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Introduction by the Organisers

The workshop was attended by 15 participants with broad geographic and thematic
representation. Its main aim was to bring together researchers in deformation
theory of curves and singularities, especially working on Severi varieties of singular
curves on K3 surfaces, together with researchers studying hyperkähler manifolds
and their automorphisms.

Severi varieties take their name from the mathematician who introduced them
at the beginning of last century. Let S be a smooth complex projective surface
and |D| a linear system on S containing smooth irreducible curves. The Severi
variety of δ-nodal curves V S|D|,δ ⊆ |D| is defined as the locally closed subset of

|D| parametrizing irreducible curves with only δ nodes as singularities. Curves on
smooth surfaces, their moduli and their enumerative geometry have been funda-
mental topics of algebraic geometry from the beginning of the previous century
until today, thanks to the contribution of Severi, Segre, Zeuthen, Albanese, En-
riques, Castelnuovo, Zariski, Arbarello, Cornalba, Harris, Shustin, Greuel and
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many others. An important breakthrough was made by Harris [18], who proved
that Severi varieties of nodal plane curves are irreducible, as stated by Severi.
Some years later, Kontsevich and Manin [23], by using Gromow-Witten theory,
computed the degree of the Severi variety of rational plane curves. Their formulas
were generalized by Caporaso and Harris [10], who found a recursive formula for
the degree of Severi varieties of nodal plane curves of any genus, using only classi-
cal techniques. Later on, great progress was made in the study of the enumerative
geometry of V S|D|,δ, by among others Pandharipande, Vakil, Ran, Göttsche, Yau,

Zaslow, Vainsencher, Tzeng and Thomas. Although a lot of work has been made
on Severi varieties, many interesting problems remain open, especially in the case
of K3 surfaces, as explained in the abstracts of Ciliberto–Flamini and Dedieu.

At the same time, the Brill-Noether theory of smooth curves on K3 surfaces
has received a lot of attention in the last couple of decades, from the seminal
papers of Lazarsfeld and Green [24, 17] to the more recent works on the Green
conjecture and divisors on the moduli space of curves of Voisin, Farkas, Popa and
Aprodu [26, 25, 14, 1]. Very recently, two conjectures about syzygies of curves,
the Green-Lazarsfeld secant conjecture and the Prym-Green conjecture were (es-
sentially) solved by Farkas and Kemeny in [12, 13] using curves on K3 surfaces,
and an account of this is given in Kemeny’s abstract. Similarly, two outstanding
conjectures by Wahl were established in [2], where it is proved that a Brill-Noether-
Petri curve of genus ≥ 12 lies on a polarised K3 surface or on a limit of such if and
only if the Wahl map for C is not surjective. An account of related open problems
is made in Sernesi’s abstract.

The recent paper [11] starts the study of Brill-Noether theory of singular curves
on a K3 surface S. Besides its intrinsic interest, the study is related to Mori the-
ory of hyperkähler manifolds: indeed, curves on S with normalizations carrying
pencils of degree k define rational curves on the Hilbert scheme S[k] of k points
on the surface, one of the few examples known (together with its deformations) of
hyperkähler manifolds. The other known examples are Albanese fibers of Hilbert
schemes of points on abelian surfaces, called generalized Kummer varieties, (and
their deformations), as well as two examples of O’Grady in dimensions 6 and
10. We recall that a (compact) hyperkähler manifold (or irreducible holomorphic
symplectic manifold) is a simply-connected compact complex Kähler manifold X
such that H0(X,Ω2

X) is spanned by a nowhere degenerate two-form. The inter-
est in hyperkähler manifolds stems from Bogomolov’s decomposition theorem for
compact, complex Kähler manifolds with trivial canonical bundle in the 70s: up
to finite étale cover they all decompose into products of Calabi-Yau, hyperkähler
manifolds and tori. The birational geometry of hyperkähler manifolds is deter-
mined by their rational curves; in particular, rational curves determine their nef
and ample cones, just like for K3s. Many years of research on this topic, pass-
ing in particular through several works and conjectures of Hassett and Tschinkel,
culminated recently in the work of Bayer and Macr̀ı [5] using Bridgeland stability,
which determines (up to numerical computations) the extremal rays of the Mori
cone of the Hilbert schemes of points on a K3 surface.
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Despite recent advances by different methods, the study of curves on K3 or
abelian surfaces with normalizations carrying special pencils still seems to be the
most efficient way of concretely producing rational curves on hyperkähler mani-
folds. The results in [11] were recently extended to abelian surfaces in [21]. Some
consequences of the results in [11, 21] on the birational geometry of the associated
hyperkähler manifolds are obtained in [22] and the results and some open problems
are given in Knutsen’s abstract.

Many of the recent results on singular curves on K3 (and abelian) surfaces have
been proved by degenerating the surfaces. It is therefore natural to ask whether
one can find similar degenerations of hyperkähler manifolds, as is done in Galati’s
abstract, which also gives a brief account on the K3 case.

Another way of producing rational curves on S[k] is through automorphisms, as
in e.g. [15]: the idea is to start with a special K3 surface such that S[k] contains a
family of rational curves not present on the general projective deformation of it, use
an automorphism of S[k] to produce another family of rational curves, and prove
that the latter can be preserved under deformation. This is an interesting point
of view, but one needs automorphisms of S[k] not coming from automorphisms
of S, i.e. non-natural, and at the moment only one such example is known: the
involution of Beauville on S[2] when S is a quartic. Thus one is in need of new such
constructions. But the construction of new non-natural automorphisms on S[k] and
more generally on other hyperkähler manifolds is an interesting and very active
research topic on its own. The interest in automorphisms of hyperkähler manifolds
has grown tremendously the last years. The foundational work on K3 surfaces by
Nikulin, Mukai and Morrison was followed by classification results of Sarti with
coauthors [3, 4, 16] and the recent work of Huybrechts [20]. Finally, the study of
non-symplectic automorphisms on K3 surfaces has found a recent application in
the study of Chow groups of K3 surfaces in particular in relation to the study of
rational curves and the Bloch-Beilinson conjecture [19, 20]. Very little is known in
higher dimensions, again there are results of Sarti, Boissière and coauthors [6, 7,
8, 9]. The abstract of Boissière gives an overview of results on automorphisms of
special hyperkähler manifolds; more precise results and some open problems are
formulated in the abstracts of Camere and Cattaneo, concerning existence of
automorphisms and moduli spaces.

