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ABSTRACT. It was shown by Mukai that the maximum order of a finite group
acting faithfully and symplectically on a K3 surface is 960 and that if such a
group has order 960, then it is isomorphic to the Mathieu group Mag. Then
Kondo showed that the maximum order of a finite group acting faithfully on a
K3 surface is 3840 and this group contains Mgag with index four. Kondo also
showed that there is a unique K3 surface on which this group acts faithfully,
which is the Kummer surface Km(E; x F;). In this paper we describe two
more K3 surfaces admitting a big finite automorphism group of order 1920,
both groups contains Mg as a subgroup of index 2. We show moreover that
these two groups and the two K3 surfaces are unique. This result was shown
independently by S. Brandhorst and K. Hashimoto in a forthcoming paper,
with the aim of classifying all the finite groups acting faithfully on K3 surfaces
with maximal symplectic part.

1. INTRODUCTION

A K3 surface is a compact complex surface which is simply connected and has
trivial canonical bundle. Given a finite group I' acting on a K3 surface X we have
an exact sequence

1—Ty—T —Z/mZ—1

where the last map is induced by the action on the nowhere vanishing holomorphic
2-form wyx. The group I'g is the normal subgroup of maximal order contained
in I' whose automorphisms act trivially on wyx. The automorphisms of I'y are
called symplectic. Tt was shown by Mukai [11, Theorem 0.3] that, if G is a finite
group acting faithfully and symplectically on a K3 surface, then |G| < 960 and, if
|G| = 960, then G is isomorphic to the Mathieu group Msy. In his paper Mukai
gives the example of a K3 surface with such an action, we recall this example in
section 4. More generally, it is an interesting question to classify maximal finite
groups I" acting faithfully on a K3 surface. More precisely we say that I is a mazimal
finite group acting faithfully on a K3 surface if the following holds: assume I" is
another finite group acting faithfully on a K3 surface then I is not (isomorphic to)
a proper subgroup of I,

In Theorem 6.4 we show that there are only three finite groups I' containing
strictly I'g = Msg as the normal subgroup of I' acting faithfully and symplectically
and only three K3 surfaces acted on by such a I', the main ingredient of the proof
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is Theorem 2.7. This result is shown also independently in a forthcoming paper
of S. Brandhorst and K. Hashimoto [3], where they compute all the finite groups
acting faithfully on K3 surfaces with maximal symplectic part. In our situation one
of the three K3 surfaces mentioned above was constructed by Kondo [9] (this is the
only K3 surface acted on faithfully by a finite group of order 3 840 = 4 - | Myg)),
another one was constructed by Mukai [11], and the existence of the last one was
showed by Brandhorst-Hashimoto in loc. cit., we give here explicit equations. In
the second and in the third case the order of T" is equal to 2 - |May|. We denote
these three surfaces respectively by Xko, Xyu and Xgy. In this note, we compute
the transcendental lattice of these three K3 surfaces. This was done by Kondo for
the surface Xk, we recall it here to have a complete picture, and we compute it
for Xy, and Xpg. Accordingly to [5, Section 3] the transcendental lattice of Xy,
was already known by Mukai, but we could not find explicit computations, so we
give it here. We give also equations for the three surfaces. Mukai already provided
equations for Xy, as a smooth quartic surface in P?(C) (which is the Maschke
surface, see [5, Section 3]) we compute it here in a different way, but we show that
up to a projective transformation of P3(C), these are equivalent.

The equations for Xk, and Xpy are new. In particular one gets easily a (singu-
lar) equation for the first one as a complete intersection of two quartics in weighted
projective space P(1,1,2,2,2) by using a result of Inose, [8]. To get the equations
for Xpy one needs a more careful study of the action of My on the projective space
P5(C). It turns out that Xpy is a smooth complete intersection of three quadrics
and we give here the equations (this answers a question of S. Brandhorst to the
authors). All these three K3 surfaces turn out to be Kummer surfaces of abelian
surfaces that are the product of two elliptic curves, see Corollary 2.5. By using
results of Shioda and Mitani [17] we compute explicitly the two elliptic curves. We
have that

Xko £ Km(E; x E;), Xy = Km(E; 15 % E; 15),

Xpn = Km(E, x Ey,), withr = =105,

Here, F, denotes the elliptic curve with complex multiplication given by z. For the
example of Xpy, we also obtain in Remark 5.13 an explicit Nikulin configuration
of 16 disjoint smooth rational curves (we are not able to obtain such an explicit
configuration for Xy,: see Remark 4.6).
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version of the paper and the MSRI for letting the first author use his computing
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the anonymous referee for a careful reading of the paper and for useful comments.

