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1. ZUSAMMENFASSUNG

Das Thema von meiner Habilitation ist Die Geometrie einiger spezieller algebraischer Va-
rietdten, insbesondere untersuche ich die K3-Flachen. Die Arbeiten, die ich vorlege, sind die
Artikeln:

(1) mit Wolf Barth, Polyhedral Groups and Pencils of K3-Surfaces with maximal Picard
Number, Asian J. of Math. Vol. 7, No. 4, pp. 519-538, 2003.

(2) Symmetric surfaces with many Singularities, Comm. in Algebra Vol. 32, No. 10,
pp- 3745-3770, 2004.

(3) A geometrical construction for the generators of some reflection group, Serdica Math.
J., 31, pp. 229-242, 2005.

(4) with Andreas Knutsen, Carla Novelli, On Varieties that are uniruled by lines, Com-
positio Math. 142, pp. 889-906, 2006.

(5) Group Actions, cyclic coverings and families of K3 surfaces, erscheint in Canadian
Math. Bull.

(6) Transcendental lattices of some K3 surfaces, erscheint in Math. Nachr.
(7) with Bert van Geemen, Nikulin involutions on K3 surfaces, erscheint in Math. Z.

(8) with Samuel Boissiere, Contraction of excess fibres between the Mckay correspondence
i dimensions two and three, erscheint in Ann. Inst. Fourier

(9) with Alice Garbagnati, Symplectic automorphisms of prime order on K3 surfaces,
Preprint math.AG /0603742, eingereicht.

(10) with Samuel Boissiere, Counting lines on surfaces, Preprint math.AG /0606100, ein-
gereicht.

(11) with Alice Garbagnati, Projective models of K3 surfaces with an even set, Preprint
math.AG /0611182, eingereicht.

Ich werde sie im Folgenden kurz beschreiben, man siehe die Literaturangaben fiir die ver-
wendeten Abkiirzungen.
1) Arbeiten iiber Flichen mit vielen Doppelpunkten: In meiner Promotion habe
ich mich mit der Frage beschéaftigt, wieviele gewOhnliche Doppelpunkte eine Flache vom
Grad d in P3 maximal haben kann, und ich habe drei neue eindimensionale Familien von
Fléachen in P3 beschrieben. Diese haben Grad 6,8 bzw. 12 und die Symmetrien der sogenan-
nten bi-polyedrischen Tetraedergruppe (=Gg), Oktaedergruppe(=Gs) bzw. Ikosaedergruppe
(=G12), d.h. die Polynome, die die Familien definieren, sind invariant unten der Operation
von Gg C SO(4,R), d = 6, 8 bzw. 12. Jede Familie enth”alt genau vier F1”achen mit
gew” ohnlichen Doppelpunkten. Insbesondere gibt es in der Familie vom Grad 12 eine Fléche,
die 600 gewohnliche Doppelpunkte hat (s. [Sal]).
Die Gruppen Gg und Giz sind Untergruppen der Spiegelungsgruppen [3,4,3] und [3, 3, 5].
Mit Hilfe der G¢— bzw. Gio—invarianten Flichen in P3 konnte ich in der Arbeit [Sa3] eine

1



ii

einfache geometrische Konstruktion fiir die Erzeugenden des Rings der invarianten Polynome
vom Grad 2,6,8,12 bzw. 2,12,20,30 angeben (diese wurden auf eine andere Weise von
Racah beschrieben). In der Arbeit [Sa2] betrachte ich weitere Untergruppen der SO(4,R)
und untersuche deren eindimensionalen Familien von invarianten Flachen in P3. Ich schrianke
meine Untersuchung auf die Gruppen ein, die die Heisenberggruppe enthalten. Zusammen
mit den Grppen Gy ergeben die Gruppen aus [Sa2] eine vollstdndige Liste von Gruppen, die
die Heisenberggruppe enthalten.

2) Flachen mit vielen (disjunkten) Geraden: In der Arbeit [BoSa2] mit Samuel Boissiere
(Universitét Nizza) konstruieren wir Flachen in P3 mit vielen (disjunkten) Geraden. Fiir diese
Anzahl gibt es Abschétzungen von Segre und Miyaoka. Es ist wohlbekannt, dass eine glatte
Kubik 27 Geraden enthalt; fiir Flachen vom Grad vier gibt es Arbeiten u.a. von Segre und
Nikulin. Das Problem ist noch offen fiir den Grad d > 5. Klassische Beispiele sind die
Fermatsche Flichen zf + 2 + ¢ + 2§ = 0, die 3d*> Geraden enthalten. Andere Beispiele
sind die Flachen der Art: ¢(x,y) — ¥(z,t) = 0 wobei ¢, ¥ homogene Polynome vom Grad
d sind. In diesem Artikel beschreiben wir Flichen, die gegeben sind durch die Gleichung:
o(x,y) — P(z,t) = 0 vollstdndig und wir geben alle moglichen Anzahlen von Geraden an.
Wir studieren auflerdem einige Fldchen mit vielen Symmetrien und wir geben ein Beispiel
einer Flache vom Grad acht mit 352 Geraden an. Das verbessert ein Ergebnis von Caporaso-
Harris-Mazur, die eine Flache mit 256 Geraden konstruieren. Wir geben auch einige neue
Beispiele von Flachen mit vielen disjunkten Geraden an, die ein vorheriges Ergebnis von
Rams verbessern.

3) Arbeit iiber die Klassifikation von geregelten 3-Mannigfaltigkeiten: In [KNS]
konnten wir das folgende Ergebnis zeigen: Sei X eine irreduzible Varietdt vom Dimen-
sion k > 3, H ist ein global erzeugter und big Geradenbiindel auf X mit H*¥ := d, n =
dim H°(X,H) — 1. Wenn d < 2(n — k) — 4, und (k,d,n) # (3,27,19), dann ist X geregelt
von Geraden. Im Fall von 3-Mannigfaltigkeiten ist diese Abschétzung optimal, denn fiir
d = 2n — 10 haben wir Beispiele von 3-Mannigfaltigkeiten gefunden, die nicht geregelt von
Geraden sind. Unser Ergebnis gilt insbesondere fiir Varietaten in P". Im Fall von Flachen
wurde eine solche Abschétzung von M. Reid und Xiao angegeben. Das bis jetzt beste Ergeb-
nis fiir k-Mannigfaltigkeiten X in P", X glatt war von Horowitz. Er zeigte: ist der Grad
d < 3/2(n — k — 1), dann ist X geregelt von Geraden. Unser Ergebnis verbessert dieses
Resultat, auflerdem gilt es fiir jede Varietdt ohne Annahme iiber die Singularitdten von X.
Um unser Ergebnis zu zeigen, verwenden wir die Mori-Theorie und das Minimal-Model-
Programm, insbesondere benutzen wir einige Ergebnisse von Mella.

4) Arbeiten iiber K3-Flachen: Eine K3-Flache S ist eine glatte, kompakte Fliache iiber C,
die einfach zusammenhéngend ist und ein triviales kanonisches Biindel hat. Die K3-Flachen
sind von besonderem Interesse wegen ihrer wichtigen Eigenschaften, z.B. sind sie alle zueinan-
der diffeomorph, es gilt die Surjektivitdt der Periodenabbildung, und nach dem Theorem von
Torelli kann man sie durch die Hodge-Struktur (also durch das transzendete Gitter und das
Picard-Gitter) klassifizieren. Sie wurden in den letzten Jahren eingehend untersucht, z.B.
wegen ihrer arithmetischen Figenschaften und nicht zuletzt wegen ihrer Rolle in der Physik
und insbesondere in der String-Theorie: Sie sind Calabi-Yau-Mannigfaltigkeiten der Dimen-
sion zwei und spielen eine wichtige Rolle in der Spiegel-Symmetrie. Mit diesen Flachen habe
ich mich sehr intensiv in den letzten Jahren beschéftigt, und insbesondere habe ich mich mit
den folgenden Themen befafit:

K3-Fliachen mit grofler Picard-Zahl. In den Arbeiten [BaSal, [Sa4] und [Sa5] beschéftige
ich mich mit Familien von K3-Flachen mit grofler Picard-Zahl (das Maximum fiir eine K3-
Flache ist 20). Esist schwierig, Beispiele von solchen Familien zu konstruieren und die Fléchen
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in der Familie zu identifizieren, die eine hohere Picard-Zahl haben. Damit verbunden ist das
Problem, Biischel von K3-Flichen mit grofier Picard-Zahl und minimaler Anzahl von sin-
guldren Fasern zu konstruieren. Einige Beispiele sind in Arbeiten von Beauville, Belcastro,
Verrill-Yui, Narumiya-Shiga enthalten. In [BaSa] zusammen mit Wolf Barth beschreibe ich
die Quotienten der Familien {X)} ep, nach den Gruppen G4 (s. Arbeit [Sal]): Diese sind
Familien von K3-Flachen, bei denen die allgemeine Flache Picard-Zahl 19 hat und es vier
singuléare Fasern gibt, die Picard-Zahl 20 haben. Insgesamt enthélt die Familie aber fiinf sin-
gulére Fasern. In dem Artikel berechnen wir das Picard-Gitter der Fléchen explizit. In [Sa4]
beschreibe ich weitere Familien von K3-Flachen mit grofler Picard-Zahl und kleiner Anzahl
von singuldren Fasern. Hier betrachte ich spezielle Untergruppen G von G4. Dann ist die
Gg-invariante Familie {X)}xep, auch G-invariant und unter einigen Bedingungen sind die
Quotienten X) /G wieder K3-Flachen mit groBer Picard-Zahl. Wenn auflerdem G Normal-
teiler von Gy mit [G : Gy] = 2,3 ist, kann man X, /G als 2- baw. 3-zyklische Uberlagerung
von X,/Gg betrachten. Mit Hilfe dieser Uberlagerung kann man das Picard-Gitter von
X,/G in vielen Féllen genau identifizieren. Mit Hilfe der Gitter-Theorie und Ergebnissen
iiber quadratische Formen kann man das transzendente Gitter der Flachen berechnen. Das
wurde von Barth fiir die Flichen aus [BaSa] durchgefiihrt. In [Sa5] berechne ich es fiir die
Flachen aus [Sad]. Damit kann ich dann die K3-Flachen klassifizieren.

Ich beschéftige mich weiter mit diesen Fliachen in der Arbeit in Vorbereitung [Sa6], in der ich
projektive Modelle der Flachen untersuche.

Symplektische Automorphismen auf K3-Flachen. Im Rahmen meines DFG-Forschungs-
projekts in Mailand Die Geometrie einiger Familien von K3-Flichen und symplektische Auto-
morphismen auf K3-Fldchen habe ich mich mit Automorphismen auf K3-Flachen beschéaftigt,
die die 2-holomorphe Form invariant lassen (symplektische Automorphismen). Solche Auto-
morphismen der Ordnung zwei heiflen Nikulin-Involutionen. In dem Artikel [GS], untersuche
ich sie zusammen mit Bert van Geemen.

Nach einer Arbeit von Nikulin induzieren sie eine eindeutige Operation auf H?(X,Z). Wir
studieren die Neron-Severi-Gruppe und das transzendente Gitter. Insbesondere zeigen wir,
dass, wenn X eine Nikulin-Involution besitzt, die Picard-Zahl > 9 ist und die Neron-Severi-
Gruppe eine Kopie des Gitters Fg(—2) enthélt (das ist das Gitter Fg mit der Bilinearform
multipliziert mit —2). Im Fall p = 9 bestimmen wir mit Hilfe der Gitter-Theorie vollstandig
die Struktur der Neron-Severi-Gruppe in Abhingigkeit von der Polarisierung der K3-Flache.
Wir geben an und untersuchen viele konkrete Beispiele, die die allgemeinen Sétze beleuchten
u. a. doppelte Uberlagerungen der Ebene, Quartiken in P3, vollstdndige Durchschnitte und
insbesondere K3-Flachen mit elliptischer Faserung.

In der Arbeit [GaSal] beschéftige ich mich zusammen mit Alice Garbagnati (Universitét
Mailand) mit symplektischen Automorphismen der Ordnung 3,5,7. Nach einer Arbeit von
Nikulin sind diese zusammen mit den Automorphismen der Ordnung zwei alle moglichen
Primordnungen fiir solche Automorphismen. Mit Hilfe von elliptischen Faserungen auf K3-
Flichen und der Gittertheorie konnten wir die Wirkung auf H?(X, Z) vollstéindig beschreiben.
Wie in dem Fall der Ordnung zwei (nach einem Ergebnis von Nikulin) ist diese Wirkung ein-
deutig, d.h. unabhangig von der Wahl der K3-Flache. Ich beschéftige mich mit dhnlichen
Problemen (auch im Fall von nicht-symplektischen Automorphismen) in den Arbeiten in Vor-
bereitung: [AS] zusammen mit Michela Artebani (Universitdt Mailand) und [GaSa3| zusam-
men mit Alice Garbagnati.

Zwei-teilbaren Mengen von acht disjunkten rationalen Kurven. In der Arbeit
[GaSa2] zusammen mit Alice Garbagnati (Universitdt Mailand) untersuchen wir K3-Flidchen
mit einer 2-teilbaren Menge von acht (—2)-rationalen Kurven (das heifft die Summe der
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Kurven ist dquivalent zu zweimal einem Divisor in der Picard Gruppe) und mit einer 2-
teilbaren Menge von gewdhnlichen Doppelpunkten (das heifit, die (—2)-rationalen Kurven
in der minimalen Auflésung sind eine 2-teilbare Menge). Solche K3-Fléchen sind mini-
male Auflésungen und Quotienten einer K3-Flache nach einer Nikulin-Involution, ihre Un-
tersuchung vervollstdndigt die Ergebnisse der Artikel [GS] im folgenden Sinn: Gegeben sei
eine K3-Flache mit Automorphismus. Es ist natiirlich zu fragen, was fiir eine Flache der
Quotient ist und mit welchen Eigenschaften (z.B. Singularitéten). In [GaSa2] studieren wir
K3-Flachen mit gerader Menge von rationalen Kurven und mit kleinstmoglicher Picard-Zahl,
die neun ist. Es werden die Flachen klassifiziert und es wird deren Modulraum beschrieben.
Insbesondere beschreiben wir viele projektive Modelle, mit denen wir die Untersuchung er-
weitern und fortsetzen, die von Barth angefangen worden ist.

5) Arbeit iiber die McKay-Korrespondenz in Dimension zwei und drei: In der Ar-
beit [BoSal] zusammen mit Samuel Boissiere (Universitdt Nizza) geben wir eine Beziehung
zwischen der McKay-Korrespondenz in Dimension zwei und in Dimension drei. Sei G eine
endliche Untergruppe der SO(3,R) und sei G c SU (2) die binére Gruppe zur Gruppe G. Die
Gruppe G operiert auf C? und der Quotient ist eine AD E-Flichensingularitéit. Thre Aufldsung
besteht aus glatten, rationalen (-2)-Kurven mit einem ADE-Dynkin Diagramm als dualem
Graph. Die McKay-Korrespondenz assoziert die Ecken des Graphs mit den irreduziblen
Darstellungen (# 1) von G. Die Auflésung der Quotienten C2/G und C3/G sind Hilbert-
Nakamura-Schemata und die exzeptionellen Kurven beider Auflésungen iiber dem Ursprung
haben sehr dhnliche Eigenschaften. Wir zeigen, dass es einen Morphismus zwischen diesen
beiden Auflésungen gibt, der bestimmte Kurven in der exzeptionellen Faser kontrahiert. Fiir
den Beweis benutzen wir die McKay-Korrespondenz zwischen Darstellungen und exzeptionelle
Kurven in Dimension zwei und drei, sowie die Theorie von Hilbert-Nakamura-Schemata.



2. INTRODUCTION

In the papers which I collect for my Habilitation at the University of Mainz, I concentrate
my attention to algebraic varieties with some special geometric properties (for example with
many singularities or many lines) with particular attention to K3 surfaces, which occupy an
important place in the classification of algebraic surfaces. An example of such a surface is
given on the cover: this is a surface of equation

I+zt+yt+ 2 +a@®+ 2+ 22412 =0, a=—-0,49.

in fact any quartic surface in P3 is an example of a K3 surface.

About varieties with special geometric property there are easy questions with difficult an-
swers, for example which is the maximal number of lines a surface of degree d in P35 can
have? Or which is the maximal number of nodes? The first question has an answer up to
the degree four, in general there are bounds of Segre and Miyaoka. It is well known that
a smooth cubic contains 27 lines; for surfaces of degree four this maximal number is also
known: it is 64, 16 if we assume that the lines are skew; these are results of Segre and
Nikulin. The problem is still open for degree d > 5. Classical examples are the Fermat
surfaces 2% + y¢ 4+ 24 + t? = 0, which contain 3d? lines. Other examples are the surfaces
of the kind ¢(x,y) — ¥(z,t) = 0, where ¢ and ¢ are homogeneous polynomials of degree d.
There are more results given by Caporaso-Harris-Mazur in [CHM], who construct examples
of surfaces with many lines in each degree and there are results of Rams in [Ram2] about
skew lines. In the case of the question about the nodes there is an answer up to the degree
six. Unfortunately there are no-standard methods to construct examples. A successful idea
is to consider surfaces with many symmetries, this was used by Barth, Endrafl and other
people to construct examples of surfaces with many nodes. I used it to construct examples of
surfaces with many nodes or with many lines (cf. [Sa2], [Sa3], [BoSa2]). Strictly connected
to the problem of lines on algebraic varieties is the problem to determine when a variety is
coverd by lines or more precisely when it is uniruled by lines. The answer to the problem
in the case of surfaces is given independently by M. Reid in [Re] and by Xiao in [Xi]. They
show that for d < (4/3)(n—2) a surface X C P, of degree d is uniruled by lines (except when
n =9 and (X,0x(1)) = (P2,0p,)). For varieties of higher degree this bound was unknown,
in [KNS] we give a bound for varieties of any degree and we show that this is optimal in the
case of threefolds.

Another topic of my work are the K3 surfaces, these are smooth, compact complex surfaces
which are simply connected and have trivial canonical bundle. The K3 surfaces are of partic-
ular interest because of their important properties, for example they are all diffeomerphic to
eachother, the period map is surjective and due to a theorem of Torelli, they can be classified
by their Hodge structure which involves the transcendental lattice and the Picard lattice.
They have been very much studied in the last years for example for their arithmetic prop-
erties and for their importance in Physics and in particular in the String-Theory: they are
Calabi-Yau manifold of dimension two and play an important role in the Mirror-Symmetry.
I have worked very much with these surfaces in the last years in particular with the following
topics: K3 surfaces with big Picard number and automorphisms on K3 surfaces. The maxi-
mal Picard number for a K3 surface is 20, however non-trivial families have at most Picard
number 19. It is difficult to construct such families and to identify the surfaces with Picard
number 20 (i.e. the singular K3 surfaces). Strict connected to this, there is the problem of
constructing families of K3 surfaces with big Picard number and small number of singular (in
the usual sense) K3 surfaces. Some examples are studied by Beauville, Belcastro, Verrill-Yui,
Narumiya-Shiga.
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During my DFG-researchproject Die geometrie einiger Familien von KS3-Flichen und sym-
plektische Automorphismen auf K3-Flichen in Milan by B. van Geemen, I studied symplectic
automorphisms on K3 surfaces (i.e. those automorphisms leaving the holomorphic two form
invariant). These were extensively studied in the recent past. In a famous paper from
1979 [N1], Nikulin described the finite automorphism groups of K3 surfaces, in particular
he classified all abelian groups which act symplectically on a K3 surface, that is, they leave
the holomorphic two form invariant. This classification was completed in 1988 by Mukai in
[Muk]: he classified all isomorphism classes of finite groups acting symplectically on a K3
surface. The first case to study are the symplectic involutions (called Nikulin involutions by
Morrison in [Mo]). These are also important for their relation with the Shioda-Inose structure
introduced by Morrison in [Mo]. This structure relates K3 surfaces with large Picard number
to abelian surfaces and was studied for example in [L], [NS], [vGT]. For my research also
the results on elliptic fibrations are important. In fact, given a K3 surface with an elliptic
fibration and a section, the group of sections of the fibrations is the Mordell-Weil group of
the surface. A section of finite order defines a symplectic automorphism of the same order.
The study of these automorphisms is often very useful for gaining an understanding of the
general case. The literature on elliptic fibrations is vast, works of particular importance for
my research are of Shioda, [Shio] and Shimada, [Shim]|. The last paper classifies all fibres of
type ADE in an elliptic fibration and also describes the torsion group of the Mordell-Weil
group (that is the part generated by sections of finite order).

Nikulin showed that the action induced by these automorphisms on the second cohomology

group with integer coefficients, H?(X,Z), is determined by its order and does not depend on
the particular choice of the K3 surface X. In particular, we have a canonical decomposition
into an invariant lattice and its perpendicular. In the case of Nikulin involutions, this decom-
position was identified by Morrison in [Mo], he showed that the invariant part is isometric
with U @ U @ U @ Eg(—2) (where U is a copy of the unimodular even hyperbolic plane and
Eg(—2) is the lattice Fg with the bilinear form multiplied by —2) and its perpendicular is
Eg(—2). The question about this decomposition is of course of interest for any other group
in the classification of Nikulin. In [GaSal] we give this decomposition in the case of prym
order automorphisms.
Given an automorphism of a surface it is natural to ask about the properties of the quotient
surface. In the case of symplectic automorphisms, the quotient has only ADE singularities
and its minimal resolution is a K3 surface. The first case to study are the quotients by a
Nikulin involutions. More in general it is interesting to study surfaces with an even set of
eight rational (—2)-curves (that is, the sum of the curves is twice a divisor in the Picard
group) or with even sets of nodes (that is, the (—2)-curves in the resolution are an even set).
In [B2] Barth gives a description of some projective models of such surfaces. In [GaSa2] we
continue this description.

It is also interesting to study non-symplectic automorphisms, examples of such finite order
automorphisms are given in the papers [DGK], [K]| and in the paper [Al], [A2], [A3], in
the particular case of order four automorphisms. In this case the study of the K3 surfaces
and of concrete examples is more complicated, for instance, there are no results on their
classification.

3. DESCRIPTION OF THE SCIENTIFIC WORKS

The works which I submit for my Habilitation are the papers:
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(1) with Wolf Barth, Polyhedral Groups and Pencils of K3-Surfaces with mazimal Picard
Number, Asian J. of Math. Vol. 7, No. 4, pp. 519-538, 2003.

(2) Symmetric surfaces with many Singularities, Comm. in Algebra Vol. 32, No. 10,
pp. 3745-3770, 2004.

(3) A geometrical construction for the generators of some reflection group, Serdica Math.
J., 31, pp. 229-242, 2005.

(4) with Andreas Knutsen, Carla Novelli, On Varieties that are uniruled by lines, Com-
positio Math. 142, pp. 889-906, 2006.

(5) Group Actions, cyclic coverings and families of K3 surfaces, to appear in Canadian
Math. Bull.

(6) Transcendental lattices of some K3 surfaces, to appear in Math. Nachr.
(7) with Bert van Geemen, Nikulin involutions on K3 surfaces, to appear in Math. Z.

(8) with Samuel Boissiere, Contraction of excess fibres between the Mckay correspondence
i dimensions two and three, to apper in Ann. Inst. Fourier

(9) with Alice Garbagnati, Symplectic automorphisms of prime order on K3 surfaces,
Preprint math.AG /0603742, submitted.

(10) with Samuel Boissiere, Counting lines on surfaces, Preprint math.AG/0606100, sub-
mitted.

(11) with Alice Garbagnati, Projective models of K3 surfaces with an even set, Preprint
math.AG/0611182, submitted.

these are the papers [BaSa|, [Sa2], [Sa3], [KNS]|, [Sad], [Sab], [GS], [BoSal], [GaSal],
[BoSa2|, [GaSa2] from the reference list. First I give a quick overwiev of the contents and
then I will explain more in details:
1) the papers [Sa2], [Sa3], [BoSa2] deal with surfaces with many nodes, lines and many sym-
metries,
2) the papers [BaSal, [Sa4], [Sab], deal with some special families of K3 surfaces with Picard
number 19,
3) the papers [GS],[GaSal],[GaSa2] are about symplectic automorphisms of K3 surfaces,
4) the paper [KNS] give a criterion for varieties in any degree to be uniruled by lines,
5) finally the paper [BoSal] is about a special case of the Mckay correspondence, and it is
related to the works of 2).
1) Surfaces with many double points. In my PhD thesis I worked about the question:
which is the maximal number of nodes a surface of degree d in P35 can have. I have found
three new one dimensional families of surfaces {X;\i} Acp, in P3, they have degree d = 6, 8 resp.
12 and have the symmetries of the so called bipolyhedral tetrahedralgroup (= Gg), octahe-
dralgroup (= Gg) resp. icosahedralgroup (= Gi2), this means that the polynomials which
define the families are invariant for the operation of G4 C SO(4,R), d = 6, 8,12. Each family
contains exactly four surfaces with nodes. In particular the family of degree 12 contains a
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surface with 600 nodes (these results are contained in my paper [Sal]).

The groups G¢ and G12 are subgroups of the reflection groups [3,4, 3] and [3, 3, 5], which are
the symmetry groups of some special four dimensional polyhedra. By using the Gg- resp.
G12—invariant surfaces in P3 I give an easy geometric construction for the generators of the
rings of the invariant polynomials, these have degree 2,6,8,12 resp. 2,12,20,30 (these were
described before in a different way by Racah in [Rac]). In the paper [Sa2] I consider other
subgroups of SO(4,R) and I study the one dimensional families of invariant surfaces in Ps. I
restrict my study to the subgroups which contain the Heisenberg group. These together with
the groups Gy give a complete list of subgroups of SO(4,R) which contain the Heisenberg
group and have a one dimensional family of invariant surfaces.

2) Surfaces with many (disjoint) lines. In the paper [BoSa2] together with Samuel
Boissiere (University of Nizza) we construct surfaces in P3 with many (disjoint) lines. First
we describe the surfaces ¢(x,y) — ¥ (z,t) = 0 completely and we give for any degree d all
the possible numbers of lines. We study also surfaces with many symmetries and we give an
example of a surface of degree eight with 352 lines. This result improves a preceding result
of Caporaso-Harris-Mazur [CHM], who construct a surface with 256 lines. We give also some
new examples of surfaces with many disjoint lines, which improve some previous result of
Rams [Ram?2].

3) Classification of uniruled varieties. In [KNS] together with Andreas Knutsen (Uni-
versity of Rom) and Carla Novelli (University of Genova) we show the following result: Let
X be an irreducible variety of dimension k& > 3, ‘H a globally generated and big line bundle
on X with H* := d, n = dimH°(X,H) — 1. If d < 2(n — k) — 4 and (k,d,n) # (3,27,19)
then X is uniruled by lines. In the case of threefolds this is an optimal bound, since for
d = 2n—10 there are examples of threefolds which are not uniruled by lines. Our result holds
in particular for varieties in P,,. In the case of surfaces a similar bound was given by M. Reid
and Xiao. Until now the best result for smooth k-folds X in IP,, was a result of Horowitz. He
showed that for d < (3/2)(n — k — 1), then X is uniruled by lines. Our result improves the
result of Horowitz and moreover it holds without any assumption on the singularities if X.
To prove our result we use Mori-Theory and the Minimal-Model-program, in particular we
use some previous results of Mella.

