetric in a; b; c it will

hold in general when it holds for a < b < c 2 I . Moreover, if (14) vanishes then

�

4

can be chosen to be symmetric, which implies the existence of �

5

, solution to

��

5

= [�

1

; �

4

] + [�

2

; �

3

] because then [�

1

; �

4

]

�

= [�

2

; �

3

]

�

= 0.

We will see later an example for which (14) is non-zero, showing that our deforma-

tion (12) in general does not extend to a fourth order deformation.

2.4. The extension to a fourth order deformation. We now show how the

third order deformation that we have obtained needs to be modi�ed in order to

extend to a fourth order deformation. We denote the third order deformation

quantization that we obtained in (12) by �

?

= � + h�

1

+ h

2

�

2

+ h

3

�

3

where �

1

=

1

2

f� ; �g. We have shown in Theorem 2.7 that we get, up to equivalence, all possible

third order deformations of (A; f� ; �g) by adding any biderivations '

2

and '

3

to �

2

and �

3

and adding any symmetric cochain  

3

satisfying � 

3

= [�

1

; '

2

]) to �

3

. Let

us denote such an alternative deformation by �

0

?

= � + h�

1

+ h

2

�

0

2

+ h

3

�

0

3

. If �

0

?

extends to a fourth order deformation by adding a term h

4

�

4

then �

4

is a solution

to

��

4

= [�

1

; �

0

3

] +

1

2

[�

0

2

; �

0

2

];

and the skew-symmetrization of the right hand side must vanish, leading to

[�

1

; �

3

]

�

+ [�

1

; '

3

]

�

+

1

2

['

2

; '

2

]

�

= 0:(15)

In view of the following lemma, all terms in the left hand side of (15) are of type

(1,1,1).

Lemma 2.9. If ' and  are two biderivations then [';  ]

�

has type (1; 1; 1).

Proof. Let ' = Y

ij

@

i

^ @

j

and  = Z

kl

@

k

^ @

l

. Then the piece of [';  ] that does

not contain terms of type (1; 1; 1) is given by

(Y

ij

Z

kl

+ Y

kl

Z

ij

)(@

ik


@

l


@

j

� @

i


@

k


@

lj

):

After skew-symmetrization every term appears twice with opposite signs hence they

all cancel out.
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By computing the terms of type (1,1,1) in (15) we �nd that the existence of a

fourth order deformation for a given (A; f� ; �g) is equivalent to the existence of two

skew-symmetric biderivations '

2

=

1

4

Y

ij

@

i


 @

j

and '

3

=

1

48

Z

ij

@

i


 @

j

such that

for any a < b < c 2 I

X

mc

Z

m

ab

+ Z

mc

X

m

ab

+ 6Y

mc

Y

m

ab

�X

ij

X

kl

X

ikm

ab

X

jl

cm

� 2X

ij

X

i

kl

X

km

ab

X

jl

cm

(16)

+ cycl (a; b; c) = 0:

Lemma 2.10. The 2-cocycles Y

ab

= 0 and

Z

ab

=

1

2

X

ik

ab

X

l

ij

X

j

kl

�X

jk

ai

X

il

bj

X

kl

; (a; b 2 I)(17)

solve equation (16) hence yield the correction term

'

3

=

1

96

(X

ik

mn

X

l

ij

X

j

kl

� 2X

jk

mi

X

il

nj

X

kl

)@

m

^ @

n

to �

3

in (12) in order for the deformation quantization to extend to a fourth order

deformation quantization.

Proof. Consider the following four equations, which are all a consequence of the

Jacobi identity.

1=2(X

i

ab

X

ci

)

jl

X

m

jk

X

k

lm

+ cycl (a; b; c) = 0;

(X

j

ab

X

jk

+X

j

bk

X

ja

+X

j

ka

X

jb

)

il

X

km

ci

X

lm

+ cycl (a; b; c) = 0;

(X

j

ci

X

jk

+X

j

ik

X

jc

+X

j

kc

X

ji

)

l

X

im

ab

X

k

lm

+ cycl (a; b; c) = 0;

(X

j

ci

X

jk

+X

j

ik

X

jc

+X

j

kc

X

ji

)X

im

al

X

kl

bm

+ cycl (a; b; c) = 0:

Expand now X

mc

Z

m

ab

+ Z

mc

X

m

ab

+ cycl (a; b; c), (where Z

ab

is given by (17)) and

add the above four equations. After the smoke clears up you will �nd

X

ij

X

kl

X

ikm

ab

X

jl

cm

+ 2X

ij

X

i

kl

X

km

ab

X

jl

cm

+ cycl (a; b; c)

as needed to solve (16).

3. Deformation quantization via enveloping algebras

In this section we will show that the third order deformation which we con-

structed in Paragraph 2.2 for any polynomial Poisson algebra comes from a \quan-

tized" enveloping algebra. The fact that an enveloping algebra appears here is not

surprising. The symmetric algebra of a Lie algebra is a polynomial Poisson algebra

in a natural way and it is well known that the quantized universal enveloping alge-

bra of a Lie algebra is a deformation quantization of this Poisson algebra (see [1],

[2]).