NoTAaTION - If G is a group, we denote by G’ its commutator subgroup (also
sometimes called derived subgroup) and by Z(G) its center. If V' is a vector space,
we denote by C[V] the algebra of polynomial functions on V' and, if k > 0, we
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denote by C[V]; its homogeneous component of degree k. If fi,..., f. € C[V] are
homogeneous, we denote by Z(f1,..., f.) the associated scheme of P(V'), defined
by fi=---=f, =0. If G is a subgroup of GL¢(V'), we denote by PG its image
in PGL¢(V). If V = C", we identify naturally GL¢(V) and GL,(C). We denote
by My the Mathieu group of order 960.

If 7 € C has a positive imaginary part, we denote by E, the elliptic curve
C/(Z®Zt). If A is an abelian surface, we denote by Km(A) its associated Kummer
surface. We denote by L the K3 lattice Es(—1) ® Es(—1) @ U & U @ U, where U
is the hyperbolic plane and Eg(—1) is the lattice Eg endowed with the opposite
quadratic form. If X is a K3 surface, we denote by Lx the lattice H*(X,Z) (it
turns out that Ly ~ L) and by T its transcendental lattice (i.e. the orthogonal,
in Ly, of its Néron-Severi group). Finally, we denote by Lgg the lattice

4 0 -2
Lo=|(0 4 -2
—2 -2 12

See the Proposition 2.3 below for the reason for this notation.

2. K3 SURFACES WITH A FAITHFUL ACTION OF My

We gather in this section some properties of the K3 surfaces admitting a faithful
action of the finite group Masg (since My is equal to its commutator subgroup,
this is necessarily a symplectic action), and we prove the main result of this paper,
namely a classification of K3 surfaces admitting a faithful action of a finite group
containing strictly Mag.

If we consider all the K3 surfaces X that admit a faithful symplectic action of
Ms, Xiao [18, Nr. 81, Table 2] proved that the minimal resolution of the quotient of
X by Mg is a K3 surface with Picard number 20. By a result of Inose [8, Corollary
1.2], this means also that X has Picard number 20. This shows the following, with
the same notation as before:

Proposition 2.1. There are at most countably many K3 surfaces with a faithful
symplectic action by Mag.

Proof. Since the Picard number is 20, then the moduli space of K3 surfaces with a
faithful symplectic Msp-action is 0-dimensional. O

Remark 2.2. Observe that the automorphism group of a K3 surface with Picard
number 20 is infinite [16, Theorem 5]. Shioda and Inose show it by exhibiting an
elliptic fibration with an infinite order section, this gives an automorphism acting
symplectically on the K3 surface with infinite order. B

Recall the following result [9, proof of Proposition 2.1]:

Proposition 2.3. Let X be a K3 surface with a faithful symplectic action by Mayg.
Then the invariant lattice L)Ag[” is isometric to Loyg.
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Remark 2.4. Note that Log has signature (3,0), so its isometry group is finite. Let
us recall its description. Let

01 0 1 0 -1
p=1(1 00 and p2=10 -1 0
0 0 1 0o 0 -1

Then p; and ps belong to the group of isometries of Loy and it is easily checked that
the group of isometries of Ly is generated by p1, p2 and —Idy,, (by using for in-
stance the upcoming Lemma 2.8) and has order 16 (see also [9, Proposition 2.1]). B

Corollary 2.5. If a K3 surface X admits a faithful action by the group Msg then
X = Km(A) for a unique abelian surface A, which is the product of two elliptic
curves.

Proof. Let (u,v) be a Z-basis of Tx C LAX42°. By Proposition 2.3, we have u?,
v?2 €4Z and u-v € 27Z. So
4a 2b
Tx = ( 2b e ) '

Following [17, Section 3|, we set A = E. x E., where

b+ VA b+ VA
T 0 T

2a b
(B 0)
Hence TX = TA(Q) = TKm(A)~
The uniqueness follows from [17, Theorem 5.1]. O

T1

and A = b? — 4ac, so that

Remark 2.6. Let us prove here that Lo is indecomposable. Assume that it is not

1
indecomposable. Then Lyg = L1 Ly, where Ly has rank 1 and Lo has rank 2. By
the proof of the Corollary 2.5, we have Ly = (4n) for some n > 0 and

4a  2b
L= <2b 40)
for some a, b, ¢ € Z. Then 160 = disc(Lgg) = disc(L;)disc(L2) = 16n(4ac — b?).

