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1. Introduction

1.1. Classify. When studying a geometric problem, one has:

• to define the family of objects one wants to investigate,
• to define the notion of equivalence between the objects,
• to introduce invariants to understand if the objects are equivalent.

In this way one wants to classify the objects. For example in topology objects are
topological spaces and one studies them up to homeomorphism. Let (X1,B1) and
(X2,B2) be two topological spaces, then X1 and X2 are homeomorphic if there
exist continuous maps f1 : X1 −→ X2 and f2 : X2 −→ X1 such that f1 ◦ f2 = idX2

and f2 ◦ f1 = idX1
. One can then introduce the notion of homotopy, with the

same notations as before, (X1,B1) and (X2,B2) are homeotopic equivalent if the
continuous maps f1 and f2 are such that f1 ◦ f2 is homotopic to idX2

and f2 ◦ f1 is
homotopic to idX1

.
Let us restrict our study to connected, compact topological spaces. The next step
in the classification is to enrich the structure. There are different ways, particularly
important for us is to consider those topological spaces over which one can perform
algebra and geometry. We arrive in this way at the notion of manifold.
A real manifold is a topological space M , which is Hausdorff, admits a countable
basis for the topology and admits an open cover {Ui}i∈I such that for any i there is
an homeomorphism ϕ : Ui −→ Vi ⊂ R

n, (where n is fixed and R
n is endoved with

the euclidian topology) we call n the real topological dimension of M . Moreover
there are maps

fij := ϕi ◦ ϕ
−1
j : ϕj(Ui ∩ Uj) −→ ϕi(Ui ∩ Uj).

Asking the maps fij to be differentiable, of class Ck or of class C∞ one get the
notion of differentiable, Ck-differentiable or C∞-differentiable manifold. One can
then introduce the notion of continuous, Ck-differentiable, or C∞-differentiable map
between two real manifolds M1 and M2 and hence the notion of equivalence (up to
diffeomorphism, up to Ck-differentiable or C∞-differentiable diffeomorphism).

In a similar way a complex manifold is a topological space X which is Hausdorff,
has a countable basis for the topology and admits an open cover {Ui}i∈I such that
for all i ∈ I there is an homeomorphism ϕi : Ui −→ Vi ⊂ C

n (where n is fixed
and C

n is endoved with the euclidian topology). We define n to be the complex
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topological dimension of X (the real topological dimension is 2n). Moreover there
are maps

fij := ϕi ◦ ϕ
−1
j : ϕj(Ui ∩ Uj) −→ ϕi(Ui ∩ Uj).

Asking these maps to be holomorphic, one get the notion of holomorphic manifold
(or complex manifold). One can then introduce the notion of holomorphic map
between two such manifolds X1 and X2 and so the notion of equivalence: two
complex manifolds are equivalent if there is a biholomorphic map between them.
Using the notion of sheaf one can go a step further and enrich the structure. For
example let X be a complex manifold then for any open subset U in X one can
define a ring

OX(U) = {f : U −→ C | f is holomorphic}.

This assignement defines a preshef which is a sheaf OX of rings on X and the
couple (X,OX) is called a ringed space. We will work in the sequel with these kind
of objects, in the case that dimX = 2.

Let me go back now to the classification: if two spaces are equivalent then
one first important invariant is the dimension, which must be the same. Take for
example complex manifold, then we have:

dimension 0: these are points, not very interesting!
dimension 1: curves, these are the Riemann surfaces, i.e. compact con-
nected manifolds of real dimension 2. Recalling that the genus is the number
of holes in the topological model we have a rough classification of Riemann
surfaces:

– g = 0: rational curves,
– g = 1: elliptic curves,
– g ≥ 2: curves of general type.

1.2. Curves. As seen before one can classify curves by the genus. One important
property is that they all admit an embedding in P

3(C) (this means that all complex
curves are projective) and they are all birational to curves in P

2(C) with at most
nodes as singularities (cf. [5, Ch. IV, Cor. 3.6 and Cor. 3.11]). Fixing the genus
one can classify curves up to biholomorphism. If C is a complex smooth curve and
g = 0 then C ∼= P

1(C), i.e. C is isomorphic to P
1 (recall that a birational map

between two smooth curves is an isomorphism, hence to say that C is birational
or isomorphic to P

1 is the same). If g(C) = 1 then C is called an elliptic curve
and there is an immersion of C in P

2 such that the equation of C is (in affine
coordinates):

y2 = x(x− 1)(x− λ), λ ∈ C

this exhibits the curve as a double cover of P1 ramified at 0, 1, λ and ∞. In this
case the Hurwitz formula reads 2g(C)− 2 = 2(2g(P1)− 2) + 4.

One can define the j-invariant of C:

j(C) :=
28(λ2 − λ+ 1)3

λ2(λ− 1)2
,

then two elliptic curves C and C ′ are isomorphic if and only if j(C) = j(C ′) (recall
that the birapports of the points 0, 1, λ,∞ define all the same j-invariant, [5, Ch.
IV, Prop. 4.6]). If g(C) ≥ 2 is more complicated to give a classification, but in the
case of genus 2 one can do a similar description as in the case of elliptic curves. In
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fact the curve can be written as a double cover of P1 ramified over 0, 1,∞, λ1, λ2, λ3,
where λi ∈ C, i = 1, 2, 3.

z2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3)

One can show more precisely that there is a bijection between isomorphism classes
of genus two curves and triples (λ1, λ2, λ3) ∈ P

1×P
1×P

1 modulo the action of the
permutation group Σ6 (cf.[5, Ch. IV, Ex. 2.2 ]). If g(C) ≥ 3 one can study linear
systems on curves to understand maps to projective spaces. In fact an important
tool in the study of varieties are linear systems. I recall here some basic facts about
them.

Let X be a projective smooth variety and D on X be a Weil(=Cartier, since X
is smooth) divisor, i.e. a finite linear combination D =

∑

niZi, where the Zi are
irreducible subvarieties of codimension one (for example on a curve a divisor is a
linear combination of points) and ni ∈ Z. One can then define

|D| = {D′ effective divisor s.t. D′ ∼ D}

(a divisor is effective if the ni in the above sum are all non negative), here ∼ denote
the linear equivalence of divisors. The previous set has the structure of a projective
space and is called the complete linear system associated to D. Finally a linear
system on X is a projective linear subspace δ ⊂ |D|.
Linear systems can define rational maps (eventually morphisms, embeddings) from
the variety to projective spaces; we will see this more in details later.
Another important tool that we know for curves, is the Riemann-Roch theorem.
Let X be a smooth curve, D =

∑

niZi a divisor on it and g(X) the genus of the
curve then we have

h0(OX(D)) = degD − g(X) + h1(OX(D))

where g(X) = h1(OX) = h0(ωX) (using Serre duality) and ωX is the canonical
sheaf (sheaf of holomorphic 1-forms) on the curve; degD :=

∑

ni. The sheaf
OX(D) is the sheaf associated to the divisor D. If D is defined by a compatible
system {(Uj , fj)} (this means that {Uj} is an open cover of X, fj is a local equation
of D on Uj , fj ∈ K∗(Uj), i.e. fj is a rational function not identically zero on Uj ,

fif
−1
j ∈ O∗(Ui∩Uj), i.e. fif

−1
j is a regular function which is never zero on Ui∩Uj)

then

OX(D)(U) = {h ∈ K(U) | hfj ∈ OX(U ∩ Uj)}

where K(U) denotes the sheaf of rational functions on U (more in general we denote
by K(X) the sheaf of rational functions on X).

1.3. Surfaces. One wants now to classify complex suraces of dimension 2. Already
in the 19th century people started to study surfaces: Cayley, Kummer, Steiner; then
the italians: Bertini, Cremona, del Pezzo, Segre, Veronese. The first classification
of smooth projective surfaces was then obtained by Enriques and Castelnuovo in
1910. In the case of surfaces there are new problems that one does not have in case
of curves.

• There exist compact, complex surfaces which are not projective.
• It is not possible to make a biholomorphic classification of surfaces, even
only for the projective ones. In fact Enriques and Castelnuovo discovered a
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new phenomena: the blow-ups. One can only give a birational classification
of smooth projective surfaces.

The classification by Enriques and Castelnuovo was then made clearer by Zariski,
Weil and van der Waerden in the case of projective surfaces and by Hodge, de Rham
and Lefschetz in the general case (about 1940). The main techniques in algebraic
geometry were carried out by Serre, Grothendieck and Hirzebruch in 1950–1960,
who introduced the notion of sheaf, cohomology, scheme and their properties. Us-
ing these tools Kodaira was able to complete the classification of complex surfaces,
also singular and non projective ones.
Nowadays the classification is called Enriques-Kodaira classification of compact
complex surfaces. The Kodaira classification uses importat invariants called pluri-
genera, these are strictly connected to the Kodaira dimension which roughly speak-
ing count the numbers of independent global differential forms on a surface. We
will see that the possible values are −∞, 0, 1, 2.

1. Kodaira dimension −∞:
– rational surfaces (birational to P

2),
– ruled surfaces (are the projectivized of a rank 2 vector bundle on a

smooth projective curve of genus ≥ 0).
2. Kodaira dimension 0:

– abelian surfaces (the quotients C
2/Λ where Λ is a rank 4 lattice, are

called complex tori. The projective ones are the abelian surfaces-but
not all the complex tori are projective!-),

– K3 surfaces,
– Enriques surfaces,
– bielliptic surfaces.

3. Kodaira dimension 1: proper elliptic surfaces
4. Kodaira dimension 2: surfaces of general type

This is a coarse classification as in the case of curves, in fact using the Kodaira
dimension one has for smooth curves:

1 Kodaira dimension −∞: rational curves (isomorphic to P
1), g = 0.

2 Kodaira dimension 0: elliptic curves (are all of the form C/Λ), g = 1.
3 Kodaira dimension 1: curves of general type, g ≥ 2.

2. The Picard Group and the Riemann–Roch theorem

In this section and in the next sections, by ”surface” I mean always a smooth
projective surface over the complex numbers and I will use the Zariski topology.
By Serre’s GAGA one can work in the algebraic setting (regular, rational functions
or maps, . . . ) or in the analytic setting (holomorphic, meromorphic functions and
maps, . . . ).