The abstracts of Lehn, Saccà and Markushevich explain other fundamental
topics related to hyperkähler manifolds such as the construction of new manifolds,
computation of Hodge numbers and Lagrangian fibrations. Finally, the abstract
of Ohashi explains results on the automorphism group of Enriques surfaces and
curve configurations. The study of the automorphism group of Enriques surfaces
is very natural when studying automorphisms of K3 surfaces.

To promote interaction, the participants were asked to focus their talks on
background results and open problems. Most talks were given in the first two
days of the workshop to have time to discuss the proposed problems. We present
the abstracts in chronological order and end with a few lines about the discussed
open questions.
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Abstracts

Recent progress on the classification of automorphisms of hyperkähler
manifolds

Samuel Boissière

The group Aut(X) of biholomophisms of an irreducible holomorphic symplectic
manifold X is a discrete complex Lie group. Let us focus on finite subgroups

of Aut(X) where X is a K3 surface or a deformation of the Hilbert scheme K3[n]

of n points on a K3 surface.
The symplectic automorphisms are those acting trivially on the symplectic two-

form. All finite groups of symplectic automorphims of K3 surfaces have been
classified by Nikulin [12] and Mukai [11]. A generalisation of this classification for

deformations of K3[2] was obtained by Mongardi [10] and Höhn–Mason [9]. Of
special interest is the solution of a conjecture of Camere [7] in [10], namely that
every symplectic involution can be deformed to an involution of a Hilbert scheme
of two points induced by a symplectic involution of the underlying K3 surface.

Let now G be any finite subgroup of Aut(X). Looking at the action on the
symplectic form, one gets an exact sequence

0 −→ G0 −→ G −→ Z/mZ −→ 0

where G0 contains only symplectic automorphisms and m is the non-symplectic
index of G. If X is non-projective then m = 1 (see [3]). Otherwise, a bound
for m is given by ϕ(m) ≤ b2(X) − ρ(X), where ϕ is the Euler’s totient function,
b2(X) is the second Betti number of X and ρ(X) ≥ 1 is its Picard number.
The situation is particularly interesting when m = p is a prime number: if X is

a K3 surface, then p ≤ 19 ; but if X is a deformation of K3[n] one has p ≤ 23.
Boissière–Camere–Mongardi–Sarti [4] have shown the existence of a unique variety
in this deformation class that contains a non-symplectic automorphism of order 23.
Non-symplectic involutions have been studied and classified by Beauville [2] and
Ohashi–Wandel [13].

We give the main ingredients of the classification, obtained by Boissière–Camere–
Sarti [5], of non-symplectic groups G of automorphisms of prime order p such that

3 ≤ p ≤ 19, acting on a deformation of K3[2]. The classification is governed by
two primitive sublattices of the second cohomology lattice H2(X,Z), equipped
with the Beauville-Bogomolov–Fujiki quadratic form: the sublattice T(G) invari-
ant by the automorphism, and its orthogonal complement S(G). In order to get a
classification of the pair of lattices (T(G),S(G)), we use on one side deep lattice
theorical results on existence of lattices with given signature and discriminant and
of embedding of lattices with given orthogonal complement, and on the other side
topological information on the fixed locus XG which is closely related to some
numerical invariants of the lattices T(G) and S(G): the Euler characteristics of
XG is computed by applying the Lefschetz topological fixed point formula, and
the sum of the dimensions of the mod p cohomology of XG is computed by using a
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formula of Boissière–Nieper-Wißkirchen–Sarti [6] originated in Smith theory and
making use of the classification theorem of finite-dimensional Fp[G]-modules of
Diederichsen and Reiner. This classification reveals two interesting features:

• contrary to the classification of non-symplectic automorphisms on K3 sur-
faces [12, 1], in our situation the pair (T(G),S(G)) does not uniquely de-
termine the geometry of the fixed locus;
• contrary to the situation for symplectic involutions on deformations of

K3[2] recalled above, it is not true that non-symplectic automorphisms of

prime order p ≥ 3 are deformations of natural automorphisms on K3[2].

To illustrate these features we present geometric examples using Hilbert schemes
of points on K3 surfaces and Fano varieties of lines on cubic fourfolds, endowed
with a non-symplectic automorphism of order three.
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Non-symplectic involutions on the Hilbert scheme of points on a K3
surface

Andrea Cattaneo

(joint work with S. Boissière, M. Nieper-Wisskirchen and A. Sarti)

Let S be a generic projective K3 surface, whose Picard group is generated by a
divisor H with H2 = 2t, and consider the Hilbert scheme S[2] of 2 points on S.
We describe the automorphism group AutS[2] giving an account of results in [1].

We prove that AutS[2] has at most one non-trivial element, which is not induced
by an automorphism of S (except for the case t = 1) and corresponds to a non-
symplectic involution. We give necessary and sufficient conditions on t for the
existence of such involution. These conditions are related to the solutions of certain
Pell’s equations, and have a nice translation in the geometry of S[2]: they reflect
the presence of an ample class on S[2] of Beauville–Bogomolov degree 2.

Since any automorphism of S[2] induces an isometry of the Néron–Severi lattice
NS(S[2]) of S[2], the first step is to analyse the orthogonal group O(NS(S[2]))
and then the homomorphism Ψ : AutS[2] −→ O(NS(S[2])) associating to each
automorphism its isometry. We show that Ψ is injective.

The main step in the study of AutS[2] is then to relate the isometries in
O(NS(S[2])) with the geometry of S[2], and in particular we show that the presence
of non-trivial automorphisms depends on the generators of the ample cone of S[2].