In other words, 10 = n(4ac — b?), which means that 4ac — b* € {1,2,5,10}. But
b>=0o0r 1 mod 4, so 4ac — b?> = 3 or 4 mod 4. This leads to a contradiction. H

Our main result in this paper is the following:

Theorem 2.7. Assume that Msg acts faithfully on a K3 surface X, and assume
moreover that X admits a non—-symplectic automorphism v acting on it, normalizing
Moyo and such that 12 € Mag. We set G = (1)Mag. Then we have the following three
possibilities for the G-invariant Néron-Severi group of X and its transcendental
lattice:

W . (o §)
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@@ (o)
@ (5 )

All the three cases are possible and are described in the sections 3, 4, 5.

Proof. We only prove here the fact that the Néron-Severi group of X and its tran-
scendental lattice is necessarily one of the given three forms: the existence of the
three examples will be shown in the upcoming sections (and we will add some
geometric features of those examples). We first need two technical lemmas:

Lemma 2.8. Up to isometry, there is a unique embedding of the
lattice (4) (resp. (8), resp. (40)) as a primitive sublattice of Lag.

Proof of Lemma 2.8. The uniqueness of the embedding of (40) is
shown in [9, Lemma 3.1]. For the two other cases, let (e, f,h)
denote the canonical basis of the lattice Log and let L be a primitive
element of Lyg such that L? = 4 (resp. 8). Write L = Ae+ uf +h
with A, i, 0 € Z. Then

L* = (2\ = 6)? + (2 — 6)* + 106%,

so d = 0 and A2 + p? = 1 (vresp. A? + p? = 2). This gives
(A p) = (£1,0) or (0,£1) (resp. (£1,£1)). So L = fe or £f
(resp. L = te + f), and the four solutions are in the orbit of the
group (—Idp,,, p1) (resp. (—Idw,,, p2))- O

We choose an isomorphism between Lgg and LY?°. Then the group G/May = (1)
acts on Log and ¢ acts by —Id on Tx. Also, the lattice L)G( has rank 1 because T x
has rank 2.

Lemma 2.9. The sublattice Lg’; ® Tx has index 2 in Log.

Proof of Lemma 2.9. First, Lg;( @ Tx is different from Loy since
Log is indecomposable (see Remark 2.6). We have

L = {L €Ly | «(L) =L},

TX = {L S L20 | L(L) = —L}

By [12, Section 5], the projection Lag/(L§ @ Tx) — (L)Y /L
is a (—invariant monomorphism. This shows in particular that
Loo/(L§ @ Tx) is cyclic. Also, if L € Lgg, then

9L =L+ L)+ L—uL)eL{®Tx.
—_——— —
eL§ E€ETx
So the sublattice L)G( @ T x has index 2 in Lgg. This completes the
proof of the Lemma. O
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We now come back to the proof of the theorem. We write LS, = ZL. By the
proof of Corollary 2.5, we have L? = 4n (so that L) ~ (4n)) and the transcendental

lattice of X is of the form
Tv — 4a 2b
X7\ 20 4e

with a, b, ¢ integers such that d := 4ac — b2 > 0, b2 < ac < %, —a <b<a<ec
see e.g. [16, p. 128]. We have shown in Lemma 2.9 that LS @ Tx ~ (4n) ©Tx is a
sublattice of index 2 in Log. Hence we have by applying [1, Section 2, Lemma 2.1]
_det((4n) ® Tx)  16n(4ac — b?)
B det LQQ B 160

4 = [L20 : <4n>@Tx}2 .
In conclusion

n(dac — b*) =23 .5,
We discuss two cases.

Assume that b is odd. Then 4ac — b? is also odd. This means that it is equal to
1 or 5, but then if b = 2k 4+ 1 we get 4ac — 4k?> — 4k — 1 equal to 1 or 5 which is
clearly impossible.