2.1. The Picard group. Let S be a smooth variety. I denote by Pic(S) the group
of line bundles (i.e. vector bundles of rank 1) modulo isomorphism or (which is
equivalent) invertible sheaf (i.e. locally free sheaf of rank 1) modulo isomorphism.
Recall that a sheaf F on S is called locally free of rank one if F|U

∼= OS |U , where

U is an open subset of S. We denote by A1(S) the group of divisor on S modulo
linear equivalence.
If D is a divisor on S we can associate an invertible sheaf OS(D) and the converse is
also true: to any invertible sheaf we can associate a divisor. We get an isomorphism
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Pic(S) ∼= A1(S). Let now f : S −→ X be a morphism of smooth varieties which is

surjective or such that f(S) is dense on X (i.e. f(S) = X), then we can define the
pull-back:

f∗ : Pic(X) −→ Pic(S).

If D is a divisor in Pic(X) defined by a compatible system {Ui, gi} then f∗D is
defined by {f−1(Ui), f

∗gi}, where f∗gi denotes the pull-back of the function gi (cf.
e.g. [11, Ch. III, §1.2]).

Definition 2.1. (Direct image or push down). Let X be a projective surface, Y a
smooth projective variety and

f : X −→ Y

a generically finite morphism of degree d (i.e. it is finite over a dense open set) then
for an irreducible curve C ∈ Pic(X) (not necessarily smooth) we define f∗(C) = 0
if f(C) is a point and f∗(C) = rf(C) if r is the degree of the restriction map
C −→ f(C) induced by f .

By linearity we can define f∗(D) for any Weil divisor on X. One can easily show
that if D ∼ D′ then f∗D ∼ f∗D

′ and f∗f
∗D ∼ dD.

A next basic ingredient in the classification of surfaces is intersection theory which
is the topic of the next section.

2.2. Intersection theory on surfaces.

Definition 2.2. Let C,C ′ be two irreducible curves on a surface X. Let x ∈ C∩C ′,
let f, g ∈ OX,x local equations for C and C ′ then the intersection multiplicity of C
and C ′ at x is

multx(C ∩ C ′) = dimC OX,x/〈f, g〉

Recall that we have dimC OX,x/〈f, g〉 finite iff the zero set V (〈f, g〉) is a finite
number of points (cf. [4, Ch. II, Proposition 6 and Corollay 1]).

If multx(C ∩C ′) = 1 we say that C,C ′ are transverse (or meet transversally) at
x. This means that f, g generate the maximal ideal mx in OX,x, in fact recall that
C ∼= OX,x/mx ⊂ OX,x/〈f, g〉. In this case f and g are a system of local coordinates
at x.

Definition 2.3. The intersection multiplicity of C and C ′ is

C · C ′ =
∑

x∈C∩C′

multx(C ∩ C ′)

Example 2.1. Let C be the cuspical cubic curve in the plane, i.e. C = {y2−x3 =
0} and L = {y = 0} a line. Then we have C ∩ L = {(0, 0)} and mult0(C ∩
L) = dimC[x, y]/(y2 − x3, y) = dimC〈1, x, x

2〉 = 3. Now take L′ = {x = 0} then
mult0(C ∩ L′) = dimC[x, y]/(y2 − x3, x) = dimC〈1, y〉 = 2. Finally with C ′ =
{y − x2 = 0} we get C · C ′ = dimC[x, y]/(y2 − x3, y − x2) = dimC〈1, x, x

2, x3〉 = 4

Observe that Definiton 2.3 is not good enough, in fact we can not extend it by
linearity to any divisor, since we do not know how to define C · C. We will see in
the next definition how to solve this inconvenient.

Definition 2.4. Let L, M ∈ Pic(X) be two line bundles, then

L ·M := χ(OX)− χ(L−1)− χ(M−1) + χ(L−1 ⊗M−1)

is called intersection product of L and M.
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Recall that χ(F) =
∑

i=0,1,2(−1)ihi(X,F) = h0(F)−h1(F)+h2(F) is the Euler

characteristic and F−1 = F∨ is the dual sheaf defined by U 7→ HomOX |U (F|U ,O|U ),

here F ∈ Pic(X).
We will show that the intersection product is well defined and bilinear. Then, since
it is clearly symmetric, it is an intersection pairing.

Lemma 2.1. Let C,C ′ ⊂ X irreducible curves then

OX(C) · OX(C ′) = C · C ′.

Proof. We have an exact sequence

0 −→ OX(−C − C ′)
(t,−s)
−−−−→ OX(−C)⊕OX(−C ′)

(s,t)
−−−→ OX −→ OC∩C′ −→ 0

where s ∈ H0(X,OX(C)) is a non–zero section vanishing on C and t ∈ H0(X,OX(C ′))
is a non-zero section vanishing on C ′ (cf. [2, Lemma I.5]). The exactness of the
sequence implies that:

χ(OX(−C − C ′)) + χ(OX) = χ(OX(−C)⊕OX(−C ′)) + χ(OC∩C′).

By using the exact sequence

0 −→ OX(−C) −→ OX(−C)⊕OX(−C ′) −→ OX(−C ′) −→ 0

we get

χ(OX(−C)⊕OX(−C ′)) = χ(OX(−C))⊕ χ(OX(−C ′))

and since OX(−C) = OX(C)∨ and OX(−C − C ′) = OX(C)∨ ⊗OX(C ′)∨ we get

OX(C) · OX(C ′) = χ(OX(C)∨ ⊗OX(C ′)∨) + χ(OX)− χ(OX(C)∨)− χ(OX(C ′)∨)
= χ(OC∩C′) = h0(OC∩C′)

Now recall recall that h0(OC∩C′) =
∑

x∈C∩C′ dimOX,x/〈fx, gx〉 = C · C ′ (with the
same notations as in Definition 2.2), so we are done. �

Recall that if L = OX(D) for some divisor D on X and we have the inclusion
i : C →֒ X, then we define L|C = i∗L which is also L|C = OC(i

∗D) and deg(L|C)
is then defined as deg(i∗D).

Lemma 2.2. Let C ⊂ X be a smooth irreducible curve, L ∈ Pic(X). Then

OX(C) · L = deg(L|C)

Proof. Consider the exact sequence

0 −→ OX(−C) −→ OX −→ OC −→ 0

then χ(OC) = χ(OX)−χ(OX(−C)) and tensoring with L−1 we get also χ(L−1
|C ) =

χ(L−1)− χ(L−1 ⊗OX(−C)). By definition we have

OX(C) · L = χ(OX)− χ(OX(−C))− χ(L−1) + χ(L−1 ⊗OX(−C))

By using the previous equalities one get

OX(C) · L = χ(OC)− χ(L−1
|C ).

Finally the Riemann-Roch theorem for curves gives

χ(OC) = 1− g(C), χ(L|C) = deg(L|C) + 1− g(C).

Hence one gets the equality. �
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Theorem 2.1. The intersection product

· : Pic(X)× Pic(X) −→ Z

defined as in Definition 2.4 is a symmetric bilinear form s.t. OX(C) · OX(C ′) =
C · C ′ for any C,C ′ distinct irreducible curves on X.

Proof. (sketch) It is clear that it is symmetric. Consider now L1, L2, L3∈ Pic(X)
and let

s(L1,L2,L3) := L1 · (L2 ⊗ L3)− L1 · L2 − L1 · L3.

If Li = OX(Ci), i = 1, 2, 3 and Ci is an irreducible curve, then with

L′ := OX(C2)⊗OX(C3) = OX(C2 + C3),

we have:

L1 · L
′ = deg(L′

|C1
) = deg(OX(C2)|C1

) + deg(OX(C3)|C1
)

= OX(C2) · OX(C1) +OX(C3) · OX(C1).

so we are done in this case. In fact a similar computation works also in the case
that only one of the Li is of the previous form. In the general case we will use the
A Theorem of Serre: Let L ∈ Pic(X) then there exists n >> 0 s.t. L ⊗ OX(n)
is very ample. From here it follows that any Weil divisor D can be written as
D = A − B where A and B are smooth irreducible curves, in fact it is enough to
choose B ∈ |nH| and A ∈ |D+nH|, (H denotes the class of the hyperplane section).
Since for n big enough these two systems are very amples by Bertini’s theorem (cf.[5,
Ch. II, Theorem 8.18]) the generic element is smooth and irreducible.
Now take L,M ∈ Pic(X) and write M = OX(A−B), A,B smooth curves. By the
previous remark we have:

0 = s(L,M,OX(B)) = L · (OX(A−B)⊗OX(B))− L ·M−L · OX(B).

The statement follows then by a direct computation using Lemma 2.1 and Lemma
2.2. �

Remark 2.1.

1. Let D and D′ be Weil divisors then we have D ·D′ = OX(D) · OX(D′). In
particular if D = D′ we have D2 := D ·D is well defined.

2. The above theorem tells us that if D′ ∼ D̃ then D ·D′ = D · D̃ for any Weil
divisor D, in particular D̃2 = D̃ ·D′.

I will formulate in the next proposition two application of the intersection prod-
uct.

Proposition 2.1. Let X and Y be two smooth projective surfaces and C a smooth
curve. Then:

1) Let f : X −→ C be a surjective morphism and F be the class of a fiber,
then F 2 = 0.

2) Let g : X −→ Y be a generically finite morphism of degree d (i.e there exists
an open dense subset U ⊂ Y s.t. the restriction g−1(U) −→ U is finite of
degree d) and D,D′ Weil divisors on Y . Then g∗D · g∗D′ = d(D ·D′).

Proof. Cf. [8, Proposition 2.4.4] �

Example 2.2.
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1. We consider X = P
2 and we describe the intersection product. We have

Pic(P2) ∼= Z and it is generated by the hyperplane section of P2 which is
a line L (or equivalently is generated by the line bundle OP2(1)). The line
L is obtained as the zero set of a section s ∈ H0(P2,OP2(1)). We have
that L2 = L1 · L2, where the L′

is are two lines of P2 meeting transversally.
Clearly L2 = 1. Since any irreducible curve is linearly equivalent to a
positive multiple of L, for Ci ∼ diL, i = 1, 2, we have C1 · C2 = d1d2.

