
HOCHSCHILD COHOMOLOGY OF POLYNOMIAL ALGEBRAS

MICHAEL PENKAVA AND POL VANHAECKE

Abstract. In this paper we investigate the Hochschild cohomology groups

H

2

(A) and H

3

(A) for an arbitrary polynomial algebra A. We also show that

the corresponding cohomology groups which are built from di�erential oper-

ators inject in H

2

(A) and H

3

(A) and we give an application to deformation

theory. The results are not new, but the proofs given here are very elementary,

depending only on simple properties of Hochschild cochains.
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1. Introduction

The Hochschild cohomology groupsH

2

(A) and H

3

(A) of a commutative algebra

A over a �eld F play a fundamental role in the study of the rigidity of A as an

associative algebra when char(F) 6= 2. Indeed, consider a formal deformation

�

?

(p; q) = �(p; q) + h�

1

(p; q) + h

2

�

2

(p; q) + � � � ;(1)

of the original product �(p; q) = pq of elements p; q 2 A. It de�nes an associative

product if and only if [�

?

; �

?

] = 0 ([� ; �] denotes the Gerstenhaber bracket), an

equation which can be rewritten by using the Hochschild coboundary operator � as

��

n

=

1

2

X

i+j=n

[�

i

; �

j

]:(2)

If the deformation (1) is associative up to order n � 1 then the right hand side

of (2) is a Hochschild 3-cocycle; the deformation extends to order n if and only

this cocycle is a coboundary. Hence the obstruction lies in H

3

(A). Uniqueness

is determined up to an element of H

2

(A) because on the one hand two solutions

�

n

and �

0

n

of (2) di�er by a 2-cocycle, while on the other hand two such solutions

which di�er by a 2-coboundary de�ne equivalent deformations.

In this paper we present an elementary proof that if A is a polynomial al-

gebra then a 2-cocycle or 3-cocycle � is a coboundary if and only if its skew-

symmetrization vanishes. A complete proof of this fact appears already in [6], but
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our proof is more straightforward, relying on simple cohomological arguments and

it allows us to show that a tridi�erential operator  which is a coboundary is actu-

ally a coboundary of a bidi�erential operator. As an application, we give a simple

proof that any deformation (1) is equivalent to a deformation in which all �

i

are

bidi�erential operators.

It should be noted that the homology of a polynomial algebra is well understood,

and a more general result than ours is given in [4] (see Theorem 3.2.2). Our original

purpose in proving these results was to apply them to understanding deformation

quantization of polynomial Poisson algebras, which we did in [8]; we felt that the

statement of these results in their present form and the simple proofs we give might

be of some interest.

2. Hochschild cohomology

Let A denote any commutative algebra over a �eld F with char F 6= 2. For n � 0

the space of n-cochains is given by

C

n

(A) = Hom(A

n

;A):

The cochains form a complex C

�

(A) for the Hochschild coboundary operator

� : C

n

(A)! C

n+1

(A)

which is de�ned by

�'(p

1

; � � � ; p

n+1

) = p

1

'(p

2

; � � � ; p

n+1

)

+

n

X

k=1

(�1)

k

'(p

1

; � � � ; p

k�1

; p

k

p

k+1

; p

k+2

; � � � ; p

n+1

)+(�1)

n+1

'(p

1

; � � � ; p

n

)p

n+1

;

for ' 2 C

n

(A) (see [3]). The n-th cohomology group of this complex will be

denoted by H

n

(A). Our aim in this section is to analyze H

2

(A) and H

3

(A) more

thoroughly. We will give an explicit characterization in the case of polynomial

algebras, in Theorems 2.1, 2.2 and 2.3. In the proofs below, for a polynomial

algebra given by an ordered basis (free generating set) fx

i

g

i2I

, we will denote

elements of the basis by the letters x and y, while arbitrary polynomials will be

denoted by the letters p; q; : : : ; v. For a basis element x, the statement x � p means

that the basis elements appearing in the monomials in p have index greater than

or equal to that of x, so that in particular x � c for any constant c.