Assume that b is even. Then with b = 2b’ we get
(ac—b* M =2-5

We distinguish four cases:

(1) n=1, ac—b? = 10,

(2) n=2,ac—b? =5,

(3) n=2>5,ac—b?=2,

(4) n=10, ac—b?=1.
By Lemma 2.8, the lattices (4), (8) and (40) have a unique primitive embedding in
the lattice Log:

(1) If n = 1, we may assume that L = e. We now compute the orthogonal
complement of Ze in the lattice Lyg. This will give us the transcendental
lattice. Let now Ae + pf + 6h with A, u,d € Z be such that

(Ae+ uf +3dh,e) =0

This gives 4\ — 2§ = 0 so that the orthogonal complement is generated by
the elements e+ 2h and f and considering instead the generators e+ f 4 2h
and f we get the lattice given in the theorem.

(2) If n = 2, we may assume that L = e — f. We compute the orthogonal
complement of e — f in Loy which is generated by e + f and —h which are
the generators of the rank two lattice whose bilinear form is as given in the
theorem.

(4) If n = 10, then the orthogonal complement of L has been computed in [9]
and one gets the rank two lattice whose bilinear form is given as in the
theorem.

We have respectively (a,b,c) = (1,0,1), (a,b,¢) = (1,0, 10), (a,b,c) = (2,2, 3).

We consider now the third case with ac — b'?> = 2 and we show that it is not
possible. The integers a, b, ¢ satisfy —a < b < a < c¢,ac < d/3, (')? < (ac)/4 < d/3.
By the previous computations, we have that d = 4(ac—b?) hence in this case d = 8,
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we get that b2 < 2. Hence b’ = 0 or b’ = 1. In the first case we get a = 1, ¢ = 2

which gives the matrix
4 0
M= ( 2y ) |

In the second case we get a = 1, ¢ = 3 but then ac = 3 > 8/3 so this is not possible.
To make the case T'x = M possible, we should then find a primitive embedding in
Loy with vectors v; and vy with v% =4, v% = 8, v1 -v2 = 0 but by the computations
in Lemma 2.8 and with the same notations as there we see that we must send v
to +e or £ f and vs to e + f, so these never satisfy the condition vy - vo =0. 0O

3. KONDO’S EXAMPLE

It was shown by Kondo in [9, Theorem 1] that the maximal order of a finite
group acting faithfully on a K3 surface is 3840 and that this bound is reached for
a unique K3 surface Xk, and a unique faithful action of a unique finite group Gk,
of order 3840. Kondo shows that Xk, = Km(E; x E;). Recall that we have an
exact sequence

(3.1) 1 — My — Gro — py — 1,
where the last map is induced by the group homomorphism
a GKo — (C*,

defined by g(wx,) = a(g)wx and wx,, is the holomorphic 2-form that we have
fixed on Xk,. Recall that Xk, = Km(E; x E;) (see e.g. [9, Proof of Lemma 1.2])
has transcendental lattice
Ty — (4 0)
Ko 0 4 °

With the previous notation we have:

Proposition 3.2. The invariant Néron—Severi group NS(XKO)M20 = 7 L4y with
L3, = 40.

Proof. See [9, Lemma 3.1]. O

Remark 3.3. In particular this means that we cannot represent Xk, as a quartic
surface in P?(C) with a faithful action of Mg by linear transformations of P?(C). B

3.1. A geometric model. By using a result of Inose [8, Theorem 2| one can view
Xko = Km(E; X E;) as the minimal resolution of a singular surface in P(1, 1, 2, 2, 2).
We give here the equation. Inose shows that Xk, is the minimal resolution of the
quotient of the Fermat quartic surface
F:at+yt4+224t1=0

by the symplectic involution ¢ : (z : y : z : t) — (x : y : —z : —t), which has
8 isolated fixed points [13, Section 5]. Since the automorphism is symplectic,
the minimal resolution of the quotient Xx, — F/(:) is again a K3 surface and
the Picard number remains unchanged. Moreover, for the transcendental lattices
T x,.(2) = Tr holds. The ring of invariant polynomials for the action of ¢ is gen-
erated by z,y, 22,12, 2t. We put 29 = x,21 = y, 20 = 22,23 = t2,24 = 2t and we
have then the equations for F/{¢) in P(1,1,2,2,2):

4, .4 .2 2 2
zg+ 2] +25+25 =0, 24 = z223.
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The eight A; singularities are determined as follows. First we have singularities

coming from the ambient space, these are the intersection with the plane zy =

z; = 0. This gives 22 + 23 = 0 which together with 2§ = 2923 gives four A;

singularities. The others come from the singularities of the cone 27 = zp23, i.e.

with z4 = 23 = 23 = 0 we get the four singularities A; with equation z§ + 27 = 0.
See also [3] for an embedding of Xk, in P?!(C).