We show under which conditions it is possible to extend an isometry of NS(S[2])
to a Hodge isometry of H2(S[2],Z) and finally, using Hodge-theoretic Torelli the-
orems, how to understand if such extensions are induced by automorphisms.

The first case of a surface S such that Aut(S[2]) ' Z/2Z is for H2 = 4 (i.e.
t = 2), and was geometrically described by Beauville. Here S is a quartic surface
in P3, two points on S define a line that cuts S in two other points, and this sets
up the non-symplectic involution on S[2].

The next case happens for H2 = 20 (i.e. t = 10).

Question 1. How can one find a geometric description of the corresponding in-
volution on S[2]?

Up to now there is no such description, and there are several reasons to search
for such a description. First of all because it will be the first explicit description
after Beauville of an involution on S[2] and not on some of its deformations. Then
because it provides a link with many other objects of their own interest: Grass-
mannians, the secant variety of S, moduli spaces of sheaves on S and on curves
(in the linear system |H|) of genus eleven (this last link provided in [2]).
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Complex ball quotients from four-folds of K3[2]-type

Chiara Camere

(joint work with S. Boissière, A. Sarti)

In [4] we study complex ball quotients arising from four-folds of K3[2]-type en-
dowed with a non-symplectic automorphism of prime order p with given invariant
sublattice T . Such automorphisms have order 3 ≤ p ≤ 23 and have been com-
pletely classified in [3], [2] and [8].

Let (X, ι) be a T -polarized IHS manifold and G = 〈σ̄〉 a cyclic group of prime
order p ≥ 3 acting non-symplectically on X. Let ρ : G −→ O(L) be a group
homomorphism such that T = Lρ := {x ∈ L | ρ(g)(x) = x, ∀g ∈ G}. We define
a (ρ, T )-polarization of (X, ι) as a marking η : L → H2(X,Z) such that η|T = ι

and σ̄∗ = η ◦ ρ(σ̄) ◦ η−1. Let S(ξ) be the eigenspace relative to a primitive p-
th root of the unity ξ inside T⊥ ⊗ C; the period of (X, η) belongs to the space

Ωρ,ξT := {x ∈ P(S(ξ)) | q(x + x̄) > 0} , which is a complex ball of dimension
dimS(ξ)− 1 if dimS(ξ) ≥ 2.

Amerik–Verbitsky’s [1] theory of algebraic MBM classes and their description
of the Kähler cone KX of an IHS manifold X allow us to study the image and the
locus of injectivity of the period map. Let ∆(L) be the set of δ ∈ L such that
there exists a marked pair (X,φ) for which φ(δ) ∈ NS(X) is MBM.

Theorem 2. The period of a (ρ, T )-polarized pair (X,φ) belongs to Ωρ,ξT \∆, where

∆ :=
⋃

δ∈∆(L)∩T⊥
(Hδ ∩ Ωρ,ξT ).

Given a chamber K(T ) of the decomposition of the positive cone of T ⊗R given
by walls in ∆(L)∩ T , a (ρ, T )-polarized pair (X,φ) is K(T )-general if φ(K(T )) =

KX ∩ (φ(T )⊗ R). Let Mρ,ξ
K(T ) be the set of K(T )-general (ρ, T )-polarized pairs.

Theorem 3. The period map gives a bijection P :Mρ,ξ
K(T ) → Ω := Ωρ,ξT \ (∆∪∆′),

where ∆′ is a locally finite union of hyperplanes. Moreover, there exist arith-
metic subgroups G and Γ of O(L) and O(T⊥) such that the complex ball quotient

Mρ,ξ
K(T )/G ∼= Ω/Γ is a quasi-projective variety of dimension dimS(ξ)− 1.

Once the construction of an algebraic moduli space is established, one of the
first natural questions that one can ask is:

Question 4. What is its Kodaira dimension? In which cases is it rational?

In the case of complex ball quotients arising from K3 surfaces, the pioneering
works [6, 5] started the study of the ball quotients corresponding to some non-
symplectic automorphisms of order three; later, [7] established rationality for many
cases of order three. For natural automorphisms of order three corresponding to
the cases studied in the cited papers, the question of rationality can hopefully
be answered, since the complex ball quotients studied are the same. For higher
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orders, rationality seems to be an open problem also in the case of the underlying
K3 surfaces.

Some of the known non-natural automorphisms of order three appear on Fano
varieties of special cubic four-folds. The question is how one can understand
whether the corresponding ball quotients are rational.

References

[1] E. Amerik, M. Verbitsky, Rational curves on hyperkähler manifolds, Int. Math. Res. Notices

(2015), doi: 10.1093/imrn/rnv133.
[2] S. Boissière, C. Camere, G. Mongardi, A. Sarti, Isometries of ideal lattices and hyperkähler

manifolds, Int. Math. Res. Not. (2015), doi: 10.1093/imrn/rnv137.

[3] S. Boissière, C. Camere, A. Sarti, Classification of automorphisms on a deformation family
of hyperkähler fourfolds by p-elementary lattices, Kyoto J. Math. (to appear).

[4] S. Boissière, C. Camere, A. Sarti, Complex ball quotients from four-folds of K3[2]-type,

arXiv:1512.02067.
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Curve configurations on Enriques surfaces and the automorphism
groups

Hisanori Ohashi

(joint work with S. Mukai )

For K3 and Enriques surfaces, curve configurations play a central role in studying
their automorphism groups since the configurations determine a reflection group
acting on the cohomology lattice that is a kind of complement to the automorphism
group in the total orthogonal group of the hyperbolic lattice. They are described
by the dual graph of (−2)-curves. Vinberg [5] developed an effective procedure
to measure the size of the reflection group and Nikulin [2, 3, 4] and Kondō [1]
classified K3 and Enriques surfaces with finite automorphism groups in detail.

We give a further example of Enriques surfaces with a good (−2)-configuration,
which is used to determine their infinite automorphism groups precisely by the
explicit generators and relations. The new feature here is that the configuration
consists of classes of (−2)-curves and centers of numerically reflective involutions.