3.1. The quantized universal enveloping algebra. In order to describe the en-

veloping algebra of a polynomial Poisson algebra we will view polynomial algebras as

symmetric algebras over a vector space. Let V be a (possibly in�nite-dimensional)

vector space over a �eld F of characteristic zero. For simplicity of notation we will

denote elements in V by lowercase roman letters. For any positive integer n we let

V

n

= V 
 V 
 : : : 
 V (n copies) and V

0

= F . The tensor algebra over V is the

Z-graded associative algebra (with unit) de�ned by

T (V ) =

1

M

n=0

V

n

:
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The symmetric algebra S(V ) is the quotient S(V ) = T (V )=I , where I is the ho-

mogeneous ideal in T (V ) generated by elements of the form x 
 y � y 
 x. The

symmetric algebra is isomorphic to the polynomial algebra F [x

j

]

j2I

where fx

j

g

j2I

is any basis for V . (Of course, any polynomial algebra can be represented in this

form.) In particular, we will use juxtaposition to denote the product in S(V ), just

as we did for a polynomial algebra.

Any skew-symmetric map V 
 V ! S(V ) extends to a unique skew-symmetric

biderivation on S(V ). When this biderivation satis�es the Jacobi identity then

(S(V ); f� ; �g) becomes a polynomial Poisson algebra, and every polynomial Poisson

algebra arises in this fashion. The quotient map � : T (V ) ! S(V ) has a F -linear

right inverse � : S(V )! T (V ) which is de�ned by

�

 

n

Y

i=1

a

i

!

=

1

n!

X

p2S

n

a

p(1)


 a

p(2)


 � � � 
 a

p(n)

;

where S

n

is the symmetric group on n elements and a

1

; : : : ; a

n

2 V . We call

� the symmetrization map. Note that � is an algebra homomorphism but the

symmetrization map � is not. Let T (V )

h

(S(V )

h

) be the formal power series with

coe�cients in T (V ) (S(V )). Then T (V )

h

and S(V )

h

are naturally F [[h]]-algebras,

� extends to an F [[h]]-algebra homomorphism � : T (V )

h

! S(V )

h

, and � extends

to a F [[h]]-linear map � : S(V )

h

! T (V )

h

. Now we introduce a natural candidate

for a deformation quantization of a polynomial Poisson algebra (S(V ); f� ; �g).

De�nition 3.1. Let J

h

denote the two-sided ideal of T (V )

h

, generated by all

elements

x
 y � y 
 x� h�fx; yg (x; y 2 V ):(18)

The quantized universal enveloping algebra of (S(V ); f� ; �g) is given by

U(V )

h

= T (V )

h

=J

h

:(19)

The induced product on U(V )

h

is denoted by � and the quotient map by

� : T (V )

h

! U(V )

h

:

Thus, we have associated to a polynomial Poisson algebra (S(V ); f� ; �g) a new

(non-commutative) associative algebra (U(V )

h

;�) and they are linked by the F [[h]]-

linear map (not a homomorphism!)

� : S(V )

h

! U(V )

h

given by � = ���. The maps �; � and � induce maps �

n

; �

n

and �

n

on the quotient

spaces T (V )

h

n

, S(V )

h

n

and U(V )

h

n

obtained by dividing out by the ideal (h

n+1

). We

also use the notation J

h

n

for J

h

=(h

n+1

), so that U(V )

h

n

= T (V )

h

n

=J

h

n

. We will see

that in some important cases the map � is a bijection, but that in general �

n

is

only injective for n � 3. If � is injective up to some order, the enveloping algebra

provides a deformation quantization of (S(V ); f� ; �g) of the same order, as given by

the following theorem.

Theorem 3.2. If � : S(V )

h

! U(V )

h

(resp. �

n

) is injective then the unique prod-

uct ? on S(V )

h

which makes � (resp. �

n

) into a homomorphism is a deformation

quantization (resp. of order n) of the Poisson algebra (S(V ); f� ; �g).
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Proof. � is always surjective: simply note that U(V )

h

1

is canonically isomorphic to

S(V ), so that for any q 2 U(V )

h

there exists a p 2 S(V ) such that �(p) = q mod h.

Then �(p) � q = hq

1

, for some q

1

2 U(V )

h

. Continuing this process, we obtain a

sequence of polynomials p

i

such that �(p + hp

1

+ � � �+ h

k

p

k

)� q = h

k

q

k

for some

q

k

2 U(V )

h

. Then �(p + hp

1

+ : : : ) = q. It follows that �

n

is also surjective.

If �

n

is injective then the associative product which is induced by �

n

is given for

p; q 2 S(V ) by

p ? q = �

�1

n

(�

n

(p)� �

n

(q)):

We show that it de�nes a deformation of (S(V ); f� ; �g) and that it is alternating.

