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Abstract. Enriques manifolds are non simply connected manifolds whose universal cover is
irreducible holomorphic symplectic, and as such they are natural generalizations of Enriques
surfaces. The goal of this note is to prove the Morrison-Kawamata cone conjecture under some
assumptions on the universal cover and then deduce it for very general Enriques manifolds when
the degree of the cover is prime. The proof uses the analogous result (established by Amerik-
Verbitsky) for their universal cover. We also verify the conjecture for the known examples.

1. Introduction

An Enriques manifold is a connected complex manifold X which is not simply connected and
whose universal covering X̃ is an irreducible holomorphic symplectic (IHS) manifold. Enriques
manifolds were simultaneously and independently introduced in [BNWS11] and [OS11a] as a
natural generalization of Enriques surfaces. The fundamental group of an Enriques manifold is a
cyclic and finite group G = 〈g〉 and its order is called the index of X, which is also the order of the
torsion canonical class KX ∈ Pic(X). From the definition it follows that an Enriques manifold
is even dimensional. Moreover, as X = X̃/G, it is compact and, since h2,0(X) = h0,2(X) = 0,
it turns out that an Enriques manifold is always projective (cf [BNWS11, Proposition 2.1, (4)]
and [OS11a, Corollary 2.7]) and so is its universal cover. In those papers examples of Enriques
manifolds of index 2, 3 and 4 are constructed, while their periods are studied in [OS11b].

The Morrison-Kawamata cone conjecture (see [Mor93, Ka97]) concerns the action of the automor-
phism group of manifolds (and more generally pairs) with numerically trivial canonical class on
the cone of rational nef classes and predicts the existence of a rational, polyhedral fundamental
domain for such action. More precisely, and more generally, we have the following.

Conjecture 1.1 (The Morrison-Kawamata Cone conjecture). Let X → S be a K-trivial fiber
space, that is a proper surjective morphism f : X → S with connected fibers between normal
varieties such that X has Q-factorial and terminal singularities and KX is zero in N1(X/S).

(1) There exists a rational polyhedral convex cone Π which is a fundamental domain for the
action of Aut(X/S) on the convex hull Nef+(X) of Nef(X) ∩ Pic(X̃)Q inside Pic(X)R in
the sense that
(a) Nef+(X/S) = ∪g∈Aut(X/S)g

∗Π.
(b) int(Π) ∩ int(g∗Π) = ∅, unless g∗ = id in GL(N1(X/S)).

(2) There exists a rational polyhedral convex cone Π′ which is a fundamental domain in the
sense above for the action of Bir(X/S) on the convex hull Mov+(X) of Mov(X)∩Pic(X)Q
inside Pic(X)R.

Date: May 22, 2024.
2020 Mathematics Subject Classification. 14C99, 14J28, 14J35, 14J40.
Key words and phrases. holomorphic symplectic varieties, ample cone, automorphisms, Enriques manifolds.

1



Item (2) above is also known as the birational Cone conjecture. Notice that in the literature there is
also a version of the conjecture where Nef+(X̃) is replaced by Nefe(X/S) := Nef(X/S)∩Eff(X/S)
(same for Mov+(X) which is replaced by Mov

e
(X/S) := Mov(X/S) ∩ Eff(X/S)). One can see

that Nefe(X̃) ⊂ Nef+(X̃) (cf. [MY15, Remark 1.4]). This statement is analogous to the classical
one for the 4 known deformations type of IHS manifolds (and equivalent in general modulo the
SYZ-conjecture).

The conjecture (we will not specify which version of it, and refer the interested readers to the
papers we quote) has been proved in dimension 2 by Sterk-Looijenga, Namikawa, Kawamata, and
Totaro (see [Ste85, Na85, Ka97, Tot10]), by Prendergast-Smith [PS12] for abelian varieties, by
Amerik-Verbitsky [AV17, AV20] for IHS manifolds, building upon the birational cone conjecture
established by Markman in [Mar11], see also Markman-Yoshioka [MY15] and by Lehn-Mongardi-
Pacienza [LMP22] for singular IHS varieties. For a recent extension to a not necessarily closed
field of characteristic 0 see [Ta21, Theorem 1.0.5]. For Calabi-Yau varietes the conjecture is open
in general. For a recent result in this direction, see [GLW22] and the reference therein. For
recent results in the relative case, in particular on the birational cone conjecture for families of
K3 surfaces, see [LZ22] and [L23]. We refer the reader to [Tot12, LOP18] for nice introductions to
this topic. The conjecture is deeply related with birational geometry. Item (1) of the conjecture
yields the finiteness, up to automorphisms, of birational contractions and fiber space structures of
the initial variety, while item (2) implies, modulo standard conjectures of the MMP, the finiteness
of minimal models, up to isomorphisms, of any Q-factorial and terminal variety with non-negative
Kodaira dimension (cf. [CL14, Theorem 2.4]).

From now on we will restrict ourselves to the absolute and smooth case. By the Beauville-
Bogomolov decomposition theorem (see [Be83a]) we know that any K-trivial variety V admits a
finite étale cover Ṽ → V , where Ṽ is a product of Calabi-Yau manifolds, IHS manifolds and an
abelian variety. A general question is: suppose we know Conjecture 1.1 for Ṽ , can we deduce it
for V ? Our main result provides a positive answer when we have only one factor of IHS type and
the IHS has the smallest possible Picard group. More precisely we show the following:

Theorem 1.2. Let X = X̃/G be an Enriques manifold, where G = 〈g〉 is a finite cyclic group
acting freely on an IHS manifold X̃. Assume that the action of G on Pic(X̃) is the identity, i.e.
Pic(X̃) = H2(X̃,Z)G. Then there exists a rational and polyhedral cone which is a fundamental
domain for the action of Aut(X) (respectively of Bir(X)) on Nef+(X) (resp. on Mov+(X)).

Notice that we show that the fundamental domain is also convex whenever the map Aut(X̃) →
O(H2(X̃,Z)) is injective.

The hypothesis Pic(X̃) = H2(X̃,Z)G can be verified in several cases.

Theorem 1.3. Let X = X̃/G be an Enriques manifold, where G = 〈g〉 is a cyclic group of order
d acting freely on an IHS manifolds X̃. Then Pic(X̃) = H2(X̃,Z)G in the following cases:

(1) The index |G| = p is prime and the Enriques manifold is very general in the moduli space.
(2) X is one of the examples provided in [BNWS11] and [OS11a].
(3) X̃ is of K3[n]-type (resp. of Kumn-type) and the index d = 13, 17, 19, 23, 46 (resp. d =

5, 7, 9, 14, 18).