2. Consider the surface X = P1 × P1 and define the following curves:

h1 := {(0 : 1)} × P1; h2 := P1 × {(0 : 1)}

Let U := X\(h1 ∪ h2), then one can easily show that U ∼= C
2. Since

Pic(C2) = 0 (cf.[5, Proposition 6.2]) we get Pic(U) = 0. Hence if D is a
Weil divisor on X we have that D|U = (f) where f ∈ K(U) is a rational
function on U . Hence there are n1, n2 ∈ Z such that D = (f)+n1h1+n2h2

and we get
Pic(X) ∼= A1(X) ∼= Z⊕ Z

generated by the classes h1 and h2. We denote OX(D) := OX(n1, n2) for
a line bundle OX(D) with D a divisor on X as above. The couple (n1, n2)
is called the bidegree of D.
To describe the intersection pairing we need to know the products hi · hj ,
i, j = 1, 2. We have h1 · h2 = |h1 ∩ h2| = 1 . The projection p1 : X −→ P1

to the first factor is surjective and has h1 as fiber over (0 : 1), hence by
Proposition 2.1, h2

1 = 0. In a similar way h2
2 = 0, hence the matrix of the

intersection pairing is
(

0 1
1 0

)

.

2.3. The Riemann-Roch theorem for surfaces. Recall the Riemann-Roch the-
orem for curves: Let C be a smooth curve and D a Weil divisor on C, then we
have:

h0(OC(D))− h1(OC(D)) = χ(OC(D)) = deg(D)− g(C) + 1

we want now to show an analogous formula for surfaces:

Theorem 2.2. (Riemann-Roch) Let X be a smooth projective surface, L ∈ Pic(X),
then

χ(L) = χ(OX) +
1

2
(L2 − L · OX(KX)).

Proof. By the first definition of intersection pairing

L−1 · (L ⊗OX(−KX)) = χ(OX)− χ(L)− χ(L−1 ⊗OX(KX)) + χ(OX(KX)).

By Serre duality: h0(OX) = h2(OX(KX)), h1(OX) = h1(OX(KX)), h2(OX) =
h0(OX(KX)). Finally χ(OX) = χ(OX(KX)) and χ(L) = χ(L−1 ⊗ OX(KX)).
Putting all together, we get

L−1 · (L ⊗OX(−KX)) = 2(χ(OX)− χ(L))

so

χ(L) = χ(OX)−
1

2
L−1 · (L ⊗OX(−KX)).

Now by bilinearity of the intersection pairing:

L−1 · (L ⊗OX(KX)) = L−1 · L+ L−1 · OX(KX) = −L2 + L · OX(KX).
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Substituting in the previous formula we get the statement. �

Remark 2.2. We can write the Riemann-Roch formula by using divisors. Let D
be a Weil divisor such that L = OX(D) then

χ(OX(D)) = χ(OX) +
1

2
(D2 −D ·KX).

Observe that since χ(OX(D)) is an integer we get D2 −D ·KX ∈ 2Z, in particular
if D · KX = 0 then D2 is even (we will see that this is the case when X is a K3
surface).

Definition 2.5. The irregularity of a smooth projective suface X is q(X) :=
h1(OX) = h0,1(X) (where one get the last equality using Dolbeault cohomology).
The geometric genus of X is

pg(X) := h2(OX) = h0,2(X).

With these definitions we get

χ(OX) = 1− q(X) + pg(X).

We recall now two very useful results:

Proposition 2.2. Let f : X −→ Y be a morphism between projective varieties
such that he natural map OY −→ f∗OX is an isomorphism. Then the fibers of f
are connected and non-empty. Conversely, if f is surjective, Y is normal and the
fibers are connected, one has an isomorphism OY

∼
−→ f∗OX

Proof. [9, Ch. IV, §8, Proposition 4] �

Corollary 2.1. Suppose that f : X −→ Y is a surjective morphism between pro-
jective varieties, that Y is normal and that the fibres of f are connected. For any
line bundle L on Y there is a natural isomorphism

f∗ : H0(Y,L)
∼
−→ H0(X, f∗L)

given by f∗(t) = t ◦ f .

Proof. [9, Ch. IV, §8, Corollary 5] �

Example 2.3.

1. If X = P
2 we get q(X) = pg(X) = 0, hence χ(OP2) = 1 and so the Theorem

of Riemann-Roch gives

χ(OP2(d)) = 1 +
1

2
(d2 + 3d)

recall that OP2(KP2) = OP2(−3).
2. If X = P

1 × P
1 let pi : X −→ P

1, i = 1, 2 be the projections. Then by
Proposition 2.2 we have OP1

∼= pi∗OX and by [5, Ch. III, Exercice 8.4]
Rjpi∗OX = 0 for all j > 0, then using the projection formula as in [5, Ch.
III, Exercice 8.1], we get

Hi(X,OX) = Hi(P1, pi∗OX) = Hi(P1,OP1) = 0, for all i > 0

Hence q(X) = pg(X) = 0, (we will see another way to compute q(X) and
pg(X) in Section 4, Proposition 4.2, when we will describe ruled surfaces, cf.
also [5, Ch. II, Example 6.6.1]). Now for the tangent bundle TX = p∗1TP1 ⊕
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p∗2TP1 hence, for the canonical sheaf we have OX(KX) = OX(−2,−2). This
together with χ(OX) = 1 gives for the Riemann-Roch Theorem on X:

χ(OX(n,m)) = 1 +
1

2
(2nm+ 2n+ 2m) = 1 + n+m+ nm.

Let me recall two more formulas

Theorem 2.3. (Noether’s formula). Let X be a smooth projective surface and
e(X) the topological Euler–Poincaré characteristic of X, then:

χ(OX) =
1

12
(K2

X + e(X))

where e(X) =
∑4

i=0(−1)ibi and bi := bi(X) := dimR Hi(X,R) is the i-th Betti
number.

Proof. [1, Ch. I, Theorem 5.4] �

Theorem 2.4. (Genus formula). Let X be a smooth projective surface, C ⊂ X be
an irreducible curve, then:

g(C) = 1 +
1

2
(C2 + C ·KX).

Proof. By definition g(C) = h1(OC). By using the exact sequence

0 −→ OX(−C) −→ OX −→ OC −→ 0

we get χ(OX) = χ(OX(−C)) + χ(OC) and using the Riemann-Roch theorem we
obtain

χ(OX(−C)) = χ(OX) +
1

2
(C2 + C ·KX)

then χ(OC) = − 1
2 (C

2 +C ·KX). Combining with the Riemann-Roch Theorem for
curves, i.e. χ(OC) = 1− g(C), one obtains the assertion. �

Theorem 2.5. (Adjunction formula). Let X be a smooth projective surface, C ⊂ X
be an irreducible curve, then we have for the canonical divisors:

KC ∼ (KX + C)|C

Proof. [1, Ch. I, Theorem 6.3] �

Taking the degrees of the previous divisors one obtains:

2g(C)− 2 = deg(KC) = deg((KX + C)|C) = (KX + C) · C = C2 +KX · C

this implies again the genus formula.

Example 2.4.

1. If X = P
2 we get the well known formula for the genus of a plane curve

C ∼ dL:

g(C) = 1 +
1

2
(d2 − 3d) =

(d− 1)(d− 2)

2
.

If d = 1, 2 then g(C) = 0 and so C is rational, if d = 3 then g(C) = 1 , C is
elliptic. Finally for d ≥ 4 we get g(C) ≥ 3 (in particular a curve of genus 2
can not be embedded as a smooth curve in P

2).
2. If X = P1 × P1 and C has bidegree (m,n) then we have g(C) = 1 + nm−

n−m.
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3. Birational Geometry

In this chapter we introduce blow-ups, (−1)-curves, minimal models and the
Kodaira-dimension.

3.1. Rational maps and linear systems. 1. Rational maps. Let X and Y be
projective surfaces a rational map ϕ : X //___ Y is a morphism from an open
subset U ⊂ X to Y which cannot be extended to a larger open subset. We say that
φ is defined at x ∈ X if x ∈ U . This definition works also for non-smooth projective
surfaces. With the same notations we have:

Lemma 3.1. If X is smooth then X\U := F is finite.

Proof. The problem is local and we can work in a neighbourhood of a point
x ∈ X. We can write ϕ = (f0 : . . . : fn) where the fi are rational functions. Observe
that without changing ϕ we can multiply the fi by a common factor g ∈ K(X)
and we can assume fi ∈ OX,x for all i and the fi do not have common factor in
OX,x (since X is smooth OX,x is UFD), now ϕ is not regular at the points where
f0 = . . . = fn = 0. Let Z be a subvariety (hence irreducible) of codimension 1 of
X. Again since OX,x is UFD, the variety Z is defined by an irreducible polynomial
g = 0. If Z is contained in {f0 = . . . = fn = 0} then g is a common factor of the
fi in OX,x but this is not possible. �

Some remarks:

i. If C ⊂ X is an irreducible curve, we can talk about the image of C, ϕ(C) =

ϕ(C − F ) which is the Zariski closure of ϕ(C − F ). In the same way we

can talk about the image of X, ϕ(X) := ϕ(X − F ). A rational map is

dominant if ϕ(X) = Y .
ii. The restriction induces an isomorphism between Pic(X) and Pic(X − F ).

Hence we can talk about inverse image under ϕ of a divisor D on Y (or of
a linear system on Y or of a sheaf on Y ), we denote it by ϕ∗D.

2. Linear systems. For a divisor D on a surface X we can define the complete linear
system associated to D, which is

|D| = {D′ is effective, D′ ∼ D}.

If s ∈ H0(OX(D)) = {f ∈ K(X) | (f) +D ≥ 0} is a global section (K(X) denotes
the sheaf of rational functions) then (s)0 := (s) +D is an effective divisor linearly
equivalent to D. Given D′ ≥ 0 with D′ ∼ D then D′ = D + (f), for some rational
function f , so D′ = (f)0. Since f is defined up to a scalar multiplication we have

|D| = P(H0(OX(D)).