4) K3 surfaces with big Picard number. In the papers [BaSa|, [Sa4], [Sa5] I work with
families of K3 surfaces with Picard number 19. In [BaSa] together with Wolf Barth (Univer-
sity of Erlangen) I describe the quotients of the one dimensional families {X‘f} Acp, by the
groups Gg4 (cf. 1 above and the paper [Sal]): these are families of K3 surfaces, in which
the general K3 surface has Picard number 19 and there are exactly five singular fibers: one
is a degeneration and four have nodes, the latter have Picard number 20. In the paper we
describe completely the Picard lattice. In [Sad] I describe more families of K3-surfaces with
big Picard number and small number of singular fibers, I consider some special subgroup
G of G, then clearly the Gg4-invariant family {Xg} Aep, 1s also G-invariant and under some
assumption on the groups G, the quotients X ;\i /G are again K3 surfaces with big Picard
number. Moreover if G is a normal subgroup with [G : G4] = 2,3 then I describe X¢/G as
2-cyclic, resp. 3-cyclic covering of Xf /Gg4. This description is very helpful to identify the
Picard lattice of the covering surfaces. Then in [Sa5] with the help of lattice theory (cf. [N2])
and results on quadratic forms I describe the transcendental lattices of the surfaces described
in [Sa4] and I classify them.

I still work on these families of surfaces, in fact I'm looking for projective models of them.
This is the topic of the work in progress [Sa6].

5) Symplectic automorphisms on K3 surfaces. The symplectic automorphisms of order
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two are called Nikulin involutions. In the article [GS] I study them together with Bert van
Geemen (University of Milan).

By a paper of Nikulin they induce a unique (up to isometry) action on H?(X,Z), this means
that the operation is independent from the choice of the K3 surface. We study the Picard
lattice and the transcendental lattice, in particular we show that if a K3 surface X has a
Nikulin involution then the Picard number is p > 9 and the Picard lattice contain a copy
of the lattice Fg(—2). In the case of p = 9 with the help of lattice theory we describe com-
pletely the structure of the Picard lattice. We discuss also many concrete examples, which
explains the general results, in particular double covers of the plane, quartics in P3, complete
intersections and in particular elliptic fibrations.

In the paper [GaSal] together with Alice Garbagnati (University of Milan) I study symplec-
tic automorphisms of order 3,5,7. Together with the order two these are all possible prime
orders for such automorphisms (at least in characteristic zero). By using lattice theory and
elliptic fibrations we identify completely the action on H?(X,Z). In the case of the order
three automorphism we show that the orthogonal complement to the invariant sublattice of
H?(X,7Z) is the well known rank twelve Coxeter-Todd lattice.

I still work on similar questions in the paper in preparation [GaSa3] with Alice Garbagnati
and in the case of non-symplectic automorphisms of order three in the work in progress [AS]
with Michela Artebani (University of Milan).

6) Even sets of eight disjoint rational curves. In the submitted preprint [GaSa2]
together with Alice Garbagnati, we study K3 surfaces with an even set of eight disjoint (—2)-
rational curves or with an even set of eight nodes. Such K3 surfaces are minimal resolution
and quotient of a K3 surface by a Nikulin involution, their study complete the results of the
paper [GS] in the following meaning: we consider a K3 surface with a Nikulin involution,
then it is natural to ask what is the quotient surface and which properties has, for example
which kind of singularities. In [GaSa2] we study K3 surfaces with an even set of rational
curves and with the smallest possible Picard number, which is nine. We classify the surfaces
and we describe their moduli space. In particular we describe many projective models, which
continue and complete the study started by Barth in [B2] of such surfaces.

7) The Mckay correspondence in dimension two and three. In the paper [BoSal]
together with Samuel Boissiere (University of Nizza) we give a relation between the Mckay
correspondence in dimension two and in dimension three. Let G be a finite subgroup of
SO(3,R) and let G C SU(2) be the binary group associated to the group G. The group
G operates on C2 and the quotient is an ADE-surface singularity. Its resolution consists
of smooth (—2)-rational curves with an ADE-Dynkin diagram as dual graph. The Mckay
correspondence associates to the vertices of the graph the irreducible representations (# 1)
of G. The resolutions of the quotients C?/G and C?/G are Hilbert-Nakamura-Schemes and
the exceptional curves of the resolutions on the origin have very similar properties. We show
that there exists a morphism between these two resolutions, which contracts some curves in
the exceptional fiber. For the proof we use the Mckay correspondence in dimension two and
three, and also the theory of Hilbert-Nakamura-Schemes. The study of these resolutions is
related to the study of the resolutions of the singularities of the four special K3 surfaces of
the families X{/Gg, which are fibrations of the singular space P3/Gq (cf. 3).

4. SHORT DESCRIPTION OF THE OTHER SCIENTIFIC WORKS

1. In the paper [Sal] from my PhD thesis I work on the question: which is the maximal
number of nodes a surface of degree d in P3 can have. For the degree d < 6 this problem



is solved by results of Cayley, Kummer, Beauville and Barth. For d > 7 the exact number
is unknown. There are bound of Varchenko and Miyaoka. In this paper I find a surface of
degree 12 with 600 nodes, which improves the previous lower bound of 576 nodes of Kreif3 for
a surface in this degree.

2. In the paper [ES] together with Philippe Ellia (University of Ferrara) I prove the Hartshorne
conjecture for codimension two subvarieties in the case of 2-arithmetic Buchsbaum varieties.
The exactly formulation of the Hartshorne conjecture for varieties of codimension two is the
following: each smooth variety of codimension two in P, n > 7 is complete intersection.
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thanks go to Duco van Straten and Stefan Miller-Stach, and to Wolf Barth at the University
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the nice working atmosphere, special thanks go to my host Bert van Geemen. Finally I thank
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SYMMETRIC SURFACES WITH MANY SINGULARITIES
ALESSANDRA SARTI

ABSTRACT. Let G C SO(4) denote a finite subgroup containing the Heisenberg group.
In these notes we classify all these groups, we find the dimension of the spaces of G-
invariant polynomials and we give equations for the generators whenever the space has
dimension two. Then we complete the study of the corresponding G-invariant pencils of
surfaces in P3 which we started in [S]. It turns out that we have five more pencils, two
of them containing surfaces with nodes.

0. INTRODUCTION

Consider the Klein four group V' C SO(3). Let V denote its inverse image in SU(2)
under the universal covering SU(2)—SO(3). The image of the direct product V x V in
SO(4) under the double covering SU(2)xSU(2)—SO(4) is the Heisenberg group H. In
this note we classify all the subgroups G' of SO(4) which contain H. First we classify
all the subgroups of SU(2) x SU(2) which contain V x V, then their images in SO(4)
are the groups G (cf. proposition 1.1 and section 1.4). They operate in a natural way
on Clxg, z1, %2, x3], the ring of polynomials in four variables with complex coefficients. In
section 3 we give generators for the spaces Clzg, x1, x2, {L’g] of homogeneous G-invariant
polynomials of degree j whenever this dimension is two. Since the groups G contain
H, we have invariant polynomials only in even degree. When the dimension is two the
generators are the multiple quadric ¢//2 = (22 4+ 23 + 23 + 23)7/? (trivial invariant) and
another polynomial of degree j which we denote by f. The pencils

f+A72=0 AePy,

of surfaces in the three dimensional complex projective space P3 have then a large sym-
metry group (this is the reason why we consider just subgroups of SO(4) containig H).
We describe them in section 4. In particular we find the singular surfaces contained in
it. In [S] we considered the case of G = T'T, OO, II which are the images in SO(4) of
the direct products T x T O x O I x I where T denotes the binary tetrahedral group,
O the binary octahedral group, I the binary icosahedral group in SU (2). We denoted
the groups there by Gg, Gg and G2 and we called them bi-polyhedral groups. We found
pencils containing surfaces with many nodes (=ordinary double points). In particular the
degree twelve II-invariant pencil contains a surface with 600 nodes which improves the
previous lower bound for the maximal number of nodes of a surface of degree twelve in
P3 (cf. [C]). Here we describe the other G-invariant pencils and show that we have two
more pencils which contain surfaces with nodes (the others do not contain surfaces with
isolated singularities at all). We list the groups G and the degrees j below, as well as the
number of nodes on the singular surfaces. In each pencil we have four of these singular
surfaces and the nodes there form just one G-orbit. For the convenience of the reader we

recall the results about the T7-, OO-, and II-invariant pencils too.
1
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G order | j nodes
0Oy [192 |4 |4 12 16 8
T 288 6 |12 48 48 12
00 1152 |8 |24 72 144 96
10 2880 |12 ]240 360 240 120
11 7200 | 12 | 300 600 360 60

The group 0 is the image in SO(4) of the direct product of the binary icosahedral group
with the binary octahedral group in SU(2)xSU(2) and (OO)’ is a subgroup of OO which
we describe in section 1.2 and 1.4. This is an index two subgroup of the reflection group
[3,3,4] (cf. [Co2], p. 226) and has the same invariant polynomials. In all the cases but one
(G = I0), the singular surfaces contain just isolated singularities (i.e. the nodes). The
surfaces in the IO-invariant pencil contain two double lines in the base locus.

The [3,3,4]-invariant polynomials of degree two and four were already known by Coxeter in
[Col]. Here we show that in the pencil of degree four we have a surface with the maximal
number possible of nodes (=16) which is a so called Kummer surface. Finally in section 6
we give a computer picture of the /O-invariant surface of degree 12 with 360 nodes.

I thank Prof. Wolf Barth at the University of Erlangen for many helpful comments and
discussions.

1. SYMMETRY GROUPS

Denote by H C SO(4) the Heisenberg group (with 32 elements). We want to collect
in a systematic way all the finite subgroups of SO(4) containing H, and their polyno-
mial invariants of low degree. These are invariants of the Heisenberg group with extra
symmetries.

1.1. Ternary groups. We specify the following matrices in SO(3)

1 0 0 -1 0 0 1 0 0
A= 0 -1 0 JAg = 0 1 0 s Boi=10 a =b |,
0 0 -1 0 0 -1 a
0 -1 0 ) T—1 -7 1
S=10 0 -1 |,U:= 3 T 1 T—1 1,
1 0 0 -1 7-1 T
where 7 := §(1 4+ V/5) = 2-cos(%), a i=cos2X, b :=sinZZ. These matrices generate the

following subgroups of SO(3)

generators order group name

Vo AL A 4 Zo X Zo Klein four

D, Ay, R, om Dy dihedral

T A,S 12 Alt(4)  tetrahedral
O A,R;, S 24 Sym(4) octahedral
I A,SU 60 Alt(5)  icosahedral
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Where Alt(4) and Alt(5) denote the group of even permutations of four and five elements
and Sym(4) denotes the permutation group of four elements. Whenever n € N, n # 0,
is even, V is contained in each of the above groups. By the classification of the finite
subgroups of SO(3), these are all such subgroups.

The groups 7', O and I are the rotation groups of tetrahedron, octahedron and icosahedron.
An identification with the permutation groups is given in [Co2], p. 46-50 as well as an
identification of D,, with the symmetry group of a regular polygon with n vertices (ibid.
p. 46). Sometimes it is useful for the computations to identify the matrices above with the
cycles of the permutation groups. Indeed the identification of T' and O with subgroups of
the permutation group Sym(4) is obtained by letting them act on the four space diagonals
of the unit cube. Let these lines and vectors generating them be

di:(1,1,1), do: (—=1,1,1), ds: (1,—1,1), dy: (1,1,—1)

The matrices in O permute these lines by
A1 :(12)(34), Az :(13)(24), Ry : (1423), S: (123).

Using this correspondence with permutation groups, it is easy to write down their conju-
gacy classes. We write the conjugacy classes of the dihedral group D,, n = 2,1 > 2 too.
In the next table we characterize a conjugacy class by one of its elements. Under each
representative we write the number of elements in the conjugacy class.

group repr. of a conj. class
and number of elements
Vv 1 A A As
11 1 1
D, 1 R RL Ay AR,
1 2 1 1 1
T 1 A S S2
1 3 4 4
O 1 Ay R4As Ry S
1 3 6 6 8

where k=1,...,1 — 1.
The symmetries of 7' obviously leave invariant the icosahedron (cf. [Co2|, p. 52) with
vertices

(£1,£7,0), (0,£1,47), (£7,0,%1)
The matrix U permutes these vertices as
:l:(()? 17 7-) = :l:(()? 17 7_)7
+(0,1,—7) — £(-7,0,1) — £(—1,—7,0) — (1, —7,0) — £(7,0,—1) — (0,1, —7).

So together with the group T' the symmetry U generates a group of order at least 12-5 = 60
, contained in the symmetry group of the icosahedron specified. Therefore it coincides with
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the icosahedral group I = As. The action of I on the five cosets of I/T defines the map
I+— As. Using

A U=U* Ay, A -U?=U3 Ay,
S U=U3 Ay, S-U?=U-458, S-U3=U?-52, 5 -Ut=U* S?A,,

one finds that under this map

Ay (14)(23), S — (132), U — (12345).

Using this correspondence, one enumerates the conjugacy classes in I

group repr. of a conj. class
and number of elements
I 1 A, S U U?

1 15 20 12 12

1.2. Subgroups of products of ternary groups. Here we classify subdirect products
G C Gy x G, where G and G9 are finite ternary groups V,D,, (n even), T,0 or I.
We assume that G contains the subgroup V x VC G x Gy. We are interested in these
subgroups only up to interchanging the factors G; and G5. So we assume that we are in
one of the following cases

(] |G1| 2 |GQ| and Gl,GQ 75 Dn,
hd Gl #Dny GQ :DTH
e G1 =D, and Gy = D,,.

Additionally, passing to smaller subgroups G;CG; if necessary, we may assume that both
projections

p1:G— G, pr:G— Gy

are surjective, so that G C G x G5. Finally, we do not distinguish between groups con-
jugate in SO(3) x SO(3). In the table below we assume n # m, n = 2l, m = 2/’ and let
s :=lem(n, m).

Proposition 1.1. The following list is a complete list of subgroups G C G1 x Gy under
the assumptions above:
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G1 |Gy |G |G|/16 G/V xV G |Ge |G |G]/16 G/V xV
V |V |VxV 1 1 V | D, |V xD, n/2 Zy x 1
TV |TxV 3 Zs x 1 T | D, |TxD, 3n/2  Zsx Z
T |TxT 9 Zs x Zs 3n | (T x D, n/2 7
(T'xT) 3 Zs O | D, |OxD, 6n/2 D3 xZ
O |V |OxV 6 D3 x 1 dln | (O x Dy)" 3n/2 Dy
T |OxT 18 D3 x 73 I | D, |IxD, 15n/2
O |Ox0 36 D3 x Dy D, | D, | D, x D, n?/4 Ty x 7y
O |lox0 36 D3 x Dy (Dn x Dn) n/2  Z
(O x0) 6 Dy D, | Dy | Dy x Dy mm/4  Zyx Zy
(O x0)" 18 Lz X L3 X Lo (Dy, X Dy,) s/2 Zs
I |V [ IxV 15
T |IxT 45
O |Ix0O 90
I | IxI 225

Proof. We discuss the cases one-by-one. But before that, we observe that the kernels
K1 C Gy x1and Ky C 1 x G2 of both projections p; : G — G; are normal subgroups.
This follows by conjugating component-wise from the surjectivity of both projections.
The groups GG1 x V do not have proper subgroups containing V' x V' and mapping surjec-
tively onto G, (for G1 = D,, too). So we do not need to consider the cases Gy = V.
First consider the case of G1 = I. Since [ is simple, the kernel K1 C I x 1 either coincides
with I x 1, or is trivial. The latter cannot be the case, because this kernel contains V' x 1.
The only possibilities are the product cases I x V, I xT, I x O, I x I and I x D,,.

Let now Q := G/V xV and Q1 := G1/V, Q2 := G2/V. We consider @ a proper subdirect
product of ()1 X Q5.

T,T: QQ C Z3 x Zs mapping surjectively onto both factors is either the diagonal or the
anti-diagonal. The two corresponding subgroups are not conjugate in 7' x 1", but in 7' x O
they are. The inverse image of the diagonal Z3C Z3 x Zs in T x T is (T x T)'.

0O,T: Q C D3 x Zs mapping surjectively onto both factors would have order six and be
isomorphic with D3 under p;. But there is no epimorphism of D3 onto Zsz. Such a group
does not exist.

0,0: @ C D3 x D3 must have order six, twelve or 18. If it has order six, it is a graph
of an isomorphism between both factors D3. Then it is conjugate to the diagonal, and
this leads to the subgroup (O x O)’CO x O. The case |Q|=12 cannot occur, because then
the kernel K1 C D3 x 1 would have order two, and could not be normal. If @) has order 18
both the kernels K7 and K5 have order three, and coincide with the unique proper normal
subgroup of Ds. This implies that G contains T' x T'CO x O and is the inverse image of a
subgroup ZoCZg X Zo= O x O/T x T. By surjectivity of projections this can only be the
diagonal. Its inverse image is (O x O)”.

T, D,: if QQ C Z3 x Z; maps surjectively onto both the components then three divides .
Let its inverse image be (T' x D,,)’.

O, D,,: if Q C D3 x Z; maps surjectively onto both factors then two divides [. We denote
the inverse image by (O x D,,)".
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D,,,D,: Q C Z; x Z; mapping surjectively onto Z; is conjugate to the diagonal. We call
its inverse image (D), x D).

Dy, Dy,: Q C Z; X Zy mapping surjectively onto Z; and Zy is generated by an element of
order s/2. We call its inverse image (D,, X D,,)’".

O

1.3. Binary groups. We consider the standard double cover SU(2) — SO(3) (cf. [DV]
p. 39-42). Let G denotes the pre-image in SU(2) of GCSO(3). We specify the following
matrices, M, which are in the pre-image of MeSO(3):

- i 0 ~ 0 1 ~ 0 2

A= , Ay = , Ag = ,

5’::% ].+Z _1+Z ’ U:% T 7—_1+Z ’ Rn:: 6? Oiﬂ— )
1+7 1—1 1—7+4: T 0 e

since A7OTA(M)— —1, they have order 2-ord(M). By an argumentation as in [S] section 2,
we can write the conjugacy classes in the binary groups:

group repr. of a conj. class and number of elements
1% 1A Ay Ay
1 2 2 2

1 A, AR, R, R —-R,
1 20 2 2 2

2
A S -S§ §2 g2
1 6 4 4 4

4
1 A, R4As Ry -R, S -8
1 6 12 6

6
1 4 S -S U -U U? -U?
1 30 20 20 12 12 12 12

S,
S

(@)

~n ~:
— e e e e e e, == =

1

—_

where k=1,...,1 — 1.

1.4. Quaternary groups. Here we consider the images of the finite groups G; x Go C
SU(2) x SU(2) under the double covering map

SU(2) x SU(2) — SO4), (¢,¢):p—q-p ¢

(cf. [DV] p. 42-45), we abbreviate there G1Gy. Since the corresponding subgroups of
SO(3) x SO(3) contain the group V' x V', these contain the Heisenberg group VVCSO(4),
and by proposition 1.1 these are all such subgroups. We specify now the matrices:
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0 -1 0 0 10
1 0 0 100
A,l = N ].,A = ,
(A1) 0 0 0 -1 (1, 41) 00 —1
0 0 1 0 01 0
0 0 -1 0 0 10
0 0 1 0 0 1
A,l = y ]-,A = )
(A2,1) 1 0 0 (1, 4) 1 0 0 0
0 —1 0 0 -1 0 0
00 0 -1 0 0 0 1
00 —1 0 0 —1 0
A,l = 5 1,A - )
(A3,1) 01 (1, As) o 1 0 o
10 10 0 0
a —6 0 0 a B 0 0
0 0 - 0 0
(Bo1)= | © , WRy=| 7 ° ,
0 a —f¢ 0 aa —p
0 B8 « 0 8 «
1 -1 1 -1 1 -1 1
1 1 -1 -1 11 -1 -1
S’l :l 5 1,S :l )
(5:1) =3 1 1 1 -1 (1,5) =3 1 1 1 -1
1 1 1 1 11 1 1
T 0 1—7 -1 T 0 7—1 1
0 T -1 7-1 0 T -1 -1
U1):=3 . (LU) =1
G 2l r-1 T L.0) 2l 1-7 1 T 0
1 1-7 0 T -1 1-7 0 T

where o := cos”, 3 := sin 7.

We can write the conjugacy classes of the groups G1G2CSO(4) in SO(4) and their number
of elements. These are the images of the conjugacy classes of Gy x G in G1G2CSO(4)
under the double covering map. Observe that the matrices (g1, g2)€ SO(4) with the
same eigenvalues are conjugate (cf. (1.1) of [S]), this fact simplifies the computations
considerably. In this section and in the next one we omit the groups D,,D,, and (G1G3)’
with Gy = D,,. We return to those groups later. In the tables we use the following
conventions:

e we omit the conjugacy classes of +1, —1 (these contain one element each)
e whenever the conjugacy classes (g1, g2) and its s-th power (gf, g5) are distinct we
write them just one time since they have the same number of elements.
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G1Go | order | Ao, 1 A9, Ay Ry,1 R4,As Ry, Ry S,1 S, Ay SRy S,S

4% 32 12 18 0 0 0 0 0 0 0
TV 96 12 18 0 0 0 8 48 0 0
TT | 288 12 18 0 0 0 16 96 0 64
oV | 192 24 o4 6 36 0 8 48 0 0
oT | 576 24 o4 6 36 0 16 192 48 64

OO | 1152 | 36 162 12 216 36 16 288 96 64
v 480 36 90 0 0 20 120 0 0

IT | 1440 | 36 90 0 0 28 360 0 160
10 | 2880 | 48 270 6 180 0 28 600 120 160
IT | 7200 | 60 450 0 0 40 1200 0 400

G1Gy | order | Ao, 1 As, Ag Ry, 1 Ry, Ao S, 1 S, As
VD, | 16n | 8+4l 6(20+1) 0 0 0 0
TD, | 48n | 8+4l 6(20+1) 0 0 8 16(20+1)
OD,, | 96n |20+47 18(2l+1) 6 12(21+1) 8 16(20+1)
ID, |240n |32+4 30(20+1) O 0 20 40(20+1)

GG, |U1  UA, URy US UU UU? URE

v 12 72 0 0 0 0 0
1T 12 72 0 96 0 0 0
10 12 216 72 96 0 0 0
11 24 720 0 480 144 144 0

ID, | 12 24(21+1) 0 0 0 0 24

G1Go | Aoy, RF 1,RE S RF Ry RF
VD, 12 2 0 0
TD, 12 2 16 0
OD, 36 2 16 12
1D, 60 2 40 0
where £k = 1,...,1 — 1. For the groups which are not products it is a little more compli-

cated to write down the sizes of their conjugacy classes. But using the description from
proposition 1.1 one finds
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group ‘ order ‘ Ayl Ay, Ay Ry, As R4y,Ry S,1 S,Ay S,S
(TT) | 96 12 18 0 0 0 0 32
(00) | 192 12 42 48 12 0 0 32
(0OO)" | 576 12 90 144 36 16 96 64

2. POINCARE SERIES

In this section we want to find the dimension of the spaces of homogeneous invariant
polynomials of a given degree. We consider the Poincaré series

o0
p(t) = Zdim(@[xo,ml,mg,mg]? -t
=0

where G is a group as in section 1.4. By a theorem of Molien ([B] p. 21) and an easy
computation as in [S], (2.1), it can be written as

1 n
p(t) = @Z det(g _9 1-1)

where the sum runs over all the conjugacy classes of G and ny denote their number of
elements. At the denominator we have the characteristic polynomials. Using the numbers
of conjugacy classes (under SO(4)) given in section 1.4 and computing their characteristic
polynomials, the power series package of MAPLE produces the following table of dimen-
sions my of invariant polynomials in degree d of the groups GCG1Go. Observe that since
G contains the Heisenberg group we do not have invariant polynomials of odd degree.
First we consider the case of G;# D,,:

group | ma Mm4 Mg Mg Mig M12
Vv 1 5) 6 15 19 35
TV 1 1 2 5) 5) 13
T 1 1 2 3 3 7
(TT) | 1 3 4 7 9 15
ov 1 1 1 4 4 8
oT 1 1 1 2 2 4
00 1 1 1 2 2 3
(0O) | 1 2 3 5) 6 9
(0O)" | 1 1 2 3 3 5)
1V 1 1 1 1 1 )
1T 1 1 1 1 1 3
10 1 1 1 1 1 2
17 1 1 1 1 1 2
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Whenever G1 # D,, and Gy = D,,, we can write the finite sums p(t) for each n. Here we
compute the first coefficients of the Poincaré series for n = 4,6, 8.

group | ma m4 Mg Mg Mig M2
VDys | 1 3 3 9 11 19
VDg | 1 3 3 6 6 14
VDg | 1 3 3 6 6 10
TDy | 1 1 1 3 3 7
TDg | 1 1 1 2 2 6
TDg | 1 1 1 2 2 4
OD4 | 1 1 1 3 3 )
ODg | 1 1 1 2 2 4
ODg | 1 1 1 2 2 3
IDy 1 1 1 1 1 3
IDg 1 1 1 1 1 3
IDg 1 1 1 1 1 2

Of course, whenever mg = 1, the space of invariant polynomials is spanned by the d/2-th
power of the invariant quadric (trivial invariant)

3. INVARIANTS

q:zx%%—x%—kx%—km%.

In this section we want to compute a system of generators for the spaces Clxg, z1, 22, {L‘g]jG
whenever this space has dimension two and GCSO(4) is a finite subgroup containing the

Heisenberg group. We distinguish two cases.

(3.1) First case. Assume that G C G1Gy with G;# D,,, i = 1,2. We do some remarks on
the groups G which simplify the computations of the invariant polynomials.

e the group TVCTT.

e The group T'T is contained in (OO)”. In fact the generators modulo V'V are

group ‘ TT  (00)"
generators | (1,5) (1,5),(S,1)
(5,1)  (RaAs, R4Ao)

with

(R4A2, R4As) =

o o o =

= o O O

o = O O

Similarly to [S] section 3, (OO)" is a subgroup of index two in the reflection group
of the {3,4,3}-cell (cf. [Co2] p. 149 for the definition of this polytope), if we add
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the generator

1 0 0 0

0 -1 0 0
C =

0 -1 0

0 0 -1

we get the whole reflection group.
e Finally since OTCOO, they have the same two invariant polynomials in degree
eight. Those of degree ten are obtained just by multiplication with the quadric q.

By these remarks and considering G as in the assumption, it follows that we have to
compute the generators of six two-dimensional spaces C[xo,{L’l,IL‘Q,{L’g]]G for the following
pairs (G, j):

((00Y,4) (TT,6) (00,8) (I0,12) (II,12).