In particular, by Theorem 1.2, for these Enriques manifolds there exists a rational and polyhedral
cone which is a fundamental domain for the action of Aut(X) (respectively of Bir(X)) on Nef+(X)
(resp. on Mov+(X)).
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As for the proof of Theorem 1.2, if π : X̃ → X = X̃/G is the covering map, by Amerik-Verbitsky
[AV17, AV20] there exists a rational polyhedral convex cone D̃ which is a fundamental domain
for the action of Aut(X̃) on Nef+(X̃). We set

D := D̃ ∩ π∗N1(X).

Where recall that N1(X) denotes the Néron-Severi group of X which coincides with the Picard
group of X. The proof of Theorem 1.3 then consists in showing that π∗(D) is a fundamental
domain for the action of Aut(X) on Nef+(X): the rationality and polyhedrality of D are implied
by those of D̃. The main point is to show that if ξ ∈ π∗N1(X) and ϕ is an automorphism
of X̃ such that ϕ∗(ξ) ∈ D̃, then ϕ “descends” to an automorphism of X, i.e. ϕ commutes
with G. To show this commutativity we check it on cohomology and this is where we use the
assumtion Pic(X̃) = H2(X̃,Z)G. Some care has to be taken, as it is well known that there are
non-trivial automorphisms acting trivially on cohomology for the 2 deformation classes coming
from abelian surfaces (see Remark 2.1 for details). As for the proof of Theorem 1.3, item (1)
is proved in Proposition 2.3, after having recalled the construction of moduli spaces of marked
Enriques manifolds, while items (2) and (3) are the content of several propositions in Sections 4.1
and 4.2.

We conclude the introduction by mentioning that, motivated by the approach followed in this
paper, Monti and Quedo have recently proved the cone conjecture for all étale quotients of abelian
varieties, cf. [MQ24].
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the ANR project No. ANR-20-CE40-0026-01 (SMAGP).

2. Preliminaries

2.1. Basic facts on IHS manifolds. An irreducible holomorphic symplectic manifold is a com-
pact Kähler manifold X̃ which is simply connected and carries a holomorphic symplectic 2–form
σ, such that H0(X̃,Ω2

X̃
) = C · σ. For a general introduction of the subject, we refer to [Huy99].

Let X̃ be an irreducible holomorphic symplectic manifold of dimension 2n ≥ 2. Let σ ∈
H0(X̃,Ω2

X̃
) such that

∫
X̃
σnσ̄n = 1. Then, following [Be83a], the second cohomology group

H2(X̃,C) is endowed with a quadratic form q = q
X̃

defined as follows

q(a) :=
n

2

∫
X̃

(σσ̄)n−1a2 + (1− n)

(∫
X̃
σnσ̄n−1a

)
·
(∫

X̃
σn−1σ̄na

)
, a ∈ H2(X̃,C),

which is non-degenerate and, up to a positive multiple, is induced by an integral nondivisible
quadratic form on H2(X̃,Z) of signature (3, b2(X̃) − 3). The form q is called the Beauville-
Bogomolov-Fujiki quadratic form of X̃. By Fujiki [Fuj87], there exists a positive rational number
c = c

X̃
(the Fujiki constant of X̃) such that

c · qn(α) =

∫
X̃
α2n, ∀α ∈ H2(X̃,Z).
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Recall that for an IHS manifold X̃, we have Pic(X̃) = NS(X̃) and we will indifferently use both
the notations.

Remark 2.1. As usual X̃ denotes an IHS manifold. Recall that ν : Aut(X̃) −→ Aut(H2(X̃,Z))
is finite, by [Huy99, Proposition 9.1]. Notice moreover that by a result of Hassett and Tschinkel,
[HT13, Theorem 2.1] the kernel of the homomorphism ν is invariant under smooth deformations
of the manifold X̃. This allows to compute it for all 4 known deformation types of IHS manifolds,
thanks to [Be83a, Proposition 10], [BNWS11, Corollary 3.3] and [MW17, Theorems 3.1 and 5.2].
We have that ν is injective for deformations of punctual Hilbert schemes of K3 surfaces and OG10
manifolds, while the kernel is generated by the group of translations by points of order n on an
abelian surface and by −id (respectively equal to (Z/2Z)×8) if X̃ is a deformation of a generalized
Kummer of dimension 2n (respectively of an OG6 manifold).

2.2. Basic facts on Enriques manifolds. Throughout this section, X denotes an arbitrary
Enriques manifold, X̃ its IHS universal cover and G its fundamental group. Consider now the
quotient π : X̃ → X = X̃/G, where |G| = d. Notice that the action of g ∈ G on X̃ cannot
be symplectic, i.e. we cannot have g∗σ = σ, otherwise X would have h2,0(X) 6= 0 (where
H2,0(X̃) = Cσ). Therefore there exists a d-th root of unity λ 6= 1 such that g∗σ = λσ. Moreover
the action must be purely non–symplectic, i.e. λ is a primitive root of unity of the same order of
g. Otherwise, if G contained symplectic automorphisms, there would be points with a non trivial
stabilizer and the covering would not be étale (see [BNWS11, Section 2.2]). Observe that if G is
of prime order then a non–symplectic action is the same as a purely non–symplectic one. Recall
that by [Be83b, Section 4] a group acting purely non–symplectically on an IHS manifold is cyclic,
we denote by g its generator.

Recall that the automorphisms (resp. the birational transformations) of X identify to the quotient
by G of the normalizer group of G in Aut(X̃) (resp. in Bir(X̃)), i.e.

(1) Aut(X) = {τ̃ ∈ Aut(X̃) : τ̃ ◦G ◦ τ̃−1 = G}/G

and

(2) Bir(X) = {τ̃ ∈ Bir(X̃) : τ̃ ◦G ◦ τ̃−1 = G}/G.

Indeed, if τ̃ ∈ {τ̃ ∈ Aut(X̃) : τ̃ ◦G◦ τ̃−1 = G}/G then one obviously recovers an automorphism on
X. For the other inclusion, if τ ∈ Aut(X) then, by the universal property of the universal cover,
the morphism τ ◦ π factorizes through X̃, namely there exists a morphism τ̃ : X̃ → X̃ sitting in
the following commutative diagram

X̃

π

��

τ̃ // X̃

π

��
X

τ // X.