A linear system is a projective sublinear space δ ⊂ |D|. A curve C is a fixed
component of δ if for any D ∈ δ, we have C ⊂ supp(D). The fixed part of δ is the
biggest divisor F that is contained in any D ∈ δ. For any D ∈ δ the system |D−F |
has no fixed part. A point p ∈ X is said a base point (or fixed point) of δ, if any
divisor D ∈ δ contains p. If the system δ has no fixed part, then it has only a finite
number of base points, say b, then clearly 0 ≤ b ≤ D2 for any D ∈ δ, (eventually
b = 0, if there are no base points).
3. Rational maps and linear systems. Let S be a surface then there is a bijection
of sets:

(i) {rational maps ϕ : S //___ P
n , s.t. ϕ(S) is not contained in an hyperplane},
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(ii) {linear systems on S without fixed part and of dimension n}.

The correspondence goes as follows:

• to ϕ we can associate the linear system ϕ∗|H| where |H| is the linear system
of hyperplanes of Pn.

• Conversely let δ be a linear system on S with no fixed part and let δ̌ be the
projective dual to δ. Now define a rational map

ϕ : S //___ δ̌

by x 7→ {D ∈ δ | x ∈ supp(D)}∨, the latter is an hyperplane of δ and so
a point of δ̌, which is a projective space. The map ϕ is not defined at the
base points of δ.

One can define the previous map ϕ also using sections. For simplicity let δ = |D|
a complete linear system and s0, . . . , sn be a basis of H0(S,OS(D)) then we have
a rational map

ϕ|D| : S //___ P(H0(S,OS(D)))∨ , x 7→ (s0(x); . . . ; sn(x)).

Recall that a linear system |D| is very ample (cf. [5, Ch. II, §5]) if ϕ|D| is an
embedding.

Example 3.1. Consider the complete linear system of quadrics in P
2 then its

dimension is h0(OP2(2)) − 1 = 5. A basis is generated by the monomials x2
0, x

2
1,

x2
2, x0x1, x0x2, x1x2. The linear system is clearly very ample and we have an

embedding
P
2 →֒ P

5

which is called a Veronese embedding, we will see this kind of morphism later when
we will describe rational surfaces.

Definition 3.1. A birational map between varieties f : X //___ Y is a rational

map amitting an inverse rational map f−1 : Y //___ X such that f ◦ f−1 and

f−1 ◦ f are the identity (as rational maps). If there is a birational map from X to
Y we say that X and Y are birationally equivalent or birational. Clearly birational
varieties have the same dimension.

Example 3.2. Consider P1 × P
1 and the Segre embedding:

s : P1 × P
1 →֒ P

3, ((x0 : x1), (y0 : y1)) 7→ (x0y0 : x0y1 : x1y0 : x1y1)

it is well defined and injective. Putting u := x0y0, v := x0y1, w := x1y0, z := x1y1,
we get X := Im(s) = V (uz − vw) which is a smooth ruled quartic.
Consider the projection from the point (0 : 0 : 0 : 1) ∈ X:

f : X − {(0 : 0 : 0 : 1)} −→ P
2 = {z = 0}, (u : v : w : z) 7→ (u : v : w)

this defines a rational map from X to P
2, and the inverse is

g : P
2 //___

P
3 , (z0 : z1 : z2) 7→ (z20 : z0z1 : z0z2 : z1z2).

This map is not defined at z0 = z1 = 0, which is the point (0 : 0 : 1), and at
z0 = z2 = 0, which is the point (0 : 1 : 0). Observe that all the points of the line
z0 = 0 are mapped to the point (0 : 0 : 0 : 1). Clearly f ◦g and g ◦f are the identity
as rational maps, hence P

1 × P
1 is birational to P

2 but it is not isomorphic. There
are many ways to see this, since we have introduced the Picard group one can argue
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that Pic(P2) = Z and Pic(P1 × P
1) = Z⊕Z, hence they can not be isomorphic. Or

even more easy: on P
2 two curves meet always, on P

1 × P
1 it is not the case, since

two lines in the same ruling do not meet.

A very useful theorem when working in birational geometry is the Zariski Main
Theorem, we formulate it for surfaces but it works also for normal projective vari-
eties (for the proof, see [5, Ch. III, Corollary 11.4]).

Theorem 3.1. (Zariski Main Theorem). Let X,Y be smooth projective surfaces
and f : X −→ Y a birational morphism, then the fibers of f are connected.

3.2. Blow-up of a point. Let X be a complex surface, q ∈ U ⊂ X an open
neighborhood and (x, y) local coordinates s.t. q = (0, 0) in this coordinate system.
Define

Ũ := {((x, y), (z : w)) ∈ U × P
1 | xw = yz}

we have the projection onto the first factor:

pU : Ũ −→ U, ((x, y), (z : w)) 7→ (x, y)

if (x, y) 6= (0, 0) then p−1
U ((x, y)) = ((x, y), (x : y)) and for q = (0, 0) we have

p−1
U (q) = {q} × P

1 ∼= P
1. Hence the restriction:

pU : p−1
U (U − {q}) −→ U − {q}

is an isomorphism and p−1
U (q) is a curve contracted by pU to a point. We get

then a surface X̃ with a morphism p : X̃ −→ X, where p induces an isomorphism
X̃ − p−1(q) ∼= X − {q} and p(P1) = q (is a copy of P1 contracted to a point).

Definition 3.2. The morphism p : X̃ −→ X is called the blow-up of X along q.
We often write Blq(X) := X̃. The curve E := p−1(q) ∼= P

1 is called exceptional
curve or exceptional divisor of the blow-up.

Remark 3.1. If X is projective X̃ := Blq(X) is projective too: in fact one can
define the blow-up of Pn at (0 : . . . : 0 : 1) as a subvariety

P̃n ⊂ P
n × P

n−1

in an analogous way. Let (x0 : . . . : xn) and (y0 : . . . : yn−1) be the projective
coordinates and take the variety defined by xiyj = xjyi, for all i, j = 0, . . . , n − 1.
Next take the Segre embedding

P
n × P

n−1 −→ P
n2+n−1.

Now every subvariety of Pn×P
n−1 odefined by bihomogeneous equation correspond

to a projective subvariety of Pn2+n−1 via the Segre embedding. One can then easily
show that the blow-up of a projective variety is projective.

Definition 3.3. Let C ⊂ X be a curve, the strict transform of C under the blow-up
p : X̃ −→ X at q is the Zariski closure

C̃ := p−1(C − {q})

in X̃.

Remark 3.2. The strict transform of a curve is always a curve. If q /∈ C then
C̃ = p−1(C) so that C̃ = p∗(C) (in this case C̃ and C are isomorphic).

More in general one has
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Lemma 3.2. Let C be an irreducible curve passing through q with multiplicity m,
then

p∗(C) = C̃ +mE.

Proof. Clearly we have p∗(C) = C̃ + kE, k ∈ Z. Use local coordinates (x, y)

around q (in the subset U). On the open subset Ũ ∩ (U ×{z 6= 0}) we can consider
coordinates u = x and v = w

z
(then, since xw = yz, we get y = xw/z = uv). In

these coordinates we see that p(u, v) = (u, uv). Let f be a local equation of C at
q, as C has multiplicity m at q we have:

f = fm(x, y) + o(m)

where o(m) denote terms of degree > m. Hence looking at the equation of p∗(C)
we have f ◦ p(u, v) = fm(u, uv) + o(m) = um(fm(1, v) + o(m)) and we see that the
component E has multiplicity m. �

Example 3.3. Consider the curve C : y2 = x2(x + 1) which is y2 − x2 − x3 = 0,
the equation of an ordinary node. Blow up C

2 at (0, 0) then p∗(C) is given by
x2w2 − x2 − x3 = 0 with y = xw. Hence one get x2(w2 − 1 − x) = 0, so p∗(C) =

C̃ + 2E.

Proposition 3.1. Let X be a smooth projective surface, p : X̃ −→ X be the blow
up of X along q ∈ X, E := p−1(q) the exceptional curve.

1. The morphism of groups:

Pic(X)⊕ Z −→ Pic(X̃), (OX(D), n) 7→ OX̃(p∗D + nE)

is an isomorphism.
2. For every two divisors D,D′ on X we have

p∗D · p∗D′ = D ·D′, p∗D · E = 0, E · E = −1.

3. KX̃ = p∗KX + E.

Proof. First we show 2. Let C,C ′ be curves, q /∈ C∩C ′ then C ·C ′ = p∗C ·p∗C ′ =
C̃ · C̃ ′ where the first equality follows by Proposition 2.1, since the blow-up on C is
a finite morphism of degree one. Moreover we have p∗C ·E = 0 as E is contracted
to q (use the projection formula). For E2 consider the following: let C be a curve
containing q with multiplicity one (since X is projective take smooth hyperplanes

sections). Now C̃ = p∗C − E so that (p∗C − E) · E = C̃ · E = 1 hence using the
fact that p∗C · E = 0 one get E2 = −1. One obtain in an easy way the case of
q ∈ C ∩ C ′ and the general case with divisors.
We show 1. Every curve on X̃ is either a multiple of E or it is not. If not, then it
is not contracted to a point and it is the proper transform of a curve on X. This
shows that the map

Pic(X)⊕ Z −→ Pic(X̃), (C, n) 7→ C̃ or (0, n) 7→ nE

is surjective.
To show injectivity: suppose p∗D + nE ∼ 0 then 0 = (p∗D + nE) · E = −n
hence p∗D ∼ 0 now p∗p

∗D = D and so D ∼ 0. To conclude with 3. Let ω be a
meromorphic 2–form on X which is holomorphic in a neighborhood of q ∈ X and
ω(p) 6= 0. Away from E the zeros and poles of p∗ω are the same as the zeros and
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poles of ω. Hence div(p∗ω) = p∗(ω) + kE, i.e. KX̃ = p∗KX + kE for some k ∈ Z.
Now use adjunction (with E ∼= P

1) to get:

−2 = degKE = deg((KX̃+E)|E) = KX̃ ·E+E2 = p∗KX ·E+kE2+E2 = −(k+1)

so k = 1 and we are done. �

3.3. Indeterminacies. In this section we prove a fundamental result of surface
theory: every birational morphism is a composition of blow-ups and isomorphisms.
Consider

f : S //___ P
n

and let Indf ⊂ S the indeterminacy locus of f , then codim(Indf ) ≥ 2, so for

surfaces Indf contains only points. We denote as usual by f(S) := f(S − Indf ) the
image of S in P

n.