The generators of the TT-, OO- and II-invariant spaces are given in [S] as well as a de-
scription of the corresponding pencils of surfaces in P3 (base locus and singular surfaces).
Here we examine the remaining cases and in the next section we describe the correspond-
ing pencils of surfaces in P3. The basic idea to find generators of the invariant spaces is
the same as in [S]. For the computations here we use the matrix representation of the
groups given in section 1.4 (see also [ST1] and [ST2]).

(OO) -invariants. We start with the space of Heisenberg invariant quartics. It has dimen-
sion five, being spanned by

fo:=zd + o + 25 + 23,
f1:= 2(:17(2]:17% + x%x%), fo = 2(:17(2]:17% + x%x%), f3:= 2(33%33% + w%az%),
f4 = 4m0m1x2x3.

In terms of these invariants

P =fot+ fi+ fat fs

Modulo V'V, the group (OO)’ is generated by (R4A2, R4A2) and (S, S). Tracing the action
of these generators on fy,. .., f4 one finds the invariants ¢> and fp.

I0-invariants. The generators (U,1), (1,5) and (1,R4) of IO operate on the space
Clzo, 71, v2, 73]}5” which is 35-dimensional. A computation with MAPLE shows that
it contains the non trivial IO-invariant polynomial

Sro = = fP LY R+ (S = 1402) X2, fi + 30fofF — 2f0 32 5 fif
—30f1fafs +3V5fa(2f0 >oi fi = Do fifi =[5 — 204 f7 +4ATD)
+6V/5F,

where the sums run over all the indices ¢,j = 1,2,3, ¢ # j, and

Fy=fifa+ f2fi+ fofs — f1fs — f3fE — fof?

is the anti-symmetric part of Sjo.
(3.2) Second case. Assume that GCG1Gy with Gy = D,, or Gy = D,,, n,m > 4, even.
With the help of the table in section 1.4 we discuss the following cases:
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D, D,,: observe that V D, is contained in D,D,,. A direct computation shows
that the generator (1, R,) leaves invariant a three-dimensional family of degree
four VV-invariant polynomials. Generators in this case are fo + f3, ¢%, fo — fa-
Now the matrix (R, 1) of D,, D,, operates on these three-dimensional space leaving
invariant ¢ and fo + f3.

since (D, D,,)'CD,, D,, these groups have already an at least two-dimensional fam-
ily of invariant polynomials of degree four, which is generated by ¢% and fa + f3.

TD,, n > 6: we have a five-dimensional family of T'V-invariant in degree eight.
By the action of the generator (1, R,,), n > 6 we have a two-dimensional family of
invariants. Put

K; = a2+ 2?2 — 22 — 22 + (1) 2x0(22 + 73) + 271 (72 — 73), i = 0,3
K; = 2%+ 22 — 2% — 23 + (—1)"220(22 + 23) — 221 (22 — 73), i = 1,2

then generators are

3
q4 and Pg := HKZ
i=0
Suppose three divides n. Since the groups (T'D,,) are contained in T'D,,, they
have at least a two-dimensional family of invariant polynomials in degree eight.
We consider now the action of the extra generators (S, R,,) of (T'D,,)’ on the space
of degree four, resp. six VV-invariant polynomials. A direct computation with
MAPLE shows that we have no invariants other then the quadric ¢2, resp. ¢°.
OD,, n > 6: we have TD,COD,, and the extra generator (R4,1) leaves the
previous polynomials invariant.
Suppose now four divides n. Since the groups (OD,,)" are contained in OD,,, they
have at least a two-dimensional family of invariant polynomials in degree eight.
Modulo V'V the groups (OD,,)" have generators (S,1) and (R4, R,), hence they
contain the group T'V. This has no non-trivial invariant polynomials of degree four
and has a two-dimensional family of invariant polynomials in degree six, generated
by ¢* and Sg(z) (cf. [S] p. 437). For n > 6, S¢(x) is not (OD,,)-invariant, for
n = 4 it is. In any case we do not get new invariants.
ID,, n > 8: we have a five-dimensional family of IV-invariant polynomials in de-
gree twelve. The action of (1, R,,), n > 8 on this space produces a two-dimensional
family of invariant polynomials. Put

Ky:= a3+ 22 — 22 — 22 + 2(1 — 7)(zom2 — 7173)
K| =23 + 2% — 2% — 23 + 27(wox3 + z122)

Kb =23 + 2% — 2% — 23 — 2(1 — 7)(zom2 — 2173)
Kb =23 + 22 — 2% — 23 — 27(woxs + z122)

K} :=2(1 — 7)(zox3 + z122) + 2(x0T2 — T123)
Kl := —27(zox3 + x122) + 2(z0T2 — T123)

then generators are

5
¢® and Pjy := HKZ'
i=0
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In conclusion, the dimension of C|xg, z1, 2, xg]]G is two, for (G, j) equal to
(DpDpp,4) nym >4, (OD,,8) n>6, (ID,,12)n > 8.

Remark 3.3 Observe that the polynomials ¢> and f» + f3 are D, D,-invariant even if n
is an odd integer. As in the even case, generators of these groups are (Ag, 1), (1, A2) and

(Bn, 1), (1, Bn).

4. INVARIANT PENCILS

4.1. The pencil of (OO)'-invariant quartics. We take the generators ¢ and fq :=
zg + 2] + 25 + 4. The base locus is a double curve of degree eight. Let Cs denote the
curve {g = 0, fo = 0}. The pencil is invariant under the matrix C' too, hence by symmetry
reasons the curve Cg has bi-degree (4,4) on ¢ (cf. [S], section 5). Moreover we have the
following

Lemma 4.1. The curve Cg is smooth and irreducible.

Proof. The Jacobian matrix of Cg has rank two in each point, hence the curve is smooth.
If Cs = C"UC”, the curves C’, C” would meet in some point on g (observe that they
cannot be lines of the same ruling), but this is impossible because Cg is smooth. U

Now a singular point on a surface of the pencil (# ¢?) is not contained on ¢ (cf. (6.1) of
[S]). Hence by this fact, lemma 4.1 and Bertini’s theorem the general surface in the pencil
is smooth. All the other surfaces but ¢? are irreducible and reduced and the singular ones
have only isolated singularities.

The symmetry group of {3,3,4}. Consider the “cross polytope” B;= {3,3,4} in R* with
vertices the permutations of (+1,0,0,0) as in [Co2] p. 156 and edge v/2. The generators
of (OO)’ permutes these points, hence (OO)’ is contained in the symmetry group [3, 3, 4]
of {3,3,4}, more precisely it is an index two subgroup. In fact the symmetry group of
B4 has order 2* - 4! = 384= 2 - 192 and by adding the generator C' to (OO)’ we get the
whole symmetry group [3,3,4] (cf. [Co2] p. 226). In particular, observe that they have
the same invariant polynomials. The polytope 84 has Ny =8, Ny = 24, Ny = 32, N3 =16
the reciprocal “measure polytope”, v4= {4, 3,3} has Ny = 16, Ny = 32, Ny = 24, N3 = 8.
Hence we get four [3, 4, 3]-orbits of points: the vertices and the middle points of the edges
of the B4 and the vertices and the middle points of the edges of the reciprocal 4. These
have coordinates the permutation of (£1,0,0,0), (+1,£1,0,0), resp. (£1,+£1,4+1,£1),
(£1,£1,41,0). As points of P3 these are singular on the surfaces fo -+ Ag? for A = —1, —%
resp. —%, —% and a direct computation shows that they are all ordinary double points.
We do it for A= —1and (1:0:0:0). In the affine chart {x¢ # 0} the equation becomes

0 1+$4+y4+z4_(1+$2+y2+z2)2

—222 — 2y% — 222 + terms of degree > 4,

hence the rank of the Hessian matrix at (0,0,0) is three. This shows that (1:0:0:0) is
an ordinary double point and so are all the points in its orbit.
We collect the results on the singular surfaces in the following table. In the middle column
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we write just one point, but we mean all its permutations.

A nodes number\description
-1 (1:0:0:0) 4
—%| (£1:£1:0:0) |12
—%| (£1:£1:£1:0) |16, Kummer surface
— 1| (11 £1:£1) |8
o0 ‘ — ‘ double quadric
In the case of A = —%, we get a surface with 16 nodes which is the maximal number

possible for a surface of degree four. This is a Kummer surface. Observe that in this case
too as in [S] the nodes are fix points under the action of some matrices in [3, 3, 4], resp. in
(OO)" and they are contained on lines of fix points (see (5.2) and (6.3) of [S]). Moreover
an estimation as in section 8 of [S] shows that whenever the lines of fix points do not meet
the base locus, they contain exactly four nodes. It is natural to expect that these are all
the singular surfaces in the (OO)’-invariant pencil (as in the case of the TT-, OO-, and
II-invariant pencils). This is a direct consequence of the following

Proposition 4.1. 1. The conjugacy classes in (OO)" (under (OO)') with eigenvalues +1
are the following

conj. class ‘ (A2, A2) ‘ (A2, A1) ‘ (RaAs, R4 Ar) ‘ (S,9) ‘ (R4, R4)
number of elements 6 12 24 32 12
number of fix lines 6 12 24 16 6

2. The fix lines of the matrices in these conjugacy classes contain the maximal number
possible of node.

Proof. Choosing a fix line for each of the representative above and intersecting with the
singular surfaces we find

matrix and fix line | value of A int. points
(Ag, As) : —1| =3 | (1:0:0:0) | (£1:0:1:0)
1 =23=0 (0:0:1:0)
(A, A7) : -3 -3+ | (0:1:1:0) (1:1:1:1)
To = T3,T1 = T (1:0:0:1) [ (—=1:1:1:-1)
(R4As,R4Ag): | —-1] =1 | (1:0:0:0) (0:0:1:1)
1 =020 =235 |—% (£1:0:1:1)
(S,8): —1| =% | (1:0:0:0) (0:1:1:1)
T =To = 23 -1 (£1:1:1:1)

where we do not write the matrix (R4, Ra4), since the fix lines of the matrices in its conju-
gacy class are the same as those of the matrices in the conjugacy class of (Ag, A2). From
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this table follows that:

e the fix lines above meet different surfaces, hence the conjugacy classes of these
matrices are in fact, all distinct (cf. also [S] (7.3)).

e The fix lines contain the maximal number possible (four), of nodes (this shows 2.)

About the number of fix lines: observe that the conjugacy classes of (S,S) has order 32
and contains the elements (S, 5%) hence we have 32 = 16 distinct fix lines. Finally the
conjugacy class of (A, As) contains six elements, that of (Ay, A1) contains twelve elements
and that of (R4As, R4As) contains 24 elements. Since each element in these conjugacy
classes has two fix lines and the elements with minus sign are in the same conjugacy class,
the number of fix lines is the same as the number of matrices. O

We know that the singular points form [3,4, 3]-orbits, but we can now show something
more.

Lemma 4.2. The nodes on each singular surface form one (OO) -orbit:

1 1 1
A B 1l
orbit 4 12 |16 |8
fix group mod. =1 | Sy | Dy | D3 | Ay
order 24 | 8 6 12
Proof. The situation is easy for A = —1. In fact the matrix C'€[3,4, 3] leaves each singular
point fix, hence the group (OO)" musts permute them. Consider A = —%, —% resp. —% and

assume that the orbit’s length of singular points is less or equal then 12, 16, resp. 8. Then
the fix group in (OO)" mod. +1 has order bigger or equal then 8, 6 resp. 12. Checking
in the table given in the previous page we see that in fact the only possibility is to have
equality. O

Put now Ny =number of nodes on a surface in the pencil, N; =number of fix lines of
matrices in the same conjugacy class, np=number of nodes on a line, ny=number of line
through a point. Knowing the fix groups of the singular points and using the formula

(1) No-n1 = Ni-ng

for a configuration of lines and points (cf. [S] section 11.), we can write the table:

Repr. of the conj. class | value of A Configuration
(Ag, Ag) ~-1|—3 (43,62) | (121,62)
(Ag, Ay) -3 -1 (125,125) | (83,129)
(RyAs, Ry As) —1 | =3 | =3 | (46,241) | (122,24;) | (163,242)
(S, S) —1| =% | =1 | (44,161) | (161,161) | (84,162)

where in the second column we mean the nodes of the surfaces with the given A.
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4.2. The pencil of IO-invariant 12-ics. We take the generators ¢% and S;o. We com-
pute first the base locus. Consider the groups (1,0), resp. (I, 1), which operate on the
two rulings of the quadric ¢, each element there has two lines of fix points (cf. (5.4) of [9]).
For the convenience of the reader we recall the table on the length of the orbits under the
action of the octahedral group O, and of the icosahedral group I:

octahedron ‘ icosahedron
24, 12, 8, 6] 60, 30, 20, 12

Now we show:

Lemma 4.3. The variety q N S;o consists of an (I,1)-orbit of twelve lines and of an
(1,0)-orbit of six singular lines of Sto.

Proof. We have deg(qNSro)=24. By the table above it can only have bi-degree (12,12) or
(12,6). An argumentation as in [S] (5.5), (b), shows that ¢ N Sy splits into the union of
lines of the two rulings of ¢q. More precisely it contains the (I, 1)-orbit of twelve lines and
the (1, 0)-orbit of twelve or of six lines. In the last case the lines have multiplicity two in
the intersection. So take the fix line (A : g : 49X : ip), (A : p)€Pq, of the matrix (1, As) in
the orbit of length six. A direct computation (with MAPLE) shows that it is singular on
S10, so we are done.
O

Lemma 4.4. Let p be a singular point on a surface of the pencil S;o + A\¢® and assume
that p is on the quadric q. Then p € L;, 1 = 1,--- ,6, where the L;’s denote the singular
lines of the base locus.

Proof. As in the proof of (6.1) in [S], if p is singular on a surface in the pencil and p € ¢,
then p is a singular point of ¢ N S;o. Hence p € L;. O

By this fact and Bertini’s theorem follows that:

Lemma 4.5. 1. The general surface in the pencil is smooth away from the lines L1, ..., Lg.
Moreover we have:

2. The singular surfaces have only isolated singularities away from the singular lines
Li,...,Lg. In particular they are irreducible and reduced.

Proof of 2. The surface ¢% is the only not reduced surface in the pencil. Indeed, assume
that there is another not reduced surface {f* = 0}, a - m = 12, and degf, = a. Then
the twelve lines of the base locus in the intersection of fI' and ¢ would be singular too,
which is not the case. Assume now that there is a surface S in the pencil which contains a
singular curve C. The latter meets the quadric in at least one point, which by lemma 4.4
is on some L;. This point is a “pinch point” of S (for the definition of “pinch point” cf.
[SR] p. 423). We compute explicitly the pinch points along a line L;. Because of symmetry
reason it is enough to do it just for one line. We take Li:{xo = ixg,z3 = ix1}. First we
consider the transformation zg — yg, 1 — Y1, To — Yo + @ - Yo, T3 — Y3 + 1 - y1, which
maps Ly to {yo = y3 = 0}. We call the transform L; again.
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Let F := F(yo,91,Y2,y3,A) be the equation of the pencil after the transformation. We
can write the Taylor expansion of F' along L

F=A(yo,y1,\) - 45 + Byo,y1, A) - y2 - y3 + Cyo, y1,A) - 13
+terms of order > 3,

the pinch points are solution of

4 1p
2 _
det( B 0)‘0

NI

which splits into the product

(z1 + 2230 + 22323 — 22321 + 28) (2] — 223w0 + 22322 + 2231 + 2B)
(m% + 3z9z1 + VBroT, — x%)(m% — 3x0x1 — Vhror1 — m%)
(3x8 — 2v/5ada? + 31 (zd + 162222 — 67/5xd2? + 21) = 0.

this has twenty distinct solutions (independent from \), therefore we have “simple” pinch
points on L;, hence no singular curves. O

In this case as in the case of the pencils of [S] the singular points are contained on lines of
fix points (cf. (6.3) of [S]) and we get an estimate for the number of isolated singularities
as follows: Denote by S a surface of the /O-invariant pencil then deg(SN09;S) = 12-11 and
S-0;8 =C+2L1+...4+2Lg where degC = 12-11—12. Since C' cannot be singular, there is
aj=0,1,2,3s.t. CZ0;S. Hence deg(CN0O;S) = (12-11—-12)(12—1) = 120-11. Since the
singular points are computed two times in the intersection their number is < 12()T~11: 660.
Denote by L a line of fix points and assume that it meets the base locus in two points 21,
z9. Then for each surface S # ¢° mult,; (L - S) = 2. In fact a line like L there can be only
a fix line of a matrix in the conjugacy class of (Ag, A3) and it meets the base locus at some
line L;. Moreover an argumentation as in (7.1) of [S] shows that L cannot be tangent to
S at z;. By this fact and by a computation as in section 8 of [S], we find that a fix line
contains < 8 singular points if it meets the base locus, and < 12 singular points otherwise.
Finally, before giving an exact description of the singular points on the fix lines (cf. table
below) we remark that the fix lines of elements in the same conjugacy class form one orbit
under the action of /O and the points where they meet are real (cf. (7.3) and (7.5) of []).
The singular surfaces. We proceed by a direct computation using the lines of fix points.
The matrices of 1O with fix lines containing singular points are in the conjugacy class of
(Ag, As), (S,S) or (Ag, R4As). The total number of distinct fix lines is 90, 80, resp. 180.
In the table below we give the singular surfaces and the singular points on the fix lines.
We choose a representative in each conjugacy class and a fix line of it, moreover we put
d:=v2-1a=VvV2+1m =2v2 -5, 9 =2v2+ V5, v =2+ V2 + V5 + V10,
Y= =24+ v2 = V5 + V10, 3 := =24+ V2 + V5 - V10, 94 == 2+ v2 — V5 — V10,
a1 = 3(=1+v2 - V10), of = 3(1 +v2—-10), B = 3(4 - 3vV2 — 2V5 + V10),
az == (1 +V2+V10), oy == 3(-1 4+ vV2+V10), a3 == -2+ £v2 — /5 + 310,
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oy =24 3v/2+V5+ 510, By == 3(—104+7V2— 4\f+3\/ﬁ),63 = 3(vV2-2v5+10),
B = %(2+\/§+\/E), €1 = 972+243\/_0 C2 - 972 233 10:

matrix and fix line | value of A int. points
(A, Ag) : 0] —% (1:0:0:0) (£a’: 0:1:0)
1‘1:1‘3:0 (0 ) (1:0::&&’:0)
(£1:0: 1 0)
(A2, R4As) : —3 (—a:1:0:0)
xrg = —axy,x3 = a'ry (0:0:1:d")
(1:a':1:a)
C1 (6] (Oéli—ﬁl. . ) (O/li—ﬁg,:l:a/)
(—ag:f1:1:d) | (—ah:P3:1:4d)
(g :fB2:1:4) (a3 By:1:d)
(—ag:—fa:1:d) | (—ah:—Ps:1:4d)
(S,9): 0 (1:0:0:0)
Tr1 = X9 = T3 (0:1:1:1)
(=1:1:1:1)
(—V5:1:1:1)
(V5+2:1:1:1)
| e (y1:1:1:1) (vp:1:1:1)
(y2:1:1:1) (74:1:1:1)
(y3:1:1:1) (v5:1:1:1)

Here the fix line of (A2, A3) contains two points of the base locus. Observe that the num-
ber of singular points is maximal on the lines, hence the four given \’s are the only values
corresponding to singular surfaces.

Proposition 4.2. In the pencil Sio + Aq® we have the following 10-orbits of nodes

A 0 C1 —% Co
orbit 120 240 360 240
fix group mod. £1 | Ay D3 7o X Zy Dg
order 12 6 4 6

Proof. We analyze case by case the four different surface. Then a direct computation as
in section 4.2, shows that the singular points are nodes.

I. A=0. Observe that (1:0:0:0) €Sjo is contained in three fix lines of elements in the
conjugacy class of (Ag, As). Moreover

(*) there is a matrix of order four (1,7)€ IO, with v2 = Ay,

Hence (1,7) and (Ag, A3) commute and the four points on the fix line of (A, A2) form
one orbit under the action of (1,7). By this fact follows that we have a configuration of
lines and points. By the formula (1), we get Ny -3 = 90 - 4, hence Ny = 120. The point
(1:0:0:0) is on the fix line of (5,S) too, more precisely it is contained on four such
lines. The formula 120-4 = 80 - ng shows ny = 6 so the six points on the fix line are in the
orbit of length 120 too. In conclusion we have just one IO-orbit of singular double points.
I A= —%6. The four points on the fix line of (Ag, A2) form one orbit by (*). The formula
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(1) gives Ng - n; = 360. If n; > 2 then Ny < 180 and the fix group in /O mod. +1 has
order > 8. Checking in the table on page 24 this is not possible. Hence Ny = 360 and
n1 = 1. The fix group has order four and it is isomorphic with Zy x Zy. Each singular
point is contained in two fix lines of matrices in the conjugacy class of (Ag, R4As). Now
the formula (1) with Ny = 360, n; = 2 and N; = 180 gives ng = 4. So we conclude that
the singular points on these fix lines are in the orbit of length 360 too.

ITI. A =¢;, ¢ =1,2. The three points on the fix line of (S,.5) form one orbit under the
action of (S5,1). The formula (1) gives Np - n; = 240. If ny > 2 then Ny < 120 and the
fix group mod. +1 has order > 12, which is not possible (check in the table on page 24
again). Hence Ny = 240 and n; = 1. The fix group has order six and it is isomorphic with
Ds, hence three fix lines of matrices in (As, R4A2) contain a singular points. The formula
(1) in this case gives ng = 4, which shows that the singular points on these fix lines are in
the previous orbit too. U

We give now the table of the configurations of lines and points:

Repr. of the conj. class ‘ value of A ‘ Configuration
(Ag, Ag) 0 | —% | (1203,904) | (3601,904)
(A, RyAs) —%| ¢ | (3602,1804) | (2403,1804)
(S,S) 0 ci (1204,806) | (2401,803)

4.3. The pencil of D, D,,-invariant quartics. We take the generators ¢> and fo+ f3 =
(o — iz1)(zo + ix1) (22 — ix3) (w2 + iz3). The latter is the union of four complex planes

meeting each other at the four complex lines {zg+iz; = 0, x5 +ix3 = 0} on ¢. The pencil

contains the multiple quadric ¢*:= ¢* — 2(fa + f3)= (2§ + 27 — 25 — 23)* too. Hence with

this new generator the equation of the pencil becomes
0%+ 2% = (¢ +iVag)(d' —ivVAq).

A surface in the pencil is the union of two quadrics which meet each other at the four lines
given above. An easy computation shows that none of the surface in the pencil contains
isolated singularities.

4.4. The pencil of OD,-invariant octics (n > 6) and of ID,-invariant 12-ics
(n > 8). We take generators ¢*, ¢ and Py = [[_, K;, Pia = [[o_o K/ (cf. (3.1.2)) and
we denote the pencils by IL,(A):= P, + A¢Z, m = 8,12. We have

Lemma 4.6. The base locus of the pencil is % -times the intersection q N P, m = 8,12.
Where (as sets)

gN Py = fix lines of (1, R,),
orbit of eight lines under (O, 1),
gN P2 = fix lines of (1, R,),

orbit of twelve lines under (I,1).
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Proof. The element (1, R,,) has fix lines Ly : {xg = —iz1, xo =ix3}, Lo : {xg = ix1, 29 =
—ixg} for each n. These are contained in each quadric K, s = 0,...,3, resp. Kj,
t=0,...,5, hence they have at least multiplicity four, resp. six in the intersection ¢N F,,,

m = 8,12. By this fact and an argumentation as in [S], (5.5), it follows that the lines of
the length m = 8, 12-orbit under (O, 1), resp. (I, 1) are in the base locus too. Moreover
the previous multiplicity of intersection are exactly four, resp. six. O

Lemma 4.7. The pencil does not contain surfaces with isolated singular points.

Proof. The groups have order 96n, resp. 240n, since an isolated singular point has orbit
of finite length, it is fixed by (1, R,). This shows that it is on the lines of the base locus,
hence not isolated. A contradiction to the assumption. O

Proposition 4.3. In the pencil we have the following singular surfaces, with one orbit of
double lines which are fix lines for the elements of some conjugacy class:

value of A |ODn: -1 : 0
ID,, :
orbit OD,, : 6 8 12
ID, : 30
fix lines in (A5,R2) (S,R2) (R,R2)
the conj. class of
Proof. Tt is a direct computation using the equations zg = x9, 71 = —x3; x9 = —(1 +
V3)xs + 21,29 = 3 + (1 — V3)z1 and x93 = (1 — V2)zg, 23 = (V2 — 1)z of a fix line of
(A3, R2), (S, R2), resp. (R, R2). O

5. FINAL REMARKS

1) By [Co2] p. 292 there are sixteen regular polytopes {p,q,r} in four dimensions. These
polytopes correspond to four distinct symmetry groups [p, ¢, r| listed in the table below.
Three of these symmetry groups can be obtained from groups which we described above
by adding extra generators C' and C’, where C denotes the matrix given in section 3, C’
is the matrix of [S] p. 433.

symmetry groups | [3,3,3] | [3,3,4] | [3,4,3] | [3,3,5]
our groups (0O)Y | TT I1
extra generators C c,c’ C

The group [3, 3,3] = Sym(5) does not contain the Heisenberg group H, in fact it has some
invariant polynomials of odd degree (cf. [Col] p. 780). In these notes we complete the
description of the G-invariant pencils of surfaces whenever G is the symmetry group of a
regular four dimensional polytope and G contains H.

2) In remark 3.3, with n = 3, we give the degree four invariant polynomials of the bi-
polyhedral dihedral group D3D3CSO(4). By Mukai [M] the quotient P3/D3Ds is iso-
morphic with the Satake compactification of the moduli space of abelian surfaces with
(1,2)-polarization, hence this invariant polynomials should be related to modular forms.
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3) In [BS] the quotients X/G, G = T'T, 00, II are described. It would be interesting to
examine the quotients in the remaining cases.

6. COMPUTER PICTURE

We exhibit a computer picture of the I x O-symmetric surface of degree 12 with 360 nodes.
This has been realized with the program SURF written by S. Endrafi.

I x O-symmetric surface of degree 12 with 360 nodes
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ABSTRACT. We construct invariant polynomials for the reflection groups [3,4,3] and
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in degree 2,6,8,12 and 2,12,20,30.
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0. INTRODUCTION

There are four groups generated by reflections which operate on the four-dimensional Eu-
clidean space. These are the symmetry groups of some regular four dimensional polytopes
and are described in [C2, p. 145 and Table I p. 292-295]. With the notation there the
polytopes, the groups and their orders are

Polytope | 5 —cell 16 —cell 24 —cell 600 — cell
Group | [3,3,3] [3,3,4] [3,4,3] [3,3,5]
Order 120 384 1152 14400

They operate in a natural way on the ring of polynomials R = R[zg,x1,z2,x3] and it is
well known that the ring of invariants R“ (G one of the groups above) is algebraically
generated by a set of four independent polynomials (cf. [B, p. 357]). Coxeter shows in [C1]
that the rings R, G' = [3,3,3] or [3,3,4] are generated in degree 2,3,4,5 resp. 2,4,6,8
and since the product of the degrees is equal to the order of the group, any other invariant
polynomial is a combination with real coefficients of products of these invariants (i.e., in
the terminology of [C1], the ring RE is rationally generated by the polynomials). Coxeter
also gives equations for the generators. In the case of the groups [3,4,3] and [3,3,5] he
recalls a result of Racah,(cf. [R]), who shows with the help of the theory of Lie groups
that the rings RC are rationally generated in degree 2,6, 8,12 resp. 2,12, 20, 30.