The resulting dual graph coincides with that of type V surfaces of Kondō [1].

Question 5. Is there a method to classify the abstract good dual graphs in the
Enriques lattice? Can we find surfaces with the (−2)-configurations?
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Rational curves in hyperkähler manifolds

Andreas Leopold Knutsen

(joint work with C. Ciliberto; M. Lelli-Chiesa, G. Mongardi)

Following notation in [4], we let ε = 0 (resp., ε = 1) when S is a K3 (resp., abelian)

surface, and we denote by S
[k]
ε the Hilbert scheme of k points on S when ε = 0

and the 2k-dimensional generalised Kummer variety on S when ε = 1. It is well-

known that there is a canonical decomposition N1(S
[k]
ε ) ∼= N1(S)⊕Z[rk], where rk

is the class of a general rational curve contracted by the Hilbert-Chow morphism

S
[k]
ε → Symk+ε(S), and the embedding N1(S) ⊂ N1(S

[k]
ε ) is given by mapping an

irreducible curve C ⊂ S to the class of the curve {x ∪ x1 ∪ · · · ∪ xk+ε−1 | x ∈ C}
for fixed points x1, . . . , xk+ε−1 ∈ S \ C. Rational curves in S

[k]
ε correspond to

(possibly reducible) curves on S with a partial normalization admitting a linear
system of type g1

k+ε. The main results concerning irreducible such curves and the

rational curves they define in S
[k]
ε are given in [2, 3]:

Theorem 6. Let (S,L) be a general polarized K3 or abelian surface of genus
p := pa(L). Let g and k be integers satisfying 2ε ≤ g ≤ p and k+ ε ≥ 2. Then the
locus of irreducible curves of genus g of class [L] carrying a g1

k+ε is nonempty if

and only if ρ(p, α, (k + ε)α+ p− g) + εα(α+ 2) ≥ 0, where α =
⌊

g−ε
2(k−1+2ε)

⌋
.

Furthermore, whenever nonempty, this locus is equidimensional of dimension
min{g, 2(k−1+ε)} and the normalization of a general element in each component
carries a max{0, ρ(g, 1, k + ε)}-dimensional family of g1

k+εs.

Theorem 7. The family of rational curves in S
[k]
ε obtained from curves on S with

normalizations carrying a g1
k+ε is precisely 2(k − 1)-dimensional and there is at

least one irreducible component yielding rational curves of class L−(g+k−1+ε)rk.

We note that 2(k−1) is the expected dimension of any family of rational curves
in a 2k-dimensional hyperkähler manifold, by a result of Ran [5]. As an interesting

consequence, the family is preserved under any small deformation Xt of X0 = S
[k]
ε

keeping their class algebraic. Another interesting consequence is, using a result of

Amerik and Verbitsky [1], that any irreducible components of the locus W ⊂ S[k]
ε
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of the family satisfies the property that the dimension of the fibers of the rational

quotient of its desingularization equals the codimension of W in S
[k]
ε , and as such,

is an algebraically coisotropic subvariety, cf. [6]. Also in view of recent conjectures
of Voisin in [6], some interesting open questions are:

Question 8. How can one compute dimW (in terms of properties of (S,L))?

This question is answered in some particular cases in [4].

Question 9. When deforming X0 = S
[k]
ε keeping the class of the rational curves

algebraic, does (some component of) the locus they cover keep its dimension?
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Nodal curves on K3 surfaces: state of the art and open problems

Ciro Ciliberto, Flaminio Flamini

The following questions came up from discussions with T. Dedieu, C. Galati,
A. L. Knutsen and E. Sernesi.

Let Kp be the moduli space of primitively polarised K3 surfaces (X,L), with
L2 = 2p−2 > 0 and let Vp,n,δ be the (p, n, δ)–universal Severi variety parametriz-
ing all triples (X,L,C) with (X,L) ∈ Kp and C ∈ |nL| (with n ≥ 1) irreducible
and with only δ nodes as singularities, with

0 ≤ δ ≤ πa(p, n) := n2(p− 1) + 1.

Consider the projection

φp,n,δ : Vp,n,δ → Kp
whose fiber over any (X,L) ∈ Kp is denoted by Vn,δ(X): if nonempty , this is the
Severi variety of δ-nodal irreducible curves in |nL| on X. The variety Vn,δ(X), if
nonempty , is well-known to be smooth, pure of dimension gp,n,δ := πa(p, n)− δ =
n2(p − 1) + 1 − δ, and this is the case if (X,L) ∈ Kp is general, so also Vp,n,δ is
smooth, pure and each irreducible components of it dominates Kp. We often write
g for gp,n,δ, which is the geometric genus of curves in Vp,n,δ.

Question 10. Is Vp,n,δ irreducible?
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Question 11. Let (X,L) ∈ Kp be general and 0 < δ < πa(p, n). Is Vn,δ(X)
irreducible?

Question 12. Construct examples, if any, of (X,L) ∈ Kp and δ < πa(p, n) such
that Vn,δ(X) is empty or reducible.

Of course an affirmative answer to Question 11 implies an affirmative answer
to Question 10 for δ < πa(p, n). The state of the art , cf. [7], is that Question 10
has an affirmative answer for n = 1, 3 ≤ p ≤ 9 or p = 11 and any (admissible) δ.

The following particular case of Questions 10 and 11 should be easier:

Question 13. Let (X,L) ∈ Kp be general and δ ≤ πa(p,n)
3 . Is Vn,δ(X) irreducible?

Partial results in this direction can be found in [18, 19] .

Question 14. Let (X,L) ∈ Kp be general and δ ≤ πa(p, n). Compute the Hilbert
polynomial of the closure of Vn,δ(X) in |nL|.

State of the art: the degree of V1,δ(X) is known [5] and the putative degree
of the 0–dimensional Vn,πa(p,n)(X) (i.e., the number of rational curves in |nL|) is
known for any n ≥ 1 (this is the Yau–Zaslow formula [3]). The case of Vn,1(X),
i.e., the dual variety of X embedded in projective space via |nL|, is trivial.