By construction τ̃ is bijective and yields the lifting of the automorphism τ . For birational trans-
formations again one inclusion is obvious. For the other inclusion if τ ∈ Bir(X), then the largest
open subset U ⊂ X over which τ is defined has complement of codimension ≥ 2. The same is
then true for π−1(U) =: Ũ . Since π1(Ũ) = π1(X̃) we have that Ũ is simply connected and the
argument given before works the same and yields and automorphism τ̃ ∈ Aut(Ũ) lifting τ , which
we see as τ̃ ∈ Bir(X̃). We will show that in some cases this is even equal to the quotient of the
centralizer of G in Aut(X).

Lemma 2.2. For any Enriques manifold X we have H2(X,Z) = Pic(X). Moreover we have
π∗H2(X,Z) = H2(X̃,Z)G ⊂ Pic(X̃). In particular

dimR π
∗N1(X) = dimR π

∗ Pic(X) = rkH2(X̃,Z)G.
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Proof. Consider ξ ∈ H2(X,Z), we have

q(π∗ξ, σ) = q(g∗π∗ξ, g∗σ) = q(π∗ξ, λσ) = λq(π∗ξ, σ)

with λ 6= 1 as g is not a symplectic automorphism. Then q(π∗ξ, σ) = 0, which implies that
π∗ξ ∈ Pic(X̃), as Pic(X̃) = σ⊥q ∩ H2(X̃,Z). In particular we have that ξ ∈ Pic(X). We
have shown that H2(X,Z) ⊂ Pic(X) ⊂ H2(X,Z) so we get the first equality (notice that this
equality also follows immediately from the fact that H2,0(X) = 0, but we will need the argument
below). By construction π∗H2(X,Z) ⊂ H2(X̃,Z)G with finite index and moreover by [OS11a,
proof of Proposition 2.8, and proof of Proposition 5.1] we get in fact equality. Finally since
π∗ Pic(X) ⊂ Pic(X̃) the previous equality implies that H2(X̃,Z)G ⊂ Pic(X̃) (which is in fact a
more general fact for non–symplectic automorphisms acting on IHS manifold, but this gives an
easy proof). �

The examples of Enriques manifolds from [BNWS11] and [OS11a], which to our knowledge are all
the known examples so far, will be recalled in detail in Section 4.

2.3. Examples. We recall the following examples from [BNWS11] and [OS11a] which to our
knowledge are all the known examples so far.

2.3.1. From K3[n] manifolds. Consider a K3 surface S with an Enriques (i.e. a fixed point free)
involution ι. On the Hilbert scheme S[n] consider the natural involution ι[n]. Notice that ι[n] has
no fixed points if n is odd (notice that if n is even there are always fixed points) and S[n]/〈ι[n]〉 is
an Enriques manifold of dimension 2n and index 2. Moreover in this case we know the invariant
sublattice for the action of ι[n]. In fact H2(S,Z)ι = U(2) ⊕ E8(2) where U is the hyperbolic
plane with bilinear form multiplied by 2 and E8(2) is the negative definite lattice associated to
the corresponding Dynkin diagram and bilinear form multiplied by 2. Since ι[n] is a natural
automorphism, we have

H2(S[n],Z)ι
[n]

= H2(S,Z)ι ⊕ 〈−2(n− 1)〉 = U(2)⊕ E8(2)⊕ 〈−2(n− 1)〉.
Notice that the punctual Hilbert scheme (S/ι)[n] of the Enriques surface S/ι is not an Enriques
manifold, in the sense of our definition, as its universal cover is a Calabi-Yau and not an IHS
manifold, see [OS11a, Theorem 3.1]

2.3.2. From Kumn manifolds. These examples arise from a bielliptic surface, i.e. a surface S with
torsion canonical class of order d ∈ {2, 3, 4} admitting a finite étale covering by an abelian surface
A→ S, and specifically, under certain conditions on d and n, from a free action of a finite group
on A[n+1] which preserves Kumn(A) ⊂ A[n+1]. We refer the reader to [OS11a, Section 6] and
[BNWS11, Section 4.2] for further details, in particular about the fact that the same construction
can not produce Enriques manifolds of index 6. We recall in detail the example for d = 2, 3, 4 in
Section 4.1.

2.4. Moduli spaces of marked Enriques manifolds. We follow the presentation in [BCS16].
See also [OS11b] for another equivalent approach and for the study of the period map.

Let L be a lattice. Let X̃ be an IHS manifold. Recall that a marking for X̃ is an isometry
L→ H2(X̃,Z). If d is an integer we will denote by λ a primitive d-th root of unity.

Let M be an even non-degenerate lattice of rank ρ ≥ 1 and signature (1, ρ− 1). An M -polarized
IHS manifold is a pair (X̃, j) where X̃ is a projective IHS manifold and j is a primitive embedding
of lattices j : M ↪→ NS(X̃). Two M -polarized IHS manifolds (X̃1, j1) and (X̃2, j2) are called
equivalent if there exists an isomorphism f : X̃1 → X̃2 such that j1 = f∗ ◦ j2. As in [DK07,

5



Section 10] and [D96] one can construct a moduli space of marked M -polarized IHS manifolds as
follows. We fix a primitive embedding ofM in L and we identifyM with its image in L. A marking
of (X̃, j) is an isomorphism of lattices η : L→ H2(X̃,Z) such that η|M = j. As observed in [D96,
p.11], if the embedding of M in L is unique up to an isometry of L then every M -polarization
admits a compatible marking. TwoM -polarized marked IHS manifolds (X̃1, j1, η1) and (X̃2, j2, η2)

are called equivalent if there exists an isomorphism f : X̃1 → X̃2 such that η1 = f∗ ◦ η2 (this
clearly implies that j1 = f∗ ◦ j2). Let T := M⊥ ∩L be the orthogonal complement of M in L and
set

ΩM := {x ∈ P(T ⊗ C) | q(x) = 0, q(x+ x̄) > 0}.

Since T has signature (2, rk(T ) − ρ) the period domain ΩM is a disjoint union of two connected
components of dimension rk(T )− ρ. For each M -polarized marked IHS manifolds (X, j, η), since
η(M) ⊂ NS(X̃), we have η−1(H2,0(X̃)) ∈ ΩM . On the other hand, by the surjectivity of the
period map [Huy99, Theorem 8.1] restricted to any connected component M0

L of ML (the moduli
space of IHS manifolds with second integral cohomology isometric to a given lattice L) we can
associate to each point ω ∈ ΩM an M -polarized IHS manifold as follows: there exists a marked
pair (X̃, η) ∈ M0

L such that η−1(H2,0(X̃)) = ω ∈ P(T ⊗ C) so M = T⊥ ⊂ ω⊥ ∩ L, hence
η(M) ⊂ H2,0(X̃)⊥ ∩H1,1

Z (X̃) = NS(X̃) and we take (X̃, η|M , η).