Equations for these generating polynomials can be found e.g. in [M], [Sm, p. 218], [CS,
p. 203] and most recently in [IKM] (the groups are often denoted in the literature by
F, and Hy). The method used by Metha in [M] is simple: He considers the equations
of the reflecting hyperplanes and he finds a set of linear forms which are invariant under
the action of the groups [3,4,3] resp. [3,3,5], then he uses these to give equations for
the polynomial invariants (a similar method is used by Coxeter in the case of the groups
[3,3,3] and [3,3,4]). In [Sm, p. 218] Smith explains how to obtain equations for the invari-
ant polynomials of the rings RY, but he refers to [CS] for the explicit equations, however
only in the case of the group [3,4,3]. In fact Conway and Sloane use coding theory to

23
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construct the invariants of this group, but they do not consider the case of [3,3,5]. In
[IKM] the authors find the invariants by solving a special system of partial differential
equations. But as they say the method is quite elaborated and they need the support of
computer-algebra.

In this paper we give a different construction, which should be interesting in particular
from the point of view of algebraic geometry: We consider some special [3,4,3]-, resp.
[3, 3, 5]-orbit of lines on the quadric P; x P; in P3 and construct the invariant polynomials
by using the action of the group and geometric considerations. We remark that in our
construction of the polynomials we use very little computer-algebra, in fact only MAPLE
for some computation in Proposition 2.1 and 3.2 (cf. Section 4). Otherwise everything is
proved by hand and by geometric considerations. This construction seems to be interest-
ing for the following reasons:

1. We can give a simple proof of Racah’s result,

2. We establish relations between the invariants of the groups [3,4, 3] and [3, 3, 5] and the
invariants of some binary subgroups of SU(2),

3. The construction may be helpful in the study of the geometry of the algebraic sur-
faces defined by the zero sets of the invariant polynomials. We have in fact families of
surfaces with many symmetries and by the construction, for example it is possible to de-
termine immediately the base locus of the families, which consists of sets of lines on P; xP;.

We explain now briefly our method and also the structure of the paper: Denote by T, O
and I the rotations subgroups in SO(3,R) of the platonic solids: tetrahedron, octahedron
and icosahedron, it is well known that SO(4,R) contains central extensions Gg of T' x T,
Gg of O x O and Gz of I x I by £1. Then Gg is an index four subgroup of [3,4, 3] and
G112 is an index two subgroup of [3,3,5] (cf. e.g. [Sal, Section 3). These two groups, and
Gg too, act on the three dimensional projective space P3, and in particular on the two
ruling of the quadric P; x P; (this action is studied in [Sa]). The quadric can be described
as the zero set of the quadratic form:

a2+ 22 4 22 4 22

which is [3, 4, 3]- and [3, 3, 5]-invariant. By considering some special orbits of lines of Py x Py
under Gg, G2 and Gg, it is possible to construct explicitly [3,4,3]- and [3, 3, 5]-invariant
polynomials, this is done and explained in details in Section 2. In Section 3 we show that
our polynomials generate the rings of invariants R® by showing some relations between
them and the invariant forms of the binary tetrahedral group and of the binary icosahedral
group in SU(2). More precisely we define a surjective map between polynomials of degree
d on P53 and polynomials of be-degree (d,d) on P; x P;. Then we show that the image of
a Gp-invariant polynomial n = 6,12 splits into the product of two invariant polynomials
of the same degree under the action of the binary subgroup in SU(2) corresponding to
Gy, (there are classical 2 : 1 maps SU(2) — SO(3), SU(2) x SU(2) — SO(4) which
we recall in Section 1). This corresponds in some sense to the fact that G, contains the
product G x G (for n =61is G =T and for n = 12 is G = I) and each copy G x 1, 1 x G
operates on one ruling of P; x P; and leaves the other ruling invariant. This relation is the
main ingredient in our proof of the result of Racah (Corollary 2.1). It seems to be however
interesting by itself. Finally Section 4 contains explicit computations and in Section 5
we present open problems and possible applications of the results of the paper. It is a
pleasure to thank W. Barth of the University of Erlangen for many helpful discussions and
the referees for pointing me out some important bibliographical information.
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1. NOTATIONS AND PRELIMINARIES

Denote by R the ring of polynomials in four variables with real coefficients R[xq, 21, 2, x3],
by G a finite group of homogeneous linear substitutions, and by RS the ring of invariant
polynomials.

1. A set of polynomials F},..., F, in R is called algebraically dependent if there is a non
trivial relation

S e (F ) 0,

where I = (i1,...,i,) € N* a; € R.

2. The polynomials are called algebraically independent if they are not dependent. For the
ring RY, there always exists a set of four algebraically independent polynomials (cf. [B],
thm. I, p. 357).

3. We say that R is algebraically generated by a set of polynomials Fi, ..., Fy, if for any
other polynomial P € R we have an algebraic relation

> ag(PO-F{t-. - Fit) =0.

4. We say that the ring R® is rationally generated by a set of polynomials F, ..., Fy, if
for any other polynomial P € R® we have a relation

> a(Ft-.. - FjY) =P, aj €R
5. The four polynomials of 3 are called a basic set if they have the smallest possible degree

(ct. [C1]).

6. There are two classical 2 : 1 coverings
p:SU(2) — SO(3) and o : SU(2) x SU(2) — SO(4),

we denote by T, O, I the tetrahedral group, the octahedral group and the icosahedral group
in SO(3) and by T, O, I the corresponding binary groups in SU(2) via the map p. The
o-images of T x T, O x O and I x I in SO(4) are denoted by Gg, Gg and G12. By abuse of
notation we write (p, ¢) for the image in SO(4) of an element (p,q) € SU(2) x SU(2). As
showed in [Sa] (3.1) p. 436, the groups Gg and G2 are subgroups of index four respectively
two in the reflections groups [3,4, 3] and [3, 3, 5].

2. GEOMETRICAL CONSTRUCTION

Denote by G one of the groups T, O or I. Clearly, the subgroups G x 1 and 1 x G of
SO(4) are isomorphic to G. Moreover, each of them operates on one of the two rulings of
the quadric P; x P; and leaves invariant the other ruling (as shown in [Sa]). We recall the
lengths of the orbits of points under the action of the groups T', O and I

group ‘ T ‘ O ‘ I
lengths of the orbits | 12, 6, 4 | 24, 12, 8, 6 | 60, 30, 20, 12

These lines are fixed by elements (p,1) € G x 1 on one ruling, resp. (L,p') e 1 x G on the
other ruling of the quadric. Recall that these elements have two lines of fix points with
eigenvalues o, @ which are in fact the eigenvalues of p and p’. We call two lines L, L’ of
Py x Py a couple if L is fixed by (p,1) with eigenvalue o and L’ is fixed by (1, p) with the
same eigenvalue.
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2.1. The invariant polynomials of GG¢ and of G12. Consider the six couples of lines
L, L,..., Lg, L in P; x Py which form one orbit under the action of 7' x 1, resp. 1 x T,
and denote by fl(?), ey fég) the six planes generated by such a couple of lines (and by
abuse of notation their equation, too). Now set

Fs= 3 U fz' o fig) = 30 9l -9(hs) - a(feg).

geTxl gETxl

Observe that an element g € T x 1 leaves each line of one ruling invariant and operates on
the six lines of the other ruling. A similar action is given by an element of 1 x T. Since we
sum over all the elements of T x 1, the action of 1 x T does not give anything new, hence
Fg is Gg-invariant. Furthermore observe that Fg has real coefficients. In fact, in the above
product, for each plane generated by the lines L;, L we also take the plane generated by
the lines which consist of the conjugate points. The latter has equation ﬁ-i(ﬁ), i.e., we have
an index j # ¢ with fj(?) = f_iZ'(G) and the products fl-(l-G) . f_iZ'(G) have real coefficients.
Consider now the orbits of lengths eight and twelve under the action of O x 1 and 1 x O
and the planes fi(f), ](]1-2) generated by the eight, respectively by the twelve couples of
lines. As before the polynomials

o= > g,

gETxl

Fio = Y gy D)
gGTxl
are Gg-invariant and have real coefficients.
Finally we consider the lines of P; x P; which form orbits of length 12,20 and 30 under
the action of I x 1 resp. 1 x I. The planes generated by the couples of lines produce the
G'1o-invariant real polynomials

12 12
P = Z g(hl(u . h§21)2)7
gefxl
20 20
Py = Z g(hgl R h502)0)7
gefxl
30 30
I3 = Z g(hgl ). R hz()>03)())~
ngxl

2.2. The invariant polynomials of the reflection groups. We consider the matrices

1 0 0 0 1000
o -1 0 o , o100
“=lo o -1 0 |"““|looo 1]

00 0 -1 0010

as in [Sa] (3.1) p. 436, the groups generated by Gg, C, C’ and Gz, C are the reflections
groups [3, 4, 3] respectively [3, 3, 5].

Proposition 2.1. 1. The polynomials Fg, Fg, Fia, I'12, 'ag, '3y are C' invariant.
2. The polynomials Fg, Fg, Fio are C' invariant.
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Proof. 1. The matrix C' interchanges the two rulings of the quadric, hence the polynomials
F; and T'; are invariant by construction. We prove 2 by a direct computation in the last
Section. O

From this fact we obtain

Corollary 2.1. The polynomials q, Fg, Fs, Fia are [3,4,3]|-invariant and the polynomials
q,T'12, 090, T30 are [3, 3, 5]-invariant.

Here we denote by ¢ the quadric P; x P;.

3. THE RINGS OF INVARIANT FORMS
Identify P3 with PM (2 x 2,C) by the map

(1) (xo:xy1:x9:23) <$0+Z$1 332+za:3>.

—xo +1T3 T — 1T

Furthermore consider the map

(C2><(C2 — M(ZX?,C)
(2) 2022 2023 _
((20,21)7(227'23)) — 2122 2123 =2

Then Z is a matrix of determinant 22 + 22 + 23 + 22 = 0 which is the equation of g. Now
denote by Op,(n) the sheaf of regular functions of degree n on P3 and by Oy(n,n) the
sheaf of regular function of be-degree (n,n) on the quadric g. We obtain a surjective map
between the global sections

(3) ¢: HY(Opy(n)) — HO(Oy(n,n))
by doing the substitution

zo = 2022 -5 2123 g — 2022 Q_iZlZS’
go = AZ A2 4. 20% ;; 2122
in a polynomial p(zq, 1,2, 23) € H°(Op,(n)). Observe that ¢(q) = 0. Now let
t = 22125 — 21),
W = 28+ 1423821 + 28,
X = 2?3352+ 2328) + 22

denote the T-invariant polynomials of degree 6,8 and 12 and let

f = z02(z° + 112021 — z%o),
H = —(¥ + 230) + 228(20 zl - zozl %) — 494249210,
T = (°+273 ) + 522(23°27 — 25235) — 10005(2302%0 + 239230)

be the I-invariant polynomials of degree 12,20, 30 given by Klein in [K] p. 51-58. Put
t1 = t(z0,21), ta = t(z2,23), W1 = W(z0,21), Wao = W (29, 23) and analogously for the
other invariants.
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Proposition 3.1. If p € HY(Ops(n)) is Gg-invariant, then:
(p) = Z alt?qt;'l Waz Waz X¢113 X2
I

If p is Gia-invariant, then:

_ Z /BJflﬁl f251 H1ﬂ2H252 f]'lﬂ37-253

where
I ={(a1,d],as, b, as,ab)|a;, o € N,6ay + 8as + 12a3 = n, 6a) + 8ah + 12a4 = n},
J = {(ﬁlvﬁi)ﬁQvﬁévﬁ?wﬁé”ﬁivﬁ; S N7 12ﬁ1 + 2062 + 30ﬁ3 =n, 12ﬁ1 + 2Oﬁé + 3Oﬁé = ’I’L}

Proof. Put

o(p) = p'(20, 21, 22, 23).

An element g = (g1,92) in Gg or G2 operates on (xg : 21 : x2 : x3) € P3 by the matrix
multiplication

To+ix1  To + ix3 1
91 —To +iw3 T — PT1 92

and on the matrix Z of (2) by

2022 20%3 -1 20 -1
= . z V4 .
g1 < 229 2173 > 99 g1 2 ( 2 %3 )92

Clearly if p is G- or G1s-invariant then also the projection ¢(p) with the previous operation
is. In particular for g = (g1,1) in T x 1, resp. in Ix1 the polynomial p' is T x 1-, respectively
I x 1-invariant as polynomial in the coordinates (20 : 21) € Py and for any (22 : 23) € Py.
On the other hand for g = (1,¢92) in 1 X T, resp. in 1 x I the polynomial p’ is 1 x T—,
respectively 1 x I-invariant as polynomial in the coordinate (22 : z3) € Py and for any
(20 : z1) € P1. Hence p’ must be in the form of the statement. O

By a direct computation in Section 4 we prove the following

Proposition 3.2. The quadric q does not divide the polynomials F;, I';. Moreover, Fg
does not divide Fio.

Corollary 3.1. We have ¢(q) = 0, ¢(Fg) = t1 - ta, ¢(Fs) = Wy - Wa, ¢(Fi2) = x1 - X2,
&(Ti2) = f1- f2, ¢(T'20) = Hy - Ha, ¢(I'30) =T - To (up to some scalar factor).

Proof. This follows from Proposition 3.1 and 3.2
Proposition 3.3. The polynomials q, Fg, Fg, F1a, resp. q,1'12,199,1'30 are algebraically

independent.
Proof. Let ) ajqilFéQFgg’Ff% =0and ), ﬁqulI‘ﬁF%%Fé‘é = 0 be algebraic relations,
I = (i1,i,3,14) € N*, J = (j1, j2, j3, ja) € N*, oz, 37 € R, then
0 = @3 arq" F? F{ F3)
(4) = Xr O‘F¢(F6)Z2¢(F8) 3¢(F12)
= Xr O‘Ftl t2 Wy 5W2 XX
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similarly
0 = oS, B TRIES)
(5) = 2 Brd(l12)2¢(La)?$(T'30)
- S R T T
If the polynomials t1, W7, x1 are fixed, we obtain a relation between to, Ws and 2, which
is the same relation as for t;, Wi and x; if we fix to, Wo and x3. The same holds for

the polynomials fi, Hy,77 and fo, Hy,75. From [K] p. 55 and p. 57 there are only the
relations

1081 — WP +x3 =0, 10815 — W35 +x3=0
and
T+ H} — 17280 = 0, T + H3 — 172845 = 0

between these polynomials. By multiplying these relations, however, it is not possible to
obtain expressions like (4) and (5). O

Corollary 3.2. The polynomials q, Fg, Fg, F1o, resp. q,1'12,9,'39 generate rationally
the ring of invariant polynomials of [3,4,3], resp. [3,3,5].

Proof. (cf. [C1] p. 775) By Proposition 3.3 and Proposition 3.2 these are algebraically
independent, moreover the products of their degrees are

2:6-8-12=1152 and 2-12- 20 - 30 = 14400,

which are equal to the order of the groups [3,4,3] and [3,3,5]. By [C1] this implies the
assertion. O

4. EXPLICIT COMPUTATIONS
We recall the following matrices of SO(4) (cf. [Sal):

0 ~1 0 0 0 10
0 1 0 0 1
q2,1) = » (Lge) = ;
(g2,1) ) 0 (1, q2) 1 0 00
0 -1 0 0 —100
-1 1 -1 11 -1 1
11 -1 -1 11 -1 -1
7]. :l ) 17 :l ’
R T T U R T T R
1111 1111
1 -10 0 11
11 0 0 “1 1
_ 1 _ L
(p4,1)—\/§ 0 1 1 5 (1,]94) V2 0 0 -1 ’
0 11 01 1
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T 0 1—7 -1

0 T -1 7-1
ps,1) =% ,
(s, 1) 2 T—1 1 T

1 1—71 0 T

0 T—1 1

0 T -1 7-1
1,p5) = 3 ,
pl=a| 0

-1 1-7 0 T

where 7 = %(1 ++/5). Then we have

Group Generators

Gs (QQ71)7(17QQ)7(p371)7(17p3)
GS (Q2, 1)7 (17 Q2)7 (p?n 1)7 (1,]93), (p47 1)7 (17]94)

G12 (Q27 1)7 (LQQ)? (p?n 1)7 (17]73)7 (p57 1)7 (17]75)

Now we can write down the equations of the fix lines on IP; x IP; and those of the planes
which are generated by a couple of lines. The products of planes of Section 2.1 in the case
of the group Gg are

(6) (©) () To — ’il‘g)(l‘l + ’il‘g)(l‘Q + ’il‘g)(l‘l — ’il‘Q)(l‘l — ’il‘g)(l‘l + ’il‘Q),

1 "J22 "---"J66

8 8 8

1(1) . 2(2) coe és) = (21 + azxg — bxs)(x1 + bro — axs)(x1 — axe — brs)(x1 — axrs — bxs)
12 12

1(1 ). 2(2 . “fiata = (3 —x1 4+ cxo)(z3 — x1 — cxo)(z2 + x3 — cx1) (22 + x3 + cxq)

(
(
(g + bz1 — axs)(xg + axy — bxs)(xy — bxy + axs)(xy + brs — axy),
(
(
(

)
xr3 — T + ca:l)(xg — Ty — ca;l)(xl + 29 + C:L’g)(fL’l + o — C:L’g)
)

1 + x3 — cxo) (w1 + w3 + cxa)(x1 — T2 + cx3)(x1 — 9 — Ccx3),
with a = (1/2)(1 +iv/3),b = (1/2)(1 — iV/3),c = iv/2.
Then the Gg-invariant polynomials Fg, Fg and Fi5 have the following expressions

Fs = xf+af + a8 + a§ + 5agaf(af + 7) + 5ata3(a] + 23) + Safas(af + 23)
+6x%x§(az% + :17%) + 63:%3:%(3:% + :17%) + 63:%3:%(3:% + :17%) + 23:%3:%:17%,

Fg = 3% af +123 a%2? + 30 wjaj + 24 ajata] + 144agrizias,

123 231 21 o5

R S RS PIELE D LT DI
81839 e S 7281

—— D wage k+—zx x§+1809zx w222 + : shataa?

Here the sums run over all the indices ¢, 7, k,h = 0,1, 2,3, always being different when
appearing together. By applying the map ¢, a computer computation with MAPLE
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shows that
13
F = ——1-
gb(F ) = i Wy - W-
8 — 64 1 29
¢(Fi2) = 2
12) = 256 X1 X2

as claimed in Corollary 3.1.
Proof of Proposition 2.1, 2. The polynomials Fg, Fg, Fi2 remain invariant by interchang-
ing w9 with x3, which is what the matrix C” does. O

Proof of Proposition 3.2. We write the computations just in the case of the [3,4,3]-
invariant polynomials. Consider the points p; = (iv/2:1:1:0) and po = (1 :4:0: 0),
then g(p1) = q(p2) = 0 and by a computer computation with MAPLE we get Fg(p1) = 26,
Fg(p2) = 12 and Fia(p2) = 32. This shows that ¢ does not divide the polynomials. Since
Fs(p2) = 0, Fg does not divide Fia. O

Remark 4.1. Observe that an equation for a [3,4, 3]-invariant polynomial of degree six
and for a [3, 3, 5]-invariant polynomial of degree twelve was given by the author in [Sa] by
a direct computer computation with MAPLE.

5. FINAL REMARKS

1. The zero sets of the polynomials which are described in this paper define algebraic
surfaces in P3(C) with many symmetries. Such surfaces are expected to have many in-
teresting geometrical properties: many lines, many singularities, etc. In [Sa] it is shown
that the projective one-dimensional families of surfaces with equations Fg + A\¢® = 0 and
I'is + A% = 0, A € P; contain each four surfaces with many nodes. The article also
describes a one-dimensional [3,4, 3]-invariant family of surfaces of degree 8. The family
contains four surfaces with A;-singularities and it is also Gg-symmetric. In Figure 1 we
show the picture of a surface with 144 nodes. But in fact the whole [3, 4, 3]-invariant family
of surfaces of degree 8 is projectively two-dimensional with equation Fg+ \Fg-q+ pug* = 0,
(A, i) € Py. It would be interesting to describe more surfaces in this family and in the
families of [3,4, 3]-symmetric surfaces of degree 12 and of [3, 3, 5]-symmetric surfaces of
degree 20 and 30.

2. Another interesting problem is to study the quotients of the previous surfaces by the
groups. In [BS] it is shown that the Gg-quotient, resp. the Gi2-quotient of a surface in
the family defined by Fg + A¢® = 0, resp. defined by I'1a + A¢® = 0 is a K3-surface. It
would be interesting to identify the quotients by the groups [3,4, 3], resp. [3,3,5] which
contain the groups Gg, resp. G12. And in general, to describe more quotients.
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Fig. 1. [3,4, 3]-symmetric octic with 144 nodes

:z:g + x?f + x% + x§ + 14 (:z:éa:‘l1 + J:%:z:‘zl + :z:é:z:é + x‘fx% + :z:‘llzz:é + x%x%) +

+168z3x3 2323 — %(m% +a2 42t +a3)t =0
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COUNTING LINES ON SURFACES

SAMUEL BOISSIERE AND ALESSANDRA SARTI

ABSTRACT. This paper deals with surfaces with many lines. It is well-known that a cubic
contains 27 of them and that the maximal number for a quartic is 64. In higher degree
the question remains open. Here we study classical and new constructions of surfaces
with high number of lines. We obtain in particular a symmetric octic with 352 lines.

Cubic surface with 27 lines!

1. INTRODUCTION

Motivation for this paper is the article in 1943 of Segre [12] which studies the following
classical problem: What is the maximum number of lines a surface of degree d in P3 can
have? Segre answers this question for d = 4 by using some nice geometry, showing that
it is exactly 64. For the degree three it is a classical result that each smooth cubic in Ps
contains 27 lines, but for d > 5 this number is still not known. In this case, Segre shows in
loc.cit. that the maximal number is less or equal to (d — 2)(11d — 6) but this bound is far
from beeing sharp. Indeed, already in degree four it gives 76 lines which is not optimal.
So from one hand one can try to improve the upper bound for the number of lines ¢(d) a
surface of degree d in P3 can have, on the other hand it is interesting to construct surfaces
with as many lines as possible to give a lower bound for ¢(d).

It is notoriously difficult to construct examples of surfaces with many lines. Good examples
so far are the surfaces of the kind F(x,y, z,t) = ¢(z,y) — 1(z,t) = 0 where ¢ and ) are
homogeneous polynomials of degree d. Segre in [13] studies the case of deg F' = 4 showing
that in this case the possible numbers of lines are 16, 32, 48, 64. He finds these numbers by
studying the automorphisms of P; between the two sets of four points ¢ = 0 and ¥ = 0.
Caporaso-Harris-Mazur in [3], by using similar methods as Segre, then study the maximal
number of lines Ny on such surfaces in any degree d showing that N,y > 3d? for each d
and Ny > 64, Ng > 180, Ng > 256, N1o > 864, Nog > 1600. In this paper we show the
exactness of these results. First we note that it is enough to consider surfaces of the kind
d(x,y) — ¢(z,t) = 0 and by a careful analysis of the automorphisms of the set of points
¢ = 0 on P; we can list all the possible numbers of lines on surfaces of this kind for all d
and then we prove:

Proposition 3.3 The mazimal numbers of lines on F = ¢(x,y) —P(z,t) =0 are:

1991 Mathematics Subject Classification. Primary 14N10; Secondary 14Q10.
Key words and phrases. Lines on surfaces, enumerative geometry.
The second author is supported by DFG Research Grant SA 1380/1-2.
1http ://enriques.mathematik.uni-mainz.de/surf/logo. jpg
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e Ny =3d* ford >3, d+#4,6,8,12,20;

[ ] 4 = 64, N6 = 180, Ng = 256, N12 = 864, N20 = 1600.
It is well-known that the Fermat surfaces (z¢ — y9) — (2¢ — t9) = 0 have 3d? lines. Our
proof provides a method to write equations of surfaces ¢(x,y) — ¥(z,t) = 0 with each
possible number of lines. In particular, our proposition shows that it is not possible, with
these surfaces, to obtain better examples and a better lower bound for ¢(d). So, in order to
find better examples, one has to use new methods. In this paper we explore the following
kinds of surfaces:

e d-covering of the plane Py branched over a curve of degree d.
e Symmetric surfaces in Pg.

We show that the first method cannot give more than 3d? lines (Proposition 4.2).

The second method is based on the following idea: if a surface has many automorphisms
(many symmetries) then possibly it contains many orbits of lines. This idea was used
successfully in the study of surfaces with many nodes. In this paper we find a Gg-invariant
octic with 352 lines, where Gg C PGL(3,C) has order 576 (Proposition 5.2). This shows
¢(8) > 352, improving the previous bound of 256.

As stated before, one can also try to improve the upper bound for ¢(d). Following the
idea of Segre [12] and imposing some extra conditions on the lines on a surface, we can
find the bound d(7d — 12) which surprisingly agrees with the maximal examples in degrees
4,6,8,12 (Section 6).

Finally a related problem to this is to determine the maximal number m(d) of skew-lines
a surface of degree d in IP3 can have. It is well-known that m(3) = 6 and m(4) = 16. For
d > 5, this value is not known. An upper bound m(d) < 2d(d — 2) is given by Miyaoka
in [7], which is sharp for d = 3,4. There are results of Rams [9, 10] giving examples
of surfaces with d(d — 2) + 2 skew-lines (d > 5) and with 19 skew-lines for d = 5. In
Proposition 8.2 we improve his examples for d > 7 and ged(d,d —2) =1 to d(d — 2) + 4.
The paper is organized as follows. In Section 2 we give an overview of known results. In
Sections 3 and 4 we describe completely the surfaces of the kind ¢(x,y) — ¢(z,t) = 0 and
the d-coverings of the plane t? = f(z,y,2). Section 5 is devoted to the investigation of
symmetric surfaces, and in particular of an octic with 352 lines. In Section 6 we present the
uniform bound d(7d — 12) and Section 7 is an application to the problem of the number of
rational points on curves. Finally, Section 8 deals with the skew-lines: we give an overview
of known results and some new examples.

Acknowledgements. We thank Duco van Straten for suggesting us this nice problem and
for interesting discussions.

2. GENERAL RESULTS

Our objective is to investigate the number of lines contained in a smooth surface in Ps.
We first recall classical results: the generic situation and the bound of Segre.

2.1. Generic situation.

It is a well-known fact that each smooth quadric surface in P3 contains an infinite number
of lines and each smooth cubic surface in P53 contains exactly 27 lines. What happens for
surfaces of higher degree? Generically:

Proposition 2.1. A generic smooth surface of degree d > 4 in P3 contains no line.