Any 2-cochain ' can be uniquely decomposed as the sum of a symmetric cochain

'

+

and a skew-symmetric cochain '

�

. Then ' is a cocycle precisely when both its

symmetric and skew-symmetric parts are cocycles. To see this fact, suppose that

' is a 2-cocycle. Then �'(p; q; r) = p'(q; r) � '(pq; r) + '(p; qr) � '(p; q)r. Let

�'(p; q) = '(q; p). Then

� �'(p; q; r) = p'(r; q) � '(r; pq) + '(qr; p)� '(q; p)r = ��'(r; q; p) = 0:

Since '

+

and '

�

are linear combinations of ' and �', this shows the desired result.

Furthermore, the coboundary of any 1-cochain is symmetric, which is immediate

from the fact that if � is a 1-cochain, then

��(p; q) = p�(q)� �(pq) + �(p)q:
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This implies that each skew-symmetric 2-cocycle determines a distinct cohomology

class. Any biderivation is a 2-cocycle, since for a biderivation '

�'(a; b; c) = a'(b; c)� '(ab; c) + '(a; bc)� '(a; b)c = �'(a; c)b+ b'(a; c) = 0:

Furthermore, any skew-symmetric 2-cochain is a cocycle precisely when it is a

biderivation. To see this, note that if ' is a skew-symmetric cocycle, then

�'(a; b; c)� �'(c; a; b) + �'(b; c; a) = 2('(a; bc)� b'(a; c)� '(a; b)c):

Since the left hand side vanishes, ' is a biderivation. These remarks hold for an

arbitrary commutative algebra A. When A is a polynomial algebra, we have a

more complete characterization of H

2

(A).

Theorem 2.1. Suppose that ' is a 2-cocycle on a polynomial algebra. Then ' is

a coboundary precisely when it is symmetric. Furthermore, the cochain � satisfying

�� = ' can be chosen arbitrarily on basis elements. In particular, it can be chosen

to satisfy �(x) = 0 when x is a basis element.

Proof. For a symmetric 2-cocycle ', we construct recursively a 1-cochain � whose

coboundary coincides with '. Now

�'(1; 1; q) = '(1; q)� '(1; q) + '(1; q)� '(1; 1)q = 0;

so that '(1; q) = '(1; 1)q. Let �(1) = '(1; 1), and de�ne �(x) arbitrarily for all

basis elements x. The property �� = ' holds precisely when

�(pq) = p�(q) + q�(p) � '(p; q):(3)

When either p or q is constant, this equation holds by the preceding remarks;

otherwise � is evaluated at terms of lower degree on the right hand side, so the

left hand side is de�ned recursively by this formula. But we need to check that if

pq = p

0

q

0

then the right hand sides of the decomposition above agree. We proceed

by induction on the sum of the degrees of p and q. Thus we assume that � is de�ned

on polynomials of degree less than N and that it satis�es (3) for any p, q such that

the degree of pq is less than N . For any p, q of degree less than N , the expression

�(p; q) = p�(q) + q�(p) � '(p; q) is then well-de�ned. We need to show that if v

has degree N and v = pq = p

0

q

0

where the degrees of p; q; p

0

and q

0

are less than

N , then �(p; q) = �(p

0

; q

0

). Let us denote r = gcd(p; p

0

) and s = gcd(q; q

0

). By

interchanging the roles of p

0

and q

0

, if necessary, we may assume that r and s have

nonzero degree. There are polynomials t and t

0

such that p = rt, p

0

= rt

0

, q = st

0

and q

0

= st. Then

�(p; q)� �(p

0

; q

0

) = �(rt; st

0

)� �(rt

0

; st)

= rt�(st

0

) + st

0

�(rt) � '(rt; st

0

)� (t$ t

0

)

= rt(s�(t

0

) + t

0

�(s)� '(s; t

0

)) + st

0

(r�(t) + t�(r) � '(r; t))

� '(rt; st

0

)� (t$ t

0

)

= �'(rt; st

0

)� rt'(s; t

0

)� st

0

'(r; t) � (t$ t

0

)

= �'(ts; r; t

0

)� �'(tr; s; t

0

) + t

0

�'(r; t; s);

which vanishes because ' is a cocycle.
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Let us now turn our attention to the third Hochschild cohomology group. A

3-cochain  is called ip symmetric if it satis�es  (p; q; r) =  (r; q; p), and ip

skew-symmetric if  (p; q; r) = � (r; q; p). Every 3-cochain  can be uniquely

decomposed as the sum of a ip symmetric cochain  

+

and a ip skew-symmetric

cochain  

�

. Moreover,  is a cocycle precisely when  

+

and  

�

are cocycles.