Next we want to propose questions concerning the moduli map

ψp,n,δ : Vp,n,δ //Mg,

where Mg is the moduli space of smooth genus–g curves, sending a curve C to
the class of its normalization. Of course, one can consider its restriction

ψX,n,δ : Vn,δ(X) //Mg.

Naive dimension counts:
• ensure that no dominance is allowed for ψX,n,δ, whereas
• suggest that ψp,n,δ should be

(1)
dominant if g ≤ 11,
generically finite onto its image if g ≥ 11.

Question 15. Let (X,L) ∈ Kp be general and δ < πa(p, n). Let V be an irreducible
component of Vn,δ(X). Is ψX,n,δ|V generically finite or even birational (if g > 1)
to its image?

State of the art: Let (X,L) ∈ Kp. For any component V ⊆ Vn,δ(X) containing
irreducible rational nodal curves in its Zariski closure, the restriction ψX,n,δ|V is
generically finite [11]. In particular, for a general (X,L) ∈ Kp, the moduli map
is generically finite on at least one component of the Severi variety Vn,δ(X). The
last statement follows from the fact that Vn,πa(p,n)(X) is nonempty [6]. In [17] one
proves that if Pic(X) = Z〈L〉 and C ∈ Vn,δ(X) is such that either

n = 1, 2 and δ ≤ πa(p, n)

2
− 25, or n ≥ 3and δ ≤ 2(n− 1)(p− 1)− 25,

then the pull back of TX to C ′ is stable, where C ′ is the normalization of C. This
implies that ψX,n,δ|V generically finite onto its image in these cases.
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Question 16. Let V be an irreducible component of Vp,n,δ [resp. V be an irre-
ducible component of Vn,δ(X) where (X,L) ∈ Kp is general]. Does the differential
of ψp,n,δ|V [resp. ψX,n,δ,|V ] have maximal rank?

State of the art: Results have been obtained recently by Kemeny [20] and in [8].
We quote the latter result, which is optimal for n ≥ 5, but noting that Kemeny’s
results are stronger in case (B) for n ≤ 4:

Theorem 17. (A) For the following values of p ≥ 3, n and g = πa(p, n)− δ there
is an irreducible component V of Vp,n,δ, such that the moduli map V → Mg is
dominant:

• n = 1 and 0 ≤ g ≤ 7;
• n = 2, p ≥ g − 1 and 0 ≤ g ≤ 8;
• n = 3, p ≥ g − 2 and 0 ≤ g ≤ 9;
• n = 4, p ≥ g − 3 and 0 ≤ g ≤ 10;
• n ≥ 5, p ≥ g − 4 and 0 ≤ g ≤ 11.

(B) For the following values of p, n and g = πa(p, n) − δ there is an irreducible
component V of Vp,n,δ, such that the moduli map V → Mg is generically finite
onto its image:

• n = 1 and p ≥ g ≥ 15;
• 2 ≤ n ≤ 4, p ≥ 15 and g ≥ 16;
• n ≥ 5, p ≥ 7 and g ≥ 11.

Note that for 3 ≤ p ≤ 11, n = 1 and 0 ≤ δ ≤ p − 2, the moduli map ψp,n,δ is
dominant on any component V ⊆ Vp,n,δ by [16]. From [21, 22], the map ψp,1,0 is
dominant for p ≤ 9 and p = 11 but not for p = 10, the latter against expectation
(1). Indeed, [13] proved that S10 := Im(ψ10,1,0) is a divisor in M10 consisting of
those curves of genus 10 lying in the primitive linear system of surfaces in K10:
the exceptional behaviour is due to the fact that the general K3 surface of genus
10 is a codimension-3 linear section of a suitable 5-fold and the existence of Fano
threefolds of that genus, as Mukai showed. Then [25, 14] gave another interesting
realization of the divisor S10: it is the divisorial component of the locus in M10

of curves for which SUC(2,KC , 7) 6= ∅, i.e. carrying a semistable, rank-two vector
bundle with canonical determinant and at least 7 independent global sections.

On the other hand, in [23] it is proved that ψp,1,0 is generically finite for p = 11
and p ≥ 13 but not for p = 12 (once again the latter against expectation (1)).
More precisely, [12] proved that ψp,1,0 is birational for p = 11 and p ≥ 13; then
[24], for p = 11, and more recently [1], for any p > 11 congruent to 3 (mod 4),
explicitely construct a rational inverse of ψp,1,0.

Question 18. In the cases not covered by Theorem 17 (or Kemeny’s result [20]),
is it possible to find cases in which expectation (1) is contradicted, as happens for
Vp,1,0 for p = 10 and p = 12? If yes, what kind of geometric reasons are behind
this fact? Is there any chance to get a divisorial image for g ≤ 11?

Question 19. Is there any chance to describe some of the images Im(ψp,n,δ) via
higher-rank Brill-Noether theory as in [25, 14]?
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Question 20. Let V be an irreducible component of Vp,n,δ [resp. V be an irre-
ducible component of Vn,δ(X) where (X,L) ∈ Kp is general] such that the differen-
tial ψp,n,δ|V [resp. ψX,n,δ,|V ] is of maximal rank. Is then ψp,n,δ|V [resp. ψX,n,δ,|V ]
birational onto its image? What is the Kodaira dimension of this image? If ψp,n,δ|V
is birational onto its image, is it possible to construct a rational inverse, as in
[24, 1] (Torelli type theorem)?

As for the very last question, we would expect that, except maybe for very few
cases that should be possible to classify, the image is of general type as soon as
3δ > π(p, n). One may also consider the intersection of the images of the maps
with Brill-Noether loci Mr

g,d in the moduli space Mg of curves:

Question 21. What can one say about Im(ψX,n,δ)∩Mr
g,d and Im(ψp,n,δ)∩Mr

g,d?
In the first case, which consequences can one draw on the Mori theory of the Hilbert
scheme of points X [d]?