We briefly recall the proof, following [1, 2].
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Proof. Let V be the vector space of degree d homogeneous polynomials in the coordinates
x,y, 2t and G be the Grassmannian of 2-planes in C*. Consider the incidence variety
F:={(L, f) C G x V| fir =0} with its projections p: FF — G and ¢: FF — V.

e Let L € GG and assume that L is generated by the vectors (1,0,0,0) and (0,1,0,0) in
C*. Consider the affine neighbourhood of L in G:

U:= Span{(lv 0,a, b)7 (07 L,e, d)}
where a, b, ¢, d are local coordinates. If f € p~(U), then
f(A(1,0,a,b) + u(0,1,¢,d)) =0 VA ueC,

and denoting f = > aid’k’lmiyjzktl, the equation
it+j+k+l=d
> aigeN W at pe)f(Ab+pd) =0 VA peC
itj+k+l=d

gives d + 1 linear equations in the coordinates (a; ;) of f € V whose rank at a = b =
c=d=0is d+ 1: hence locally in a neighbouhood of L, the system has rank d + 1 so p
is a locally trivial bundle of rank: dimV — (d + 1).

e Let X be a surface of degree d in P3, given by a polynomial f € V. Then the Fano
scheme parametrizing the lines contained in X is F(X) := p (¢ *(f)).

e Consider the map ¢ : F' — V. Since:

dimF =dimV — (d+ 1)+ dimG =dimV — (d — 3),

for d > 4 one has dim F' < dim V' hence the map ¢ is not dominant. This means that the
generic fibre of ¢ is empty. Otherwise stated, F'(X) is empty for X generic. (]

We shall see in the next section that the number of lines a smooth surface of degree d > 4
can have is always finite, and bounded. This leads to the problem of finding surfaces with
an optimal number of lines.

2.2. Upper bound for lines.
The best upper bound known so far for the number of lines on a smooth surface of degree
d > 4 in P3 is given by Segre:
Theorem 2.2 (Segre [12]).

e The number of lines lying on a smooth surface of degree d > 4 does mot exceed

(d—2)(11d — 6).

e The mazrimum number of lines lying on a quartic surface is exactly 64.
This bound is effective for d = 4 (see for instance maximal examples in Section 3.1) but
for d > 5 it is believed that it could be improved. For instance, already for d = 4 the
uniform bound (d — 2)(11d — 6) is too big. The next sections are devoted to the study of
some families of surfaces with particular properties, containing many lines.

3. SURFACES OF THE KIND ¢(z,y) = ¥(z,t)

We consider a surface S given by an equation of the kind:

F(‘T7 Y, z, t) = ¢(‘T7 y) - ¢(Za t)
for two homogeneous polynomials ¢,1) of degree d. Segre gave a complete description of
the possible and maximal numbers of lines in the case d = 4 ([13, §VIII]). We generalize
the method to all degrees: we treat in details the configuration of lines, give a description
of all possible numbers, and conclude with the maximal numbers of lines for such surfaces.
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3.1. Configuration of the lines.
Let Z(¢), resp. Z(1) denote the set of zeros of ¢(x,y), resp. ¥(z,t) in Py.

Theorem 3.1. Let F(z,y,z,t) = ¢(x,y) — (2, t) be the equation of a smooth surface S
of degree d in P3. The number Ny of lines on S is exactly:

Ng = d(d + aq)
where ag is the order of the group of isomorphisms of Py mapping Z(¢) to Z ().

Proof.

e Let L be the line z =t = 0 and L' be the line z = y = 0. Then SNL = Z(¢) and
SNL = Z(y). Since the surface S is smooth, the homogeneous polynomials ¢ and v
have simple zeros. Indeed, for example in the case of the polynomial ¢, if [a : b] € Py is
such that ¢ can be factorized by (bx — ay)?, then d,¢(a,b) = d,¢(a,b) = 0 and the point
[@:b:0:0]is a singular point of S (the inverse also holds: if both ¢ and 1 have only
simple zeros, then S is smooth). Set Z(¢) := {Py,...,P;} and Z(¢) :== {P],..., P}}.

e Each line L;; joining a F; to a PJ( is contained in S: if P, = [z; : y; : 0 : 0] and
Pl =10:0: 2 :t)] the line joining them consists in points [Az; : Ay; : w2} @ pty],
A, 1 € C, which are all contained in the surface, by homogeneity of the polynomials ¢ and
1. This gives d? lines.

e Each line contained in S and intersecting L and L’ is one of the previous lines. Indeed,
if D is such a line, set DNL = {[a:b:0:0]} and DNL = {[0:0:c:d} Then
F(a,b,0,0) = ¢(a,b) =0so [a:b:0:0]is one of the points P; and similarly [0:0: ¢ : d]
is one P.

e Let D be a line contained in S and not intersecting L. Then D does not intersect L' (and
vice-versa). Indeed, an equation of such a line D is given by two independent equations:

ax+by+cz+dt=0
dr+by+dz+dt=0
Since D does not intersect L, the system
ar +by =0
adx+by=0
has rank two, so we can rewrite the equations of D as the following independent equations:

r=az+ ft
y=~yz+ ot

Then D does not intersect L’ otherwise the matrix < : ? > would have rank one.

e Therefore, the equations of the line D define a linear isomorphism between the lines L’
and L inducing a bijection between Z() and Z(¢). Indeed, seting P; = [0: 0 : ¢ : dJ,
then a := ac+ (d and b := yc + dd have the property that [a : b:c:dl € D C S so
¢(a,b) = F(a,b,c,d) +1(c,d) =0 hence [a: b:0:0]is a zero of ¢.

e Conversely, let o : L' — L be an isomorphism mapping the points P]f to the points P;, and

( : g > a matrix defining o. Consider the smooth quadric Q, : z(vz+dt) —y(az+5t) =
0. Its first ruling is the family of lines (p,o(p)) for p € L’. For p = [c : d], these lines are
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given by the equations

- (ve+ dd)x — (ac+ Bd)y =0
[e:d] - dz—ct=0

Its second ruling consists in the family of lines of equations

; ax —blaz+ ft) =0
b)Yy — b(yz + 6t) = 0

for [a : b] € P;. To this ruling belong the lines L ([a: b)) =[0:1]), L' ([a: b] = [1:0]) and
D (Ja:b] =[1:1]). It is not true a priori that this D is contained in S, since the matrix
o is defined up to a scalar factor.

In each ruling, the lines are disjoint to each other, and each line of one ruling intersects
each line of the other ruling. Since the intersection S N @ contains exactly the d different
lines (P}, 0(Pj)) of the first ruling, it contains also d lines of the second ruling: Consider
a line in the first ruling not contained in S, then it intersects S in d points, and through
each of this points is attached a line of the second ruling, which also intersects the d lines
of the first ruling contained in S, so these lines of the second ruling intersect S at d + 1
points, so are contained in §. But it is not clear a priori with our argument that these
lines in the second ruling are different. Denote by U, the group of d-th roots of the unit.
The group Uy x Uy acts on P3 by (§,m) - [z :y: z:t] =[x : Ly : nz : nt], leaving the
surface S globally invariant since the polynomials ¢ and 1 are homogeneous of degree d.
Observe that the lines of the first ruling are invariant for the action, but for the second
ruling, (£,7) “Tja:t) = Ljg-14:-14) S0 each line of the second ruling produces a length d orbit
through the action. Since the surface S contains at least one line of the second ruling, it
contains the whole orbit, this gives us d different lines.

Therefore, each isomorphism o : L' — L mapping Z(¢) to Z(¢) gives d lines, and there
are no other lines. Furthermore, for two different isomorphisms, the corresponding lines
are different since the matrix defining the isomorphims are not proportional.

e Denote by a4 the number of isomorphims o : L' — L mapping Z(¢)) to Z(¢). The
preceding discussion shows that the exact number of lines contained in the surface S is:

Nd = d2 + add.
(]

Remark 3.2. In the proof of [3, Lemma 5.1], Caporaso-Harris-Mazur proved with a simi-
lar argument that the number of lines is at least d(d+cayq) and described some special values.
Our argument includes the exactness. In the next subsections we give a full description of
the possible values of oy, in particular its mazximal values for each d.

3.2. The possible numbers of lines.

Now we want to find the possible and maximal values of Ny, or equivalently agy. If there
is at least one isomorphism o (see the proof above), then by composing by o~! we are
lead to the problem of determining the possible numbers of automorphisms of P; (or
projectivities) acting on a given set of d points on P;. Since a projectivity is defined by its
value on three points, we have always ag = 6, and for d > 4 there is only a finite number
of such isomorphisms, depending on the relative position of the points, encoded in their
cross-ratios. The case d = 4 was studied by Segre [13] with this point of view. We give a
different argument for the general case. The set I'4 of isomorphims of IP; acting on d points

defines a finite group of automorphisms of P;. First recall the classical classification:
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Polyhedral groups. There are five types of finite subgroups of SO(3,R), or equivalently
of PGL(2,C), called polyhedral groups:

e the cyclic groups Cy = Z/kZ of order k > 2, isomorphic to the group of isometries
of a regular polygon with k£ vertices in the plane;

e the dihedral groups Dy = Z/kZ x Z/2Z of order 2k, k > 2, isomorphic to the
group of isometries of regular polygon with k£ vertices in the space;

e the group 7 of positive isometries of a regular tetrahedra, isomorphic to the alter-
nate group 24 of order twelve;

e the group O of positive isometries of a regular octahedra or a cube, isomorphic to
the symmetric group &4 of order 24;

e the group 7 of positive isometries of a regular icosahedra or a regular dodecahedra,
isomorphic to the alternate group 25 of order 60.

In the sequel, we shall describe generators of these groups and their orbits on P, in order
to get explicit constructions of surfaces.

We now proceed to the description of all possible groups of isomorphisms (d > 4):

(1) Ty = {id}. This is not possible for d = 4 since there are always at least four
automorphisms of a set of four points in P; (their cross-ratio takes generically six
different values under permutation).

(2) 'y is a cyclic group: Ty = Z/kZ (k > 2) with generator o(t) = £t where £ is a
primitive k-th root of the unit. The action of o on P; has two fix points {0, 0o} and
all other points generate a length k orbit. So, depending whether the fix points
are in the given set of d points or not we have the decomposition:

d=a+ Pk
with o € {0,1,2} and 8 > 1:
e o = 0. The points are’:
{Nh M1£7 cee 7/1’1£k_1}7 ey {/’Lﬁa Nﬂ£7 v 7:u’ﬁ£k_1}'

This forces # > 3 since: if =1 or § = 2 then t — 1/t or t — pa/(p1t)
generate a dihedral group. For 8 > 3 there are no other isomorphisms.
e o = 1. The points are:

{0}7 {/11, Mlgv s 7/~L1£k_1}7 R {Mﬁv Mﬁgv s 7/~Lﬁ£k_1}'

There is no other isomorphism whenever d =1+ 8k > 5. Fork=3and =1
there are other isomorphism (a tetrahedral group).
e o = 2. The points are:

{07 00}7 {Mlmulgv s a:ulgk_l}v sy {Mﬁv Mﬁgv s muﬁgk_l}'
As before, this forces § > 3.
To summarize, for the group I'y be a cyclic group Z/kZ (d > 4, k > 2):

£
o d= 0k, >3, eg. ¢(z,y) = l:[l(x"” = \ig®);

g
e d=1+pk>53>1ifk=3, eg ¢(z,y) =z [](«" — \ig®);
=1

2Here and in the sequel, the u;’s are assumed to be generic: they are distinct and in particular they are
not the B-th roots of the unit and their k-powers \; := uf are distincts.
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s
o d=2+pk B>3eg dx,y) =y [ (=" - Ayh).

i=1
(3) 'y is a dihedral group: T'q =2 Z/kZ x Z./27 (k > 2) with generators o(t) = &t and
s(t) = 1/t where £ is a primitive k-th root of the unit. The action of the dihedral
group on Py has one length 2 orbit {0,000} and one length k orbit generated by 1.
So we have the decomposition:

d =20+ Bk + 72k

with o, 3 € {0,1}, v > 0:
e v=0,a=0and §=1. The points are:

{17 57 A 7£k_1}
Then d = k and ¢(z,y) = 2¥ — y*. This gives the Fermat surface.
e v=0,a=1and § =1. The points are:

{000} {L,€,.... €71}
This forces k # 2,4: if kK = 2, the configuration is isomorphic to the preceding
case (with 2k) and contains more isomorphims, and if k = 4 there are other
isomorphisms generating an octahedral group. Then d = 2+ k and ¢(x,y) =
k_ .k
zy(a" —y").
e v #0. Then d € {2k~, 242k, k+2kv,2+k~+2kv} and ¢ contains, besides the
factors given in the preceding cases, v factors of the kind (2* — \y*)(2* — %y ).
(4) 'y is a tetrahedral group 7. The group 7 is generated by:
1—t
t) = wt t) = ———
acting on the set {0,1,w,w?} where w is a primitive third root of the unit. The
action of 7 on Py has two length four orbits:

-1 -1 -1
0,1 2 — —w, —w?
{7 ,w,w},{oo, 27 2&), 2&)}
and one length six orbit generated by the fix point w = s. These are all
the orbits of lengths four or six since the conjugacy classes in 7 are generated by
id, s, o, 0%. So we have the decomposition:

d=4a+ 66+ 12y

with o € {0,1,2},8 € {0,1},v > 0:

e v=0, =0 and o = 1: the group of isomorphisms is 7.

ey =0, =0and a = 2: the group of isomorphisms would be O since
t — —1/(2t) interchanges the two length four orbits.
v=0,0 =1and a = 0: the group of isomorphisms would be O since the
length six orbit is stabilized by t — —1/(2t).
v =0, 8 =1and a = 1: the group of isomorphisms is 7, because it is not
contained in any dihedral group and the groups O or Z have no length four
or ten orbit.
v=0, =1 and a = 2: as before the group of isomorphisms is O.
For v # 0, in general the group of isomorphisms is 7 but for special points
this could be O or 7.

3The second fix point w’ = %ﬁ belongs to the same orbit since w = o?so(w’).
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For example, for the tetrahedral group consider ¢(x,y) = z(z3 — y?).
(5) 'y is an octahedral group O. The group O is generated by:
1 t+1

o(t)=1it, s(t)= o a(t) = -

acting on the set {0,00,1,i,—1,—i}. The action of @ on Py has one length six

orbit, one length eight orbit generated by the fix point w = w of* a, and

one length twelve orbit generated by the fix point z = —14+/2 of the isomorphism?®
r(t) = i—jri These are all orbits of lengths six, eight or twelve since the conjugacy
classes in O are generated by id, s, 0, a,r. So we have the decomposition:

d =60+ 86+ 12y + 246

with «, 3,7 € {0,1}, § > 0. Since the group O is not contained in Z nor in any
dihedral group, all choices of «, 3,7, ¢ are possible to get 'y = O.
(6) 'y is a icosahedral group Z. The group Z is generated by:

Tt+717—-1+1 1
p5(t) = (—T+ 1 +1)t+7" QI(t) = _t7 QQ(t) = —Z
where 7 := 1+_2\/5 The only length twelve orbit is generated by a fix point of ps,

the length 20 orbit is generated by a fix point of p2g, (which has order three) and
the length 30 orbit is generated by a fix point of ¢;. Since the conjugacy classes
in Z are generated by id, ps, p%, pgqg, q1 there are no other orbits. So we have the
decomposition:

d = 12a 4 208 + 30y + 600

with «, 8,7 € {0,1}, § > 0. All choices give I'y = 7.

3.3. Maximal number of lines.
As a corollary of Theorem 3.1 and the preceding discussion of cases, we get the following
maximality result:

Proposition 3.3. The maximal numbers of lines on S are:
o Ny;=23d? ford>3,d+#4,6,8,12,20;
o N4 = 64, N@' = 180, Ng = 256, N12 = 864, N20 = 1600.

Proof. Looking up at the discussion above, it appears that ag = 2d is maximal when the
group of automorphisms can not be a group 7, O or Z and that ay = 12, ag = ag = 24
and a0 = agg = 60 are maximal. For other values of d, if the automorphism group is 7,
resp. O, resp. Z then the number of lines is:

d? +12d, resp. d*>+24d, resp. d* + 60d
and these numbers are bigger than 3d? only if
d <6, resp.d<12, resp. d< 30.

So it just remains to check that the degree d = 10 is not possible for O and Z and that the
degrees d = 14,16, 18,22, 24,26, 28 are not possible for Z, that is we cannot decompose
such a d as a sum of lengths of orbits for the groups O or Z. This is clear with the
restrictions on the numbers of orbits of each type. O
14+i++/34i

2

4The second fix point w’ = V3 belongs to the same orbit since w’ = saos(w).

5The second fix point 2’ = —1 — /2 belongs to the same orbit since 2’ = oroa(z).
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Remark 3.4. Although this result was expected, one has to pass through the study of §3.2
to prove it.

3.4. Examples.

(1) For d generic, the Fermat surface F(z,y, z,t) = (27 —y?) — (2¢ — t9) gives the best
example for surfaces of the kind ¢(z,y) — ¥ (z,t).

(2) For d =4, Ty € {0, D3, D4, T} so the possible numbers of lines for such surfaces
are: 16,32,48,64. This agrees with Segre’s result and 64 is the maximal possible
number of lines on a quartic surface.

(3) For d = 5, I's € {0,{id},C4, D3, D5} so the possible numbers of lines for such
surfaces are: 25,30,45,55,75. The general bound of Segre gives 147.

(4) For d = 6, T's € {0,{id}, Cy, Do, D3, D, O} so the possible numbers of lines for
such surfaces are: 36,42,48,60,72,108,180. The general bound of Segre gives 240.

(5) The discussion of §3.2 gives explicit constructions of surfaces of each group I'y. For
the groups O and Z, see also Section 5.

3.5. Real lines.

It is an interesting problem to find surfaces of any degree d with as many real lines as
possible. For surfaces of the kind ¢(x,y) — ¢(z,t) = 0, if the zeros of ¢ are all real, one
gets already d? real lines (see proof of Theorem 3.1). Then, for each isomophism in the
group 'y represented by a real matrix, one gets one more real line if d is odd and two
more real lines if d is even.

4. SURFACES OF THE KIND t¢ = f(z,y, 2)

We consider smooth surfaces of degree d > 3 given as covering of P ramified along a plane
curve. Let C : f(x,y,z) = 0 be a plane curve defined by a homogeneous polynomial f of
degree d and consider the surface S in P3 given by the equation:

F(x,y,2,t) =t — f(z,y, 2).
Note that the surface S is smooth if and only if the curve C is.
Set p=1[0:0:0:1] € P3. The projection:
(Ps—{p}) =Py, [z:y:2:t]—[x:y:2]
induces a d-covering 7 : & — Py ramified along the curve C.

Recall that a point « € C is a d-point (or total inflection point) if the intersection multiplicy
of C and its tangent line at z is equal to d.

Proposition 4.1.

(1) Suppose L is a line contained in S. Then w(L) is a line.

(2) Let x € C and L the tangent at C in x, then the preimage © (L) consists in d
different lines contained in S if and only if x is a d-point.

(3) Let L be a line in Py. Then 7= 1(L) contains a line if and only if L is tangent to
C at a d-point.

Proof.

(1) It is clear from the definition of the projection .
(2) Assume z is a d-point. Let A be a line of equation ¢ intersecting L at x. Then
d-(A-L)=(C-L) so after restriction to L one has up to a scalar factor f| = 5

L
showing that the covering restricted to L is trivial and 7—!(L) consists in the

d lines t — &6, = 0, i = 1,...,d where ¢ is a primitive d-th root of the unit.
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Conversely, if the covering splits, there exists a section v € H(L,O(1)) such
that v = fi, € HO(L,0r(d)) so L intersects C at x with multiplicity d.

(3) If L is the tangent to C at a d-point the assertion follows from (2). Assume now
that 7—!(L) contains a line. Let L be given by a linear function z = I(x,y). Then
the equation of 7~1(L) is t? — f(z,y,l(x,y)) = 0. Since it contains a line the
equation splits as

td - f(a:,y, l(a:,y)) = (t - w(xﬂy))Fd—l(t7m7y)

where w(z,y) is a linear form. By comparing the coefficients in ¢ one obtains
flx,y,l(z,y)) = w(z,y)? hence the preimage consists in the d lines:

d—1
1~ fley.lla,y) = [J ¢ - Ewle.y))
i=0
where £ is a primitive d-th root of the unit. This means that the covering is trivial
over L so by (2) z is a d-point.

O
We deduce the number of lines contained in such surfaces:

Proposition 4.2. Let C : f(xz,y,z) = 0 be a smooth plane curve of degree d with [3 total
inflection points. Let S the surface in Py given by the equation:

F(.ﬁl?,y, Z,t) = td - f(xaya Z)
Then S contains exactly 3 - d lines. In particular, it contains no more than 3d* lines.

Proof. The first assertion follows directly from the lemma. For the second one, the inflec-
tion points are the intersections of C with its Hessian curve H of degree 3(d — 2) and at a
total inflection point the intersection multiplicity of C and H is d — 2, so by Bezout one
gets 3 < 3d. O

Remark 4.3.

e For d = 3, it is well-known that each cubic has nine inflection points, then the
induced surface has 3 -9 = 27 lines.

o The Fermat curves z%+y?+ 2% = 0 have 3d total inflection points hence the Fermat
surfaces are examples of surfaces with 3d? lines.

5. SYMMETRIC SURFACES

We consider surfaces with many symmetries, since one can expect that such surfaces
contain many lines. Indeed, if the surface contains a line then it contains the whole orbit,
and if the symmetry group is big, hopefully this orbit has big length. To this purpose,
we first take G C PGL(4,C) be a finite group of linear transformations acting on P3 and
construct smooth G-invariant surfaces.

5.1. Surfaces with cyclic symmetries.

Denote by Uy the group of d-th roots of the unit. The group Uy x Uy acts on Clz, y, z, t] by
diag(&, &, p, p) for (&, 1) € Uy xUy. The graded space of invariant polynomials decomposes
as:

Clz, y, 2, {]1*Ud = Cz, y|** @ Clz, 1]
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Since Clz, y]i{d =0 fordtk and C[z, y]llfd = Clz, y]i, otherwise, all invariant polynomials of

degree d for the action of Uy x Uy are of the kind ¢(x,y) —1)(z,t) for ¢ and 1) homogeneous
polynomials of degree d. These surfaces were studied in Section 3.

5.2. Surfaces with polyhedral symmetries.
We consider again surfaces of the kind ¢(x,y) = ¢(z,t): we studied such surfaces and
their configuration of lines in Section 3. We adopt here a different point of view. Let I' be
the group of isomorphisms of P; permuting the zeros of ¢ in P;. Then ¢ is a projective
invariant for the action of I on C?, i.e. ¢(g(z,y)) = A\g¢(x,y) for g € T and A, € C*. This
implies that the surface F'(x,y, z,t) = ¢(x,y) — ¢(z,t) is invariant for the diagonal action
of I' given by g(x,y, z,t) = (9(x,y),9(z,t)). Its number of lines is given by Theorem 3.1.
By using this observation, we can find easily equations for surfaces of this kind with the
symmetries of the groups 7, O,Z. The projective invariants are computed for example in
Klein [6, 1.2,§11-12-13):

(1) A surface of degree six with octahedral symmetries and 180 lines:

¢z, y) = zy(a’ —y).
(2) A surface of degree eight with octahedral symmetries and 256 lines:
o(x,y) = 2 + daty® + 45
(3) A surface of degree twelve with octahedral symmetries and 432 lines:
o(z,y) = x'? — 3328y* — 3321y8 + ¢'2.
(4) A surface of degree twelve with icosahedral symmetries and 864 lines:
d(w,y) = wy(@'® + 112"y’ — y'7).
(5) A surface of degree 20 with icosahedral symmetries and 1600 lines:
¢(%y) — _(x20 + y20) + 228(m15y5 o x5y15) o 4941,10y10'
(6) A surface of degree 30 with icosahedral symmetries and 2700 lines:
¢($’y) — ($30 + y30) + 522($25y5 _ 335y25) _ 10005($20y10 + 3810920)-

5.3. Surfaces with bipolyhedral symmetries.
First recall the construction of the bipolyhedral groups. Start from the exact sequence:

0 — {£1} — SU(2) -% SO(3,R) — 0.
For any polyhedral group G C SO(3,R), the inverse image G = ¢~ 1G is called a binary
polyhedral group. Now consider the exact sequence:
0 — {+1} — SU(2) x SU(2) %+ SO(4,R) — 0.
For G a binary polyhedral group, the direct image o(G x G) C SO(4,R) is called a
bipolyhedral group. We shall make use of the following particular groups:
o Gg =0(T x T) of order 288;

o Gg = O'(QX @) of order 1152;
e G192 = 0(Z x I) of order 7200.

The polynomial invariants of these groups were studied by Sarti in [11]. First note that
the quadratic form: Q := z? + y? + 2% + t? is an invariant of the action of these groups.
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Theorem 5.1 (Sarti [11, §4]). For d = 6,8,12, there is a one-dimensional family of G4-
invariant surfaces of degree d. The equation of the family is Sq + A\Q¥? = 0. The base
locus of the family consists in 2d lines, d in each ruling of Q. The general member of each
family is smooth and there are exactly five singular surfaces in each family.

From this theorem immediately follows that each member of the family contains at least
2d lines.
e The group Gg. Denote by Sg the surface Sg = 0 where:

Sg =18 + 1% + 28 + 8 + 168222222

+ 14zt + ot 4+ 2t 4yttt M.

Proposition 5.2. The surface Sg contains exactly 352 lines.
Proof. The proof goes as follows: first we introduce Pliicker coordinates for the lines in
P35, then we compute explicitly all the lines contained in the surface.

e Pliicker coordinates. Let G(1,3) be the Grassmannian of lines in P3, or equivalently of
2-planes in C*. Such a line L is given by a rank-two matrix:

a e
b f
c g
d h
The 2-minors (Plicker coordinates):
p12 = af — be P13 = ag — ce P14 := ah — de
p23 :=bg —cf p24 := bh — df P34 :=ch —dg

are not simultaneously zero, and induce a regular map G(1,3) — P5. This map is
injective, and its image is the hypersurface piopss — p13p24 + p1ap2s = 0. In order to list
once all lines with these coordinates, we inverse the Pliicker embedding in the Plicker
stratification:

(1) (2) (3)
pr2 =1 12=0,p13 = p12 =0,p13=0,p1u =1
1 0 1 0 1 0
0 1 2 0 poa O
—p23 D13 p3a O
—P24 P14 —p34 p14 0 1

(4) (6)
P12 =0,p13 =0 p12 = 071713 = 071714 =0 p2=0,p13=0,p1a =0

p1a = 0,p23 =1 p23 = 0,p24 =1 p23 = 0,p24 = 0,p34 =1
0 0 0 0 0 0
1 0 1 0 0 0
0 1 p3a O 10
—P34 P24 0 1 0 1

e Counting the lines. The line L is contained in the surface Sg if and only if the function
(u,v) — Sg(ua 4+ ve,ub + vf,uc + vg,ud + vh) is identically zero, or equivalently if all
coefficients of this polynomial in u,v are zero. The conditions for the line to be contained
in the surface is then given by a set of polynomial equations in a, b, c,d, e, f,g, h. In order
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to count the lines, we restrict the equations to each Pliicker stratum and compute the
solutions (this computation is not difficult if left to SINGULAR [4]).