Furthermore, the coboundary of a symmetric 2-cochain is ip skew-symmetric, and

the coboundary of a skew-symmetric 2-cochain is ip symmetric. The Jacobi map

J : C

3

(A)! C

3

(A) is given by

J (p; q; r) =  (p; q; r) +  (q; r; p) +  (r; p; q):

If  is the coboundary of a symmetric cochain, it satis�es the Jacobi identity J = 0.

For any 3-cocycle  ,  (1; 1; 1) = � (1; 1; 1; 1) = 0 and  (1; p; 1) = � (1; 1; p; 1) = 0.

Suppose that  (p; 1; 1) =  (1; 1; p) = 0 for all p. Then  (1; p; q) = � (1; 1; p; q),

 (p; 1; q) = � (p; 1; 1; q), and  (p; q; 1) = � (p; q; 1; 1), so these terms vanish for all

p and q. These remarks are easy to check, and apply to any commutative algebra

A, not just a polynomial algebra.

Theorem 2.2. Suppose that  is a 3-cocycle on a polynomial algebra. Then  is

ip symmetric if and only if  is a Hochschild coboundary of a skew-symmetric

cochain '. Furthermore, the cochain '(x; y) can be chosen arbitrarily on basis

elements x < y. In particular, it can be chosen so that '(x; y) = 0 when x and y

are basis elements.

Proof. By the above remarks we only need to verify that a ip symmetric cocycle

 is a coboundary of a skew-symmetric cochain. If we de�ne �(p; 1) =  (1; 1; p) =

��(1; p), and extend � in an arbitrary manner to a skew-symmetric cochain, then

��(1; 1; p) = � (1; 1; p). Replacing  by  +��, we may assume that  (1; 1; p) = 0,

so that  vanishes when any of its arguments is a constant. We de�ne ' recursively,

by �rst setting '(1; 1) = '(1; p) = '(p; 1) = 0. In addition, let us assume that

'(x; y) is de�ned in an arbitrary manner for basis elements x < y, and extend

it to all basis elements using the desired skew-symmetry property. Consider the

following equalities which must be satis�ed if  = �'.

 (p; q; u) = p'(q; u)� '(pq; u) + '(p; qu)� '(p; q)u;

 (p; u; q) = p'(u; q)� '(pu; q) + '(p; uq)� '(p; u)q;

 (u; p; q) = u'(p; q)� '(up; q) + '(u; pq)� '(u; p)q:

Adding the �rst and third and subtracting the second of these equations, and using

the desired skew-symmetry property for ' yields the following equation:

2'(pq; u) = 2p'(q; u) + 2q'(p; u)�  (p; q; u) +  (p; u; q)�  (u; p; q);(4)

The right hand side of this expression is evidently symmetric in p and q, and the

equation holds when either p or q is constant. We wish to use it to de�ne ', as in

the proof of Theorem 2.1. Thus we assume that '(r; u) is well-de�ned for any r of

degree less than N and any u. For any u and for any p, q of degree less than N ,

the right hand side of (4) is well-de�ned; we will denote it by 2�(p; q; u). We need

to show that if v has degree N and v = pq = p

0

q

0

where the degrees of p; q; p

0

and

q

0

are less than N , then �(p; q; u) = �(p

0

; q

0

; u). We write p = rt, p

0

= rt

0

, q = st

0
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and q

0

= st, as in the proof of Theorem 2.1. Then

2(�(p; q; u)� �(p

0

; q

0

; u))

= 2rt'(st

0

; u) + 2st

0

'(rt; u) �  (rt; st

0

; u) +  (rt; u; st

0

)�  (u; rt; st

0

)� (t$ t

0

)