State of the art: For δ > 0 and n = r = 1 rather complete results are found in
[10] (extending preliminary results in [15]), see the abstract of Knutsen.

For a smooth, irreducible curve C one has the Wahl map

wC : ∧2H0(C,ωC)→ H0(C,ω⊗3
C ).

If C sits on a K3 surface, then wC is not surjective (see [4, 26]). The corank of
wC for C general in the image of ψp,n,0 has been studied in [12] and subsequent
papers on the subject. Moreover, if C has general moduli of genus at least 11, but
different from 12, then wC is surjective (see [9]).

Wahl formulated in [27] the conjecture that if C is a smooth curve of genus
p ≥ 8 which is Brill–Noether general, then C is in the image of ψp,1,0 if and only if
wC is not surjective. This had been proved for p = 10 in [13]. In the recent paper
[2] Wahl’s conjecture has been essentially proved, i.e.: if C is a smooth irreducible
curve of genus p ≥ 19 which is Brill–Noether–Petri general, then C ∈ L, with
(X,L) ∈ Kp (i.e., C is in the image of ψp,1,0), or is a limit of such a curve (also
see the abstract of Sernesi).

For nodal curves C one can consider suitable modifications of the Wahl map.
Two different versions are given by Kemeny [20] and Halic [17]. We call them the
Kemeny–Wahl map kwC and the Halic–Wahl map hwC . For both maps, what is
essentially true is that, like the ordinary Wahl map, they are not surjective for
curves on K3 surfaces but are surjective for a general nodal curve, cf. [20, 17].

Question 22. Compare kwC and hwC .

Question 23. Let C be general in a component of Vp,n,δ. What are the coranks
of kwC and hwC?

Question 24. Does it make sense to extend Wahl’s conjecture for nodal curves
C using kwC and/or hwC , and to try to prove the analogue of Arbarello–Bruno–
Sernesi’s theorem [2] in such a setting?
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The problem of the density of nodal curves in equigeneric families

Thomas Dedieu

(joint work with E. Sernesi )

Let S be a smooth projective surface, ξ a class in its Néron–Severi group, and g an
integer. We consider V ξg the locally closed subset of the Hilbert scheme of curves on
S parametrizing reduced curves of genus g in the class ξ. The question is whether
the subset of V ξg corresponding to nodal curves (i.e. curves with only ordinary

double points as possible singularities) is dense in V ξg . The answer is known to be
’yes’ when S is the projective plane [2, 1, 7], or a Del Pezzo or Hirzebruch surface
[4], see also [3]. For K3 and abelian surfaces, only partial results are known [3, 5];
in particular, the general element of V ξg is a curve with immersed singularities
when g > 0 and g > 2 respectively.

Most of these results are obtained by a careful local study of the space Mξ,bir
g (S)

of birational morphisms from smooth genus g curves to S with image in the class
ξ, taking advantage of the fact that the deformation theory of such objects is well
understood, and of a key observation [1] relating the geometry of Mξ,bir

g (S) to

that of V ξg (see [3, Lem. 2.5]). This method gives optimal results to prove that the

general member of V ξg is immersed, but is unfortunately artificially too expensive
in terms of positivity of the canonical class KS to answer the question in general.

One should therefore approach the question directly by studying deformations of
integral curves C ⊂ S. Those preserving the geometric genus (resp. the topological
type of the singularities) of C are governed by NC/S ⊗A (resp. NC/S ⊗ I), where
A is the adjoint ideal of C and I is the equisingular ideal introduced by J. Wahl
[6]. Following [3], we propose:

Question 25. Use the fact that I  A if and only if C has singularities worse
than nodes to answer the question of the density of nodal curves.

We also discuss implications of this question in the enumerative geometry of
curves on surfaces.
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Moduli spaces of hyperkähler manifolds and compactification
problems. What do we know?

Concettina Galati

The following problem came up from discussions with C. Ciliberto, F. Flamini and
A. L. Knutsen.

Besides its intrinsic interest, deformation theory of singular varieties has wide
application in algebraic geometry. In particular, several recent papers about Sev-
eri varieties on K3 surfaces are based on degeneration arguments of curves and
surfaces (cf., e.g., [1, 5, 7, 8, 9]). Semi-stable degenerations of K3 surfaces have
been classified by Kulikov and Persson-Pinkham [6, 10] and are of three types. By
[4, 3], we also know that there exists a partial compactification Kp of the moduli
space Kp of polarized K3 surfaces of genus p, such that its boundary is a smooth
divisor whose points correspond to ”stable” Type II degenerations (see [3, (4.9)
and (4.10)] and [2, Sect. 3] for details). The existence of this partially compact-
ified moduli space Kp is a key ingredient in [2] and is, more in general, useful
for the study of the universal Severi varieties on K3 surfaces. Finally, [4, Thm.
5.10] provides a really interesting description of the versal deformation space of
a degenerate K3 surface of type II and more generally of a ”d-semi-stable” K3
surface.

Question 26. What happens for hyperkähler manifolds of higher dimension? Is
it possibile to classify their degenerations? How many examples of degenerate
hyperkähler manifolds are known and what do we know about their versal defor-
mation space? Finally, in which cases is it possible to provide (possible partial)
compactifications of moduli spaces of hyperkähler manifolds?
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Problems related to “fake” K3 surfaces

Edoardo Sernesi

In [1] we consider a certain class of rational and ruled surfaces, sometimes called
fake K3 surfaces. The relation between the smoothability of such surfaces to K3
surfaces and the existence of Petri general curves on them is investigated. The
analysis in [1] suggests some interesting questions not yet investigated and related
with moduli of curves, K3 surfaces and with classical problems on Del Pezzo
surfaces of degree 1. Perhaps the most interesting one is:

Question 27. Assume g ≥ 12. Is the locus (K3)g ⊂Mg of curves lying on a K3
surface closed?