It is easy to see that

�

n

(p)� �

n

(q) = �

n

(pq) mod h

so that p ? q = pq mod h; the associativity of ? on S(V )

h

n

implies that p ? q = pq+

h�

1

(p; q) mod h

2

for some cocycle �

1

. If we can show that �

1

is skew-symmetric

then it is a biderivation and the fact that �

1

=

1

2

f� ; �g follows from the following

check for elements x; y 2 V ,

h�

1

(x; y) =

1

2

(x ? y � y ? x) =

h

2

fx; yg mod h

2

:

Now we show that ? is alternating (up to order n), which proves in particular that

�

1

is skew-symmetric. Let T be the anti-involution on T (V )

h

induced by the map

which reverses the order of elements in a tensor product, and let t be the involution

of F [[h]] which is given by the map h 7! �h. Then t determines involutions of

S(V )

h

and T (V )

h

, which we will also denote by t. Let � = T � t = t � T , so � is an

anti-involution of T (V )

h

. Note that T � � = �. Thus �(x 
 y � y 
 x� hfx; yg) =

y
 x� x
 y� hfy; xg, so � maps the ideal J

h

to itself inducing an anti-involution

{. We also have the relations { � �

n

= �

n

� { and �

n

� t = � � �

n

. Now ? is alternating

precisely when t(p ? q) = q ? p for all p, q in S(V ). But note that

�

n

(t(p ? q)) = �(�

n

(p ? q)) = �(�

n

(p)� �

n

(q)) = �(�

n

(�

n

(p))� �

n

(�

n

(q)))

= �(�

n

(�

n

(p)
 �

n

(q))) = �

n

(�(�

n

(p)
 �

n

(q))) = �

n

(�

n

(q)
 �

n

(p))

and similarly �

n

(q ? p) = �

n

(�

n

(q) 
 �

n

(p)). Since �

n

is an isomorphism, the

conclusion follows.

3.2. The Poincar�e-Birkho�-Witt Theorem. Theorem 3.2 demonstrates that

the injectivity of �

n

is crucial. We show in the next theorem how injectivity of

�

n

can be rephrased as an identity in U(V )

h

n

. Our proof is modeled on Birkho�'s

proof of the Poincar�e-Birkho�-Witt Theorem (see [3]). De�ne a skew-symmetric

map � : V

3

! U(V )

h

by

�(x; y; z) = x� �fy; zg+ y � �fz; xg+ z � �fx; yg

� �fy; zg � x� �fz; xg � y � �fx; yg � z

and call � = 0 the diamond relation. For any n there is an induced map �

n

:

V

3

! U(V )

h

n�1

and we call �

n

= 0 the n-th diamond relation. Note that for any

x; y; z 2 V ,

hx� �fy; zg = x� y � z � x� z � y;

so that h� = 0, and similarly h�

n

= 0 for all n. It is precisely the possibility

of multiplying a nonzero element in U(V )

h

by h to obtain zero that can cause �
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to fail to be injective, as we show in the theorem below. For the proof we need

the notion of ordered elements in the tensor product. Fixing an ordered basis

fx

i

g

i2I

for V we call an element � = x

i

1


 x

i

2


 � � � 
 x

i

m

2 T (V ) an ordered

monomial if i

1

� i

2

� � � � � i

m

, and strictly ordered if the inequalities above

are strict inequalities. Let O(V ) be the subspace of T (V ) spanned by the ordered

monomials, O(V )

h

be the induced subspace of T (V )

h

, and O(V )

h

n

= O(V )

h

=(h

n+1

)

be the subspace of ordered elements in T (V )

h

n

. Also, for an element  2 T (V )

h

n

,

denote by (0) its 0-th order part, so that  � (0) 2 hT (V )

h

n

.

Theorem 3.3. For n � 1 the following four statements are equivalent.

1. �

n

is injective;

2. For any � 2 U(V )

h

n

, h� = 0 implies � = 0 mod h

n

;

3. ? satis�es the n-th diamond relation �

n

= 0;

4. The restriction of �

n

to O(V )

h

n

is injective.

Moreover, each of these statements is true for n = 0.

Proof. Let us �rst treat the case of n = 0 because this is used later in the proof.

The fact that �

0

is injective follows immediately from the fact that the image of J

h

in T (V ) is the ideal I , so that �

0

is essentially the identity map, from which it also

follows that the restriction of �

0

to O(V )

0

is injective. Statements 2) and 3) hold

vacuously for n = 0, so all statements are true for n = 0.

Let us suppose that �

n

is injective and let � 2 U(V )

h

n

be an element such that

h� = 0. Since �

n

is surjective there exists � 2 S(V )

h

n

such that �

n

(�) = �. Then

�

n

(h�) = h�

n

(�) = 0, so that h� = 0 and � 2 (h

n

). Then � = �

n

(�) = 0 mod h

n

,

which shows that 1) implies 2).

That 2) implies 3) follows from the fact that h�

n

= 0.

We now show that 4) implies 1), so we assume that the restriction of �

n

to O(V )

h

n

is injective. We show that �

n

is injective. By induction, we can assume that this

theorem is true for n � 1, so that �

n�1

is injective, since �

n�1

= 0 if �

n

= 0.

Therefore, if �

n

() = 0 for some  2 S(V )

h

n

, then since �

n�1

() = 0, we must

have  = 0 mod h

n

. Thus  = h

n

p for some p 2 S(V ). But if x

i

1

� � �x

i

k

satis�es

i

1

� � � � � i

k

, then �

n

(h

n

x

i

1

� � �x

i

k

) = h

n

�

n

(x

i

1


 � � �
x

i

k

), because we can always

reorder the terms appearing in a tensor at the price of adding h times something.