By the Local Torelli Theorem for IHS manifolds, an M -polarized IHS manifold (X̃, j) has a local
deformation space DefM (X̃) that is contractible, smooth of dimension rk(T ) − ρ, such that the
(local) period map p : DefM (X̃) → ΩM is a local isomorphism (see [D96]). By gluing all these
local deformation spaces one obtains a moduli space KM of marked M -polarized IHS manifolds
that is a non-separated analytic space, with a (global) period map p : KM → ΩM .

To construct a period domain for Enriques manifolds we have to take the non–symplectic action
into account.

Let (X̃, j) be an M -polarized IHS manifold and G = 〈g〉 a cyclic group of prime order p ≥ 2

acting non-symplectically on X̃. Assume that the action of G on j(M) is the identity and that
there exists a group homomorphism ρ : G −→ O(L) such that

M = Lρ := {x ∈ L | ρ(g)(x) = x,∀g ∈ G}.

We define a (ρ,M)-polarization of (X̃, j) as the data of a marking η : L → H2(X̃,Z) such that
η|M = j and g∗ = η ◦ ρ(g) ◦ η−1.

Two (ρ,M)-polarized IHS manifolds (X̃1, j1) and (X̃2, j2) are isomorphic if there are markings,
η1 : L→ H2(X̃1,Z) and η2 : L −→ H2(X̃2,Z) such that ηi|M = ji, and an isomorphism f : X̃1 →
X̃2 such that η1 = f∗ ◦ η2.

Recall that by construction Cσ is identified to the line in L ⊗ C defined by η−1(H2,0(X̃)). Let
λ ∈ C∗ such that ρ(g)(σ) = λσ. Observe that λ 6= 1 since the action is non-symplectic and it is
a primitive p-th root of unity since p is prime. By construction σ belongs to the eigenspace of
T ⊗ C relative to the eigenvalue λ, where T = M⊥ ∩ L. We denote it by T (λ) (if p = 2, we have
λ = −1 and we denote T (λ) = TR(λ)⊗C, where TR(λ) is the real eigenspace relative to λ = −1).

Assume that λ 6= −1, then the period belongs to the space

Ωρ,λ
M := {x ∈ P(T (λ)) | q(x+ x̄) > 0}

of dimension dimT (λ)−1 which is a complex ball if dimT (λ) ≥ 2. By using the fact that λ 6= −1

it is easy to check that every point x ∈ Ωρ,λ
M satisfies automatically the condition q(x) = 0.

6



If λ = −1 we set Ωρ,λ
M := {x ∈ P(T (λ)) | q(x) = 0, q(x+ x̄) > 0}. It has dimension dimT (λ)− 2.

Clearly in both cases Ωρ,λ
M ⊂ ΩM .

Let X be a marked Enriques manifold of index d, that is the data of a (ρ,M)-polarization of (X̃, j)

with a marking η : L→ H2(X̃,Z) such that η|M = j and g∗ = η ◦ ρ(g) ◦ η−1, so that X = X̃/G.
Recall that by the Bogomolov-Tian-Todorov theorem the Kuranishi space Def(X) of an Enriques
manifold X of index d is smooth. Moreover Oguiso and Schröer verified in [OS11b, Proposition
1.2] that, after possibly shrinking Def(X), every point in it parametrizes an index d Enriques
manifold.

If X → B is a flat family of marked Enriques manifolds, then, as remarked in [OS11b, Section 2]
the universal covering X̃ →X of the family is also the fiberwise universal covering. The period
map of the family X → B is then defined as

(3) pB : B → Ωρ,λ
M , b 7→ η−1(H2,0(X̃b)).

By [OS11b, Theorem 2.4] the local Torelli theorem holds, namely the period map pB is a local
isomorphism. Hence, as for IHS manifolds, we can patch together the Kuranishi spaces via the
Oguiso-Schröer local Torelli theorem, to construct a (non-separated) moduli space of (marked)
Enriques manifolds in terms of (ρ,M)-polarized IHS manifolds.

Let us now briefly discuss the case when the order of G is not necessarily a prime, but the action
of G is purely non–symplectic (recall that it means that g acts on the holomorphic two-form by
multiplication by a primitive root of unity of the same order as g). So let |G| = d, where d is not
necessarily a prime number and fix the action as ρ(g)(σ

X̃
) = λσ

X̃
where λ is a primitive d–root

of unity. Then take T (λ) to be the eigenspace in T ⊗ C relative to the eigenvalue λ, where we
use here the same notations as before, i.e. M is the invariant sublattice in L for the action of
ρ(G) and T its orthogonal complement. As before the period σ

X̃
of X̃ belongs to Ωρ,λ

M , but here
the Néron–Severi group of a very general X̃ in the moduli space just contains M and it is not
necessarily equal.

We precise this remark in the framework of Enriques manifolds in the next two Lemmas. Recall
that a very general Enriques manifold is a point in the corresponding parameter space which lies
outside a countable union of proper closed subvarieties.

Proposition 2.3. For a very general Enriques manifold X of prime index |G| = p with universal
cover X̃, we have that Pic(X̃) = H2(X̃,Z)G.

Proof. We argue as in [BCS16, Theorem 3.4]. As in Section 2.4 we setM := η−1(H2(X̃,Z)G) and
T := M⊥ ∩L. Let T+ ⊂ T\{0} be the set of t ∈ T\{0} such that Ht = {ω ∈ Ωρ,λ

M | q(ω, t) = 0} is
a hyperplane section.

Consider H :=
⋃
t∈T+ Ht. Each subset Ωρ,λ

M \ Ht is open and dense in Ωρ,λ
M hence by Baire’s

Theorem the subset Ω0 := Ωρ,λ
M \H is dense in Ωρ,λ

M since H is a countable union of complex
closed subspaces.

We take now a period ω ∈ Ω0, and a marked IHS manifold (X̃, η) such that p(X̃, η) = ω. To
lighten the notation from now on we will omit the marking η.

Then Pic(X̃) = {l ∈ L, q(ω, l) = 0}. Observe that since ω ∈ T (λ) we have that H2(X̃,Z)G ⊂
Pic(X̃), as by constructionM := H2(X̃,Z)G is orthogonal to T . Moreover by Lemma 2.2 we have
the equality Pic(X̃)G = H2(X̃,Z)G.
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We now want to show that
(Pic(X̃)G)⊥ ∩ Pic(X̃) = {0},

from which we deduce that Pic(X̃) = H2(X̃,Z)G, that is what we want to prove.