= �rt( (s; t

0

; u)�  (s; u; t

0

) +  (u; s; t

0

))� st

0

( (r; t; u)�  (r; u; t) +  (u; r; t))

�  (rt; st

0

; u) +  (rt; u; st

0

)�  (u; rt; st

0

)� (t$ t

0

):

It is straightforward to check that the last line can be written as

� (rt

0

; t; s; u)� � (rt

0

; t; u; s) + � (rt

0

; u; t; s)� � (u; rt

0

; t; s)

+ s� (t; r; t

0

; u)� s� (t; r; u; t

0

))� (t$ t

0

);

hence vanishes. To verify that ' is skew-symmetric, we compute '(pq; rs) +

'(rs; pq), using skew-symmetry of lower degree terms. We have

2'(pq; rs) = 2p'(q; rs) + 2q'(p; rs)�  (p; q; rs) +  (p; rs; q)�  (rs; p; q)

= p(2r'(q; s) + 2s'(q; r) +  (r; s; q)�  (r; q; s) +  (q; r; s)) +

q(2r'(p; s) + 2s'(p; r) +  (r; s; p)�  (r; p; s) +  (p; r; s))�

 (p; q; rs) +  (p; rs; q)�  (rs; p; q):

From this we see that 2('(pq; rs) + '(rs; pq)) equals

� (p; q; r; s)� � (p; r; q; s) + � (q; s; r; p) + ((p; q)$ (r; s))

and thus vanishes. It is easily checked that �' =  .

Theorem 2.3. Suppose that  is a 3-cocycle on a polynomial algebra. Then  is

a Hochschild coboundary of a symmetric cochain ' if and only if  is ip skew-

symmetric and satis�es the Jacobi identity J = 0: Moreover ' can be chosen to

satisfy '(x; p) = 0 whenever x is a basis element satisfying x � p.

Proof. As in the previous theorem, we reduce to the case where  (p; 1; 1) = 0. Take

an ordered basis of the algebra. De�ne ' by '(1; p) = '(p; 1) = 0 for all p. We

extend the de�nition recursively by setting

'(xp; q) = x'(p; q) +  (q; p; x) = '(q; xp);

when x � q and x � p. To show that ' is well de�ned and symmetric, we only need

to show that if x is a basis element satisfying x � p and x � q, then the expansion

of '(xp; xq) yields the same result as the expansion of '(xq; xp). Now

'(xp; xq) = x'(p; xq) +  (xq; p; x) = x(x'(q; p) +  (p; q; x)) +  (xq; p; x);

so that '(xp; xq) � '(xq; xp) = � (x; p; q; x) = 0.

To show that �' =  , we note that if any of p, q or r is constant, then both

 (p; q; r) and �'(p; q; r) vanish. We may proceed by induction on the sum of the

degrees of p, q and r. If p can be factored as xp

0

, where x satis�es x � p

0

, x � q
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and x � r, then

�'(xp

0

; q; r) = xp

0

'(q; r) � '(xp

0

q; r) + '(xp

0

; qr)� '(xp

0

; q)r

= xp

0

'(q; r) � x'(p

0

q; r) �  (r; p

0

q; x)

+ x'(p

0

; qr) +  (qr; p

0

; x)� rx'(p

0

; q)� r (q; p

0

; x)

= x(p

0

'(q; r) � '(p

0

q; r) + '(p

0

; qr) � '(p

0

; q)r)

�  (r; p

0

q; x) +  (qr; p

0

; x)� r (q; p

0

; x)

= x (p

0

; q; r)�  (r; p

0

q; x) +  (qr; p

0

; x)� r (q; p

0

; x)

=  (xp

0

; q; r):

On the other hand, if we can express r = xr

0

, where x � p, x � q and x � r, then

 (p; q; xr

0

) = � (xr

0

; q; p) = ��'(xr

0

; q; p) = �'(p; q; xr

0

);

since  is ip skew-symmetric, and the coboundary of any symmetric cochain is

also ip skew-symmetric. The only other possibility is that q = xq

0

, where x � q

0

,

x � p and x � r. But then we have

 (p; xq

0

; r) = � (xq

0

; r; p)�  (r; p; xq

0

)

= ��'(xq

0

; r; p)� �'(r; p; xq

0

)

= �'(p; xq

0

; r);

using the Jacobi identity J = 0 and the fact that the coboundary of any symmetric

cochain satis�es the Jacobi identity. Note that it is only at this last step that the

Jacobi identity is used.