If we express p =

P

I

a

I

x

i

1

� � �x

i

k

, where we sum over all increasing multi-indices

I = (i

1

; � � � ; i

k

), and � = h

n

P

I

a

I

x

i

1


 � � � 
 x

i

k

, then � 2 O(V )

h

n

and satis�es

�

n

(�) = �

n

() = 0, so that � = 0, by injectivity of �

n

on O(V )

n

. It follows that p

must also vanish, and thus  = 0. This shows that 4) implies 1).

The rest of the proof is devoted to showing that 3) implies 4). We �x any n � 1

and assume that �

n

= 0. Since the kernel of �

n

restricted to O(V )

h

n

is O(V )

h

n

\J

h

n

,

it su�ces to show that O(V )

h

n

\ J

h

n

� hJ

h

n

. An arbitrary element  of ker �

n

is of

the form  = 

0

+ h

00

where 

0

; 

00

2 J

h

n

and



0

=

X

1�l�N

�

l


 (x

i

l


 x

j

l

� x

j

l


 x

i

l

� h�fx

i

l

; x

j

l

g)
 �

l

(20)

for some monomials �

l

, �

l

in T (V ), basis elements x

i

l

, and x

j

l

and some positive

integer N . We need to show that if  is ordered then 

0

2 hJ

h

n

. We �rst show that



0

(0) = 0. Since �

n

() = 0 also �

0

((0)) = 0 which implies that (0) = 0 because 

and hence also (0) is ordered. Then 

0

(0) also vanishes because (0) = 

0

(0). Now

consider a �xed multi-index I and de�ne 

0

I

by (20) but summing only over those

l for which the indices in �

l


 x

i

l


 x

j

l


 �

l

coincide with the ones in I (including
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multiplicities). Then evidently 

0

I

(0) = 0. We will show that this implies that



0

I

2 hJ

h

n

, from which it follows that 

0

2 hJ

h

n

because 

0

=

P

I



0

I

.

First we consider the case when I is strictly ordered, in which case we may

assume that I = (1; � � � ;m) for some m. We denote by S

m

the symmetric group

and we consider its standard presentation with generators �

k

; k = 1; : : : ;m� 1, (�

k

corresponds to the transposition (k; k + 1)) and relations �

2

k

; (�

l

�

l+1

)

3

and (�

i

�

j

)

2

for ji� jj � 2. For � 2 S

m

, let x

�

= x

�(1)


 � � � 
 x

�(m)

. Then we may express 

0

I

as



0

I

=

X

�2S

m

m�1

X

k=0

a

�;k

(x

�

� x

�

k

�

� h�

�;k

)(21)

where �

�;k

2 F and �

�;k

= x

�(1)


 � � � 
 �fx

�(k)

; x

�(k+1)

g 
 � � � 
 x

�(m)

. Now

consider the Cayley graph �

m

of the above presentation for S

m

. The vertices of

�

m

are given by the elements in S

m

, with an edge connecting two vertices precisely

when the permutations de�ning them di�er by a transposition. The oriented edge

connecting � and �

k

� is denoted by e

�;k

, so that @(e

�;k

) = � � �

k

�. We de�ne a

linear map 	 from the group C

1

(�

m

; F) of (oriented) 1-chains on �

m

to T (V )

h

by

letting

	(e

�;k

) = x

�

� x

�

k

�

� h�

�;k

:

Notice that 	 is well-de�ned because although e

�

k

�;k

is the same edge as e

�;k

but

with the opposite orientation, it gets mapped to �	(e

�;k

). Then obviously



0

I

= 	

 

X

�2S

m

m�1

X

k=0

a

�;k

e

�;k

!

and the fact that 

0

I

(0) vanishes means that

P

�2S

m

P

m�1

k=1

a

�;k

e

�;k

is a cycle in

the homology of the Cayley graph. By the universal coe�cient theorem, every

cycle (with coe�cients in an arbitrary group) on a graph can expressed as a sum

of multiples of closed edge paths in the graph; moreover, any cycle on the Cayley

graph of a presentation is a sum of cycles (with integral coe�cients) which cor-

respond to the basic relations which appear in the presentation. It follows that

P

�2S

m

P

m�1

k=1

a

�;k

e

�;k

=

P

t

l=1

b

l

r

l

where each r

l

corresponds to one of the basic

relations appearing in the presentation and �

l

2 F . Therefore we have that



0

I

=

t

X

l=1

b

l

	(r

l

);

and it su�ces to show that 	(f) 2 hJ

h

for any cycle f which corresponds to

a basic relation. First, notice that the cycle f which corresponds to �

2

k

is zero

because it consists of the sum of two copies of an edge with opposite orientation.

Second, let i and j be such that ji� jj > 1 and let f

ij

be the corresponding cycle,

f

ij

= e

�;i

+ e

�

i

�;j

+ e

�

j

�

i

�;i

+ e

�

j

�;j

. Then

	(f

ij

) = �h(�

�;i

+ �

�

i

�;j

+ �

�

j

�

i

�;i

+ �

�

j

�;j

):

Now both �

�;i

+�

�

j

�

i

�;i

and ��

�

i

�;j

��

�

j

�;j

are given, up to an element of J

h

n

, by

x

�(1)


 � � � 
 fx

�(i)

; x

�(i+1)

g 
 � � � 
 fx

�(j)

; x

�(j+1)

g 
 � � � 
 x

�(m)

;
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showing that 	(f

ij

) 2 hJ

h

n

. Finally, let us assume that f

l

corresponds to the

relation (�

l

�

l+1

)