Proposition 3.2. (Elimination of indeterminacy). Let f : S //___ P
n be a ra-

tional map. There is a finite sequence

Sn
pn
−→ Sn−1

pn−1

−−−→ . . .
p1

−→ S0 := S //___ P
n

where for each n the map pn is the blow–up of Sn−1 along a point, such that the
map:

fn := f ◦ p1 ◦ . . . ◦ pn : Sn −→ P
n

is a morphism.

Proof. We can assume that f(S) is not contained in an hyperplane of Pn. If
one considers a system of hyperlanes of Pn one get by pull-back a linear system
δ ⊂ |D| on S associated to a divisor D, whose base locus is contained in Indf . For
simplicity we give the proof for complete linear systems (i.e. δ = |D|), it is not
difficult to generalize it.
If Indf = ∅, then f is a morphism and there is nothing to prove. Suppose Indf 6= ∅
and q ∈ Indf . Let

S1 := Blq0(S)
p1

−→ S = S0

the blow-up at q0, then p∗1D0 = D1 + m1E1 where D0 := D, D1 is the proper
transform ofD and E1 is the exceptional divisor of p1. Then E1 is a fixed component
of the system p∗1D (since q0 is a base point), but then the system |D1| = |p∗1D −
m1E1| has no base components. If |D1| has no base points we are done, if Bs(D1) 6=
∅ then let q1 ∈ Bs(D1) and we go on (observe that one may need more than one
blow-up to get one base point less in the base locus). After k steps we get a
surface Sk = Blqk−1

(Sk−1) with pk : Sk −→ Sk−1 and on Sk we have a divisor Dk

s.t. p∗kDk−1 = Dk + mkEk, mk ∈ Z and |Dk| has no fixed components. By the
properties of the blow-up we get

0 ≤ D2
k = D2

k−1 −m2
k < D2

k−1.

The first inequality follows since Dk does not contain curves in the fixed locus.
Hence the sequence {D2

k} must stabilize for some k >> 0. Hence for some k >> 0
we have that |Dk| has no base locus and we are done. �

Theorem 3.2. (Universal property of blow-up). Let X,Y be smooth projective
surfaces , f : X −→ Y be a birational morphism. If y ∈ Y is a point where
the birational inverse g : Y //___ X is not defined, then there is a morphism
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h : X −→ Bly(Y ) which is birational and such that p ◦ h = f , where p is the
blow–up of Y at y.

Proof. Cf. [2, Proposition II.8] �

Remark 3.3.
1. On can show that in fact f−1(y) is a curve not necessarily irreducible but

connected (a consequence of Zariski Main Theorem!).
2. One has a similar result for f : X //___ Y a birational map, such that the

inverse is not defined at y ∈ Y . In fact there exists a curve (not necessarily
irreducible) s.t. f(D) = y (the fibers are not necessarily connected in this
case, hence one can not use directly the Zariski Main Theorem, for a proof
see [2, Lemma II.10]).

Theorem 3.3. Let f : X −→ Y be a birational morphism, X and Y be smooth
projective surfaces. Then f is the composition of a finite number of blow-ups and
isomorphisms.

Proof. Suppose that f is not an isomorphism, the there is a point y1 ∈ Y over
which the inverse map f−1 is not defined. By Theorem 3.2 there is a birational
morphism f1 : X −→ Bly1

(Y ) such that p1 ◦ f1 = f . The map f contracts all the
curves contracted by f1 and the curves mapped from f1 to the exceptional divisor
E1 of p1 (observe that the number of curves contracted is over the points where f−1

is not defined, hence it is a Zariski closed set, i.e. it consists of a finite number of
points). The number of curves contracted by f1 is strictly less than the number of
curves contracted by f . If f1 does not contract any curve, then f−1 is everywhere
defined and f1 is an isomorphism, so we are done. If f1 contracts curves there
exists y2 ∈ Y1 s.t. f−1

1 is not defined and we can proceed as before. Notice that
this process has to finish, since the number of curves contracted strictly decrease.
�

Corollary 3.1. Let X,Y be smooth projective surfaces and f : X //___ Y be a
birational map. Then there is a smooth projective surface Z and two morphisms
g : Z −→ X, and h : Z −→ Y which are composition of blow-ups and isomorphisms,
such that h = f ◦ g.

Proof. By applying Proposition 3.2 and Theorem 3.3 we can find the maps g and
h as in the statement. �

Corollary 3.2. If X and Y are birational surfaces then q(X) = q(Y ), pg(X) =
pg(Y ), χ(OX) = χ(OY )

Proof. By Corollary 3.1 it is enough to show that q, pg and χ are invariant under
blow-up. Hence let p : Y −→ X be the blow-up of X at some point. Then by
Proposition 2.2 p∗OY = OX , moreover by [5, Ch. V, Proposition 3.4] Rip∗OX = 0
for all i > 0, hence using the projection formula as in [5, Ch. 3, Exercice 8.4] one
get:

Hi(X,OX) = Hi(X, p∗OY ) = Hi(Y,OY )

hence we get the assertion. �
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3.4. Castelnuovo’s contraction theorem. We have seen that birational maps
between smooth projective surfaces are combinations of isomorphisms and blow-ups
of points. Let x ∈ X, if we blow-up we get a surface X̃ containing a (−1)-curve E,
i.e. E is rational and E2 = −1. We will see that the contrary is also true, i.e. if
a surface X̃ contains a smooth rational irreducible curve C, with C2 = −1, (i.e. a

(−1)-curve), then X̃ is the blow-up of a surface X and C is the exceptional divisor
of the blow-up.

Theorem 3.4. (Castelnuovo’s contraction). Let X be a smooth projective surface
and suppose that there is a (−1)-curve E. Then there is a smooth projective surface
Y and a point y ∈ Y such that X ∼= Bly(Y ) and E = p−1(y) where p : X −→ Y is
the blow-up morphism at y.

Proof. For the complete proof see [2, Theorem II.17]. I recall only how to define
the map p. Let H be a very ample divisor on X (this is possible since X is
projective). In the proof one needs also H1(X,OX(H)) = 0, this is easy up to
change H with some multiple mH, m >> 0, then the B Theorem of Serre tells
us that hi(OX(mH)) = 0 for any i > 0, since OX(H) is a coherent sheaf. Hence
suppose that H already satisfy this condition. Let d := H · E and H ′ := H + dE

then H ′ · E = 0. Now consider the map ϕ|H′| : X //___ ϕ|H′|(X) defined by the

linear system |H ′| on X − Bs(|H ′|). One then shows that ϕ|H′| is defined on the
whole X and has the properties of a blow–up. �

Conclusion. Whenever a smooth projective surfaceX contains a (−1)–curve we
can contract it smoothly, getting a surface Y with rank(Pic(Y )) =: ρ(Y ) = ρ(X)−1.

Definition 3.4. A surface X is called minimal if every birational morphism f :
X −→ Y is an isomorphism. A minimal model for a surface X is a surface X ′

which is minimal and birational to X.

Corollary 3.3.

1. A surface is minimal if and only if it contains no (−1)-curve.
2. In particular every surface has a minimal model.

Proof. 1. If X is a smooth projective minimal surface and there exists a (−1)-
curve, one can blow it down and we get a birational morphism which is not an
isomorphism. Suppose that X does not contain any (−1)-curve, but X is not mini-
mal, then there is a birational morphism f : X −→ Y which is not an isomorphism.
By Theorem 3.3, f is a composition of isomorphisms and blow-ups, and there is at
least one blow-up. As f is defined on X then X contains a (−1)-curve, a cotrad-
diction.
2. Let X be a smooth projective surface. We can assume that X is not already
minimal, then from part 1, there exists a (−1)-curve E ⊂ X. By Castelnuovo’s the-
orem we can contract the curve E and we get a surface X1 with ρ(X) = ρ(X1)+ 1,
if X1 is minimal we are done, otherwise we go on and we get a sequence of blow-ups

X = X0
p0

−→ X1
p1

−→ . . .
pn−1

−−−→ Xn
pn
−→ . . .

with ρ(Xn) = ρ(X) − n and ρ(Xn) > 0, this sequence must finish since ρ(Xi) > 0
(since all the Xi are projective). Hence there is an n0 such that Xn0

does not
contain any (−1)-curve and so it is a minimal model for X. �

Remark 3.4.
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1. Classify minimal surfaces allow us to classify surfaces up to birational equiv-
alence.

2. One natural question is how many minimal models there are? I’ll give you
an example.

Example 3.4. Let X = P
2 and Y = P

1 × P
1. Then X and Y are birational but

not isomorphic and they are both minimal. In fact for any irreducible curve C ⊂ X
we have C2 > 0 and for any C ⊂ Y we have C2 even. Hence a smooth surface S
birational to P

2 can have at least two non-isomorphic birational minimal models.

3.5. Kodaira dimension. The pluricanonical system |nKX | is very important for
a surface X, using it we can define the Kodaira dimension.

Definition 3.5. Let X be a smooth projective variety, KX a canonical divisor on
X. Let

ϕ|nKX | : X //___

P
N

be the rational map defined by |nKX |. The Kodaira dimension of X, denoted κ(X)
is the maximum dimension of the images ϕ|nKX |(X) for n ≥ 1. If dim(X) = 2 we
have κ(X) = −∞, 0, 1 or 2.

Remark 3.5.

1. The system |nKX | can have fixed components then one can take them
away and consider the rational map defined by the new system, which has
eventually only fixed points and has the same dimension of the system with
which we have started.

2. If |nKX | = ∅ for all n then ϕ|nKX |(X) = ∅ and we say that κ(X) = −∞.

3. For a curve recall that g = h1(OC) = h0(OC(KC)) and we have (cf. [2,
Chapter VII])

– κ(C) = −∞ iff g = 0,
– κ(C) = 0 iff g = 1,
– κ(C) = 1 iff g ≥ 2.

4. For a surface we have
– κ(X) = −∞ iff h0(nKX) = 0 for all n ≥ 1,
– κ(X) = 0 iff h0(nKX) = 0 or h0(nKX) = 1 and there exists N such

that h0(NKX) = 1,
– κ(X) = 1 iff there exists N such that h0(NKX) ≥ 2 and ϕnKX

(X) is
at most a curve for all n,

– κ(X) = 2 iff ϕNKX
(X) is a surface for some N .