Let 0 6= t ∈ (Pic(X̃)G)⊥ ∩Pic(X̃). Then t⊥ ⊂ L can not determine an hyperplane section of Ωρ,λ
M

as we have taken ω ∈ Ω0. In particular this implies that, for all t ∈ (Pic(X̃)G)⊥ ∩ Pic(X̃)), t⊥
contains the eigenspace T (λ) with respect to λ for the action of G on T ⊗ C. Hence

T (λ) ⊂ [(Pic(X̃)G)⊥ ∩ Pic(X̃)]⊥ = ∩
t∈(Pic(X̃)G)⊥∩Pic(X̃)

t⊥,

which implies that
T (λ) ⊂ Pic(X̃)G + Pic(X̃)⊥.

Now by definition T (λ) ∩ Pic(X̃)G = {0}, hence we deduce

T (λ) ⊂ Pic(X̃)⊥ =: T
X̃

where the orthogonal complement of Pic(X̃) is the transcendental lattice T
X̃

of X̃.

This in particular implies that

(4) ((Pic(X̃)G)⊥ ∩ Pic(X̃))⊗ C) ∩ T (λ) = {0}

otherwise we would find a non-zero element in Pic(X̃) ∩ T
X̃
, which is not possible.

Now by definition G acts as the identity on Pic(X̃)G = H2(X̃,Z)G while, by the hypothesis
|G| = p, the eigenvalues of its action on (Pic(X̃)G)⊥ ∩ Pic(X̃)) are the primitive roots of unity.
Since this is a lattice, the characteristic polynomial is a power of the p-th cyclotomic polynomial
(as the characteristic polynomial has integral coefficients). This means that all the primitive roots
of unity appear with the same multiplicity, which is different from zero since we are assuming that
t 6= 0. In particular we deduce that ((Pic(X̃)G)⊥ ∩Pic(X̃))⊗C)∩ T (λ) 6= {0}, which contradicts
(4). So we must have that (Pic(X̃)G)⊥ ∩ Pic(X̃) = {0} and this concludes the proof. �

Observe that ifm is not a prime number we have that at all points in the moduli spaceH2(X̃,Z)G ⊂
Pic(X̃) as proved in Lemma 2.2. Now by using the proof of Proposition 2.3 we can show the fol-
lowing result:

Proposition 2.4. Let X = X̃/G be a very general Enriques manifold of index d = |G|, G =

〈g〉 and X̃ denotes its IHS universal cover. Then Pic(X̃) ⊗ C contains all the eigenspaces with
eigenvalue a non–primitive root of unity for the action of g on H2(X̃,Z)⊗ C.

Proof. By [Be83b, Proposition 6] g acts on T
X̃

by primitive d-roots of unity and using a similar
argument as in the first part of the proof of Proposition 2.3 we show that T (λ) ⊂ T

X̃
(we use the

same notations as in Proposition 2.3).

Now the eigenvalues for the action of G on (Pic(X̃)G)⊥∩Pic(X̃) are the roots of unity (not neces-
sarily primitive) that are different from 1. Since this is a lattice, the characteristic polynomial is a
product of a polynomial with integral coefficients with a power of the d-th cyclotomic polynomial
(as the characteristic polynomial has integral coefficients). This means that all the primitive roots
of unity appear with the same multiplicity, which is not zero since we are assuming t 6= 0 (we
keep the same notation as in Proposition 2.3). But since we have shown that T (λ) ⊂ T

X̃
this is

not possible. �

Remark 2.5. Observe that the previous Proposition does not exclude that also in the non–prime
order case it can happen that Pic(X̃) = H2(X̃,Z)G at the very general point. This depends on
the action of G on H2(X̃,Z), see the discussion of the index 4 examples in Section 4.1.
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3. On the cone conjecture

Throughout this section, X denotes an arbitrary Enriques manifold, X̃ its IHS universal cover,
G its fundamental group, and π : X̃ → X = X̃/G the quotient morphism. First we prove the
following.

Lemma 3.1. H2(X̃,Q) = π∗[H2(X,Q)]⊕ [π∗(H2(X,Q))]⊥q

Proof. Clearly both spaces π∗[H2(X,Q)] and [π∗(H2(X,Q))]⊥q are contained in H2(X̃,Q) we
have to show that their sum is direct. Let us take a non-zero class β ∈ [π∗(H2(X,Q))]⊥q (=
[H2(X̃,Q)G]⊥q by Lemma 2.2). Suppose by contradiction that

(5) β ∈ π∗H2(X,Q).

Then q(β, β) = 0. Let A ∈ Pic(X̃) an ample line bundle. Without loss of generality we may
assume that A = π∗B with B ample (so that A is G-invariant). By the choice of β and the
G-invariance of A we have that q(β,A) = 0 which, by (5), contradicts the Hodge-index theorem
for q. �

3.1. The proof of Theorem 1.2. We assume that we are in the hypothesis of Theorem 1.2 and
show that τ̃∗ commutes with g∗, for any τ̃ ∈ Aut(X̃) (respectively τ̃ ∈ Bir(X̃))

Lemma 3.2. Each automorphism τ̃ ∈ Aut(X̃) (respectively any τ̃ ∈ Bir(X̃)) acts on H2(X̃,Z)G

and commutes with the action of g on it.

Proof. By assumption we know that Pic(X̃) = H2(X̃,Z)G. Consider η ∈ H2(X̃,Z)G and set
e := (τ̃)∗(η). First notice that e ∈ H2(X̃,Z)G. Indeed automorphisms preserve the Picard group,
hence e = (τ̃)∗(η) ∈ Pic(X̃) = H2(X̃,Z)G, by hypothesis. Therefore g∗(e) = e from which we
deduce

g∗((τ̃)∗(η)) = g∗(e) = e = (τ̃)∗(η) = (τ̃)∗(g∗(η))

where the last equality holds since η ∈ H2(X̃,Z)G. Notice that the same considerations hold for
τ̃ ∈ Bir(X̃). �

We then check the commutativity also on T (X) := (π∗H2(X,Z))⊥q ∩H2(X̃,Z) under the same
assumption.