3

. Then

f

l

= e

�;l

+ e

�

l

�;l+1

+ e

�

l+1

�

l

�;l

+ e

�

l

�

l+1

�

l

�;l+1

+ e

�

l

�

l+1

�;l

+ e

�

l+1

�;l+1

so that

	(f

l

) = hx

�(1)


 � � � 
 (x

�(l)


 �fx

�(l+1)

; x

�(l+2)

g

� �fx

�(l+1)

; x

�(l+2)

g 
 x

�(l)

+ cycl)
 � � � 
 x

�(m)

:

Since �

n

= 0 the term between parentheses lies in J

h

n�1

. But now note that if

� 2 J

h

n�1

, then � = � + h

n

 for some � 2 J

h

n

, so that h� 2 hJ

h

n

. Thus we can

conclude that 	(f

l

) 2 hJ

h

n

.

This completes the proof that 3) implies 4) in case I is strictly ordered. If I =

(i

1

; : : : ; i

m

) is merely ordered then the proof can repeated verbatim after replacing

S

m

with a quotient group, whose presentation is obtained from the above standard

presentation of S

m

by adding the relations �

k

for any k for which i

k

= i

k+1

. The

corresponding Cayley graph is obtained from the one for S

m

by collapsing the edges

which correspond to those �

k

.

The above theorem gives us an analytic criterion to check injectivity at some order.

When we assume that injectivity at order n � 1 has been checked then we may

think of the n-th diamond relation as being a relation in S(V )

h

n

. Since this is the

way in which we will use the diamond relation below, we formulate this fact in a

separate theorem.

Theorem 3.4. If �

n

: S(V )

h

n

! U(V )

h

n

is injective (hence bijective) then �

n+1

is

also injective if and only if the diamond relation

x

a

? fx

b

; x

c

g � fx

b

; x

c

g ? x

a

+ cycl(a; b; c) = 0

holds for any a; b; c 2 I. In this formula ? is the product on S(V )

h

n

which is induced

using �

n

.

In this formulation the theorem will turn out to be very useful. For example we

note that p ? q = q ? p mod h and conclude from it that �

1

is injective.

3.3. The ?-enveloping algebra. In order to use the theorem to prove injectivity

of the higher �

i

we need an explicit formula for the ?-bracket which comes from

the enveloping algebra. We will show now that such a formula is given exactly by

(12) and derive injectivity of �

2

and �

3

from it. For this purpose we associate an

enveloping algebra U(V )

h

?

to a deformation (S(V )

h

; ?) of S(V ); in general U(V )

h

?

and U(V )

h

will be di�erent.

De�nition 3.5. Let (S(V )

h

; ?) be a deformation (of �nite order or formal) of S(V )

and denote the commutator in (S(V )

h

; ?) by [� ; �]

?

. De�ne J

h

?

to be the two-sided

ideal of T (V )

h

, generated by all elements of the form

a
 b� b
 a� �[a; b]

?

; (a; b 2 V )

and de�ne the ?-enveloping algebra U(V )

h

?

of (S(V )

h

; ?) by U(V )

h

?

= T (V )

h

=J

h

?

:

For a given deformation (S(V )

h

; ?) the enveloping algebras U(V )

h

and U(V )

h

?

coincide if and only if

[x; y]

?

= hfx; yg (x; y 2 V ):(22)
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We call a deformation which satis�es (22) bracket-exact. In terms of the cocycles

�

i

this means that

�

i

(x; y) = 0 (x; y 2 V; i > 1):

For example, our general formula (12) de�nes a bracket-exact deformation quantiza-

tion; adding any non-zero skew-symmetric biderivation to �

3

de�nes a deformation

quantization which is not bracket-exact.

We now give a property which characterizes ?-enveloping algebras; in the case of

bracket-exact deformations it characterizes enveloping algebras, showing that the

?-product which comes from the enveloping algebra is given by (12).

De�nition 3.6. Let (S(V )

h

; ?) be a deformation of S(V ). The F [[h]]-linear map,

�

?

: S(V )

h

! S(V )

h

which is de�ned by

�

?

 

n

Y

i=1

a

i

!

=

1

n!

X

p2S(n)

a

p(1)

? a

p(2)

? � � � ? a

p(n)

:

is called ?-symmetrization; as in the de�nition of � the elements a

1

; : : : ; a

n

belong

to V . We will say that ? is s-balanced if �

?

is the identity when restricted to

elements of S(V ) of degree � s. If (S(V )

h

; ?) is a deformation (of order n) of S(V )

then we call it a balanced deformation if ? is s-balanced, where s is the degree of

[� ; �]

?

, i.e., the supremum of the degrees of all coe�cients of [x; y]

?

, where x; y run

over V (this degree may be in�nite).

Note that when a deformation is bracket-exact then the degree of [� ; �]

?

is the

degree of the corresponding Poisson bracket f� ; �g.

Example 1. Any deformation is equivalent to a 2-balanced deformation. Indeed,

such an equivalence is given precisely by �

?

, i.e., de�ne an equivalent product � by

p � q = �

�1

?

(�

?

(p) ? �

?

(q)):

Then

�

�

(xy) =

1

2

(x � y + y � x) =

1

2

�

�1

?