4. MUKAI'S EXAMPLE

Let Gyu = (81, 82, 83, S4), where

1 0 0 O 1 1 3 i

sy = 01 0 O 5y = 1 1 1 —i —i
0oo0 1 o0}’ 201 —i ¢« 1 -—=1]°
00 0 -1 - 1 -1 1
01 00 1 0 0 O

55— 1 0 0 O sy = 0 0 10
00 1 0] 01 00
00 0 1 0 0 0 1

Then Gy, is the primitive complex reflection group denoted by Gag in Shephard-
Todd classification [15]. Recall that |G| = 7680. We denote by V' the vector
space C*, and by C[V] the algebra of polynomial functions on V, identified naturally
with C[z,y, z,t]. If m is a monomial in z, y, z and ¢, we denote by X(m) the sum
of all monomials obtained by permutation of the variables. For instance,

Sa)=z+y+z+t, Y(xyzt) = xyzt,
Saty)=aty+z+t) ryta+z+t) + 2@ty +t) (@ +y +2) = S(ay?).

Note that the derived subgroup G}, of Gymu has index 2, that Gy, = Gumy N
SL4(C), so that Gyy = Gy, (s1)- Note also that Z(Gmy) =~ py C Giy,- Moreover,
PG}y, =~ My so that we have a split exact sequence

(4.1) 1 — PGy, =~ Moy — PGy — g — 1,

where the last map is the determinant.

Now, there exists a unique (up to scalar) homogeneous invariant f of Gy, of
degree 4: it is given by

f=3(@") - 6X(2y?).

We set Xnpu = Z(f). It can easily be checked that Xy, is a smooth and irreducible
quartic in P3(C), so that it is a K3 surface, endowed with a faithful symplectic
action of My and an extra non-symplectic automorphism of order 2, i.e. one can
fixitas [x:y:z:¢]— [z:y:z:—t], the one induced by s;.

In [11, nr. 4 on p. 190] Mukai gives the following equation for some Myp-invariant
quartic polynomial

¥(2*) 4 12zyzt,

and we denote by Xj,, the zero set of this polynomial which defines a smooth
quartic K3 surface. We have

Proposition 4.2. There exists g € GL4(C) such that g(Xnu) = Xy -
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Proof. If one applies to the Mukai’s polynomial the change of coordinates:
r—=xr—y,y—T+y z—=z—t,t—z+1t
one gets
25 () + 122292 + 122212 4 122222 — 12222 — 129222 + 12¢%42
and by replacing by
T iz, t— it y =y,
and dividing by 2 one finds the polynomial f. O

Note the following fact:
(4.3) If g € PGL4(C) leaves invariant Xy then g € PGyy.

Proof. If g € PGL4(C) leaves Xy, invariant, we may find a representative g of g in
GL4(C) which leaves f invariant. Let T' = {y € GL4(C) | 7f = f}. We only need
to prove that I' = Gyy. By [10] or [14, Theorem 2.1], T is finite (because Xy, is
smooth), and contains Gyp,. Let R denote the set of reflections in Gy, (and recall
that Gyy = (R)) and let

R={ysy ' |y€T and s € R},

so that R is a set of reflections contained in I'. We set I'r = (R). Then I'g is a
complex reflection group containing Gy, but it follows from the classification of
primitive complex reflection groups that 'z = Gy, or (up to conjugacy) the group
denoted by Gs1 in Shephard-Todd classification [15]. Since G31 has no non-zero
invariant of degree 4, this forces I'r = Gy In particular, Gy is normal in I', and
so the result follows from [4, Proposition 3.13] (which says that Ngr,, c)(Gyu) =
Gy - CX). O

The embedding Xyp, < P3(C) defines the class of a hyperplane section on Xy,
that we denote by Ly: then L% = 4 and Ly is PGyp,-invariant.

Proposition 4.4. With the above notation, we have:
(1) The transcendental lattice of Xy is a rank two lattice given by

40
Lot = ( 0 40 )

and NS(Xy) 20 = Z Ly with L3 = 4.
(2) The quartic Xy 18 the unique invariant quartic for a faithful action of Mag
on P3.

Proof. (1) has been proved in Theorem 2.7, see also [5, Section 3].