Lemma 3.3. Let X be an Enriques manifold, X̃ its IHS universal cover, G its fundamental group,
and π : X̃ → X = X̃/G the quotient morphism. Suppose that Pic(X̃) = H2(X̃,Z)G. Then any
automorphism τ̃ ∈ Aut(X̃) (respectively any τ̃ ∈ Bir(X̃)) acts on T (X) and commutes with the
action of g on it.

Proof. Notice that T (X) is the transcendental part of a weight two Hodge structure of K3 type.
Hence by [Huy16, Corollary 3.4, Chapter 3] the group of all Hodge isometries of T (X) is a finite
cyclic group. The automorphisms preserve Pic(X̃), which, by hypothesis, equals H2(X̃,Z)G.
Therefore any element of Aut(X̃) preserves T (X) and induces a Hodge isometry of T (X). Then
the restrictions to T (X) of (τ̃)∗ and g∗ are elements of a finite cyclic group and as such commute.
Notice again that the same considerations hold for τ̃ ∈ Bir(X̃). �

Remark 3.4. Observe that when the map Aut(X̃) −→ O(H2(X̃,Z)) is injective we have shown
that in this case Aut(X̃) (resp. Bir(X̃)) can be identified with the quotient by G of the centralizer
of G in Aut(X) (resp. in Bir(X̃)).
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Proof of Theorem 1.2. Consider ξ ∈ Nef+(X). Then it exists η ∈ Nef+(X̃) such that ξ = π∗(η).
By [AV17, AV20] the Cone conjecture holds on X̃, i.e. there exists a fundamental domain D̃ for
the Aut(X̃) action on Nef+(X̃), which is a rational polyhedral convex cone. In particular we have
the existence of τ̃ ∈ Aut(X̃) and δ̃ ∈ D̃ ∩ π∗N1(X) =: D such that

(6) (τ̃)∗(η) = δ̃.

Notice that D is a rational polyhedral convex cone, since D̃ is and π∗N1(X) is a rational sub-
space. Since Pic(X̃) = H2(X̃,Z)G then we can apply Lemma 3.2, Lemma 3.3 and Lemma 3.1
to show that the isometry τ̃∗ commutes with g∗ on H2(X̃,Z). We split now the proof in two cases.

Case 1. If the map Aut(X̃) −→ O(H2(X̃,Z)) is injective, then τ̃ and g commute also on X̃
which by (1) implies that τ̃ descends to an automorphism τ on X such that

τ ◦ π = π ◦ τ̃
So we get

τ∗(ξ) = τ∗(π∗(η)) = π∗((τ̃)∗(η)) = π∗(δ̃) ∈ π∗(D).

This means that π∗(D) is a fundamental domain for the Nef+(X)-action on Aut(X), which
moreover is a rational and polyhedral convex cone as D is.

Case 2. If the map Aut(X̃) −→ O(H2(X̃,Z)) is not injective, then by [Huy99, Proposition 9.1,
item (v)] the kernel K is finite. Consider

Γ := {ϕ ∈ Aut(X̃) |ϕg−1ϕ−1g ∈ K}

and observe that Γ is in fact equal to Aut(X̃) as we have shown that each automorphism induces
an isometry that commutes on H2(X̃,Z) with g. Consider

Γ0 := {ϕ ∈ Aut(X̃) |ϕg−1ϕ−1g = id}

and notice that Γ0 is a subgroup of Aut(X̃) which is not necessarily normal. Let us show that it
has finite index in Aut(X̃). Consider the map

β : Aut(X̃) −→ K, ϕ 7→ ϕg−1ϕ−1g.

Then one easily checks that β(ϕ1) = β(ϕ2) if and only if ϕ−12 ϕ1 ∈ Γ0. Therefore if we take the set
Aut(X̃)/Γ0 of left cosets we have an injective map Aut(X̃)/Γ0 −→ K showing that Γ0 has finite
index in Aut(X̃). Let now γ̄1, . . . , γ̄r be all the classes in Aut(X̃)/Γ0 and ϕ be the automorphism
such that ϕ∗(π∗ξ) ∈ D̃. By considering the class ϕ̄ ∈ Aut(X̃)/Γ0 then we have that ϕ̄ = γ̄j for a
certain j = 1, . . . , r so that γ−1j ϕ ∈ Γ0. We then modify the fundamental domain D̃ by taking

D̃′ := D̃ ∪
r⋃
i=1

(γ−1i )∗(D̃).

Observe that D̃′ is obviously still rational and polyhedral and (γ−1j )∗ϕ∗(π∗ξ) ∈ D̃′. Moreover
γ−1j ϕ descends to an automorphism on X and, setting D̃′∩π∗N1(X) =: D′ we conclude as before
that π∗(D′) is a fundamental domain for the Nef+(X)-action on Aut(X).

The theorem is then proved for Aut(X) in the prime order case at the very general point.

For the existence of a fundamental domain for the Mov+(X)-action on Bir(X) the same arguments
apply, using (2) instead of (1), the birational cone conjecture for IHS manifolds proved in [Mar11]
and noticing that, in Case 2, the kernel of Bir(X̃) → O(H2(X̃,Z)) is again finite, by [Huy99,
Proposition 9.1, items (iv) and (v)]. �
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Remark 3.5. Observe that when the map Aut(X̃) −→ O(H2(X̃,Z)) is injective the proof shows
that the fundamental domain is a rational and polyhedral convex cone.

4. Further remarks and results

In the first subsection we recall from [BNWS11, OS11a] the constructions of all the currently
known examples of Enriques manifolds of index 2, 3 and 4 and prove that for these examples the
fundamental group G acts as the identity on the Picard group of the IHS universal cover. In the
second subsection we check this condition for certain indices d (some of which even non-prime) at
all points of the moduli space.

4.1. The cone conjecture for the known examples. We start with the index 2 examples.

Index 2: A quotient of the Hilbert scheme. Let S be a K3 surface with an Enriques involution
ι. For S a generic K3 surface it is well known that Pic(S) = H2(S,Z)ι = U(2) ⊕ E8(2). The
quotient S[n]/〈ι[n]〉, for n odd, is an Enriques manifold of index 2. Recall that Pic(S[n]) = Pic(S)⊕
Zδ, where δ is the half of the class of the exceptional divisor on S[n]. Since the automorphism
ι[n] is a natural automorphism, i.e. it comes from an automorphism of S, its action on δ is the
identity and the action on Pic(S) is the same as the action of ι, so that Pic(S[n]) = H2(S[n],Z)ι

[n] .
In other words we have:

Proposition 4.1. Let X := S[n]/〈ι[n]〉 be the index 2 Enriques manifold recalled above. Then
Pic(S[n]) = H2(S[n],Z)ι

[n].