(x ? y + y ? x) = xy;

for any x; y 2 V , so that � is 2-balanced.

Lemma 3.7. Formula (12) gives, for any polynomial Poisson algebra, a bracket-

exact balanced deformation of order 3.

Proof. The proof of balancing is by induction. Obviously any deformation is 1-

balanced, so we assume that the deformation, given by Formula (12), is n-balanced

and prove that it is (n+1)-balanced. To do this, take a monomial a of degree n+1

and write a = a

1

a

2

� � � a

n+1

. We denote the associative product (12) on S(V )

h

3

by

? and the corresponding cochains by �

i

. Using the associativity of ? one has

X

�2S

n+1

a

�(1)

? a

�(2)

? � � � ? a

�(n+1)

=

n+1

X

i=1

a

i

?

0

@

n+1

Y

j 6=i

a

j

1

A
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so ? is (n+ 1)-balanced when

n+1

X

i=1

�

k

0

@

a

i

;

Y

j 6=i

a

j

1

A

= 0;

for k = 1; 2; 3. The veri�cation is immediate.

3.4. Relating the deformations. The following theorem gives a precise relation

between balanced deformations and the ?-enveloping algebra.

Theorem 3.8. If (S(V )

h

; ?) is a balanced deformation of S(V ) then the F [[h]]-

algebra homomorphism

F : (T (V )

h

;
)! (S(V )

h

; ?)

which is induced by the natural inclusion V ! S(V ) induces an F [[h]]-algebra iso-

morphism

f : (U(V )

h

?

;�)! (S(V )

h

; ?):

When (S(V )

h

; ?) is moreover bracket-exact then U(V )

h

?

= U(V )

h

and we have an

isomorphism

f : (U(V )

h

;�)! (S(V )

h

; ?):

The corresponding statements for n-th order deformations also hold.

Proof. We will only prove the �rst statement. If we denote the canonical map

T (V )

h

! U(V )

h

?

by �

?

then it su�ces to prove that kerF = ker �

?

and that F is

surjective. Let us �rst show that F is surjective. If p 2 S(V ) then there exists an

element � 2 T (V ) such that p = F (�) mod h. Indeed, since ? is a deformation we

have for any monomial

Q

n

i=1

a

i

that

n

Y

i=1

a

i

= a

1

? a

2

? � � � ? a

n

= F (a

1


 a

2


 : : :
 a

n

) mod h:

More generally, for any k 2 N , since F is F [[h]]-linear we can �nd �

0

; : : : ; �

k

2 T (V )

such that p = F (�

0

+ �

1

h + � � � + �

k

h

k

) mod h

k+1

. It follows that S(V ) � =F ,

which is su�cient to prove that F is surjective.

Let us show that ker �

?

= kerF . Take a; b 2 V and compute

F (a
 b� b
 a� �[a; b]

?

) = F (a) ? F (b)� F (b) ? F (a)� F�[a; b]

?

= a ? b� b ? a� �

?

[a; b]

?

= a ? b� b ? a� [a; b]

?

;

which is zero; we used in the computation that �

?

= F� and that �

?

[a; b]

?

= [a; b]

?

(because the deformation is balanced). This shows that ker�

?

� kerF .

To show that kerF � ker �

?

we pick any X 2 T (V )

h

for which F (X) = 0 and

show the existence of Y 2 T (V )

h

such that �

?

(X) = �

?

(Y ) and whose degree (in h)

is larger than the degree of X . This will imply that for any j 2 N the composition

T (V )

h

�

?

�!U(V )

h

?

�! U(V )

h

?

=(h

j

)

maps X to 0, hence �

?

(X) = 0. To prove it, let d denote the degree of X , i.e.,

X = X

0

h

d

mod h

d+1

. Let

�

X

0

denote the unique element in =� \ T (V ) for which

�

?

(X

0

) = �

?

(

�

X

0

) mod h
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For simplicity of the notation, let us assume that

�

X

0

is of the form

�

X

0

=

1

n!

X

p2S

n

a

p(1)


 a

p(2)


 � � � 
 a

p(n)

;

in general

�

X

0

will be a �nite sum of such expressions. Then

F (

�

X

0

) =

1

n!

X

p2S

n

F (a

p(1)

) ? F (a

p(2)

) ? � � � ? F (a

p(n)

)

=

1

n!

X

p2S

n

a

p(1)

? a

p(2)

? � � � ? a

p(n)

= a

1

a

2

: : : a

n

mod h:

Thus F (X) = 0 implies that

�

X

0

= 0. So there exists a Y

0

such that �

?

(X

0

) =

�

?

(hY

0

) mod h

2

and hence there exists an element Y 2 T (V )

h

of the form Y =

Y

0

h

d+1

mod h

d+2

such that �

?

(X) = �

?

(Y ).

We have seen that Formula (12) de�nes a bracket-exact balanced deformation (of

order three). Theorem 3.8 implies that this deformation comes from the enveloping

algebra, via the symmetrization map. This fact has the important consequence that

we can use (12) to check injectivity of the maps �

n

. We already used the �rst term

of our formula; i.e., we have used p ? q = pq mod h to show that �

1

is injective.