Example 3.5. For P2 we have O(KP2) = OP2(−3) and O(nKP2) = OP2(−3n), so
h0(OP2(−3n)) = 0 which gives κ(P2) = −∞.

Proposition 3.3. Let Sd1,...,dr
be a surface in P

r+2 which is a smooth complete
intersection of r hypersurfaces of degrees d1, . . . , dr then:

• The surfaces S2, S3, S2,2 (which are rational) have κ = −∞.
• The surfaces S4, S2,3, S2,2,2 have canonical class K ∼ 0 and so κ = 0 (these
are K3 surfaces),

• all other surfaces Sd1,...,dr
have κ = 2 (are surfaces of general type)

Proof. By using the adjunction formula (Theorem 2.5) one computes for S2, S3, S4 ⊂
P
3:

OSi
(KSi

) = OP3(KP3+Si
)|Si

= (OP3(−4 + degSi))|Si
= OP3(i− 4)|Si

= OSi
(i− 4).
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In general for S := Sd1,...,dr
we get OS(KS) = OS((

∑

di) − r − 3). Hence one get
immediately that κ(S2) = κ(S3) = κ(S2,2) = −∞ (the systems |nKS | are empty).
We have KS4

∼ 0, KS2,3
∼ 0, KS2,2,2

∼ 0. In the other cases KS is a positive
multiple of the hyperplane section, hence κ = 2. �

Remark 3.6. A surface S4 = {f4(x0, x1, x2, x3) = 0} is the zero set in P
3 of a

homogeneous polynomials of degree 4 (for general choice of the coefficients of f4,
the zero set is smooth). As seen before it has KS4

∼ 0 and it is a first easy example
of a K3 surface. We will return on K3 surfaces in Section 5.2.

Let now Pm(X) := h0(X,OX(mKX)) be the plurigenera.

Theorem 3.5. Let X, Y be birational smooth projective surfaces then Pm(X) =
Pm(Y ), for all m ≥ 0 and so κ(X) = κ(Y ).

Proof. By Corollary 3.1 there exists a projective surface Z and two maps g :
Z −→ X and h : Z −→ Y composition of blow-ups and isomorphisms s.t. h = f ◦g.
It is hence enough to show that the Kodaira dimension does not change under blow-
up. Let X be a projective surface, p : X̃ −→ X be the blow-up at x ∈ X, E ⊂ X̃ be
the exceptional divisor. By the properties of the blow-up (Proposition 3.1) we have

KX̃ = p∗KX + E. Assume that there is an effective divisor D on X̃, D ∼ mKX̃

for some m, then we have:

D · E = mKX̃ · E = mp∗KX · E +mE2 = −m.

Since D is a divisor on X̃, then one can write D = D′ + kE with k ≥ 0, supp(D′)
does not contains E and D′ ≥ 0. Hence we get:

0 ≤ D′ · E = D · E − kE2 = −m+ k, hence k ≥ m.

So D −mE = D − kE + (k −m)E is still effective, as D ∼ mKX̃ then D −mE ∼
mKX̃ −mE. So we get a bijective map:

|mKX̃ | −→ |mKX̃ −mE| = |p∗(mK −X)|, D 7→ D −mE

So that
h0(X̃,OX̃(mKX̃)) = h0(X̃,OX̃(m(KX̃ − E)))

= h0(X̃, p∗OX(mKX)) = h0(X, p∗OX(mKX))

For the last inequality we apply Corollary 2.1. Hence κ(X) = κ(X̃). �

Theorem 3.6. (Enriques-Castelnuovo’s birational classification). Let X be a smooth
projective surface. A minimal model of X is one of the following:

1. Kodaira dimension −∞:
– rational surfaces,
– ruled surfaces.

2. Kodaira dimension 0:
– abelian surfaces,
– K3 surfaces,
– Enriques surfaces,
– bielliptic surfaces.

3. Kodaira dimension 1: proper elliptic surfaces.
4. Kodaira dimension 2: surfaces of general type.

We will not prove here the Enriques Castelnuovo’s theorem (cf. [1, Ch. VI]), we
will more show properties of the surfaces in the classification.
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4. Kodaira dimension −∞

4.1. Ruled and rational surfaces.

Definition 4.1.

1. Let X be a smooth projective surface, then X is ruled if there exists a
birational map

X //___ C × P
1

where C is a smooth curve. If C ∼= P
1 then X is said rational.

2. A smooth projective surface X is geometrically ruled if there exists a sur-
jective morphism p : X −→ C, where C is a smooth curve, so that the fibers
are isomorphic to P

1 and p admits a section, i.e. a morphism σ : C −→ X
such that p ◦ σ = id.

Remark 4.1.

1. One can show that a geometrically ruled surface is ruled, i.e. X is birational
to C × P

1 (this follows from a theorem of Noether and Enriques, cf. [2,
Theorem III.4]). In particular for every x ∈ X there exists an open subset
U ⊂ C and x ∈ V := p−1(U) ⊂ X s.t. V ∼= U × P

1 (the isomorphism is
locally trivial).

2. Any ruled surface is birational (not necessarily isomorphic!) to a geomet-
rically ruled surface (consider the projection p : P1 × C −→ C).

Example 4.1. Let E be a rank 2 vector bundle on a curve C, one can consider
the projective bundle PC(E) associated to E. It is a surface which is fibered over
C,

PC(E) −→ C.

The fiber over x ∈ C is P(Ex) ∼= P
1. Since E is locally trivial PC(E) is locally

isomorphic to U × P
1 so it is a ruled surface (one can easily show the existence of

a section). More in general we have:

Theorem 4.1. Let p : X −→ C be a geometrically ruled surface. Then there exist
a rank 2 vector bundle on C and an isomorphism

f : X −→ P(E)

such that π ◦ f = p, where π : P(E) −→ C is the projection. The geometrically
ruled surfaces P(E) and P(E′) over C are isomorphic iff there exist a line bundle
L over C such that E ∼= E′ ⊗ L.

Proof. Consider the sheaf Gl(2,OC) defined by

Gl(2,OC)(U) := Gl(2,OC(U))

these are the 2 × 2-matrices with coefficients in OC(U). We can consider further-
more the quotient sheaf Gl(2,OC)/O

∗
C = PGl(2,OC), where the action of O∗

C on
Gl(2,OC) is by a scalar multiplication of the coefficients. One can show that the
isomorphism classes of rank 2 vector bundles on C are classified by

H1(C,Gl(2,OC)) =
{rank 2 vector bundles onC}

isomorphism
,
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(recall that H1(C,Gl(1,OC)) = H1(C,O∗
C) = Pic(C) the line bundles on C) and

H1(C,PGl(2,OC)) =
{P1 − bundles onC}

isomorphism
.

There is an exact sequence

1 −→ O∗
C −→ Gl(2,OC) −→ PGl(2,OC) −→ 1

inducing an exact sequence in cohomology (one has to be careful here, since the
sheaves are not of abelian groups, cf. [2, Proposition III.7] but also [10, Ch. VII,
Annexe, Proposition I] for the existence of the exact sequence in cohomology):

H1(C,O∗
C) −→ H1(C,Gl(2,OC))

p
−→ H1(C,PGl(2,OC)) −→ H2(C,O∗

C) = 0

where p is defined as p(E) = P(E). Hence we have the assertion. �

4.2. Invariants of (geometrically) ruled surfaces. I recall the definiton of the
Néron-Severi group that we will need in the sequel (cf. [1, Ch. I, Section 6]). Let
X be a complex manifold then we have the exponential sequence of sheaves

0 −→ ZX
i
−→ OX

j
−→ O∗

X −→ 0

where i is just the inclusion and j associates exp(f) to a germ of holomorphic
function f . Then we have the exponential cohomology sequence:

. . . −→ H1(ZX) −→ H1(OX) −→ H1(O∗
X)

c1−→ H2(ZX) −→ H2(OX) −→ . . .

Recall that H1(O∗
X) = Pic(X) and c1 is the first Chern class of a line bundle. Let

Pic0(X) := ker(c1) = {line bundles which are equivalent to 0} then Pic(X)/Pic0(X) ∼=
Im(c1) ⊂ H2(X,Z) is called the Néron-Severi group of X, denoted by NS(X). This
is also defined as {Divisor}/{algebraic equivalence}.
Let C0 = σ(C) where p : X −→ C is a geometrically ruled surface and σ : C −→ X
is a section.

Proposition 4.1. Let p : X = P(E) −→ C be a geometrically ruled surface. Then:

1. Pic(X) ∼= p∗ Pic(C) ⊕ Z[C0], H2(X,Z) = NS(X) and is generated by F
and C0 (F is the class of the fiber of p).

2. If d = deg(E)(= deg(det(E))) then C2
0 = d, (det(E) = ∧2E).

3. c1(KX) ∼ −2C0 + (2g(C)− 2 + d)F in H2(X,Z) and K2
X = 8(1− g(C)).

Proof. (sketch). 1. We have C0 ·F = 1 (C0 is the class of the section) and F 2 = 0
(two fibers do not meet, cf. Proposition 2.1). We have a map:

p∗ Pic(C)⊕ Z[C0] −→ Pic(X)
(p∗D,nC0) 7→ p∗D + nC0

We show injectivity: if p∗D + nC0 ∼ p∗D′ +mC0 then p∗(D − D′) ∼ (m − n)C0

but this is not possible since C0 is not contracted to a point. Hence n = m and
p∗D ∼ p∗D′. For the surjectivity see [2, Proposition III.18]. We show thatH2(X,Z)
coincides with the Néron-Severi group of X and it is generated by the classes of C0

and F . By using the exponential sequence we obtain

. . . −→ H1(OX) −→ Pic(X) = p∗ Pic(C)⊕ Z[C0]
c1−→ H2(Z) −→ H2(OX) −→ . . .