(1) The stratum p12 = 1. Set pa3 = ¢, pag = d, p13 = g, p14 = h. The equations for
such a line to be contained in the surface are:

g+d h+73g+ Td3h+ 1¢dPh+ 73 gd* =0
& g? + dSh? + 3c*d?h? + 8c3gd3h + 3 g2 d*
+6c2d% + 32> + 3d?h? =0
Ag + dh3 + Adh® + cgdt + 63 gd*h?
+6c2%d3h + cg® + dh® + 6¢*dh + 6¢gd® =0

1+ g* +5c*g* + 5d*h* + ¢* + d* + *h*

+g*d* + 163 gdh® + 36¢?g2d*h? + 16¢g>d>h
+h* 4+ 12¢%h% + 12¢2d? + 48¢gdh = 0

Ag+ dPh+ Sght + A¢° + dPh® + 62 g% dh?
+g d®h 4 6cg3d*h? + 6¢gh® + 6g%dh = 0

32¢% + 3d°h? + 32%h* + 3¢ d*h? + 248
+d?h8 + 8cg®dh® 4+ 6¢%h% = 0
cg’ +dh" + Teg® + 1dh® + TegPht + Tgtdh® =0
14 g% + 1% +14¢% + 140* + 14¢*0* = 0

After simplification of the ideal with SINGULAR (that we do not reproduce here),
the solutions give 320 lines of the kind z = cz + gy, t = dz + hy.

(2) The stratum pi1a = 0, p1g = 1. Set peg = b, —p34 = d, p14 = h. The equations for
such a line to be contained in the surface are (after simplification):

d=0
bth? —bht — b+ h* =0
0% — K8 4+ 13b* — 13h* = 0
h® +14h* +1=0
b?h® + b + 136%h* + 1 =0
The solutions give 32 lines of the kind y = bz,t = hz, since there are eight possible
values for h, and for each of them there are four values of b.

An easy computation shows that the other strata contain no line, so there are exactly 352
lines on the surface. (]

Remark 5.3. To our knowledge, this is the best example so far of an octic surface with
many lines. This improves widely the bound 256 of Caporaso-Harris-Mazur [3].

e The group Gg. We take:
Se = a8 + 8 + 26+ 15 4 15(a2y?22 + a2y + 22222 + y22242).
Proposition 5.4. The surface 85 — 5Q% = 0 contains exactly 132 lines.
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There are surfaces with more lines (see §3.4), but this shows the existence of a surface
with 132 lines. This result can be shown in a similar way as in the Gg case.

6. A UNIFORM BOUND

As we mentioned before, the uniform bound (d — 2)(11d — 6) of Segre is too big already
in degree four. We propose here another lower uniform bound, which interpolates all
maximal numbers of lines known so far, including the octic of Section 5. Although there
is no reason for this bound to be maximal, it seems reasonable to expect that an effective
construction of a surface with this number of lines is possible in all degrees.

Let S be a smooth surface of degree d > 3 and C a line contained in S. Let |H| be the
linear system of planes H passing through C. Then H NS = C UT where I' is a curve of
degree d — 1. The system |I'| is described by Segre in [12]: it is base-point free and any
curve I' does not contain C' as a component. Then:

Proposition 6.1 (Segre [12]). Either each curve I' intersects C in d — 1 points which are
inflections for I, or the points of C each of which is an inflection for a curve I' are 8d— 14
in number. In particular, in this case C is met by no more than 8d — 14 lines lying on S.

Following Segre, C is called a line of the second kind if it intersects each I' in d — 1
inflections. A generalization of Segre’s argument in [12, §9] gives the following result:

Proposition 6.2. Assume that S contains d coplanar lines, none of them of the second
kind. Then S contains at most d(7d — 12) lines.

Proof. Let P be the plane containing these d distinct lines. Then they are the complete
intersection of P with §. Hence each other line on & must intersect P in some of the
lines. By Proposition 6.1, each of the d lines in the plane meets at most 8d — 14 lines, so
8d — 14 — (d — 1) lines not on the plane. The total number of lines is at most:

d+d(7d — 13) = d(7d — 12).

This bound takes the following values:
| da 4] 6] 7[8]9]10]11]12] 20 |
| 7d” —12d ]| 64 | 115 [ 180 | 259 | 352 [ 459 | 580 | 715 | 864 | 2560 |

Note that this bound matches perfectly with the maximal known examples in degrees
4,6,8,12.

7. NUMBER OF RATIONAL POINTS ON A PLANE CURVE

We give an application of our results to the universal bound conjecture, following Caporaso-
Harris-Mazur [3]:

Universal bound conjecture. Let g > 2 be an integer. There exists a number N(g)
such that for any number field K there are only finitely many smooth curves of genus g
defined over K with more than N(g) K -rational points.

As mentioned in loc.cit. an interesting way to find a lower bound of N(g), or of the limit:

N(g)

N := limsup —2=
g—oo 4
is to consider plane sections of surfaces with many lines. Indeed, over the common field
K of definition of the surface and its lines, a generic plane section is a curve containing
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at least as many K-rational points as the number of lines. In particular, they show that
N(21) > 256. Since we obtain an octic surface with 352 lines and a generic plane section
of this surface is a smooth curve of genus 21, we get:

Corollary 7.1. N(21) > 352.

As we remarked in Section 6, it seems to be possible to construct surfaces with d(7d — 12)
lines. This would improve the lower bound of N (g) for many ¢’s. In particular, this would
improve the known estimate N > 8 to N > 14.

8. SEQUENCES OF SKEW-LINES

A natural question related to the number of lines on a surface is the study of maximal
sequences of pairwise disjoint lines on a smooth surface in P3. We recall the bound of
Miyaoka and give some examples.

8.1. Upper bound for skew-lines.
The best upper bound known so far for the maximal length of a sequence of disjoint lines
on a smooth surface of degree d > 4 in P53 is given by Miyaoka:

Theorem 8.1 (Miyaoka [7, §2.2]). The mazimal length of a sequence of skew-lines is
2d(d —2) for d > 4.

For d = 3, each cubic surface contains a maximal sequence of 6 skew lines. This comes
from the study of the configuration of the 27 lines (see for example [5, Theorem V.4.9]
and references therein). For d = 4, Kummer surfaces contain a maximal sequence of 16
skew lines (see for example [8] and references therein) so the bound is optimal.

But for d > 5, it is not known if it is sharp.

8.2. On Miyaoka’s bound.
We give a quick sketch of the argument of Miyaoka for the bound on the number of skew
lines, following [7, §2 Examples 2.1,2.2].
Let X be a smooth surface of degree d > 4 in P3. Assume X contains r disjoint lines
Dy, ...,D,. By adjunction formula, they have self-intersection —n = —(d — 2). By con-
tracting these lines one gets a surface Y with r isolated singular points which locally look
like the quotient of C? by a finite group of order n.
T

Write Kx + Y, D; = P + N’ with:

i=1

T

P::KX+ZT:n_2DZ- and N’::Zn_QDi.
=1

n n
i=1

T
This provides a Zariski decomposition in Pic(X) ® Q of Kx + > D;.
i=1
Set v :=2 — 1/n, by [7, Theorem 1.1], one has the inequality:
1
rv < co(X) — §P2.

Using that c2(X) = d(d? — 4d + 6) and K% = d(d — 4)? one gets r < 2d(d — 2).
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8.3. Examples.

In [10], Rams considers the surfaces 2% 1ty + y¢=1z + 2971 + 19712 = 0 and proves that
they contain a family of d(d — 2) + 2 skew-lines for any d. In [9, Example 2.3], he also
gives an example of a surface of degree five containing a sequence of 19 skew-lines. We
generalize his result, improving the number of skew-lines to d(d —2) + 4 in the case d > 7
and ged(d,d —2) = 1.

Consider the surface Ry : 2% 1y + zy?1 + 2471t + 2t?~1 = 0. By our study in Section 3.1,
this surface contains exactly 3d? — 4d lines if d # 6 and 180 lines for d = 6. We prove:

Proposition 8.2. The surface Rq with ged(d,d—2) = 1 contains a sequence of d(d—2)+4
disjoint lines.

Proof. Denote by €, v the primitive roots of the unit of degrees d — 2 and d, and let
n:=¢€v®, with0<1<d—-3,0<s<d—1. Since ged(d,d — 2) = 1 we have d(d — 2) such
1. Now consider the points

(0:1:0: =% 1), (=n:0:1:0)
then the line through the two points is
Crst(=nA:ip: X —n"'p)

An easy computation shows that these lines are contained in R4 and are d(d — 2). This
form a set of d(d — 2) + 4 skew lines together with the lines

{r=0,z+e =0}, {y=0,z+t =0},
{z=0,z+ey=0}, {t=0,2+y =0}
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ON VARIETIES THAT ARE UNIRULED BY LINES

A. L. KNUTSEN, C. NOVELLI, A. SARTI

ABSTRACT. Using the f-minimal model program of uniruled varieties we show that for
any pair (X, H) consisting of a reduced and irreducible variety X of dimension k£ > 3 and
a globally generated big line bundle H on X with d := H* and n := hO(X7 H) — 1 such
that d < 2(n — k) — 4, then X is uniruled of H-degree one, except if (k,d,n) = (3,27,19)
and a -minimal model of (X, H) is (P?, Ops(3)). We also show that the bound is optimal
for threefolds.

0. INTRODUCTION

It is well-known that an irreducible nondegenerate complex variety X C P" of degree d
satisfies d > n — dim X + 1. Varieties for which equality is obtained are the well-known
varieties of minimal degree, which are completely classified.

Varieties for which d is “small” compared to n have been the objects of intensive study
throughout the years, see e.g. [Ha, Ba, F1, F2, F3, Is, Io, Ho, Re, M2]. One of the common
features is that such varieties are covered by rational curves.

More generally one can study pairs (X, H) where X is an irreducible k-dimensional variety
(possibly with some additional assumptions on its singularities) and H a line bundle on
X which is sufficiently “positive” (e.g. ample or (birationally) very ample or big and nef).
Naturally we set d := H* and n := dim |H|. The difference between d and n is measured
by the A-genus: A(X,H) :=d+ k —n — 1, introduced by Fujita (cf. [F1] and [F2]), who
in fact shows that A(X,H) > 0 for X smooth and H ample and that H is very ample if
equality holds, so that the cases with A(X,H) = 0 are the varieties of minimal degree.
The cases with A(X,H) = 1 have been classified by Fujita [F3, F4, F5] and Iskovskih [Is].
If H is globally generated we can consider the morphism ¢y : X — X’ C P" defined by
|H|. Ome has d = (deg py)(deg X') and deg X' > n—k+ 1. If d < 2(n — k) + 2 the
morphism 4y is forced to be birational and deg X’ = d. Hence in the range d < 2(n—k)+2
studying nondegenerate degree d varieties in P", or pairs (X, H) with H globally generated
and big, is equivalent. Moreover, as the property of being globally generated and big is
preserved from H to f*H under a resolution of singularities f, this approach is suitable
also to study singular varieties.

The notion of being covered by rational curves is incorporated in the concept of a variety
being uniruled: A variety is uniruled if through any point there passes a rational curve.
With the notation above, d < k(n — k) 4 2 is an optimal bound for uniruledness by [M2,
Thm. A.3 and Exmpl. A.4].

In many ways uniruled varieties are the natural generalizations to higher dimensions of
ruled surfaces. In the Mori program they play an important role, because - like in the case

2000 Mathematics Subject Classification: Primary: 14K30, 14J30, 14J40, 14N25; Secondary: 14C20,
14H45.
Key words: Minimal model program, rational curves, 3-folds, n-folds, linear systems.

51



52 A. L. KNUTSEN, C. NOVELLI, A. SARTI

of ruled surfaces - these are the varieties for which the program does not yield a minimal
model, but a Mori fiber space. Uniruled varieties can also be considered to be the natural
generalizations to higher dimensions of surfaces of negative Kodaira dimension: in fact it
is conjectured that a (smooth) variety is uniruled if and only if its Kodaira dimension is
negative. The conjecture has been established for threefolds by Miyaoka [Mi.

With the evolution of a structure theory for higher dimensional varieties in the past
decades, namely the Mori program, the geometry of rational curves on varieties has gained
new importance. The main idea is to obtain information about varieties by studying the
rational curves on them (cf. e.g. [Ko]).

To measure the “degree” of the rational curves which cover X we say in addition that X
is uniruled of H-degree at most m if the covering curves all satisfy I" - H < m. Returning
to the case where H is globally generated and the morphism ¢y : X — X' C P" is
birational as above, we see that X is uniruled of H-degree at most m if and only if X’ is
covered by rational curves of degrees < m.

For surfaces Xiao [Xi] and Reid [Re| independently found bounds on the uniruledness
degree of (X, H) depending on d and n. For instance they showed that an irreducible,
nondegenerate surface X C P" is uniruled by lines if d < %(n — 2), except when n = 9
and (X,0x(1)) = (P?,0p2(3)). The same result was obtained by Horowitz [Ho] using
a different approach. In particular, it immediately follows (by taking surface sections
and using that (P2, Op2(3)) cannot be a hyperplane section of any threefold other than
a cone) that an irreducible, nondegenerate k-dimensional variety X C P" is uniruled by
lines for k > 3 if d < 4(n — k). (Note that if one assumes X smooth, one gets the better
bound d < %(n —k — 1), since X is ruled by planes or quadrics in this range by [Ho, Cor.
p. 668].) However it is to be expected that this “naive” inductive procedure does not yield
an optimal bound.

The purpose of this article is to obtain a bound for uniruledness degree one which is
optimal for threefolds and independent of singularities. In fact we show:

Theorem 0.1. Let (X, H) be a pair consisting of a reduced and irreducible three-dimensional
variety X and a globally generated big line bundle H on X. Set d := H> and n :=
hO(X,H) — 1.

If d < 2n — 10 then X is uniruled of H-degree one, except when (d,n) = (27,19) and a
t-minimal model of (X,H) is (P3, Ops(3)).

(For the definition of a f-minimal model we refer to Definition 1.4 below.)

The bound in Theorem 0.1 is sharp since there are pairs satisfying d = 2n— 10 for infinitely
many d and n, namely (P? x P!, Op2(2) K Op1 (a)) for a > 2 (cf. Example 2.5 below), which
are not uniruled of H-degree one.

Observe that in Remark 2.3 below we obtain a better bound than in Theorem 0.1 for
8§ <n <12

As a consequence of Theorem 0.1 we get the following result for higher dimensional vari-
eties, which is probably far from being sharp:

Corollary 0.2. Let (X, H) be a pair consisting of a reduced and irreducible k-dimensional
variety X, k > 4, and a globally generated big line bundle H on X. Set d := H* and
n:=hX,H) - 1. Ifd < 2(n — k) — 4 then X is uniruled of H-degree one.

For those preferring the notion of A-genus, the condition d < 2(n — k) — 4 is equivalent to
AX,H)<n—k—-5=h"X,H) —dim X — 6.
The above results have the following corollary for embedded varieties:
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Corollary 0.3. Let X C P" be a nondegenerate reduced and irreducible variety of dimen-
sion k > 3 and degree d. If d < 2(n — k) — 4 then X is uniruled by lines, except when
(k,d,n) = (3,27,19) and a §-minimal model of (X,Ox (1)) is (P3, Ops(3)).

Note that the condition d < 2(n — k) — 4 implicitly requires n > k + 6 in the three results
above.

To prove these results we use the f-minimal model program of uniruled varieties introduced
for surfaces by Reid in [Re] and developed for threefolds by Mella in [M2]. The main
advantage of the f-minimal model program is that one does not only work with birational
modifications along the minimal model program but also uses a polarizing divisor. Under
certain assumptions one manages to follow every step of the program on an effective
divisor, i.e. a (smooth) surface in the case of threefolds.

Our method of proof uses the classification results in [M2] and borrows ideas from [Re].
The crucial point is a careful investigation of pairs (X,H) such that the output of the
f-minimal model program is a particular type of Mori fiber space which we call a terminal
Veronese fibration (see Definition 3.1 below): this is roughly speaking a terminal threefold
marked by a line bundle with at most base points fibered over a smooth curve with
general fibers being smooth Veronese surfaces (with respect to the marking line bundle)
and having at most finitely many fibers being cones over a smooth quartic curve. We
find a lower bound on the degree of such a threefold (in fact on every marked terminal
threefold having a terminal Veronese fibration as a f-minimal model) and on the number
of degenerate fibers of the members of the marking linear system.

The precise statement, which we hope might be of independent interest, is the following:

Proposition 0.4. Let (X, H) be a three-dimensional terminal Veronese fibration (see
Definition 3.1) over a smooth curve B and set n := h%(H) — 1 and d := H3. Then
d > 2n — 10 and the general member of |H| is a smooth surface fibered over B with > "T_S
fibers which are unions of two conics (with respect to H) intersecting in one point (the
other fibers are smooth quartics).

Observe that both equalities are obtained by (P? x P!, Op2(2) X Opi1 (a)), cf. Examples 2.5
and 3.4.

In Section 1 we set notation and give all central definitions. Moreover we introduce, after
[M2], the f-minimal models of pairs (X,H) where X is a terminal, Q-factorial threefold
and H € Pic X such that the general element in |H| is a smooth surface of negative
Kodaira dimension (Theorem 1.2) and obtain results that are essential for the rest of the
paper in Lemmas 1.1 and 1.5.

In Section 2 we first obtain an “easy bound” on d such that a threefold is uniruled in
degree one (Proposition 2.1) and then we show how to reduce the proofs of our main
results Theorem 0.1 and its two corollaries to a result about uniruled threefolds having a
terminal Veronese fibration as a f-minimal model, namely Proposition 2.4.

The proofs of Proposition 2.4 and of Proposition 0.4 are then settled in Section 3.
Finally, in Section 4 we give some final remarks, including a slight improvement of a result
in [M2] and of Theorem 0.1 and Corollary 0.2.
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1. ﬁ—MINIMAL MODELS OF UNIRULED THREEFOLDS

We work over the field of complex numbers.

A reduced and irreducible three-dimensional variety will be called a threefold, for short.
A k-dimensional projective variety X is called uniruled if there is a variety Y of dimension
k — 1 and a generically finite dominant rational map p : Y x P! — — — X. In particular,
such a variety is covered by rational curves (cf. [Ko, IV 1.4.4]).

If ‘H is a nef line bundle on X and m € Q we say that X is uniruled of H-degree at most
m if deg (p*H)p1 gy < m for every y € Y, or equivalently if there is a dense open subset
U C X such that every point in U is contained in a rational curve C' with C' - H < m (cf.
[Ko, IV 1.4.]). A consequence is that in fact every point in X is contained in a rational
curve C with C'- H < m (cf. [Ko, IV 1.4.4]). In particular, if X C P" we say that X is
uniruled by lines if m = 1 with respect to H := Ox(1).

For a pair (X,H) where X is terminal Q-factorial and H is a line bundle on X with
|H| # 0, the threshold of the pair is defined as

p(X,H) :=sup {m € Q : rmKy is Cartier and |r(H+mKx)| # 0 for some r € Z~g} >0

(cf. [Re, (2.1)] and [M2, Def. 3.1]).
Moreover we set

(1) d(X,H) := H"™ X and n(X,H) := hi°(X,H) — 1 = dim [H|.
In these terms the A-genus, introduced by Fujita (cf. [F1] and [F2]), is
(2) AX,H) =d(X,H)+dimX —n(X,H) —1

and all the results in the paper can be equivalently formulated with the A-genus.

Recall that a surjective morphism f : X — Y with connected fibers between normal
varieties is called a Mori fiber space if —Kx is f-ample, rk Pic (X/Y) =1 and dim X >
dimY.

The following easy consequence of Clifford’s theorem will be useful for our purposes:

Lemma 1.1. Let (X, H) be a pair with X a terminal Q-factorial threefold and H a globally
generated and big line bundle on X. Set d := d(X,H) and n := n(X, H).
If d < 2n — 4, then:

(i) the general surface S € |H| is smooth with negative Kodaira dimension. In partic-
ular X is uniruled and p(X,H) < 1.

(ii) for any smooth irreducible S € |H| and for any irreducible curve D € |H 5| we
have

(3) D-Kg<d—2n+2.

Proof. The general element S € |H| is a smooth irreducible surface by Bertini’s theorem,
as X has isolated singularities (cf. [M2, 2.3]).
Pick any irreducible curve D € |Og(H)|. Then deg Op(H) = H? = d and from

(4) 0—Ox —H—0s(H) —0
and

(5) 0 — Os — Os(H) — Op(H) — 0
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we get
(6) RY(Op(H)) > h°(Os(H)) — 1> h'(H) —2=mn— 1.
Hence
(7) deg Op(H) — 2(h°(Op(H)) —1) < d —2(n —2) < 0,

whence by Clifford’s theorem on irreducible singular curves (see the appendix of [EKS])
we must have h'(Op(H)) = 0, so that x(Op(H)) = h°(Op(H)) > n — 1. From (5) we get

X(0s(D)) = x(Os) = x(Op(H)) = h’(Op(H)) > n — 1.
Combining with Riemann-Roch we get
D-Ks = D?-2(x(0s(D)) - x(0Os))
< d-2n4+2< -2,

proving (ii) and showing that x(S) < 0. (The latter fact also follows from [M2, Theorem
A.3].) Now the fact that X is uniruled with p(X,H) < 1 follows from [M2, Def. 5.1 and
Lemma 5.2]. O

In the following theorem we collect all the results of Mella [M2] that will be useful to us.

Theorem 1.2. Let (X,H) be a pair with X a terminal Q-factorial threefold and H a
globally generated and big line bundle on X, such that the general element in |H| is a
smooth surface of negative Kodaira dimension.

Then there exist a pair (Xﬁ,Hﬁ) and a birational map ¢ : X — — — X such that:

(i) X* is terminal and Q-factorial, H* € Pic X¥, |Hﬁ| has at most base points, and

(ii) ¢ is a finite composition of Mori extremal contractions and flips, and pK y: + HF
18 Q-nef;

(iii) for any smooth irreducible S € |H|, f := @5 is a birational morphism, and St =
f(S) is a smooth surface in |H|;

(iv) if X¥ is uniruled of H'-degree at most m, then X is uniruled of H-degree at most
m;

(v) (X%, H*) belongs to the following list:

(I) a Q-Fano threefold with Kp: ~ —(1/p)H*, belonging to Table 1 below.

IT) a bundle over a smooth curve with generic fiber (F, H ) P2, Op2(2)) and
F

with at most finitely many fibers (G,H?G) >~ (Sy4,0s,(1)), where S4C P is
the cone over the normal quartic curve. (p=2/3)

(IT1) @ quadric bundle with at most cAy singularities and H?F ~ Op(1) for every
fiber F. (p=1/2)

(IV) (P(&),0(1)) where & is a rank 3 vector bundle over a smooth curve. (p=1/3)

(V) (P(€),0(1)) where & is a rank 2 wvector bundle over a surface of megative
Kodaira dimension. (p=1/2)

Proof. By [M2, Def. 5.1 and Lemma 5.2] we have p(X,H) < 1. Now the existence of a
pair (X* H*) and a map satisfying conditions (i)-(iii) follows combining [M2, Thm. 3.2,
Prop. 3.6 and Cor. 3.10] observing that it is implicitly shown in the proof of [M2, Thm
3.2] that p(X*, H*) = p(X, H).

Property (v) follows from [M2, Thm. 5.3 and Def. 5.1], noting that the values of p are
explicitly given in each of the cases in the course of the proof of [M2, Thm. 5.3].
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TABLE 1. Q-Fano threefolds

| Type | X* | general S* € |H7| | p | -5 | K2, | d(XF,HF) | n(XF HF) |
(a) P(1,1,2,3) He C P(1,1,2,3) 6/7] 6 1 36 22
(b) | Ts CP(1,1,2,3,3) Ts N {xs =0}) 3/4] 3 1 9 7
(c) | Ts CP(1,1,2,3,4) Ts N {zs =0} 4/5 | 4 1 16 11
(d) |Ts CP(1,1,2,3,5) To N {ws =0} 5/6 | 5 1 25 16
(e) |Ts CP(1,1,2,2,3) Ts N {x3 =0} 2/3 ] 2 1 4 4
(f) | Ts cP(1,1,1,2,3) Ts N {zo = 0} /2] 1 1 1 2
(g) P(1,1,1,2) H, CP(1,1,1,2) 4/5 ] 4 2 32 21
(h) | Tx CP(1,1,1,2,2) TyN {xs =0} 2/3 ] 2 2 8 7
(i) |TacP(1,1,1,2,3) Ty N {zs =0} 3/4] 3 2 18 13
G) | TwcP(1,1,1,1,2) TN {zo = 0} /2] 1 2 2 3
(k) P? Hs; C PP 3/4 3 3 27 19
0 |13 cP(1,1,1,1,2) T5 N {rs =0} 2/3 | 2 3 12 10
(m) 5 CP? T30 {zo = 0} 1/2 1 3 3 4
(n) T, CP? Hy» CTh 2/3 2 4 16 13
(o) Ty C PP To 2N {xo =0} 1/2 1 4 4 5
(p) P° NG(1,4) P°NG(1,4) N {xo = 0} /2] 1 5 5 6
(q) T, C P* Ton{zo =0y ~P' xP' [1/3] 1/2 8 2 4
(r) P? Pt x P! ~ Hy, C P? 1/2 1 8 8 9
(s) P? {0 =0} ~P* CP? 1/4 1 1/3 9 1 3
(t) P(1,1,1,2) {zs =0} ~P* CP(1,1,1,2) | 2/5 | 2/3 9 4 6

We have left to prove (iv). By assumption X #is covered by a family of rational curves {T'}
such that T'- H? < m. The strict transform T on X of each such I" then satisfies T'- S < m
by [M2, Lemma 3.15]. O

In the cases (I) the general S* € |H*| is a smooth del Pezzo surface and Og; (HF) ~ prlK gt

A list of such threefolds (with corresponding values for p) is given in [CF]. Moreover one
can easily calculate d(T*, H*) and n(T*, H*). Indeed

®) A M) i= ()" = (052 (M) = L K,
and by Riemann-Roch
(9) n(XEHE) = ROHE) — 1 = hO(Ogs (M) = Q(waf(gﬁ 1

In Table 1 we list all the cases (see [CF, p. 81]). In the table P(wi,...,w,) denotes the
weighted projective space with weight w; at the coordinate x;. The hyperplane given by
x; is denoted {z; = 0}. Moreover T, (resp. T, ;) denotes a hypersurface of degree a (resp.
a complete intersection of two hypersurfaces of degrees a and b) and similarly for H, and
Hgyp. The variety G(1,4) is the Grassmannian parameterizing lines in P*, embedded in P?
by the Pliicker embedding.