A quotient of a generalized Kummer. Let A = E × F be the product of two elliptic curves
and assume that n is odd, so that we can write 2m = n + 1 for an integer m. For E,F very
general elliptic curves we have rk Pic(E × F ) = 2, indeed

(7) Pic(E × F ) = Pic(E)× Pic(F )×Hom(Jac(E), Jac(F)),

and for the very general choice of E and F we have

(8) Hom(Jac(E), Jac(F)) = {0}.
Consider now a := (a1, a2) where a2 ∈ F is a 2-torsion point and a1 ∈ E[n + 1] is such that
ma1 6∈ Z ⊕ tZ (where E = C/Z ⊕ tZ). Let ta be the translation by the point a on E × F and
h2 = diag(−1, 1) the morphism given by the multiplication by −1 on the first component and the
identity on the second. Set ψ2 := ta ◦ h2. Then ψ[n]

2 does not have fixed points on Kumn(E× F)
as shown in [OS11a, Section 6].

Proposition 4.2. Let X := Kumn(E×F)/〈ψ[n]
2 〉 be the index 2 Enriques manifold recalled above.

Then Pic(Kumn(E× F)) = H2(Kumn(E× F),Z)ψ
[n]
2 .

Proof. For (z, w) ∈ E × F we have ta(h(z, w)) = (−z + a1, w + a2). Let us now compute the
action in cohomology. Recall that H2(A,Z) = U ⊕ U ⊕ U and consider H2(A,R). If we write
z = z1 + iz2 for the coordinate on E and w = w1 + iw2 for the coordinate on F then H2(A,R) is
generated by the 2-forms

dz1 ∧ dw1, dz1 ∧ dw2, dz2 ∧ dw1, dz2 ∧ dw2, dz1 ∧ dz2, dw1 ∧ dw2.

A translation acts trivially in cohomology and the action of the multiplication by −1 acts sending
z1 + iz2 to −z2 − iz1 so that the image under ψ∗2 of the previous basis is

ψ∗2(dz1 ∧ dw1) = −dz1 ∧ dw1, ψ
∗
2(dz1 ∧ dw2) = −dz1 ∧ dw2, ψ

∗
2(dz2 ∧ dw1) = −dz2 ∧ dw1,

ψ∗2(dz2 ∧ dw2) = −dz2 ∧ dw2, ψ
∗
2(dz1 ∧ dz2) = dz1 ∧ dz2, ψ∗2(dw1 ∧ dw2) = dw1 ∧ dw2.
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Hence the matrix of ψ∗2 in this basis is
−1 0 0 0 0 0

0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

The eigenvalues of this matrix are −1 with multiplicity 4 and then 1 with multiplicity 2. This
means that the invariant part for the action of ν on the cohomology of A is precisely Pic(E ×F ).
Consider the induced natural automorphism ψ

[n]
2 on Kumn(E × F). By the choice of a1 and a2

the induced automorphism ψ
[n]
2 acts freely on Kumn(E × F) (see [OS11a, Theorem 6.4]). From

the above description we have that the invariant part for the action on the second cohomology of
Kumn(E × F) with integral coefficients of the induced automorphism ψ

[n]
2 is exactly the Picard

group (since the automorphism ψ
[n]
2 is natural it acts as the identity on the exceptional divisor).

Therefore we can invoke Theorem 1.2 to conclude. �

Index 3: A quotient of a generalized Kummer. Take integers m,n such that 3m = (n+ 1).
Let Eω be the elliptic curve with complex multiplication by ω, which is a primitive 3d root of
unity, and let F another elliptic curve. Set A := Eω × F . For F a very general elliptic curve we
have rk Pic(Eω × F ) = 2, by (7) and (8). Consider now a := (a1, a2) where a2 ∈ F is a 3-torsion
point and a1 ∈ Eω[n + 1] is such that ma1(2 + ω) 6∈ Z + ωZ. Let ta be the translation by the
point a on Eω × F and h3 = diag(ω 1) the morphism given by the multiplication by ω on the
first component and the identity on the second. Set ψ3 := ta ◦ h3. Then ψ(n]

3 does not have fixed
points on Kumn(Eω × F) as shown in [BNWS11, Section 4.2] and [OS11a, Section 6].

Proposition 4.3. Let X3 := Kumn(Eω × F)/〈ψ[n]
3 〉 be the index 3 Enriques manifold recalled

above. Then Pic(Kumn(Eω × F)) = H2(Kumn(Eomega× F),Z)ψ
[n]
3 .

Proof. To show that ψ[n]
3 acts as the identity on Kumn(Eω × F) we argue here in a different way

than in the index 2 example. Observe that Eω × F is projective, so that it contains an invariant
ample class. If the eigenspace relative to ω were in Pic(Eω × F ) then the same would be true for
ω̄. Since Pic(Eω ×F ) = 2 this would lead to a contradiction and so ψ3 acts as the identity on the
Picard group. Now ψ

[n]
3 acts as the identity on the exceptional divisor on Kumn(Eω × F). This

means that the action of ψ[n]
3 on Pic(Kumn(Eω × F)) is the identity. �

Index 4: A quotient of a generalized Kummer. Take integers m,n such that 4m = (n+ 1).
Let Ei be the elliptic curve with complex multiplication by i and F is another elliptic curve. Set
A := Ei × F . For F a very general elliptic curve we have rk Pic(Ei × F ) = 2, by (7) and (8).
Consider now a := (a1, a2) where a2 ∈ F is a 4-torsion point and a1 ∈ Ei[n + 1] is such that
2ma1(1 + i) 6∈ Z + iZ. Let ta be the translation by the point a on Ei × F and h4 = diag(i 1) the
morphism given by the multiplication by i on the first component and the identity on the second.
Set ψ4 := ta ◦ h4. Then ψ[n]

4 does not have fixed points on Kumn(Ei × F ) as shown in [BNWS11,
Section 4.2] and [OS11a, Section 6].

Proposition 4.4. Let X4 := Kumn(Ei×F)/〈ψ[n]
4 〉 be the index 4 Enriques manifold recalled above.

Then Pic(Kumn(Ei × F)) = H2(Kumn(Ei × F),Z)ψ
[n]
4 .