Two points in Pic(C) have the same image in H2(C,Z) ∼= Z (here c1 is just the
degree), moreover observe that F and C0 are independent inH2(X,Z). In fact since
F 2 = 0 and F · C0 = 1 the associated matrix has rank 2. We are left to show that
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H2(X,OX) = 0. We have F ·KX = F · (F +KX) = degKF = degKP1 = −2. If
H2(X,OX) 6= 0 then H0(X,OX(KX)) 6= 0 so |KX | contains an equivalent effective
divisorD. Now we can writeD = D′+nF , whereD′ is effective and its support does
not contain F and n ≥ 0. Then we obtain −2 = D ·F = D′ ·F +nF 2 = D′ ·F ≥ 0,
a contradiction. Hence H2(X,OX) = 0.
2. See [2, Proposition III.18].
3. Is a direct computation. �

Remark 4.2. From here immediately follows that pg(X) = h2(OX) = 0.

Proposition 4.2. Let X be a ruled surface then pg(X) = pm(X) = 0 for all m > 0
and q(X) = g(C). In particular κ(X) = −∞.

Proof. We already computed pg(X). For pm(X), m > 0 the computation is
similar. For q(X) = h1(OX) we use the fact that X is birational to C × P

1 and
q(X) is a birational invariant. Let p and q be the projections of C × P

1 to C,
respectively P

1, then
Ω1

C×P1
∼= p∗ΩC ⊕ q∗ΩP1

and so

q(X) = h1(X,OX) = h0(X,Ω1
X) = h0(C × P

1,ΩC×P1)
= h0(C × P

1, p∗ΩC) + h0(C × P
1, q∗ΩP1) = h0(C,Ω1

C) + h0(P1,ΩP1) = g(C)

where we have used the fact that the irregularity is a birational invariant and we
have used Corollary 2.1. �

4.3. Rational surfaces. Recall that a rational surface X is a ruled surface bira-
tional to P

1 ×P
1 hence X is in particular birational to P

2 and one can compute its
numerical invariants: q(X) = pg(X) = 0 and pm(X) = 0 for all m > 0. A rational
surface is then birational to a geometrically ruled surface. If it is isomorphic to a
geometrically ruled surface then it is of the form P(E) where E is a rank 2 vector
bundle on P

1. Now recall the

Theorem 4.2. (Grothendieck) Let E be a vector bundle of rank n on P
1, then

there are integers a1, . . . , an ∈ Z such that E ∼= OP1(a1)⊕ . . .⊕OP1(an).

Proof. See e.g.[9, Ch. III, Lemma 7]. �

Hence if X is rational and geometrically ruled then

X ∼= P(OP1(a1)⊕OP1(a2))

now tensoring by a line bundle OP1(−a1) one get X ∼= P(OP1 ⊕OP1(n)), n ≥ 0.

Definition 4.2. The surfaces Fn := P(OP1 ⊕OP1(n)), n ≥ 0 are called Hirzebruch
surfaces

Remark 4.3. Hence a geometrically ruled surface over P1 is an Hirzebruch surface.

4.4. Minimal ruled surfaces.

Proposition 4.3. (Noether-Enriques). Let X be a minimal surface and suppose
that there exists a surjective morphism:

p : X −→ C

where C is smooth and the generic fiber is a smooth rational curve. Then p gives
X the structure of a geometrically ruled surface.
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Proof. One must show that all the fibers are irreducible. See [2, Lemma III.8].
�

From this proposition it follows:

Theorem 4.3. Let X be a ruled surface which is not rational (X is birational to
C × P

1, g(C) > 0) then X is geometrically ruled if and only if X is minimal.

Proof. We show first that geometrically ruled non rational surfaces are minimal.
Assume that there exists E ⊂ X, a (−1)–curve. Since E2 = −1 then E is not
contained in a fiber (here the fibers are all irreducible). Since Pic(X) = p∗ Pic(C)⊕
Z[C0] then p(E) = p∗(E) = C. Using Hurwitz formula one sees that C should be
rational, which is not the case. Assume now that X is ruled minimal (non rational)
then there exists a smooth curve C with g(C) > 0 s.t. X is birational to C × P

1.
Hence we get a rational map:

p : X //___ C × P
1 −→ C

if p is not a morphism then we blow–up the indeterminacies of p to get a birational
morphism p̃ : X̃ −→ C. On X̃ there are (−1)–curves all mapped to points of C
(otherwise the images would be a curve, hence C, but C is not rational). This is
not possible since we are resolving indeterminacies (one could extend the definition
of p at the points where it is not defined!). Hence p is a surjective morphism such
that the generic fiber is a smooth rational curve. Since X is minimal then X is
geometrically ruled by Theorem 4.3. �

Remark 4.4.

1. In conclusion the minimal models of ruled surfaces, which are not rational,
are geometrically ruled surfaces, i.e. of the form P(E), where E is a rank 2
vector bundle on a smooth curve C, g(C) > 0.

2. Classifying minimal models of non-rational ruled surfaces is equivalent to
classify rank 2 vector bundles on curves.

3. There are minimal rational ruled surfaces which are not geometrically ruled,
for example P2. If P2 was geometrically ruled, then there exists n such that
P
2 ∼= Fn. But Pic(P2) ∼= Z and Pic(Fn) ∼= Pic(P1) ⊕ Z ∼= Z

⊕2. However
recall that P2 is birational to P

1 × P
1 = F0, which is birational to any Fn,

n > 0.
4. One can give a list of minimal rational surfaces. First of all one has the

following:

Proposition 4.4. The Hirzebruch surface F1
∼= P(OP1 ⊕OP1(1)) is isomorphic to

the blow–up of P2 along a point. In particular F1 is not minimal.

Proof. By Proposition 4.1 there exists a rational curve C0, with C2
0 = −1, hence

it is not minimal. Let now S denote the blow–up of P2 in a point and E denotes
the exceptional divisor. By considering the set of lines through the point we get a
morphism S −→ E ∼= P

1, such that all the fibers are isomorphic to P
1. Hence S is

geometrically ruled. Since there is a curve E with E2 = −1 then S ∼= F1 (we will
show that all the Hirzebruch surfaces Fn are minimal for n 6= 1). �

Theorem 4.4. Let X be a minimal rational surface. If it geometrically ruled, then
X ∼= Fn, n 6= 1.
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Proof. We show that Fn is minimal for n 6= 1. One has F0 = P(OP1 ⊕ OP1) =
P
1 × P

1 which is minimal. Suppose now n > 1 and pn : Fn −→ P
1 be the canonical

projection (Fn is geometrically ruled). On Fn there are two natural type of sections
of pn. A section is a morphism

P
1 −→ Fn = P(OP1 ⊕OP1(n)), x 7→ (λ, p(x))

λ ∈ C, p(x) homogeneous polynomial of degree n

We have the sections

s̄ : P1 −→ Fn x 7→ (1, 0)

and

sp : P1 −→ Fn x 7→ (0, p(x))

s̄ and sp define curves in Fn and sp ∼ sq in H0(P1,OP1(n)), (p and q are homoge-
neous of degree n) for p 6= q. So let s := sp for some homogeneous polynomial p of
degree n. Then

• s̄ and s do not intersect,
• two equivalent sections sp and sq meet at n points, the zeros of p(x) = q(x),
hence s2 = n

We compute s̄2. By Proposition 4.1 we can write s̄ = αs+ βF in H2(Fn,Z). Since
1 = s̄ · F = α we get s̄ = s + βF . Now 0 = s · s̄ = n+ β. Finally s̄ = s − nF and
so s̄2 = −n. As n > 1, s̄ is not a (−1)-curve. Let now C ⊂ Fn be an irreducible
curve, C 6= s̄ and C = as + bF . We have 0 ≤ C · s = a + nb and 0 ≤ C · F = a.
We have also 0 ≤ C · s̄ = b (since C 6= s̄). Now C2 = na2 + 2ab ≥ 0. So that the
only irreducible curve with negative self-intersection is s̄. So Fn is minimal for all
n > 0. �

Remark 4.5.

1. We have seen that P
2 is not isomorphic to Fn for all n and that Fn is

not isomorphic to Fm for all n 6= m (in fact Fn contains a curve of self-
intersecton −n and Fm, m 6= n does not contain such a curve).

2. For rational surfaces there are many minimal models (cf. Theorem 4.4).

Theorem 4.5. Let X be a minimal surface, κ(X) = −∞ then X is either geomet-
rically ruled or X ∼= P

2.

Proof. see [9, Corollary 3, paragragh 14]. �

Remark 4.6.

1. From the previous theorem immediately follows that the minimal models of
rational surfaces are P

2 or Fn, n 6= 1 (i.e. if X is a rational ruled minimal
surface then X ∼= P

2 or X ∼= Fn).
2. I will continue with an interesting remark on minimal models. Let X be a

smooth projective surface, then there is a birational morphism to a minimal
model but not necessarily a birational morphism to any minimal model. For
example if one blow ups P

2 in one point one get F1 = P(OP1 ⊕ OP1(1)).
Blowing up a point on F1 not on the exceptional curve and contracting a
(−1)-curve on F1 one get P1 × P

1. But there is no birational morphism of
F1 to P

1 × P
1 (only a birational map).
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4.5. Some example of rational surfaces. Let S ⊂ P
n be a rational surface and

choose a birational map P
2 //___ S , then we get a rational map P

2 //___ P
n

and so a linear system on P
2 with no fixed components. One can then consider e.g.

linear systems of conics/cubics and study rational surfaces in P
n.

1. Recall that h0(Pn,OPn(k)) =
(

n+k
k

)

.
2. The map φ is in general not everywhere defined. If not then blow-up the

base points of the system δ, which defines the map. For simplicity assume
that it is enough to blow-up one time. We get a diagramm:

S̃

ǫ

��

f

  A
A

A

A

A

A

A

A

P
2 //___ P

n

Where S̃ is the blow up at p1, . . . , pr ∈ P
2, ǫ is the blow-up and Ei :=

ǫ−1(pi). If mi is the multiplicity of the elements of δ at pi then δ̄ ⊂ |dL−
∑

miEi|, L = ǫ∗l.
3. A particularly interesting case is when δ̄ is very ample i.e. induces an

embedding (S̃ ∼= f(S̃)).