Definition 1.3. Following [M2, Def. 3.3] we will call (X*, H*) a §-minimal model of the
pair (X,H). In particular, by Lemma 1.1, it exists when d(X, H) < 2n(X,H) —

Note that a §-minimal model exists for any (X, H) with X a terminal Q-factorial uniruled
threefold and ‘H nef with h°(nH) > 1 for some n > 0 by [M2, Thm. 3.2], but it will in
general not have all the nice properties (i)-(v) in Theorem 1.2 above. We will not need
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the f-minimal model in complete generality, but only in the version stated in Theorem 1.2
above.
The following explains the terminology used in Theorem 0.1 and Corollary 0.3:

Definition 1.4. For any pair (X,H) consisting of a threefold X and a big and globally
generated line bundle H on X, with d(X,H) < 2n(X,H) — 4, we will by a §-minimal
model of (X,H) mean a $-minimal model of (X, f*H), where f : X — X is a minimal
resolution of singularities. (Observe that d(X, f*H) = d(X,H) and n(X, f*H) > n(X, H),
so a f-minimal model exists and satisfies the properties (i)-(v) of Theorem 1.2.)

Lemma 1.5. With the same notation and assumptions as in Theorem 1.2, let S, S* and
f be as in (iii) and set D := Og(H).
(a) We have n(X*, H*) > n(X,H) and d(X*, H*) > d(X,H). In particular H* is big
and nef.
(b) Let 1 be the total number of irreducible curves contracted by f. If p > 1/3, then

P 2 P \2
(10) (D + EKS) 2 _Z(Tp) :
(c) If (X', H*) is of type (I) in Theorem 1.2(v), then
2p—1
(11) d(X,H) —n(X,H)+1= % 2.

Proof. We first observe that n(X* H*) > n(X,H) as S* = ¢.S.
We have a commutative diagram

¢,

X - Xt

where f := ¢g is well defined and birational by Theorem 1.2(iii). As observed in M2,
Prop. 3.6] one can describe each step in the f-minimal model program in a neighborhood
of S. More precisely, set X := X, Sy := S5, X, := X! and S,, = S* := ¢,5. Denote by
¢;: Xi—1 —— — X; for i =1,...,m each birational modification in the f-minimal model
program relative to (X,H) and define inductively S; := ¢,S;—1. Then each S; is smooth,
and setting f; := ¢;|g, we can factorize f as:

f f f’m— fm
§—> G — . S, —5 G, = St

where each f; contracts [; disjoint (—1)-curves Ei,,ElZZ with I; > 0 by [M2, Prop.
3.6]. The total number of contracted curves is | = >.7" l;. We set D; := Og,(S;) and
D% := Og:(SY).

If ¢; is a flip then S; is disjoint from the flipping curves by [M2, Claim 3.7], so that f; is
an isomorphism.

If ¢; contracts a divisor onto a curve then it is shown in [M2, Case 3.8] that the fiber F;
of ¢; satisfies S; - F; = 0, whence D; - F; = 0, which means that all E; satisfy E; -D; =0.
If ¢; contracts a divisor onto a point then it is shown in [M2, Case 3.9] that f; is a
contraction of a single (—1)-curve E; = E! which satisfies E; - D; = 1.
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In other words, for every ¢ we have three possibilities:
l; = 0; or

(12) [; >0 and E;-Di:Ofor all j € {1,...,l;}; or
li=1 and Ej-D;=1.

Now denote by L; the total transform of E]Z on S. Then (L;-)2 = —1 and L; . L;'.', =0 for
(2,7) # (¢, 7"). We have

(13) Ks¢=f"Kg+)» L
and by (12),
(14) D= f*D* =) " i Ll with pf € {0,1}.

In particular

(15) (X, H) = D* = (DA = S (ui)? = d(X*,HE) — 37wl < d(XP HE),

finishing the proof of (a).
From (13) and (14) we get

p % i 14 p i\
D+ —Kg=f"(D"+ —K SR 52
1, Ks F( T Su)+Z(1_p w5) L,

and since there are [ terms in the sum we get

P 2 # p 2 P \2 i 2p i
16 D+ —Kg)"=(D"+ —— —l(— (—— — ).
(16 (D+ oK) = (0 oK) — U+ Y = )
By definition and invariance of p (cf. Theorem 1.2(i)) we have that pKp:+H?" is Q-effective.
From Theorem 1.2(ii) we have that it is also Q-nef, whence its restriction to S* is also
Q-effective and Q-nef. Since S* is Cartier we get by adjunction that (pKp: + Hﬁ)| gt

(1- P)(IT'OPK s + D%), whence by Q-nefness

(17) (Df + L Kg)2 >0,
I—-p
Moreover the assumption p > % is equivalent to IL > %, whence

(18) ZM;(E = p5) = py(1 =) = 0.

Now (10) in (b) follows combining (16)-(18)

We have left to prove (c). Since S* is a smooth del Pezzo surface, we have h'(Og) =
ht(Og:) = 0. Tt is then easily seen by the proof of Lemma 1.1 that equality holds in
(3) (note that we have h!(Ox) < h'(Ox(—H)) + h'(Og) = 0 by Kawamata-Viehweg
vanishing). Using (13), (14) and (15) we therefore get, for D € |Og(H)|:

dX,H) —2n(X,H)+2 = D-Kg=(f"D'=> pLi)-(f"Kg + Y L))
= DF Kt 3= K+ D

- %Kgu +d(X? HY) — d(X,H).
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Now using (8) we obtain

a _p2p—1)
2d(X,H) — 2n(X, H) + 2 = TESL K2,

proving (c). O
2. BOUNDS FOR UNIRULEDNESS DEGREE ONE

As a “warming up” before proceeding with the proofs of the main results we give the proof
of the following bound.

Proposition 2.1. Let (X,H) be a pair consisting of a terminal Q-factorial threefold X
and a globally generated and big line bundle H on X. Set d := d(X,H) and n :=n(X,H).
Ifn>4,d< %n — % and d#n—1 forn <9, then X is uniruled of H-degree one.

Proof. Since n > 4 we have 2n — 4 > %n = %, whence d < 2n — 4, so by Lemma 1.1(i) the
general S € |H| is smooth of negative Kodaira dimension.
Moreover for any irreducible D € |H|g| we have, by Lemma 1.1(ii),

3 1 1
D-(SH+Kx) = D-(H+Kx)+5D-H=DKs+d
13
< d—2n+2—|—§d:§d—2n—|—2

374 4
—(=n—=) -2 2 =
< 2(371 3) n+ 0,

whence p(X,H) < 2/3.

It follows that the f-minimal model (X*, H*) is in the list of Theorem 1.2(v) and moreover it
cannot be as in (IT) since p(X, H) = 2/3 in this case. In the cases (IIT)-(V) one immediately
sees that (X, H?%) is uniruled of Hf-degree one, whence (X, H) is also uniruled of H-degree
one by Theorem 1.2(iv).

We have n(T*, H*) > n > 4 by Lemma 1.5(a), and by using Table 1 we see that the cases
in (I) where n(X* H*) > 4 and p < 2/3 are the cases (m), (o), (p), (q), (r) and (t). Among
these all but (r) are clearly uniruled of Hf-degree one.

By (11) and Table 1 we have d —n + 1 = 0 in case (r) and by Lemma 1.5(a) we have
n < n(Xt HYH =09. O

Corollary 2.2. Let (X, H) be a pair consisting of a threefold X and a globally generated
and big line bundle H on X. Set d := d(X,H) and n := n(X,H).

If d < %n—%, d#n whenb <n<8andd#*n—1 forn <9, then X is uniruled of
‘H-degree one.

Proof. Let m : X — X be a resolution of the singularities of X. Then 7*H is globally
generated and big with d(X,7*H) = H> = d and n(X,7*H) = dim |7*H| > n and we can
apply Proposition 2.1. The additional cases d = n for 5 < n < 8 occur since equality does
not need to occur in n(X,7*H) > n. O

Remark 2.3. We note that the last corollary improves Theorem 0.1 for n < 12. Moreover,
the cases n = 3,4 are trivial, as are the cases n = 5,6,7, since then ¢y (X) C P" has
minimal degree. Hence the relevant statement, combining Theorem 0.1 and Corollary 2.2
is: X is uniruled of H-degree one in the following cases:

en=8andd=6o0r9;

en=9and d=17,9 or 10;
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e n=10and d <11;
en=11or 12 and d <n+ 2;
e n>13 and d < 2n — 11, (d,n) # (27,19).

Now we give the main ideas and the strategy of the proof of Theorem 0.1. The main result
we will need to prove is the following:

Proposition 2.4. Let (X, H) be a pair consisting of a terminal Q-factorial threefold X
and a globally generated, big line bundle H on X. Set d := d(X,H) and n := n(X,H).
If a §-minimal model of (X, H) is of type (II) in Theorem 1.2(v), then d > 2n — 10.

The proof of this result will be given in Section 3 below, after a careful study of the
threefolds of type (II) in Theorem 1.2(v). We will now give the proofs of Theorem 0.1 and
Corollaries 0.2 and 0.3 assuming Proposition 2.4.

Proof of Theorem 0.1. Let X be a reduced and irreducible 3-dimensional variety and
H a globally generated big line bundle on X. Set d := H? and n := h%(X,H) — 1 and
assume d < 2n — 10.

Let m: X — X be a resolution of the singularities of X. Then 7*H is globally generated
and big with d(X,7*H) = H? = d and n(X,7*H) = dim |7*H| > n. Since (d,n) = (27,19)
satisfies d = 2n — 11 we can reduce to the case where X is smooth. Therefore we assume
X is smooth.

By Lemma 1.1(i), any #-minimal model (X*, H*) of (X, H) is in the list of Theorem 1.2(v).
Moreover, by Proposition 2.4, it cannot be of type (II).

We easily see that the cases (III)-(V) are uniruled of H*-degree one. In the cases (I) we
have, by Lemma 1.5,

p(2p—1)
2(p— 1)
By checking Table 1 one finds that we can only be in case (k), with equalities all the way

in (19). Hence n = n(X* H*) =19 and d = 2n — 11 = 27. Now the result follows from
Theorem 1.2(iv). O

(19) K% =d—n+1<n—10<n(X*, H*) - 10.

Proof of Corollary 0.2. Let X be a reduced and irreducible variety of dimension k£ > 4
and H a globally generated big line bundle on X with d := H* and n := h%(X, H) — 1.
As just mentioned in the proof of Theorem 0.1 we can assume X is smooth.

Setting X := X and Hj := H, we recursively choose general smooth “hyperplane sec-
tions” X,;_1 € |H;| and define H;_; := H; ® Oy, ,, for 2 <1i < k. (Note that dim X; =i
and H; is a line bundle on Xj.)

Let n3 := h%(H3) — 1. Then from the exact sequence

(20) 0 —Ox, —Hi — Hi-1 — 0
we have
(21) ny>n—(k—3)=n—k+3.

Together with the condition d < 2(n — k) — 4 this implies d < 2n3 — 10 and it follows
from Theorem 0.1 that either (X3,H3) is uniruled of degree one or (d,n3) = (27,19) and
(5, H5) is (B, 0(3)).

In the second case we have equality in (21), i.e.

(22) 19=n3=h"(H3) —1=h"(H) = (k—3)—1=n—k+3.
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Denote by ¢ : X3 — — — X§ = P3 the birational map of the #-minimal model program.
By Theorem 1.2(iii) its restriction f to S := X5y is a birational morphism onto a smooth
surface S* € |Ops(3)].
We have

19 = h%(O0g:(3)) > h°(Ha) > hO(H3) — 1 =19
by Lemma 1.5(a) and (22), whence |Og:(3)| = f«|H2| and this can only be base point free
if every curve E contracted by f satisfies I/ - Ha = 0. Denoting by (3, and PO 4 (3) the
morphisms defined by |Hz| and |Og:(3)| respectively, this implies that PO 4 (3)°f = PHy, In
other words S’ := ¢4, (S) = PO, (3)(Sﬁ) ~ S% C P, Moreover, by (22), the natural map
HY(H) — H%(Hy) is surjective, so S’ = ¢3/(S), where ¢z : X — P" is the morphism
defined by |H|. Note that o4, is birational for reasons of degree. Setting X' := oy (X) C P
we therefore have that S” C X’ is a smooth, linear, transversal surface section (recall that
S C X is a complete intersection of (k — 2) general elements of |H]).
We now apply the theorem of Zak (unpublished, cf. [Za]) and L’vovski (cf. [L1] and [L2])
which says the following (cf. [L2, Thm. 0.1]): if V C PV is a smooth, nondegenerate
variety which is not a quadric and satisfies h° WNypv(=1)) <2N+1Y C PN+™ is a non-
degenerate, irreducible (m+dim V')-dimensional variety with m > h%(\; vpn (—1))—N—1;
and L = PV C PN+™ is a linear subspace such that V = L NY (scheme-theoretically),
then Y is a cone.
Since a cone is uniruled by lines, the corollary will follow if we show that h®(N/ pis(—1)) <

20, with S’ being the 3-uple embedding of a smooth cubic surface Sy in P3.

We argue as in [GLM, p. 160-161] to compute h%(Ng pis(—1)). We give the argument for
the sake of the reader.

From the Euler sequence and tangent bundle sequence

0 — Ogi(—1) — C?¥ @ Og — Tpis(—1) ® Ogr — 0

0— Tg/(—1) — Tpis(—1) ® Oy — Ngjpis(—=1) — 0
we find
(28)  RO(Wigrjpus(—1)) < A0(Tpas(—1) @ Ogr) + AL (T (—1)) = 19 + 1} (T (=3)).
From the tangent bundle sequence of Sy C P3
(24) 0 — Ts,(~3) — Tys(—3) © Os, — Ngy s (—3) — 0
and the fact that N, ps(—3) =~ Os,, we find

B (Ts,(=3)) < 1+ b (Tos(=3) © O, ).

In view of (23) it will suffice to show that h'(Zps(—3) ® Og,) = 0.
Now observe that Tps(—3) ~ (Qps)" @ Kps ® Ops (1) ~ Q2,(1) so using Bott vanishing on
P? and Serre duality one gets h'(Zps(—3)) = 0 and

h?(Tps (—6)) = h*((2ps)” ® Kps ® Ops(=2)) = h' (25s(2)) = 0.

This yields h!(Zps(—3) ® Og,) = 0.
This concludes the proof of the corollary. O

It is immediate that Corollary 0.3 follows from Theorem 0.1 and Corollary 0.2.
As we already noted in the introduction, Theorem 0.1 is sharp by the following example:
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Example 2.5. The bound of Theorem 0.1 is sharp. In fact consider X = P? x P! with
projections p and g respectively and let H := p*Op2(2) ® ¢*Op1(a) for an integer a > 0.
We have n := h%(H) — 1 = h%(Op2(2)) - h%(Opi(a)) =1 = 6(a + 1) — 1 and d := H® =
(p*O(2) ® ¢*O(a))?® = 3(p*O(2))? - ¢*O(a) = 12a, whence d = 2n — 10.

If a > 2, then clearly any curve C' on X satisfies C-H = C - p*Op2(2) + C - ¢*Op1(a) > 2,
with equality obtained for the lines in the P?-fibers, so that X is uniruled of H-degree two
and not uniruled of H-degree one.

If @ = 1, then X is clearly uniruled of H-degree one, and since d = 12 and n = 11, this
also follows from Remark 2.3.

3. TERMINAL VERONESE FIBRATIONS

In this section we will prove Propositions 0.4 and 2.4.
Since we will have to study the threefolds as in (II) of Theorem 1.2(v) we find it convenient
to make the following definition:

Definition 3.1. Let (7, £) be a pair satisfying the following;:

(i) T is a terminal Q-factorial threefold with a Mori fiber space structure p : 7' — B,
where B is a smooth curve.
(ii) £ is a line bundle on 7" such that the system |L| contains a smooth surface and
has at most base points and £3 > 0.
(iii) The general fiber of p is (V, L) ~ (P?, Op2(2)) and the rest are at most finitely
many fibers (G, L)) ~ (S4,0s,(1)), where S4 C P is the cone over a normal
quartic curve.

Such a Mori fiber space will be called a (three-dimensional) terminal Veronese fibration.

The threefolds of type (II) in Theorem 1.2(v) are terminal Veronese fibrations.

The easiest examples of terminal Veronese fibrations are the smooth ones in Example 2.5.
But there are also singular such varieties and these were erroneously left out in both [M1,
Prop. 3.7] and [CF, Prop. 3.4], as remarked by Mella in [M2, Rem. 5.4]: Take P? x P!
and blow up a conic C in a fiber and contract the strict transform of C, thus producing a
Veronese cone singularity.

Although our main aim is to prove Proposition 2.4 we believe that terminal Veronese
fibrations are interesting in their own rights. In order to prove Proposition 2.4 we will
study “hyperplane sections” of T', i.e. surfaces in |£|, and show that the desired bound on
the degree follows since the general such surface has to have a certain number of degenerate
fibers, i.e. unions of two conics (with respect to £). What we first prove in this section is
the following, which is part of the statement in Proposition 0.4:

Proposition 3.2. Let (T, L) be a three-dimensional terminal Veronese fibration and set
n:=h%L) -1 and d := L3.

Then any smooth member of |L| is a surface fibered over B with k > ”7_5 fibers which are
unions of two smooth rational curves intersecting in one point (the other fibers are smooth
rational curves).

Proof. Denote by V the numerical equivalence class of a fiber. Let S € |£| be a smooth
surface. Then, since T is terminal, we have S N Sing T'= 0 (cf. [M2, (2.3)]).

By property (iii) any fiber of S over B is either a smooth quartic, a union of two conics
intersecting in one point, or a double conic, all with respect to £. Denote by F' the
numerical equivalence class in S of a fiber over B. Then F? = 0.
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If a fiber were a double conic, we could write F' = 2F; in Num S. However, in this case
we would get the contradiction Fy - (Fy + Kg) = —1, so this case does not occur.

In the case of a fiber which is a union of two conics intersecting in one point, we have
F = F} 4+ F5 in Num S, whence by adjunction both Fj are (—1)-curves. Since S is smooth
its general fiber over B is a smooth quartic (with F'- Kg = —2 by adjunction), whence
S has a finite number k of degenerate fibers which are unions of two conics and since
these are all (—1)-curves we can blow down one of these curves in every fiber and reach a
minimal model R for S which is a ruled surface over B. Let g be the genus of B. Then

k=K}-K:=8(1-g)—K:=81—-g)— (Kr+L)? L,

which only depends on the numerical equivalence class of S. Therefore, any smooth surface
in |£| has the same number of degenerate fibers.

Now note that the fibers of S over the finitely many points of B over which T has singular
fibers are all smooth quartics, since S N Sing T' = (). B

We now consider the birational map of T to a smooth projective bundle T, as described
in [M2, p. 699].

Around one singular fiber S4 of T" over a point p € B this map is given by a succession of
blow ups v; and contractions p;:

(25) Y Y,
2NN N
Tl Ts—l TS:T

T="1Tp

where the procedure ends as soon as some T has a fiber over p € B which is a smooth
Veronese surface.

For every v; the exceptional divisor F; is either a smooth Veronese surface or a cone over
a rational normal quartic curve, and the strict transform of the singular fiber S4 of T;_1
over p is G; >~ [Fy4, the desingularization of S4. These two intersect along a smooth quartic
C;. Then p; contracts G; onto a smooth quartic curve C! = p;(C;) and T; is smooth along
the exceptional locus of the contraction.

Following S throughout the procedure, we see that S stays out of the exceptional locus of
every v; and in the contraction it is mapped to a surface having C/ as fiber over p.

In other words the procedure of desingularizing one singular fiber of T maps every smooth
surface in |£| to a smooth surface passing through a unique smooth quartic over p.
Doing the same procedure for all the other singular fibers of T' we therefore reach a
smooth projective bundle P(£) over B and under this process |£| is “mapped” to a (not
necessarily complete) linear system on P(£) having smooth quartics over the corresponding
points of B as base curves. Denote the corresponding line bundle on P(€) by L'. Since
we have not changed the number of degenerate fibers of any smooth surface in |£| over
B, we see that every smooth surface in |£'| still has k degenerate fibers over B. Since
clearly dim|£'| > dim |£] it is now sufficient to show that any smooth surface in |£'| has
k> % fibers which are unions of two conics (with respect to £') intersecting in one
point. This is the content of the following proposition. O

Proposition 3.3. Let f : T ~ P(£) — B be a three-dimensional projective bundle over
a smooth curve of genus g. Assume L is a line bundle on T satisfying:

(i) Lyy ~ Op2(2) for every fiber V ~ P2,

(ii) |L£| is nonempty with general element a smooth irreducible surface,
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(iii) the only curves in the base locus of |L|, if any, are smooth quartics (with respect
to L) in the fibers.
Then any smooth surface in |L| is fibered over B with k fibers which are unions of two
conics (with respect to L) intersecting in one point, where
1 h%(L) -6

26 k=-L£3> "2 .
(26) L2
Proof. We only have to prove (26).
Denote by V the numerical equivalence class of a fiber. Since every fiber of T over B
is a P? we have (Kr)p2 ~ Kp2 >~ Op2(—3) so we can choose a very ample line bundle
G € Pic T such that

(27) Num T ~ZGDZY, G*- V=1, G- V=V =0,
(28) Kr=bV-3G, beZ

and

(29) L=aV+2G, acl.

The general element G € |G| is a smooth ruled surface over B; in particular
8(1—g)=K&=(Kr+G)?*-G=(bV—2G)?-G=4G> — 4b,
that is
(30) G3=2(1—g)+0.
Let now S € |£] be any smooth surface. Clearly (as discussed in the proof of the previous
proposition) K% = 8(1 — g) — k. We compute, using (27) and (30),
K2 = (Kr+L)?% L= ((a+bV—-G6)?* (aV+20)
= 2G% —3a —4b=2(2(1 — g) + b) — 3a — 4b
4(1 — g) — 3a — 20,

so that

(31) k=4(1—-g)+ 3a+ 20b.

At the same time we have

(32) L3 = (aV+26)% =124 +8G°

= 12a+ 8b+ 16(1 — g) = 4k,

proving the equality in (26).
The inequality in (26) we have left to prove is £3 > 2h°%(L) — 12. We therefore assume, to
get a contradiction, that

(33) £3<2n0(L) —13.

Since the 1-dimensional part of the base locus of |£| can only consist of smooth quartics
(with respect to £) in the fibers of f, we can write, on 5,

£|S ~ Hy+ (f‘s)*t] = Hy + cF,
for some nonnegative integer ¢, where v is an effective divisor of degree c on B; F' denotes
the numerical equivalence class of a fiber of f|g: S — B; and |Hy| is the moving part of

|L|g|. If the general element Cy € [Hp| were not reduced and irreducible, then by Bertini’s
theorem |Hy| would be composed with a pencil, whence Hy = mH)), for some H{, € Pic S
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with H)? = 0 and m > 2. Now 4 = F- £ = F - Hy = mF - H}, implies m < 4. By (33) and
the short exact sequence
(34) 0— Op — Or(£) — Os(£) — 0
(using the fact that £3 > 0 by (32)) we get the contradiction
5>m+1>hHy) =h(0s5(L)) > (L) —1 > 6.

Therefore Cj is a reduced and irreducible curve (possibly singular).

From
(35) 0— Og(f*0) — Og(L) — O¢, (L) — 0.
and (34) we get, using (33):
h(Ocy (L)) = h(Os(L)) — h®(Os(f*v))
(36) > K(Or(L)) — h'(B,v) — 1
> %(£3+13)—c—2: %£3—c+g.

Moreover deg O¢, (L) = L2 (L — V) = L3 — eL? -V = L3 — 4e, so that
deg Oc, (L) — 2(h°(O¢, (L)) —1) < L3 —4c— (L3 —2c+7) = —2¢ — T < 0.

By Clifford’s theorem on singular curves (see the appendix of [EKS]) we must therefore
have

(37) B (Oc, (L) = 0.
Also note that since T is a projective bundle over a smooth curve of genus g, we have
(38) R(Or) =1, K (Or) = g, K*(Or) = h3(Or) = 0.

From Riemann-Roch on S and the fact that h?(Og(f*v)) = hO(Kg — f|*sn) = 0 (since F
is nef with F.(Kg — f*v) = F.(Kg — cF') = —2) we find
(39) WH(Os(f70)) = —x(Os(f0)) + h*(Os(f*0)) + h*(Os(f"0))
_ —%CF (eF — Kg) +g— 1+ h(Os(f*v))
< —c+g—14+c+1=yg.
Combining all (34)-(39) we find
(40) h'(£)

IN

h'(Or) + h'(Os(L))
< hHOr) +hH(Os(f*0)) + h'(Oc, (L))
< g+g+0=2g,

together with

(41) R*(L) = h3(L) = 0.

From (28)-(30), (34), (38) and Riemann-Roch on S, we get

W8 = X(Os(£)) +X(Or) = 305(£)  (05(8) = Ks) + x(03) + (O
= %(ﬁi% - L% (Kp —I—E)) + x(03) + x(Or) = _%£2 Ky +2(1—g)

_ —%(aV +2G)2- (W —3G) +2(1 — g) = 14(1 — g) + 6a + 4b.
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Comparing with (32) we see that
L2 =2x(L) - 12(1 - g),
whence, using (40) and (41),
£8 = 2(R0(L) = hH(L) + KAL) — K(L)) — 12(1 - g)
> 2<h0(ﬁ) - 2g) —12(1 — g) = 2R0(L) — 12+ 8¢ > 210(L) — 12,

contradicting (33).
This shows that (33) cannot hold, proving (26). O

Example 3.4. As in Example 2.5 take X = P2 x P! and H := p*Op2(2) ® ¢*Op1 (a). Then
we have an embedding given by |H|:

P2 x Pl —, pblatl)-1
A hyperplane section of X in PS(@+1)=1 hag equation

k. a—k
> lijrrizyoyy ~ =0,
i,j=0,1,2,0<k<a

where (2o : 21 : 22) are the coordinates on P? and (yo : 1) are the coordinates on P!
and [;;1, are coefficients. The section is degenerate on some Veronese surface (P?, Opz2(2))
if the determinant of the matrix of the coefficients of the x;z; is zero. This determinant
is a polynomial of degree 3a in g, y1, hence in general we find 3a distinct zeros. This
means that a general hyperplane section has 3a = w degenerate fibers, which
is the smallest possible number of degenerate fibers for a terminal Veronese fibration as

stated in Proposition 3.2.

Proofs of Propositions 0.4 and 2.4. We note that by Proposition 3.2 the only state-
ment left to prove in Proposition 0.4 is a special case of Proposition 2.4.

As in Proposition 2.4 let (X,H) be a pair consisting of a terminal Q-factorial threefold X
and a globally generated, big line bundle H on X, with d := d(X,H) and n := n(X,H).
Assume that a f-minimal model (X*, H?) is of type (IT) in Theorem 1.2(v), i.e. a terminal
Veronese fibration over a smooth curve B of genus g.