(2) Let Q € P3(C) be a quartic leaved invariant by a faithful action of Myg. This
means that there exists a representation of Msyg as a subgroup of PGL4(C) which
stabilizes @. Then @ is polarized by the lattice (4), so that we have an embedding
of (4) in the lattice Lg”. Since this embedding is unique by (1), its orthogonal

complement T¢ in ng“ is isometric to Tx,,,. So @ is projectively equivalent to

X (]

Proposition 4.5. The quartic Xy, s the Kummer surface Km(Eim X Ei\/ﬁ)'
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Proof. This follows from Corollary 2.5 and its proof. O

Remark 4.6. As Xy is a Kummer surface, it admits 16 two by two disjoint smooth
rational curves (a Nikulin configuration). We were not able to find such a set of
smooth rational curves, but, using MAGMA, we have at least found 320 conics in
Xy (from which it is impossible to extract a Nikulin configuration: we can only
extract 12 two by two disjoint conics). Let

3 10
C+:{[x:y:z:t]€]P’3((C)|x+y+2292+yz+z2+¥t2:0}
3—+V10
and C_:{[m:y:z:t]EIP’g((C)|x+y—|—z=y2+yz+z2+Tt2:0},

Then C; and C_ are two smooth conics contained in Xy, and, if we denote by
Q4 the Gyy-orbit of Cy, then Q1 # Q_, [24] = 160, and all elements of Q1 are
contained in Xyr,. W

Remark 4.7. Observe that PGy, is a maximal finite subgroup of Aut(Xyy). In-
deed, if PGyy & I C Aut(Xyy) with T finite, then [I'| > 2+ |[PGyy| = 3840 and so
by the result of Kondo in [9] the group I would be the group Gk, defined in sec-
tion 3 and Xy, would be isomorphic to Xk,: this is not the case by Proposition 3.2
and Proposition 4.4. &

5. BRANDHORST-HASHIMOTO’S EXAMPLE

Let Ggp be the subgroup of GLg(C) generated by
t =diag(—1,1,1,1,1,1),

i 00 0 0O 0 00 001
001 0 00 100 0 0O
w— 010 0 00O and v — 010 00O
000 — 00 001 0 0O
0 00 0 01 0000 1FO0
0 00 0 10 0001 0O

All the numerical facts about Ggy stated below can be checked with MAGMA. Then
|Geu| = 3840, Z(G) = py, |Geu/Gpy| = 2 and there are two exact sequences

1— py — Gy —> Moy — 1
and
(5.1) 1 — Myy = PGy — PGpu — py — 1.

The second exact sequence splits (for instance by sending the non-trivial element
of py to t) and Gpy = Geu N SLe(C). Even though the last exact sequence looks
like (4.1),

(5.2) The groups PGy, and PGy are not isomorphic.
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Note that the group Gpy is isomorphic to the group denoted by 23.Myg in the
ATLAS of finite groups!. We denote by V' = C® the natural representation of Gy
and we identify C[V] with C[z1, 22, 23, T4, 5, zg]. Note that

(5.3) Gpu acts doubly transitively on the set of hyperplanes {Hq, ..., Hg},

where H; is defined by z; = 0.

S. Brandhorst and K. Hashimoto [3] proved that there is a unique K3 surface
admitting a faithful action of PGy and, in a private communication, they asked
the question about the equations of this K3 surface: the aim of this section is to
answer the question by exhibiting explicit equations of such a K3 surface.

The group Gy contains the group N of diagonal matrices with coefficients in
15 as a normal subgroup (so N =~ (u5)%) and we have Ggy/N ~ As. It is easy to
see that

(5.4) (C[V]N = C[w%,x%,x%,xi,x%,xz].

The following facts are checked with MAGMA:

(a) As a Ggg/N-module, C[V]Y = S; @ Sy, where S; and Sy are the two
non-isomorphic irreducible representations of G /N ~ 25 of dimension 3.
(b) Let ¢ = (14 +/5)/2 be the golden ratio. If we set

@ = 2% + 2§ — ¢t + da,
g2 = 23 — ¢} + 2% — gad,
g3 = 23 + ¢x] — ¢x3 + 73,
then (q1, g2, ¢3) is a basis of Sj.
We then define
Xpu = 2(q1, 92, ¢3)-

The next proposition can be proved using MAGMA, but we will provide a proof
independent of MAGMA computations.

Proposition 5.5. The scheme Xpy is smooth, irreducible, of dimension 2.

The variety Xpy is then an irreducible smooth complete intersection of three
quadrics in P?(C), so it is a K3 surface. Since the vector space Sy is stable under
the action of Ggy, the K3 surface Xgy is endowed with a faithful action of PGgy ~
<t> X MQO.