4. If f is an embedding then f(S̃) ∼= S̃ is rational (S̃ is birational to P
2).

5. One can then study the geometry of S′ := f(S̃):
– The Picard group: a basis is given by L = ǫ∗l, Ei, i = 1, . . . , r where

L2 = 1, E2
i = −1, L · Ei = 0, Ei · Ej = 0 for i 6= j. An hyperplane

section of S′ is then H = dL−
∑

miEi.
– The degree of S′ is equal to H2 = d2 −

∑

m2
i .

– One can study the lines on S′: i.e. curves D such that H ·D = 1.
– Equations for S′.

4.6. Linear system of conics. The complete linear system of conics |2l| = P(H0(OP2(2)))
has no base points and projective dimension 5, hence we have an embedding

j : P2 →֒ P
5

Let V := j(P2) be the Veronese surface. We have deg(V ) = 4 (since for a conic
C2 = 4) and in particular if D ⊂ V is an irreducible curve then H ·D ∈ 2Z. Hence
V does not contain lines but a 2-dimensional linear system of conics, which are
the images of the lines of P2. One can also consider projections of V to get other
rational surfaces (cf. [2, Ch. IV]).

4.7. Linear system of cubics. Let p1, . . . , pr, r ≤ 6 distinct points on P
2. They

are said to be in general position if no 3 are on a line and no 6 are on a conic. Let
ǫ : Pr −→ P

2 be the blow-up of p1, . . . , pr. Set d := 9− r.

Proposition 4.5. 1. The linear system of cubics through p1, . . . , pr defines an
embedding j : Pr →֒ P

d, the surface Sd := j(Pr) has deg(Sd) = 9− r and it is called
a Del Pezzo surface of degree d.
2. S3 is a cubic in P

3, S4 is a complete intersection of 2 quadrics in P
4.

3. Sd contains a finite number of lines which are the images under j of the following
curves of Pr:

• Ei,
• strict transform of the lines < pipj >, i 6= j,
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• strict transform of the conics through five of the pi.

Proof. cf. [2, Proposition IV.9]. �

Remark 4.7. If S ⊂ P
3 is a smooth cubic surface, then S is a del Pezzo surface

S3 (i.e. S is isomorphic to P
2 with 6 points blown up) and contains 27 lines.

If S ⊂ P
4 is a complete intersection of 2 quadrics then S is a del Pezzo surface S4

(the blow up of P2 at 5 points).

5. Kodaira dimension 0

5.1. Unicity of the minimal model.

Theorem 5.1. Let X be a smooth projective surface, κ(X) ≥ 0, then all minimal
models of X are isomorphic.

Before to give the proof we need a first characterisation of (−1)-curves.

Proposition 5.1. Let C ⊂ X be an irreducible curve then C is a (−1)-curve if
and only if C2 < 0 and KX · C < 0.

Proof. One implication is clear using the genus formula. Assume the C2 < 0 and
KX · C < 0 then

2g(C)− 2 = deg(ωC) = (KX + C) · C = KX · C + C2 < 0

hence g(C) = 0, so 0 = 2 + (C2 + C ·KX) so C2 = −1 and C ·KX = −1. �

Proposition 5.2. Let X be a smooth projective surface, κ(X) ≥ 0, D an effective
divisor on X s.t. KX ·D < 0, then D contains a (−1)-curve

Proof. It sufficies to show that if D is an irreducible curve with KX ·D < 0 then
D is a (−1)-curve (in fact since D is effective and D · KX < 0 then there exists
an irreducible curve D′ in the support of D with D′ · KX < 0). By assumption
since κ(X) ≥ 0 there exists n ≥ 1, such that K := nKX =

∑

ciCi, ci ≥ 0. Since
nKX ·D < 0 there exists j such that Cj = D, w.l.o.g. we assume j = 0 so C0 = D.
Hence D · (K − c0D) ≥ 0 and so we must have D2 < 0. We have D ·KX < 0 and
D2 < 0, hence by Proposition 5.1 D is a (−1)-curve. �

Recall the following

Definition 5.1. A divisor D is called numerically effective, or simply nef if for
any irreducible curve C we have D · C ≥ 0.

Corollary 5.1. Let X be a smooth projective surface such that KX is not nef.
Then either κ(X) = −∞ or X contains a (−1)-curve. In particular KX is nef if
X is a minimal surface with κ(X) ≥ 0.

Proof. (of Theorem 5.1). We show that if f : X //___ Y is a birational map
between minimal surfaces X and Y with κ(X) ≥ 0 and κ(Y ) ≥ 0 then f is an
isomorphism. First we know that KX and KY are nef. Now observe that if σ :
X̃ −→ X is the blow up of X at some point q ∈ X and E = σ−1(q), we have for

any irreducible curve C̃ ⊂ X, with σ(C̃) = C a curve:

KX̃ · C̃ = (σ∗KX + E) · (σ∗C −mE)
= KX · C +m ≥ KX · C
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and KX̃ ·E = (σ∗KX +E) ·E = −1. Blow up now X to resolve the indeterminacies
of f

X ′ −→ X //___ Y

take a minimal number of blow ups (one needs at least one blow up). Let E be
the exceptional curve of the last blow up and f ′ be the morphism X ′ −→ Y . Then
f ′(E) := C must be a curve (otherwise one does not need to blow it up). Now
KX′ · E = −1 then one get −1 = KX′ · E ≥ KY · C, which is impossible since KY

is nef, hence f is a morphism. Similarly KX is nef and so f−1 is a morphism. In
conclusion f is an isomorphism. �

Remark 5.1.

1. Observe that the proof works also for those surfaces X with KX ∼ 0 as K3
surfaces.

2. In particular any birational map between minimal surfaces with κ(X) ≥ 0
is an isomorphism.

5.2. K3 surfaces, Enriques surfaces.

Definition 5.2. Let X be a projective smooth surface then:

1) X is a K3 surface if q(X) = h1(OX) = 0, KX = 0 (pg(X) = 1).

2) X is an Enriques surface if q(X) = pg(X) = 0 and 2KX = 0 (KX 6= 0).

3) X is an Abelian surface if q(X) = 2, pg(X) = 1 (KX = 0).

4) X is a bielliptic surface if q(X) = 1, pg(X) = 0 (in this case we have
4KX = 0 or 6KX = 0, [2, Corollary VIII.7])

Example 5.1. 1. K3 surfaces. Let f4(x0, x1, x2, x3) be a homogeneous polynomial
of degree four. Then if S4 := {f4(x0, x1, x2, x3) = 0} is smooth, then it is a K3
surface. In fact q(S4) = h1(OS4

) = (1/2)b1(S4), where b1 is the first Betti number
(S4 is a kähler manifold, cf. [1, Ch. IV, Theorem 2.6 and Corollary 2.10]). Using
now Barth-Lefschetz theorem on hyperplane sections as P

3 is simply connected
then S4 is simply connected too, so b1(S4) = 0. By adjunction one sees easily that
KX = 0. In a similar way the complete intersections S2,3 ⊂ P

4, S2,2,2 ⊂ P
4 are K3

surfaces.
2. Enriques surfaces. Let X be a K3 surface and i : X −→ X be an involution on
X without fixed points. Consider the quotient Y := X/i, the map p : X −→ Y is a
degree two étale covering. If C ⊂ Y is a curve then p∗p

∗C = 2C hence by linearity
for any divisor we have p∗p

∗D = 2D in particular we have

p∗p
∗KY = 2KX

but p∗KY = KX ∼ 0 (the cover is unramified), then 2KX ∼ 0 and χ(OX) =
2χ(OY ). Since X is a K3 surface q(X) = 0, pg(X) = 1 so χ(OX) = 2 and
χ(OY ) = 1. From here it follows that q(Y ) = pg(Y ). Since the cover is unramified
we have h1(OY ) ≤ h1(OX) = 0 hence pg(Y ) = q(Y ) = 0. We conclude that Y is
an Enriques surface. In fact one can show that all Enriques surfaces are obtained
in this way. In particular any K3 surface with involution as i is projective (cf. e.g.
the result of Nikulin [7, Theorem 3.1]) and so any Enriques surface is projective
(but one can show directly that Enriques surfaces are projective, without using
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the result of Nikulin on non-symplectic involutions on K3 surfaces, see [3] for an
extended description of Enriques surfaces). We want to give a concrete example.
Let X ⊂ P

5, X = S2,2,2 be the complete intersection of three quadrics of the form

Pi(x0, x1, x2) +Qi(x3, x4, x5) = 0

i = 1, 2, 3, Pi, Qi homogeneous of degree 2. For a generic choice of Pi and Qi one
get that X is smooth (by Bertini’s thorem) and there is a natural involution:

i : (x0, x1, x2, x3, x4, x5) 7→ (x0, x1, x2,−x3,−x4,−x5).

The fixed points are the intersections of {x0 = x1 = x2 = 0} ∼= P
2 with Q1 =

Q2 = Q3 = 0. These are three conics in P
2 and they do not meet in general. In

the same way we have the intersection of the plane {x3 = x4 = x5 = 0} ∼= P
2 with

P1 = P2 = P3 = 0, this is again the intersection of three quadrics, which is empty
in general. Hence choosing Pj and Qj generic, the involution i does not have fixed
points on S2,2,2. Hence the quotient X/i is an Enriques surface (and in fact it can
be shown that the generic Enriques surface can be obtained in this way).
3. Abelian surfaces. These are complex tori C2/Λ, (Λ is a rank four lattice) with
an embedding in a projective space.
4. Bielliptic surfaces. These are quotients (E×F )/G where E, F are elliptic curves,

G is a finite group of translation on E acting on F such that F/G ∼= P
1.

Bagnera and de Franchis (cf. [2, List VI.20]) give a complete list of such surfaces:
for example let Fi := C/Z⊕ iZ with i a primitive 4th-root of the unity, E an elliptic
curve and let G = Z/4Z be a group acting on Fi by multiplication by i, i.e. x 7→ ix
and it acts on E by translation (on an elliptic curve we have n2 points of n-torsion).
Finally we say that a surface is elliptic if there is a surjective morphism

π : X −→ B

where B is a smooth curve, whose generic fiber is an elliptic curve. Then bielliptic
surfaces are elliptic having two elliptic fibrations (the contrary is not true: for
example there are elliptic rational surfaces or elliptic K3 surfaces, cf. [6], for a
beautiful survey on elliptic fibrations).
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