Proof. For (z, w) ∈ Ei × F we have ta(h(z, w)) = (iz + a1, w + a2). Let us now compute the
action in cohomology. We use the same set of generators of H2(A,R) as in the index 2 case.
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A translation acts trivially in cohomology and the action of the multiplication by i acts sending
z1 + iz2 to −z2 + iz1 so that the image under ψ∗4 of the previous basis is

ψ∗4(dz1 ∧ dw1) = −dz2 ∧ dw1, ψ
∗
4(dz1 ∧ dw2) = −dz2 ∧ dw2, ψ

∗
4(dz2 ∧ dw1) = dz1 ∧ dw1,

ψ∗4(dz2 ∧ dw2) = dz1 ∧ dw2, ψ
∗
4(dz1 ∧ dz2) = dz1 ∧ dz2, ψ∗4(dw1 ∧ dw2) = dw1 ∧ dw2.

Hence the matrix of ψ∗4 in this basis is
0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0

0 −1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

The eigenvalues of this matrix are i and −i with multiplicity 2 and then 1 with multiplicity 2. This
means that the invariant part for the action of ψ4 on the cohomology of A is precisely Pic(Ei×F ).
Consider the induced natural automorphism ψ

[n]
4 on Kumn(Ei × F). By the choice of a1 and a2

the induced automorphism ψ
[n]
4 acts freely on Kumn(Ei × F) (see [OS11a, Theorem 6.4]). From

the above description we have that the invariant part for the action on the second cohomology of
Kumn(Ei × F) with integral coefficients of the induced automorphism ψ

[n]
4 is exactly the Picard

group (since the automorphism ψ
[n]
4 is natural it acts as the identity on the exceptional divisor).

Therefore we can invoke Theorem 1.2 to conclude. �

Remark 4.5. Observe that the argument that we used for the index 3 case does not apply for
the index 2 and the index 4 case, because −1 could be an eigenvalue and so we can not deduce
immediately that the action of the automorphism is the identity on Pic(A).

4.2. The cone conjecture for other possible cases. We start by recalling a general result
stated in [OS11a, Proposition 2.4].

Proposition 4.6. Let X be an Enriques manifold of dimension dim(X) = 2n, then the index d
of X divides n+ 1.

We now discuss Enriques manifolds that may arise from all the known examples of IHS manifolds.

K3[n] and Kumn. Consider now an Enriques manifold X̃ → X = X̃/G such that X̃ is a
deformation of K3[n] or of Kumn. By Proposition 4.6 the order d of the group G = 〈g〉 divides
n + 1. Recall that the respective second Betti numbers of K3[n] and of Kumn manifolds are,
respectively, 23 and 7. Hence, since a primitive root of unity is an eigenvalue of the action of g∗

on H2(X̃,Z) ⊗ C, we must have for the Euler totient function ϕ(d) ≤ 22, respectively ϕ(d) ≤ 6

(in fact in general for an IHS manifold X̃ we have ϕ(d) ≤ b2(X̃)− 1). A list of possible d is given
in [OS11a, Proposition 2.9], however notice that the authors missed the cases d = 48, 60 for K3[n]

and they erroneously included d = 24 for Kumn. Indeed this is not possible since ϕ(24) = 8 which
is bigger than b2(X̃) = 7. For convenience we recall in the next Proposition all the value of d and
explain when the cone conjecture holds.

Proposition 4.7. Let X̃ → X = X̃/G be an Enriques manifold quotient of an IHS manifold X̃.

a) If X̃ is of K3[n]-type, then, see [OS11a, Proposition 2.9], d := |G| ≤ 66 and

d ∈ {2, 3, 4, 5, 6, . . . , 27, 28, 30, 32, 33, 34, 36, 38, 40, 42, 44, 46, 48, 50, 54, 60, 66}.
For any such Enriques manifold of index d ∈ {13, 17, 19, 23, 46} we have that G acts as
the identity on Pic(X̃).
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b) If X̃ is of Kumn-type, then, see [OS11a, Proposition 2.9], d := |G| ≤ 18 and

d ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18}.
For any such Enriques manifold of index d ∈ {5, 7, 9, 14, 18} we have that G acts as the
identity on Pic(X̃).

Proof. a) For the order d ∈ {13, 17, 19, 23} observe that g∗ cannot act on Pic(X̃)⊗C with primitive
roots of unity since the rank is too small: we discuss here the case d = 13 in details, the other
cases being similar. Since the eigenvalues of the automorphism g∗ on T

X̃
⊗ C are the primitive

roots of unity we have that rk(T
X̃

) ≥ 12 (recall that if a primitive root of unity is an eigenvalue
for the action of g∗ on T

X̃
⊗ C then all the others primitive roots are eigenvalues too, with the

same multiplicity). This implies that rk Pic(X̃) ≤ 11. Now if g∗ had an eigenvalue which is a
primitive root of unity also on Pic(X̃) ⊗ C then rk Pic(X̃) ≥ 13 (since Pic(X̃) also contains an
invariant ample class), but this is in contradiction with the previous inequality.

For the order 46, we have ϕ(46) = 22 and by [Be83b, Proposition 6, item (ii)] we have that the
Picard number of X̃ is one. Now we know that X̃ always contains an ample invariant class so
that the action of G is trivial on Pic(X̃) and one concludes with Theorem 1.2.
b) For the order d ∈ {5, 7} observe that g can not act on Pic(X̃) ⊗ C with some primitive roots
of unity since the rank is too small, the argument is the same as in part a). For the orders 9,
14 and 18, ϕ(9) = 6, ϕ(14) = 6 and ϕ(18) = 6. Again by [Be83b, Proposition 6, item (ii)] we
remark that the rank of the Picard group is forced to be equal to one and we conclude again with
Theorem 1.2. �

Remark 4.8. In the case of d = 3 and X̃ of K3[2]–type notice that by [BCS16, Table 1] a non–
symplectic automorphism of order 3 on aK3[2]–type manifold has never empty fixed locus. So that
one can not use K3[2]–type manifolds to construct Enriques manifolds of index 3. Nevertheless as
soon as we consider K3[n]–type manifold, with bigger n so that n + 1 is divisible by 3 then this
may be possible.

The O’Grady examples. The two examples of O’GradyOG10 andOG6 are 10 and 6–dimensional
so by Proposition 4.6 to produce Enriques manifolds we have to take the quotient by a fixed point
free automorphism of order 2, 3 or 6, respectively of order 2 or 4. It is an interesting open question
to understand whether such automorphisms exist. Observe that in both cases if the order of the
automorphism is prime the cone conjecture (respectively the weaker one with the fundamental
domain which is a finite union of rational polyhedral convex cones) would be true by Theorem
1.3 under the genericity assumption.
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