Furthermore,

�

1

(x

a

; fx

b

; x

c

g)� �

1

(fx

b

; x

c

g; x

a

) + cycl(a; b; c)

= fx

a

; fx

b

; x

c

gg+ fx

b

; fx

c

; x

a

gg+ fx

c

; fx

a

; x

b

gg

which is zero in view of the Jacobi identity. This proves injectivity of �

2

. Also

�

2

(x

a

; fx

b

; x

c

g)� �

2

(fx

b

; x

c

g; x

a

) + cycl(a; b; c) = 0

since �

2

is symmetric, hence �

3

is also injective. The fact that this step is easy is

similar to the fact that the existence of �

3

is automatic (given the fact that �

1

is

skew-symmetric and that �

2

is symmetric). Finally, let us examine the injectivity

of �

4

.

�

3

(x

a

; fx

b

; x

c

g)� �

3

(fx

b

; x

c

g; x

a

) + cycl(a; b; c)

=

1

24

(2X

ij

X

i

kl

X

jk

ma

X

lm

bc

+X

kl

an

X

lj

X

ki

X

nij

bc

) + cycl(a; b; c)

=

1

12

X

ij

X

i

kl

(X

km

ab

X

jl

cm

+X

km

bc

X

jl

am

+X

km

ca

X

jl

bm

)

+

1

24

X

ij

X

kl

(X

ikm

ab

X

jl

cm

+X

ikm

bc

X

jl

am

+X

ikm

ca

X

jl

bm

):

which is identical to the obstruction (14) which we found when trying to extend

the deformation given by (12). We will see in the examples that in general the

obstruction is non-zero, hence �

4

is not injective and the enveloping algebra leads

in general only to a deformation of order three.

4. Examples

In this section we will investigate some general and some more speci�c exam-

ples. We use the diamond relations to show that for constant and linear brackets

the quantized enveloping algebra always gives a formal deformation quantization.
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For the quadratic case we give a few examples in which the quantized enveloping al-

gebra gives a �fth order deformation (at least) and we give an example in which the

quantized enveloping algebra gives a formal deformation quantization. In the cubic

case we give a few examples for which the quantized enveloping algebra gives a de-

formation of order three but not of higher order thereby showing the non-injectivity

of �

4

in general. All these examples are in F

4

(with coordinates x

1

; : : : ; x

4

; F is a

�eld of characteristic zero) but they have higher-dimensional counterparts. We will

describe the Poisson structure by a 4�4 matrix whose (i; j)-th entry is the Poisson

bracket fx

i

; x

j

g. We refer to this matrix as the Poisson matrix.

The simplest case is the one in which all X

ij

are constant (i.e., they belong to F).

It is well-known that in this case a deformation quantization always exists. This

follows also immediately from the diamond relations: since in this case

x� �fy; zg � �fy; zg � x = 0

for any x; y; z 2 V we conclude that � = 0 hence that � is injective. Alternatively

it is immediate to check that the following explicit formula de�nes a deformation

quantization in this case,

�

?

= � +

1

X

n=1

h

n

2

n

n!

X

k

1

l

1

� � �X

k

n

l

n

@

k

1

:::k

n


 @

l

1

:::l

n

:

If a linear map V 
 V ! V satis�es the Jacobi identity then its extension to S(V )

also satis�es the Jacobi identity, hence a Lie algebra leads in a natural way to a

polynomial Poisson algebra. We call it linear because the bracket of any two basis

elements is a linear combination of the basis elements. In this case it is known

that the quantized enveloping algebra de�nes a formal deformation quantization.

This is checked immediately using the diamond relations: in this case the fact that

fy; zg 2 V for any y; z 2 V implies that

x� �fy; zg � �fy; zg � x = hfx; fy; zgg(23)

so that the diamond relation holds in view of the Jacobi identity. Note also that,

as a corollary of Theorem 3.8 all bracket-exact deformations of a linear bracket are

isomorphic (to the one given by the enveloping algebra).

We can also consider brackets which have both linear and constant terms. Since

the constant terms de�ne a central extension of the linear terms this case is also

covered by the linear case and the quantum enveloping algebra de�nes a deformation

quantization. Alternatively, it is easy to see that (23) also holds in this case so that

again the diamond relation is satis�ed.

A major source of examples of non-linear polynomial Poisson brackets can be

found on page 70 of [20]. Consider C

2d

as the linear space of pairs of polynomials

(u(�); v(�)) with u(�) monic of degree d and v(�) of degree less than d. If we write

u(�) = �

d

+ u

1

�

d�1

+ � � �+ u

d�1

�+ u

d

;

v(�) = v

1

�

d�1

+ � � �+ v

d�1

�+ v

d

;

then the following formula de�nes for any polynomial ' in two variables a Poisson

bracket on C

2d

,

fu(�); u

j

g = fv(�); v

j

g = 0;

fu

j

; v(�)g = '(�; v(�))

�

u(�)

�

d�j+1

�

+

mod u(�); 1 � j � d:

(24)
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The subscript + means take the polynomial part and the expression p(�) mod u(�)

means take the remainder obtained by Euclidean division. Since in these particular

examples the Poisson matrix is always of the form

�

0 U

�U 0

�

we will only give

the matrix U and the polynomial it derives from. Let us explain briey how to

compute U from (24) for a given bracket ' on C

4

. The coordinates are u

1

; u

2

; v

1

and v

2

; also u(�) = �

2

+ u

1

� + u

2

and v(�) = v

1

� + v

2

. Then the �rst row of U

consists of the coe�cients of '(�; v(�)) mod u(�) (just do Euclidean division) and

the second row is given by the coe�cients of '(�; v(�))(� + u

1

) mod u(�). For

example, take ' = x

3

. Then

U =

�

u

2

1

� u

2

u

1

u

2

u

1

u

2

u

2

2

�

:

In this case direct substitution in the left hand side of (14) gives zero so that

the deformation, as given by (12), extends to a �fth order deformation. Another

quadratic bracket is found by taking ' = y. Then U is given by

U =

�

v

1

v

2

v

2

u

1

v

2

� u

2

v

1

�

:

Again (14) is satis�ed. The same is also true for the sum, ' = x

3

+ y, which

corresponds to taking the sum of the above U matrices. Another quadratic example

of interest is the quadratic bracket on gl(2) (see [15]). It has Poisson matrix

0

B

B

@

0 x

1

x

2

0 x

2

x

3

�x

1

x

2

0 0 x

2

x

4

0 0 0 0

�x

2

x

3

�x

2

x

4

0 0

1

C

C

A

:

(14) is satis�ed and the deformation extends to order �ve. In the following ex-

ample of a quadratic bracket the quantized universal enveloping algebra gives a

formal deformation quantization. If (a

ij

) is a skew-symmetric matrix of size 4 then

fx

i

; x

j

g = a

ij

x

i

x

j

de�nes a quadratic Poisson bracket on C

4

. In this case the

relation

x

i

� x

j

� x

j

� x

i

= h�fx

i

; x

j

g = ha

ij

(x

i

� x

j

+ x

j

� x

i

)

can be rewritten as x

j

� x

i

= A

ij

x

i

� x

j

where A

ij

= (1 � ha

ij

)=(1 + ha

ij

): The

veri�cation of diamond relation then reduces to the following computation.

x

i

� fx

j

; x

k

g � fx

j

; x

k

g � x

i

+ cycl(i; j; k)

= x

i

� x

j

� x

k

(a

jk

� a

ij

) + x

i

� x

k

� x

j

(a

jk

� a

ki

) + x

j

� x

i

� x

k

(a

ki

� a

ij

)

+ x

j

� x

k

� x

i

(a

ki

� a

jk

) + x

k

� x

i

� x

j

(a

ij

� a

ki

) + x

k

� x

j

� x

i

(a

ij

� a

jk

)

= x

i

� x

j

� x

k

((a

jk

� a

ij

) + (a

jk

� a

ki

)A

jk

+ (a

ki

� a

ij

)A

ij

+ (a

ki

� a

jk

)A

ik

A

ij

+ (a

ij

� a

ki

)A

ik

A

jk

+ (a

ij

� a

jk

)A

ij

A

ik

A

jk

)

= 0:

Therefore the quantized enveloping algebra of this quadratic Poisson bracket gives

a formal deformation quantization.
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Next we consider a few higher order brackets. As in the quadratic case, if you

take ' = x

4

then

U =

�

�u

3

1

+ 2u

1

u

2

u

2

2

� u

2

1

u

2

u

2

2

� u

2

1

u

2

�u

1

u

2

2

�

:

In this case we �nd again that (14) is satis�ed so that the enveloping algebra leads

to a �fth order deformation. However, if you take ' = y

2

then U is given by

U =

�

2v

1

v

2

� u

1

v

2

1

v

2

2

� u

2

v

2

1

v

2

2

� u

2

v

2

1

u

1

v

2

2

� 2u

2

v

1

v

2

�

:

and (14) is not satis�ed: if we denote x

1

= u

1

; x

2

= u

2

; x

3

= v

1

and x

4

= v

2

then

the left hand side of (14) is given by

�96x

3

(x

4

4

� 2x

1

x

3

x

3

4

+ 2x

2

x

2

3

x

2

4

� 2x

1

x

2

x

3

3

x

4

+ x

2

1

x

2

3

x

2

4

+ x

2

2

x

4

3

) @

1

^ @

2

^ @

4

:

It follows that in this case the quantized enveloping algebra only de�nes a third

order deformation quantization. The choice ' = y

2

+ xy gives another non-zero

term; basically any higher order polynomial leads to an obstruction. Also the cubic

bracket on gl(2) (see [15]), which is given by

U =

0

B

B

@

0 x

2

1

x

2

x

2

x

2

3

x

2

x

3

(x

1

+ x

4

)

�x

2

1

x

2

0 x

2

x

3

(x

4

� x

1

) x

2

x

2

4

�x

2

x

2

3

x

2

x

3

(x

1

� x

4

) 0 x

2

x

2

3

�x

2

x

3

(x

1

+ x

4

) �x

2

x

2

4

�x

2

x

2

3

0

1

C

C

A

leads to a non-zero obstruction, upon evaluating (14). Explicitly it is given by

96x

2

2

x

3

(2x

1

x

4

+ x

2

x

3

)(x

4

� x

1

)

(x

3

@

1

^ @

2

^ @

3

+ (x

4

� x

1

)@

1

^ @

2

^ @

4

� x

3

@

2

^ @

3

^ @

4

):

It follows that for most brackets the enveloping algebra only leads to a third order

deformation.
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