In the proof above, the element ' we constructed satis�es '(x; p) = 0 for any basis

element x satisfying x � p. The following proposition implies that we could have

assumed that '(x; p) is de�ned arbitrarily for x � p: we show that there exists a

cocycle ' which takes any prescribed values '(x; p) for x � p.

Proposition 2.4. On a polynomial algebra suppose that '(x; p) is any cochain

de�ned for x � p, satisfying '(x; 1) = 0: Then ' extends uniquely to a symmetric

cocycle satisfying '(1; 1) = 0.

Proof. From the condition �'(x; p; q) = 0 one derives the property

'(xp; q) = x'(p; q) + '(x; pq)� '(x; p)q:

If either p or q is constant, then the formula holds trivially. Otherwise, if x � p and

x � q, then the left hand side is de�ned recursively by the right hand side. The

consistency and the symmetry condition '(xp; xq) = '(xq; xp) follow from

'(xp; xq) = x'(p; xq) + '(x; xpq) � '(x; p)xq

= x

2

'(q; p) + x'(x; pq) � '(x; q)xp + '(x; xpq) � '(x; p)xq:

If '(q; p) = '(p; q), then the above formula is already symmetric in p and q, so the

check of consistency and symmetry is trivial. To see that �'(p; q; r) = 0, consider
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the case when p = xp

0

, where x � p

0

, x � q and x � r. Then

�'(xp

0

; q; r) = xp

0

'(q; r) � '(xp

0

q; r) + '(xp

0

; qr) � '(xp

0

; q)r

= xp

0

'(q; r) � x'(p

0

q; r)� '(x; p

0

qr) + '(x; p

0

q)r + x'(p

0

; qr) +

'(x; p

0

qr) � '(x; p

0

)qr � x'(p

0

; q)r � '(x; p

0

q)r + '(x; p

0

)qr

= x(p

0

'(q; r) � '(p

0

q; r) + '(p

0

; qr)� '(p

0

; q)r)

= x�'(p

0

; q; r);

which is zero by the induction hypothesis. The other cases follow from the ip

skew-symmetry and the Jacobi identity J(�') = 0.

Note that if  2 C

3

(A) is ip symmetric then its skew-symmetrization vanishes,

while if  is ip skew-symmetric its skew-symmetrization coincides (up to a factor

2) with J . Therefore, part of Theorems 2.2 and 2.3 can be reformulated by saying

that a 3-cocycle  on a polynomial algebra is a coboundary if and only if its skew-

symmetrization vanishes, as stated in the introduction.

3. Hochschild cohomology and differential operators

In this section we will assume that A is a polynomial algebra over a �eld F of

characteristic 0 and we �x a basis fx

i

g

i2I

for A. We will give a characterization

of Hochschild cochains in terms of (possibly in�nite order) di�erential operators.

First, let us establish some conventions on our terminology. For a basis element x

i

of A we will denote the derivation @=@x

i

by @

i

. For a multi-index I = (i

1

; � � � ; i

m

),

@

I

will stand for the di�erential operator @

i

1

: : : @

i

m

, x

I

will stand for the monomial

x

i

1

: : : x

i

m

, and jI j = m will be called its order. For a polynomial p, we will denote

@

I

(x

I

) by I !. Also, we shall write I < I

0

to indicate that I is obtained by removing

some of the indices in I

0

. By @

I

1


 � � � 
 @

I

n

we shall denote the n-di�erential

operator of order jI

1

j+ � � �+ jI

n

j given by

@

I

1


 � � � 
 @

I

n

(p

1

; � � � ; p

n

) = @

I

1

(p

1

) : : : @

I

n

(p

n

):

An expression of the form

' =

X

I

1

;��� ;I

n

'

I

1

;��� ;I

n

@

I

1


 � � � 
 @

I

n

;

where '

I

1

;��� ;I

n

are polynomials, and we sum over all multi-indices, gives a well-

de�ned n-cochain on the polynomial algebra. When only �nitely many non-zero

terms appear then we say that ' is a (�nite order) di�erential operator, otherwise

such an expression is called a formal di�erential operator. The order of a di�erential

operator ' is the largestm for which there is a nonzero term in ' of orderm. Every

n-cochain can be expressed as a formal di�erential operator, since we can solve for

the polynomials '

I

1

;��� ;I

n

above recursively by

I

1

! : : : I

n

!'