Corollary 5.6. Xpy is a K3 surface endowed with a faithful action of PGpy.
We show first the following;:

Proposition 5.7. Let H = N N G’zy, then the scheme Xpu/H is a K3 surface
(with Ay singularities) which is a double cover of P2(C) ramified on the union of 6
lines in general position.

Proof. Note that

(C[.’L'], T2,X3,T4,T5, xG]H = (C[l‘%, .’IJ%, x?)n xia l‘§7 x%a 1T - - :L'G]a

Ihttp://braver.maths.qmul.ac.uk/Atlas/v3/group/M20/
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so that P°(C)/H = {[y1: - :ys: 2] € P(1,...,1,3) | 22 = H2:1 yr}. Therefore,
6
Xpu/H={[yr: -+ :ye: 2] €P(1,...,1,3) | 22 = [ e
k=1

Y1+ ys— dys + ¢ye =0
and < Y2 — ¢ys +ys — ¢ys = 0 }
Ys + Qys — ¢ys +y6 = 0
Simplifying the equations, one gets

XBH/H: {[y4 CYs Y6t Z} S ]P)(Ll,l,?)) |

22 = Yaysys(—ya + 0ys — 8Ys)(dys — s + dy6)(—dya + dys — ve) }-
So Xpu/H is a K3 surface (with A; singularities) which is a double cover of P?(C)
ramified on the union of 6 lines in general position as claimed. O

Another proof of Proposition 5.5. First, it follows from (5.4) that

Y1+ Y1 — oys +¢ys =0
(5.8) Xpu/N={ly1:-:5] €P°(C) | Sy —dys+ys —dye =0 }~P*(C).
Y3+ ¢ys — dys +ys = 0

Hence Xpp/N has dimension 2, so Xgg has dimension 2. Then one can use [6,
Exercice III, 5.5] to see that Xpp is connected, so that if it is smooth then it
is irreducible. We prove smoothness below, but we can also argue in the way as
follows.

By Proposition 5.7 the quotient Xy /H is irreducible. This shows that H acts
transitively on the irreducible components of Xgy. So Gy also acts transitively
on the irreducible components. Now, let X be an irreducible component of Xy
and let K denote its stabilizer in Ggy. Then 8 = deg(Xgu) = deg(X) - |Gxu/K|.
Since Gy has no subgroup of index 2, 4 or 8, we conclude that K = Gy, so that
X = Xpgg, as desired.

We now show that Xpp is smooth. Let p = [z1 : 22 : @5 : 24 : @5 : 26] € Xpu and
assume that p is a singular point of Xpy. Since p belongs to Xy, the equations
show that at least two of the xz’s are non-zero. By replacing if necessary p by
another point in its Gpg-orbit, we may assume that zize # 0 (thanks to (5.3)).
The Jacobian matrix of (q1,¢e,q3) at p is given by

2.’171 0 0 2.%‘4 —2¢x5 2¢-'176
Jacp(qi,¢2,93) = 0 222 0 2024 225 —2¢x¢
0 0 2{E3 2¢I4 —2¢,I5 21‘6
Then the rank of Jac, (g1, g2, ¢3) is less than 3, which means that all its minors of
size 3 vanish. Therefore,
T Ly Tjg = 0
for all 1 < iy < io < i3 < 6. Since x1z2 # 0, we get 3 = x4 = x5 = 26 = 0. But
then ¢1(p) # 0, which is impossible. O
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Remark 5.9. Exchanging S; and S (whose characters are Galois conjugate under
V5 = —/5), one gets another K3 surface XGy, where ¢ is replaced by its Galois
conjugate ¢’ = (1—+/5)/2 = 1 — ¢ in the equations. Let o € GLg(C) be the matrix

10000 0
00000 —i
_loo o0 o
01000 0
000 i 0 0
00001 0

Then ¢ normalizes Ggu and o(Xpu) = Xfp, so that Xgy and Xy are isomor-
phic. &

The surface Xpg is a K3 surface with polarization Lg satisfying L2 = 8, and as
in section 4 this is invariant by the action of Msy. We have hence an embedding of
(8) in LYo

BH
Proposition 5.10. With the above notation, we have:

(1) The transcendental lattice of Xy is a rank two lattice given by

8 4
TXBH:<4 12)

and NS(XBH)M20 = 7 Lg with L% = 8.
(2) The complete intersection Xpy is the unique K3 surface invariant for a
faithful action of Mag in P5(C).