For instance, there are specific curves lying on smoothable fake K3s for which
we could not decide whether they are Petri general or not. The study of such curves
can be translated into questions concerning Severi varieties on Del Pezzo surfaces
of degree 1. The all subject has connections with the study of moduli spaces of
stable K3 surfaces. Another vague but suggestive problem is the following one:

Question 28. Is it possible to generalize in some way Lazarsfeld’s proof [2] of
Gieseker-Petri’s theorem to curves lying on a fake K3 surface?
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Geometry of O’Grady’s 6 dimensional example

Giulia Saccà

(joint work with G. Mongardi, A. Rapagnetta)

There are not many known examples of hyperkähler manifolds. Two series of ex-
amples appear in dimension 2n, for every n > 1, and are related to the Hilbert
scheme of points on a K3 or an abelian surface; and in dimension 6 and 10 there is
one extra, or exceptional, deformation class, each of which was found by O’Grady.
While considerable work has been devoted to studying hyperkähler manifolds be-
longing to the first two deformation classes, not much is known for the excep-
tional deformation classes. We present results from [2] regarding the geometry of
O’Grady’s six dimensional example [3]. We use Lehn and Sorger’s local analytic
description of O’Grady’s singularity [1], and results from [4] to realize these ex-
amples as ”quotients” of another hyperkähler manifold by a birational involution.
Since this hyperkähler manifold turns out to be deformation equivalent to the
Hilbert scheme of 3 points on a K3 surface, we are able to compute all the Hodge
numbers and study properties of their moduli spaces.
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Syzygies of curves and K3 surfaces

Michael Kemeny

(joint work with G. Farkas )

K3 surfaces have recently been used to make significant progress on several con-
jectures concerning syzygies of curves on a K3 surface. We discuss recent work in
[5] and [6].

Let C be a curve and L an ample line bundle. Following Green, define the
Koszul group Ki,j(C,L) as the middle cohomology of

i+1∧
H0(C,L)⊗H0(C, (j − 1)L)→

i∧
H0(C,L)⊗H0(C, jL)→

i−1∧
H0(C,L)⊗H0(C, (j + 1)L).

One says (C,L) satisfies property (Np) if we have the vanishings

Ki,j(C,L) = 0 for i ≤ p, j ≥ 2.

Then φL : C ↪→ Pr is projectively normal if and only if (C,L) satisfies (N0),
whereas the ideal of C is generated by quadrics if, in addition, it satisfies (N1).

The line bundle L is called p-very ample if and only if for every effective divisor
D of degree p+ 1 the evaluation map

ev : H0(C,L)→ H0(D,L|D )

is surjective. Equivalently, L is not p-very ample if and only if C ⊆ Pr admits a
(p+ 1)-secant (p− 1)-plane.

The Secant Conjecture of Green–Lazarsfeld then states:

Conjecture 29 (Secant Conjecture). Let L be a globally generated line bundle of
degree d on a curve C of genus g such that

d ≥ 2g + p+ 1− 2h1(C,L)− Cliff(C).

Then (C,L) fails property (Np) if and only if L is not p+ 1-very ample.

We discuss the recent proof of the Secant Conjecture for general curves. The
proof uses moduli spaces of polarised K3 surfaces and relies on Voisin’s proof of
Green’s conjecture for curves on suitably general K3 surfaces [3, 4] . It is rather
straightforward to see that if L is not p+1 very ample, that is, L admits a (p+2)-
secant p-plane, then Kp,2(C,L) is nonzero. The difficulty in establishing the above
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conjecture is thus to go in the other direction, that is, to construct a secant plane
out of a syzygy in Kp,2(C,L)

The second conjecture we consider is the Prym–Green Conjecture. Consider a
smooth curve C of genus g, and fix a nontrivial torsion line bundle η of order l. A
paracanonical curve is the embedded curve

φωC⊗η : C ↪→ Pg−2.

For a general canonical curve

φωC
: C ↪→ Pg−1

the famous work of Voisin [3, 4] suffices to describe the shape of the free resolution
of the homogeneous coordinate ring of C. The Prym–Green conjecture likewise
predicts a roughly similar shape for the homogeneous coordinate ring of a general
paracanonical curve. We describe our proof of this when g is odd and l is either
two (the classical case) or l large. The proof works by degenerating curves on
special K3 surfaces and uses work of van Geemen–Sarti [2] resp. Barth–Verra [1]
in the l = 2 resp. large l cases.
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Twisted cubics on a cubic fourfold and in involution on the associated
8-dimensional symplectic manifold

Manfred Lehn

(joint work with Ch. Lehn, Ch. Sorger, D. van Straten; N. Addington; and
I. Dolgachev)

A by now classical theorem of Beauville and Donagi states that the Fano variety of
lines on a smooth cubic fourfold Y is an irreducible holomorphic symplectic mani-
fold of dimension 4 that is deformation equivalent to the second Hilbert scheme of
a K3 surface. With the intention to generalise this construction to curves of higher
degree, we consider the moduli space of generalised twisted cubics on Y . If the
fourfold Y does not contain a plane, this moduli space M = M3(Y ) turns out to be
smooth projective of dimension 10. The natural morphism M → G := Grass(3,P5)
that sends a curve C ⊂ Y ⊂ P5 to the three-dimensional linear span 〈C〉, fibres as
follows: M → Z ′ → ZStein → G, where ZStein → G is the finite part of the Stein
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factorisation, Z ′ → ZStein is a resolution of singularities, and, most importantly,
M → Z ′ is a P2 → Z ′-bundle.

According to a result of Piene and Schlessinger, twisted cubic curves in 3-
space come in two flavours: the general curve is arithmetically Cohen-Macaulay
and defined by three quadrics that are the minors of a (3 × 2)-matrix A0 with
linear entries. Points in a smooth divisor represent non-Cohen-Macaulay curves.
Such curves are singular plane cubics with an embedded point at a singularity.
Non-Cohen-Macaulay curves also form a smooth divisor in M , and this divisor is
contracted to a smooth divisor D ⊂ Z ′. Finally, there is a divisorial contraction
Z ′ → Z = Z(Y ) to an 8-dimensional holomorphic symplectic manifold Z. Under
this map, the divisor D is mapped to a copy of Y in Z, and curve C with embedded
point p ∈ C is mapped to this point p ∈ Y .