I

1

;��� ;I

n

= '(x

I

1

; � � � ; x

I

n

)�

X

(J

1

;��� ;J

n

)<(I

1

;��� ;I

n

)

'

J

1

;��� ;J

n

@

J

1

(x

I

1

) : : : @

J

n

(x

I

n

):

In the following lemma, which characterizes when an n-cochain is a di�erential

operator, if k 2 F

I

and I = (i

1

; : : : ; i

s

) is a multi-index, then (x� k)

I

denotes the

product (x

1

� k

1

)

i

1

: : : (x

s

� k

s

)

i

s

.
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Lemma 3.1. An n-cochain on a polynomial algebra is a di�erential operator pre-

cisely when there is some N such that for any k 2 F

I

,

'((x � k)

I

1

; � � � ; (x� k)

I

n

)(k) = 0;

whenever jI

1

j+ � � �+ jI

n

j � N .

Proof. If ' is a di�erential operator it su�ces to take N = 1 + ord'. On the

other hand, if the order of ' is in�nite, we may �nd for any N a non-zero '

I

1

;��� ;I

n

,

with jI

1

j + � � �+ jI

n

j � N , in particular this polynomial is non-zero at some point

(k

1

; � � � ; ; k

n

). Then

'((x � k)

I

1

; � � � ; (x� k)

I

n

)(k) = I

1

! : : : I

n

!'

I

1

;��� ;I

n

(k) 6= 0:

In the proof of the above lemma, it was necessary to evaluate a polynomial at

a point, so this argument cannot be extended to the ring of formal power series

in the variables fx

i

g

i

2 I, because evaluation at a point is not well de�ned. By

examining the recursion formulas in Theorems 2.2 and 2.3 and applying Lemma

3.1, one obtains the following theorem.

Theorem 3.2. Suppose that  is a tridi�erential operator of order m on a poly-

nomial algebra. If  is a Hochschild coboundary, then there exists a bidi�erential

operator ' of order m such that �' =  .

We conclude with an application to deformation theory.

Theorem 3.3. Any deformation of a polynomial algebra is equivalent to a defor-

mation whose cochains are bidi�erential operators.

Proof. Suppose that �

?

= � + h�

1

+ : : : is the given deformation, and that for

some n 2 N the cochains �

1

; � � � ; �

n

are given by di�erential operators. Then we

show that �

n+1

can be replaced by a di�erential operator yielding an equivalent

deformation (for the de�nition of equivalence of deformations we refer e.g. to [8]).

It is easy to see that the coboundary of a di�erential operator, as well as the

bracket of two di�erential operators is again a di�erential operator, so we can

apply Theorem 3.2 to express �(�

n+1

) = �(C), for some di�erential operator C

Thus �(�

n+1

� C) = 0 and we can express �

n+1

� C = A + S where A is a

skew-symmetric cocycle and S is a symmetric cocycle. Let �

0

n+1

= C + A. A

is a di�erential operator because it is a biderivation, hence �

0

n+1

is a di�erential

operator. �

n+1

and �

0

n+1

di�er by S, which is a coboundary, since it is a symmetric

cocycle, so we can replace �

?

by an equivalent deformation whose �rst n+1 terms

are given by di�erential operators.

Let us call a deformation �

?

= � + h�

1

+ : : : a deformation quantization when

the cochains �

i

are symmetric for even i and skew-symmetric for odd i. It follows

from Theorem 3.3 that any deformation quantization of a polynomial algebra is

equivalent to a deformation quantization whose cochains are bidi�erential opera-

tors. Indeed, the bidi�erential operator C for which ��

n+1

= �C has the same

parity as �

n+1

in view of Theorems 2.2 and 2.3.
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