Proof. (1) has been proved in Theorem 2.7.

(2) follows from the same argument as in Proposition 4.4. O

Remark 5.11. Proposition 5.10 gives another proof that Xpy = Xj;;. B

Proposition 5.12. The K3 surface Xy is the Kummer surface Km(E; x Fs.),

with T1 = _1+T“/g

Proof. This follows from Corollary 2.5 and its proof. (I

Remark 5.13 (Smooth rational curves). Using MAGMA, one can find an explicit
Nikulin configuration in Xpy as follows. Let C denote the conic defined by the
equations

r5 = \/Pxq,
Ty = \/&127
T3 = \/5556,

22— a3 —22=0
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and let A denote the subgroup of Ggy generated by

0 0 1 0 0 o0 0 0 - 0 0 o

0 0 0 0 4 0 0 -« 0 0 0 o0

1 0 0 0 0 o0 i 0 o0 0 0 o0

o 0o 0 i 0 o0 |> o o o o0 o —il>

0 i 0 0 0 0 o 0o 0 o0 i o0

0o 0 0 0 0 —i 0o 0 0 —i 0 o0
1 0 0 0 0 0 1 0 0 0 0 0
01 0 0 0 o0 0 -1 0 0 0 0
00 1 0 0 o0 o o 1 0o 0 0
0 0 0 -1 0 0 and 0o 0 0 -1 0 0
00 0 0 1 o0 0o 0o 0 0 -1 o0
00 0 0 o0 -1 o 0o o o0 0 -1

Then C is contained in Xgy. It can be checked with MAGMA that its Ggy-orbit

contains 80 elements, and that its A-orbit contains 16 elements which are two by

two disjoint (note that |A| = 32, that gy C A and that A/ p, is elementary abelian).
Note also that the conic defined by the equations

1 + tx5 — 19z = 0,

T3 — 1px5 + 1¢pxe = 0,

xy — Qr5 + w6 =0,

3 — 2023 + 2(1 + ¢)wsre — 2013 = 0,

is contained in Xy, and that its Ggg-orbit contains 96 elements. However, we can
only extract subsets of 12 two by two disjoint conics from this orbit. H

6. FINAL REMARKS

Proposition 6.1. The K38 surfaces Xy, Xpu and Xko are two by two non-
isomorphic.

Proof. Indeed, they do not have the same transcendental lattice (or equivalently
they do not admit polarizations of the same degree). O

Proposition 6.2. If a K3 surface X admits a faithful action of Gko, PGu,
respectively PGgy then X is isomorphic to Xko, Xmu, respectively Xpy.-

Proof. For Gk, this is shown in [9, Lemma 3.1]. Before going on, note the following
fact, which can easily be checked with MAGMA:

(6.3) The groups PGy, and PGy are not isomorphic to subgroups of Gke-

Consider now the group Gy, then PGy, /Maog = (1) and ¢ acts non-symplectically,
hence X is one of the three surfaces of Theorem 2.7 and PGy, leaves invariant the
polarization, hence it is realized by linear transformations. We only need to show
that Xk, and Xgy do not admit an automorphism group isomorphic to PGyy.
Assume it is the case, then PGy, and Gk, leaves invariant the polarization of
degree (40) on Xk, hence by [7, Proposition 5.3.3] the group that they generate
together is finite. By the maximality of Gk, this means that PGy, is contained in
Gko but by (6.3) the group Gk, does not contain such a subgroup. With a similar
argument if PGy, acts on Xgy then we conclude that PGy, & PGy and this is
not the case by (5.2). The same argument holds for PGpy. O
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Theorem 6.4. Let G be a mazimal finite group with a faithful and non—symplectic
action on a K3 surface X and assume that Myy C G. Then G is isomorphic to
GKo; PGMu or PGBH

Proof. Since G acts non-symplectically then G/Msg is non-trivial and by [9] it has
order at most four. If |G/Mag| = 4 then G = Gk, by [9]. Observe that the group
G /My acts faithfully on Loy since it contains Tx. By Remark 2.4, the group of
isometries of Log has order 2% so it is not possible to have |G//Mag| = 3. We are left
with the case |G/Mayg| = 2. By Theorem 2.7 the K3 surface X is isomorphic to Xxko,
Xmu or Xpy. By the same argument as in Proposition 6.2 and the maximality of
G, then G is isomorphic to PGy, or PGpy. [l
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