Every twisted curve C of aCM-type determines an integral cubic surface S =
Y ∩ 〈C〉 and a linear determinantal representation g = det(A) of the equation g of
S in the linear hull 〈C〉. A curve of nonCM-type corresponds to a skew-symmetric
(3× 3)-matrix A the entries of which define the position of the embedded point.

For surfaces S with at most ADE-singularities, families of twisted cubics are
given by equivalence classes of roots in the E6-type root system of the lattice
K⊥
S̃
⊂ H2(S̃,Z) in the integral cohomology of the minimal resolution S̃ → S.

Two roots are equivalent if they lie in the same orbit under the action of the Weyl
group generated by effective roots, i.e. exceptional curves of the resolution S̃ → S.

The two stages of the contraction M → Z ′ → Z can be interpreted in terms
of left mutations from the derived category D(Y ) onto Kuznetsov’s subcategory
A ⊂ D(Y ), and Z can be seen as a moduli space of objects in A.

It is interesting to note that Z admits a non-symplectic involution i that can be
described as follows: For any C the sections in H0(IC/S(2)) correspond to quadric
Q that contain C. As the intersection Q∩S is curve of degree 6, it decomposes as
Q ∩ S = C ∪ C ′, and the involution takes (the family of) C to (the family of) C ′.
In terms of root systems, the involution is given by α 7→ −α. Finally, in terms of
matrices, it is A 7→ At. From the last description it is clear that the fixed point
locus has two components Y and Y ′, the former corresponding to skew-symmetric
matrices and hence nonCM-curves, the latter corresponding to symmetric matrices
and thus symmetric linear determinantal representations. Such representations
only exist for surfaces with four A1-singularities and for degenerations of such
surfaces. So roughly, the second fixed point component is given by four-tuples of
points on Y with the property that the 3-plane through the points is tangent to Y
in each point. We hope that the quotient Y/i can be embedded into P20, by a map
that restricts on the first fixed point component Y to the second Veronese map,
and that this will allow to describe the quotient directly in terms of the projective
geometry of Y leading to a construction of Z analogous to the double EPW-sextics
of O’Grady.
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On the problem of compactification of Lagrangian fibrations

Dimitri Markushevich

The following problem is studied: given an abelian fibration, when can one en-
dow its total space with a symplectic structure in such a way that it becomes a
Lagrangian fibration (LF), compactifiable to a possibly singular irreducible sym-
plectic variety (ISV)?

Partial answers to this question were obtained for relative Jacobians of families
of curves [5, 7] and relative Prymians [6, 1]. We give a survey of results of the thesis
by J. Bouali [2] on the compactification of the Lagrangian fibrations in intermediate
Jacobians associated to K3-Fano flags [4]. Then an approach is presented toward
a compactification of the Donagi–Markman LF [3] in intermediate Jacobians of
cubic 3-folds that are hyperplane sections of a fixed cubic 4-fold, based upon the
following almost-theorem:

Conjecture 30. Let X ⊂ P5 be a generic cubic 4-fold, and let {Vt}t∈P5∗ denote the
family of its hyperplane sections. Then for any t0 ∈ P5∗, the following properties
are verified:

(1) Sing(Vt0) = {p1, . . . , pk} is finite, the singular points pi are of types Aµi

(1 ≤ µi ≤ 5) or Dµi (4 ≤ µi ≤ 5), and
∑
µi ≤ 5.

(2) The family V = {Vt}t∈P5∗ −→ P5∗ is locally analytically a multi-versal
unfolding of Sing(Vt0) near t0.

Thus, the degenerations of the family V/P5∗ are well-behaved and there is a
hope to compactify the relative intermediate Jacobian J = J(V/P5∗) to an ISV.
An evidence is given by the fact that the relative compactified Jacobian of a family
of integral curves with plane singularities is non-singular, provided the family is
multi-versal for each of its singular fibers. Remark that the monodromy of the
versal deformation of an isolated curve singularity coincides with the monodromy
of the versal deformation of the stably equivalent 3-dimensional singularity, which
motivates the following question:

Question 31. Is the relative compactified Jacobian of a family of curves over a
disk in C toroidal, provided that the family is a multi-versal unfolding of singular-
ities of its central fiber, and that those singularities are only simple singularities
of types Aµi (1 ≤ µi ≤ 5) or Dµi (4 ≤ µi ≤ 5),

∑
µi ≤ 5?

An alternative approach using a representation of the intermediate Jacobians
as Prym varieties of double covers of curves is discussed.
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Short report on discussion sessions

One group of participants, formed by Ciliberto, Dedieu, Galati, Kemeny, Knut-
sen, Saccà and Sernesi concentrated on some of the problems proposed by Cilib-
erto/Flamini and Sernesi. In particular, they figured out a way of possibly an-
swering Question 13 affirmatively. Concerning Question 20, they observed that
Vn,δ(X) is never rationally connected if (X,L) ∈ Kp is general.

Some time was also devoted to Question 28 towards extending Lazarsfeld’s
vector bundle methods to fake K3 surfaces. A few days after the workshop, the
problem was solved in [1], which in particular proves that certain hyperplane
sections of fake K3 surfaces are indeed Brill-Noether-Petri general curves.

A second group of participants, formed by Boissiére, Camere, Cattaneo, Flamini,
Lehn, Markushevich, Ohashi and Sarti focused on finding geometric description of
the involution on S[2] as in Question 1 proposed by Cattaneo. Various methods of
attack were considered. The ideas developed were very useful and we believe that
these will help in future research in finding the geometric description.

Some time was also devoted to discussing other problems, in various constella-
tions of participants. Among those, considerable attention was devoted to degen-
erations of hyperkähler manifolds as in Question 26 proposed by Galati. Great
progress in the study of deformations of degenerate hyperkähler manifolds was
made in [2]. Nevertheless, up to now, very few examples of degenerate hyperkähler
manifolds are known. Various attempts to find new examples were made.
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