Let f : S — S* be as in Theorem 1.2(iii). We have nf := dim|H* > dim|H| = n
by Lemma 1.5(a). By Proposition 3.2, S* is fibered over B with general fiber a smooth
quartic and k > an_ 3 fibers being a union of two rational curves intersecting in one point,
which are both (—1)-curves. Therefore

b5 -5
n n
<8(l-9g)-—

We want to show that d > 2n — 10. Assume, to get a contradiction, that

(42) K%, =8(1—g)—k<81-g)—

(43) d<2n—11.

Note that p := p(X,H) = %, so we can apply Lemma 1.5(b). Let [ be the total number

of irreducible curves contracted by f. Then K g =K gu — [. Pick any smooth irreducible
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curve D € |Og(H)|. Then by (3), (10) and (42) we have
0 41+ (D + 2Kg)? = 4l + AK% + 4Kg - D + D?
n—=>9
< ) - _ _
< 4z+4(8(1 9 -5 z)+4(d 2n+2)+d
= 32(1—-9)—2(n—5)+4d—8n+8+d
= 32(1—g)+5d— 10n + 18 < 5d — 10n + 50 = 5(d — 2n + 10),

contradicting (43).
We have therefore proved that d > 2n — 10 and this finishes the proofs of Propositions 0.4
and 2.4. 0

IA

4. FINAL REMARKS

To conclude, we remark that a closer look at the proofs of of Propositions 0.4 and 2.4 shows
that if we assume only d < 2n — 4 instead of (43), we get g = 0 as the only possibility.
This shows that:

A three-dimensional terminal Veronese fibration over a smooth curve of genus g > 0 must
satisfy d > 2n — 4.

Consequently:

If a pair (X, H) consisting of a terminal Q-factorial threefold X and a globally generated,
big line bundle H on X has a §-minimal model being of type (II) in Theorem 1.2(v) over
a smooth curve of genus g > 0, then d > 2n — 4.

If now (X¥ H*) is a f-minimal model of a pair (X, H) consisting of a terminal Q-factorial
threefold X and a globally generated big line bundle H, then H? is still big and nef by
Lemma 1.5(a), so that h'(Ox) = h'(Og) = R} (Og:) = h}(Ox:). We have seen that this
is zero if X% is of type (I) in Theorem 1.2(v) and equal to g, the genus of B, if X* is of
type (II) in Theorem 1.2(v).

We have therefore obtained an improvement of [M2, Thm. 5.8] (cf. Theorem 1.2(v)):

Proposition 4.1. Let (X, H) be a pair consisting of a terminal Q-factorial threefold X
and a globally generated big line bundle H on X. Set d := H? and n := h°(X,H) — 1.
Ifd < 2n — 10 (resp. d < 2n —4 and h*(Ox) > 0), then (X', H?) is of one of the types
(i)-(iv) (resp. (ii)-(iv)) below:
(i) (P3, Ops(3)) (with (d,n) = (27,19)),
(i) a quadric bundle with at most cAy singularities of type f = x? + 3> + 22 + t*, for
k>2, and H?F ~ Op(1) for every fiber F,
(iii) (P(E),0(1)) where E is a rank 3 vector bundle over a smooth curve,
(iv) (P(E),O(1)) where E is a rank 2 vector bundle over a surface of negative Kodaira
dimension.

Consequently we have the following slight improvement of Theorem 0.1 and Corollary 0.2:

Corollary 4.2. Let (X, H) be a pair consisting of a reduced and irreducible k-dimensional
variety X, k > 3, and a globally generated line bundle H on X. Set d := H* and n =
hO(X,H) — 1.

If ' (O%) > 0 for a resolution of singularities X of X and d < 2(n — k) + 2, then X is
uniruled of H-degree one.

Proof. In the proof of Theorem 0.1, use Proposition 4.1 in place of Theorem 1.2(v). Then,
in the proof of Corollary 0.2, note that h'(Oy,) = h'(Ox,_,) as H; is big and nef. O
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POLYHEDRAL GROUPS AND PENCILS OF K3-SURFACES WITH
MAXIMAL PICARD NUMBER

W. BARTH AND A. SARTI

ABSTRACT. A K3-surface is a (smooth) simply-connected surface with trivial canonical
bundle. In this note we investigate three particular pencils of K3-surfaces with maximal
Picard number. To be precise: The general member in each pencil has Picard number 19.
And each pencil contains precisely five surfaces with singularities. Four of them are also
singular in the sense that their Picard number is 20. Our surfaces are minimal resolutions
of quotients X/G, where G C SO(4,1R) is a finite group and X a G-invariant surface.
The singularities of X/G come from fix-points of G on X or from double points of X.
In any case these singularitites are A-D-E. The rational curves resolving them together
with some even, resp. 3-divisible sets of rational curves generate the Neron-Severi group.

1. INTRODUCTION

The aim of this note is to present three particular pencils of K3-surfaces with Picard-
number > 19. These three pencils are related to the three polyhedral groups T, O, resp.
I, (the rotation groups of the platonic solids tetrahedron, octahedron and icosahedron) as
follows: It is classical that the group SO(4,1IR) contains central extensions

| Gs Gs G
of [ TxT OxO IxI

by 4+1. Each group G,, n = 6,8, 12, has the obvious invariant ¢ := 33(2) + x% + ac% + a:§ In
[S] it is shown that each group G,, admits a second non-trivial invariant s, of degree n.
(The existence of these invariants seems to have been known before [Ra,C], but not their
explicit form as computed in [S].) The pencil

Xy C IP3(C) : S+ A2 =0

therefore consists of degree-n surfaces admitting the symmetry group G,. We consider
here the pencil of quotient surfaces

Y)( = X)\/Gn - Pg/Gn

It is - for us - quite unexpected that these (singular) surfaces have minimal resolutions Y},
which are K3-surfaces with Picard-number > 19.

In [S] it is shown that the general surface X is smooth and that for each n = 6,8, 12
there are precisely four singular surfaces X, A € C. The singularities of these surfaces
are ordinary nodes (double points A;) forming one orbit under G,,.

For a smooth surface X the singularities on the quotient surface Y; originate from fix-
points of subgroups of G,,. Using [S, sect. 7] it is easy to enumerate these fix-points and
to determine the corresponding quotient singularities. On the minimal resolution Yy of Y}
we find enough rational curves to generate a lattice in NS(Y)) of rank 19. In sect. 5 we
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show that the minimal desingularisation Y) is K3 and that the structure of this surface
varies with A. This implies that the general surface Y has Picard number 19. Then in
sect. 6.1 we use even sets [N], resp. 3-divisible sets [B, T] of rational curves to determine
completely the Picard-lattice of these surfaces Y.

If X is one of the four nodal surfaces in the pencil, there is an additional rational curve
on Y. This surface then has Picard-number 20. (Such K3-surfaces usually are called
singular [SI].) We compute the Picard-lattice for the surfaces Y) in all twelve cases (sect.
6.2).

2. NOTATIONS AND CONVENTIONS

The base field always is C. We abbreviate complex roots of unity as follows:

, 1 . . 1
_ 2mif3 _ — . 2mi/5 . 28 :
w=e = 1+ 3), €e:=e , =e = 141).
S+ VD) . S+
By G C SO(3) we always denote one of the (ternary) polyhedral groups T, O or I, and
by G C SU(2) the corresponding binary group. By

o:8U(2) x SU(2) — SO(4)

we ~deno:ce the ~classNicaJ 2 : 1 covering. The group G,, C SO(4),n = 6,8,12, is the image
o(G x G) for G =T,0,I. Usually we are interested more in the group

PG, = G,/{£1} C PGL(4).

For n = 6,8,12 it is isomorphic with T'x T, O x O, I x I having the order 122 = 144, 24% =
576, resp. 602 = 3600.

Definition 2.1. a) Let id # g € PG,. A fix-line for g is a line L C IPg with gx = = for
all x € L. The fix-group Fr, C PG, is the subgroup consisting of all h € PG,, with hxt = x
for all x € L. The order o(L) of L is the order of this group FT,.

b) The stabilizer group Hy, C PG, is the subgroup consisting of all h € PG,, with hL = L.
The length £(L) is the length

|PGyl/|HL|

of the Gn-orbit of L.
¢) We shall encounter fix-lines of orders 2,3,4 and 5. We define their types by

0rder|2 3 4 5
type|M N R S

We shall denote by X : sn + A¢™2 = 0 the symmetric surface with parameter A € €. All
these surfaces are smooth, but for four parameters A;. These four singular parameters in
the normalization of [S, p.445, p.449] are

n=~06 | n=3~8 | n=12
Ao A2 A3 M| A A A3 M| A A2 A3 N\
Ty 2 _3 1|y 3 _9 5|_3 _2» _> |

3 12 4 4 16 9| 32 243 25

Sometimes we call the surface X, of degree n and parameter A; just X, ;, or refer to it as
the case n,i.



POLYHEDRAL GROUPS AND PENCILS OF K3-SURFACES WITH MAXIMAL PICARD NUMBER 71

3. FIXPOINTS

In this section we determine the fix-points for elements id # g € PG,,.

Recall that each +1 # p € G has precisely two eigen-spaces in €2 with the product of its
eigen-values = det(p) = 1.

In coordinates z, ..., z3 on IR* the morphism o : GxG — SO(4,1R) is defined by o(p1,p2) :

(zx) — (yx) with

Yoty yatiys \ _ o Totiry xptimz )
—y2+1ys Yo — W1 ! —Zy+1ix3 To — 1T 2

The quadratic invariant

q:x3+z%+x§+x§=det< To I Tyl >

—xo +1T3 X — 1T

vanishes on tensor-product matrices

To + iz To +ix VoWo VoW
0 L1 2T ) _ 0Wo VoW1 ) _ o .
—ZT9 +1T3 X9 — 1T Viwy  Viwi

The action of G x G on the quadric
QZZ{QZO}:]P1><]P1
is induced by the actions of the group G on the tensor factors v and w € €2

o(p1,p2) 1 v @ w — (p1v) @ (p2w).
The fix-points for +1 # o(p1,p2) € G, on IP3 come in three kinds:

1) Fiz-points on the quadric: +1 # p; € G has two independent eigenvectors v,v’. The
spaces v ® €? and v’ ® €% determine on the quadric two fix-lines for o(py, il) belonging
to the same ruling. In this way G-orbits of fix-points for elements p; € G determine
Gp-orbits of fix-lines in the same ruling of the following lengths:

order of p | 4 6 8 10
Gs 6 4,4 — -—
Gs 12 8 6 —
G2 30 20 — 12

In the same way fix-points for py € G determine fix-lines for o(£1,p2) € Gy, in the other
ruling. In [S, p.439] it is shown that the base locus of the pencil X consists of 2n such
fix-lines, n lines in each ruling, say Ay, A}, k = 1,...,n. The fix-group F, for the general
point on each line Ay, A} then is cyclic of order s := |G|/n:

6 8 12
2 3 5
Where a fix-line for o(p1,+1) meets a fix-line for o(£1, p2) we obviously have an isolated
fix-point z for the group generated by these two symmetries. We denote by ¢ the order of
the (cyclic) subgroup of P(c(%1,G)) fixing . The number of Hjy,-orbits on each line Ay
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of such points is

D 0o 3
[S2NGCIN VY VA
— =N
= o= DN W
|
|

2) Fiz-lines off the quadric: Let L C IP3 be a fix-line for o(p1,p2) € G,, with p1,ps # +1.
It meets the quadric in at least one fix-point defined by a tensor product v ® w with v, w
eigenvectors for pi, ps respectively. The group < o(p1,+1) >C Hj centralizes o(p1,p2).
Therefore there is a second fix-point on L for this group. Necessarily it lies on the quadric,
being determined by a tensor-product v’ ®@w’ with v, w’ eigenvectors for py, po respectively.
Let o, o’ be the eigen-values for p; on v,v" and 3,3 those for ps on w,w’ respectively.
Then

a-of =3-4 =1.

Since all points on L have the same eigen-value under o(p1,p2) we find

a-B=ao f=(-f)~"

So a-f ==1and g := o(p1,p2) acts on this line by an eigen-value +1. In particular p;
and +py € G have the same order.

We reproduce from [S, p. 443] the table of G,-orbits of fix-lines off the quadric by specifying
a generator g € G, of Fr. For this generator we use the notation of [S]. There it is also
given the length ¢(L). This length determines the order |Hy| = |PGy,|/¢(L) of the stabilizer
group and the length |Hp|/|FL| of the general Hy-orbit on L:

n 6 8 12
g 024 T3Th TIWh | MIMATLTY  W3WAGy O9ThT Wy AT | 024 TW3mh  mhmh
F | Z, Zs Zs Z, Z, z, 7z, 7, |z, Zs Z;
type | M N N M M M N R|M N S
¢(L) 18 16 16 72 36 36 32 18 | 450 200 72
\Hol/|Fr|| 4 3 3 4 8 8 6 8 |4 6 10

3) Intersections of fiz-lines off the quadric: From [S, p.450] one can read off the G,-orbits
of intersections of these lines outside of the quadric and the value of the parameter A\ for
the surface X passing through this intersection point. An intersection point is a fix-point
for the group generated by the transformations leaving fixed the intersecting lines. In the
following table we give these (projective) groups (D,, denoting the dihedral group of order
2n), the orders of the fix-group of intersecting lines, the generators of these groups, as well
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as the numbers of lines meeting;:

n| A| group orders generators numbers
6|\ | T 2,3 094, T3Th 3,4
M| T 2,3 o4, T, 3,4
8 A | O 2,3,4  Tym4mLTY, Wy, TATY 6,4,3
Ao | Dy 2,2,4  T3m404, OoTET), TATY 2,2,1
N | Zy x Zy 2,2,2 T3m404, O9ThTY, TamaThTy 1,1,1
M | D3 2,3 M4y, T3Th 3,1
12| M| T 2,3 094, T3Th 3,4
Ao | D3 2,3 094, T3Th 3,1
A3 | Ds 2,5 094, T5TE 5,1
M| T 2,3,5 094, T3Ts, T 15,10,6

4. QUOTIENT SINGULARITIES

Singularities in the quotient surface Y’ =Y originate from fix-points of the group action
(or from singularities on X, but the latter are included in the fix-points, see [S, (6.4)]).
We distinguish four types of fix-points on X = X for elements of G,,:

1) Points of the base locus A of the pencil, n lines in each of the two rulings of the
invariant quadric @, the (projective) fix-group being Z from section 1;

2) points on a line Ay or A} in the base locus, fixed by the group Z, =< o(p,1) >
from section 1 and by some non-trivial subgroup Z; ¢ P(a(1,G));

3) isolated fixed points on the intersection of a fix-line and a smooth surface Xj;

4) nodes of a surface X.

1) All points of A; are fixed by the cyclic group Zs from section 1. The quotient map
here is a cyclic covering of order s. The quotient by Z; is smooth.

2) Since G,, acts on A; as the ternary polyhedral group G, there are orbits of points on
A;, fixed under some none-trivial subgroup of G. We have to disinguish two cases:

Case 1: The n points, where the line A; meets some line A}, C A. Here the stabilizer
group is Zs x Zs acting on X by reflections in the two lines A;, Aj. In such points the
quotient surface Y’ is smooth.

Case 2: The fiz-points of other non-trivial subgroups of G. The lengths of these orbits
and their stabilizer subgroups Z; C G are given in section 1:

t |2 3 4

Go | — 4,4
Gs |12 — 6
G |30 20 —

The total stabilizer is the direct product Z, x Z;. Let v,v’ be eigen-vectors for Z, and
w,w’ eigen-vectors for Z;. Let v ® w determine the fix-point in question. The surface X is
smooth there, containing the line IP(v ® €?), and intersecting the quadric Q transversally.
This implies that the tangent space of X is the plane

Yo-v@w+y -v@w +y2-v @w, yo,y1,y2 € C.

Let o(p1,£1) € Zs and o(=£1,p2) € Z; be generators. Let them act by

1

o(p1,1)v = av, o(p1, 1)V = a ', o(1,p2)w = Bw, o(1,p2)w’ = B,
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These transformations act on the coordinates y, of the tangent plane as

| Yo U1 Y2 21:=U1/Y%  22:=Y2/Yo
olp,) | a o a7t 1 a?
o(l,p2) | B B~ B B2 B2
We introduce local coordinates on X in which the group acts as on 21, 22, and in fact
use again z1,zo to denote these local coordinates on X. We locally form the quotient
X/(Zs x Z;) dividing first by the action of Z;
(21,22) 7 (21, 22)-

Then we trace the action of Z; on 27 and z3. A generator o(1, ps) of Z; acts by

Yo Y1 Y2 21 %2
w W w w w
i —i o —i -1 -1
Yot oyt~ =i

The resulting singularities on Y’ are

ni|s| 2z 2 2 2 |quotient singularity
6|12 w w W w As
83| -1 -1 -1 -1 Aq
- =i 1 —i As
12(5/-1 -1 -1 -1 Aq
50w w w? w As

3) Let L C IP3 be a fix-line for o(p1,p2) € Gn, not lying on the quadric. Assume that
o(p1,p2) is chosen as a generator for the group Fr. By sect. 1 there are eigen-vectors v, v’
for p; with eigen-values o, o~ and w,w’ for p, with eigen-values 3, 37! satisfying

af ==+1, af=a 17! ==+1,
such that L is spanned by v ® w and v' ® w’. The general surface X meets this line in n

distinct points. If the line has order s, two of these points lie on the base locus A. So the
number of points not in the quadric () cut out on L by X is

n | 6] 8 | 12
o(L) 2 3|12 3 4 2 3 5
number |4 6|8 6 8|12 12 10

These points fall into orbits under the stabilizer group Hy. The lengths of these orbits
are given in sect. 1.

To identify the quotient singularity we have to trace the action of o(p1, p2) on the tangent
plane 7, (X). For general X this plane will be transversal to L. So it must be the plane
spanned by z,v ® w’,v’ ® w. By continuity this then is the case also for all smooth X.
In particular, all smooth X meet L in n distinct points, i.e., the intersections always are
transversal. And by continuity again, the numbers and lengths of Hy-orbits in X N L are
the same for all smooth X. Since o(p1,p2) acts

on|vew vVew
by | a8~t  a7'B,
the eigen-values for o(p1,p2) on T,(X) are

-1 -1
@ ﬁ:a_z and of =

af af

= (o =
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The resulting quotient singularity on Y’ therefore is of type A,., where r is the order of L.
We collect the results in the following table. It shows in each case length and number of
Hip-orbits, the number and type(s) of the quotient singularity(ies).

n 6 8 12
o(L) 2 3] 2 2 2 3 4] 2 3 5
type M N N'|\M M' M N R\ M N S
length 4 3 3 8 8 4 6 8 4 6 10
number 1 2 2 1 1 2 1 1 3 2 1
singularities | Ay 2A4s 245 | Ay Ay 2A; Ay A3 | 3A; 245 Ay

4) Finally we consider the nodal surfaces X. All the intersections of fix-lines considered in
sect. 2 are nodes on the surfaces X. There are just two invariant surfaces with nodes not
given there, because through their nodes passes just one fix-line. They are Gg-invariants.
Their parameters are as follows:

A |group generator

)\2 Zg 7T37Tg
)\3 Zg 7T37Tg2

We use this to collect the data for the twelve singular surfaces X in the next table. We
include the number ns of nodes on the surface and specify the group F' C PSL(4) fixing
the node. For each type we give the number of lines meeting in the node. So e.g. 3M
means that there are three lines of type M meeting at the node.

n 6 8 12
A Al A A3 M| M A2 A3 M| AL A A3 Aq
ns| 12 48 48 12 24 72 144 96 | 300 600 360 60
F T Zg Zg T O D4 ZQ X Zg Dg T D3 D5 I
3M 1N 1IN" 3M |6M 2M’ IM" 3M |3M 3M 5M 15M
4N’ AN" | AN 2M" IM” 1N | 4N 1N 1S 10N
3R 1R 1M 65

Lemma 4.1. Let G C SO(3) be a finite subgroup of order > 3.

a) Up to G-equivariant linear coordinate change, there is a unique G-invariant quadratic
polynomial defining a non-degenerate cone with top at the origin.

b) If X is a G-invariant surface, having a node at the origin, then there is a G-equivariant
change of local (analytic) coordinates, such that X is given in the new coordinates by
2?2 +y?+22=0.

Proof. a) We distinguish two cases:

i) G = Zs x Z5 generated by the symmetries

(a:,y,Z) = (:1:7_y7 _Z) and ((L’,y,Z') = (_x7y7_z)‘

The quadratic G-invariants are generated by the squares 22, y? and z2. The invariant
polynomial then is of the form ax? + by? + cz? with a, b, c # 0. The coordinate change

o=z, y =y, 2 = ez

is G-equivariant and transforms the polynomial into 22 4 y'? + 2/2.
ii) G contains an element g of order > 3. Let it act by

(z,y,2) — (cx — sy, sx+ cy, 2)
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with ¢ = cos(a), s = sin(a) and o # 0,7. The quadratic invariants of g are generated
by 22 + 42 and 2. The invariant polynomial must be of the form a(x? + y?) + bz? with
a,b # 0. The G-equivariant transformation 2’ := \/az, 3/ := ay, 2 := v/bz transforms
it into the same normal form as in i). This proves the assertion if G =< g > is cyclic or
if G is dihedral.
In the three other cases G = T, O or I, it is well-known that z2 +y2 + 22, up to a constant
factor, is the unique quadratic G-invariant.
b) Let X be given locally at the origin by an equation f(z,y,z) = 0 with f some power
series. Since X is G-invariant, so is the tangent cone of X at the origin. By a) we therefore
may assume

f=a2 4>+ 22+ f3(z,y,2)
with a power series f3 containing monomials of degrees > 3 only. It is well-known that
there is a local biholomorphic map ¢ : (z,y,2) — (2/,y,2') mapping X to its tangent
cone, i.e., with the property ¢*(z'? + y'? + 2'?) = f. For the derivative ¢’(0) this implies
O(0)* (2 +y? 4 2%) = 2?2 + y? + 22, After replacing ¢ by ¢'(0)~! o we even may assume
©'(0) = id.
Now consider the local G-equivariant holomorphic map

1
@:(x,y,z)HHZhogooh_l.
Gl i

Using the G-invariance of f and 22 4+ y”2 + 2’2 one easily checks ®*(22 + y? + 2/?) = f.
It remains to show, that ® locally at the origin is biholomorphic. But this follows from

1 _ ,
d'(0) = @Zhogol(O)oh 1= id.
heG

Now consider the automorphism
C? = C% v=(vy,v1) — v = (v1,—vp).

For q € SU(2) it is easy to check that (qu)* = gvt. Map €% — €3 via v — v ® vt.
Consider €2 as the space of traceless complex matrices

i y+iz
—y+iz —iz ’

v®vL = < “‘“2’1 —v% >
(% —VoV1

is a matrix of determinant z2 4+ y% + 22 = 0. One easily checks that the map v — v ® v
is 2 : 1 onto the cone of equation 22 4+ y? 4+ 22 = 0, identifying this cone with the quotient
(?/ < —id >. And this map is SU(2)-equivariant with respect to the 2 : 1 cover SU(2) —
SO(3). If G C SU(2) is some finite group, then the quotient €?/G via this map is
identified with the quotient of the cone by the corresponding ternary group G C SO(3).
Together with lemma 3.1 this shows:

Then

Proposition 4.1. Let X = X, be a nodal surface with G the fixz-group G of the node.
Then the image of this node on X/G, is a quotient singularity locally isomorphic with

C?/G.
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5. RATIONAL CURVES

We denote by X = X, — Y’ = Y] the quotient map for G, acting on X and by ¥V =
Y\, — Y’ the minimal resolution of the quotient singularities on Y coming from the orbits
of isolated fixed points in sect. 2. The n lines A;, A} C @ in each ruling map to one smooth
rational curve in Y’. We denote those by L, L’. Both these curves meet transversally in a
smooth point of Y’. All quotient singularities are rational double points. Resolving them
introduces more rational curves in Y. For each singularity A; we get a chain of k£ smooth
rational (-2)-curves. Since the group Z; from sect. 3 acts on X with A;, resp. A} defining
an eigen-space in the tangent space of X, the curves L, L’ meet the A;_i-string in an end
curve of this string, avoiding the other curves of the string.

All lines L of the types M, M’ ,M" /N, N',N", R, S form one orbit under G,,. We denote
by M; etc. the rational curves resolving the A,-singularity on the image of LN X. If LN X
consists of more than one Hy-orbit we get in this way more than one A,-configuration of
rational curves coming from L N X.

5.1. The general case. First we consider the quotients of the smooth surfaces X: The
striking fact is that the number of the additional rational curves is 17. We give the dual
graphs of the collections of 19 rational curves on Y, changing the notation L, L’ to L3, L}
for n = 6,12 and to Ly, L) for n = 8:

Ly Ly L3 Ly Ls N1 No» N3 Ny
*———0 *———0

——— o o —0o o Ml —o —o

v, L, L, L. Ns Ng Ny Ny
n=6: M; coming from M, Ny,..., Ns from N’, Ns, ..., Ng from N”

Ly Ly L3 Ly Ly M My Ny Ny
*——o

——o — 00— —9© [ ] [ ]

r——————0—0 [ ] [ *r————o—O
L, L, L, I, L. My M, R Ry Rs
n=8: M from M’, My from M", Mz, My from M, N; from N, R; from R

I, Ly Ly L, My My N, Ny N3 N,
p—O [ ] [ ] *———0 *——o

*————— 00— @ [ ] *——— — 00—

Ly Ly Ly L} Ms S1 So S3 Sy
n=12: M; from M, N; from N, S; from S

Proposition 5.1. In each case the 19 rational curves specified generate a sub-lattice of
NS(Y) of rank 19.

Proof. We compute the discriminant d of the lattice. The connected components of the
dual graph define sub-lattices, the direct sum of which is the lattice in question. We
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compute the discriminant block-wise using the sub-lattices
L:=<LyL,> M:=<M;> N:=<N;> R:=<R;> §:=<8;>

and find
n|d(L) d(M) d(N) d(R) d(S)|d

6| —45 -2 34 2.3%.5
8| —28 24 R — 28.3.7
12| —11 =23 32 5123.32.5.11

O

5.2. The special cases. Here we consider the desingularized quotients Y for the twelve
singular surfaces X. The image of the nodes on X will be on Y a quotient singularity for
the binary group corresponding to the ternary group F' from sect. 3. There we also gave
the lines passing through this node on X. The nodes of X on such a line fall into orbits
under the group H fixing the line. If there is just one H-orbit of intersection points of the
general surface X with this line, it is clear that this orbit converges to the orbit of nodes.
We say: The quotient singularity swallows the orbit. If however there are more than one
H-orbits, we have to analyze the situation more carefully. We use the map onto IP; of
this line induced by the parameter A. Nodes of X on the given line will be branch points
of this map.

Degree 6: On lines of type M there ist just one orbit of four points. On lines of type
N’, N” there are two orbits of length 3. The parameter X\ induces on each N'- or N”-line
some 6 : 1 cover over IP;. Each fibre of six points decomposes into two orbits of three
points. The total ramification degree is —2 — 6 - (—2) = 10. The intersection with @
consists of two points of ramification order 2. So outside of the quadric Q we will have
total ramification order six, hence it will happen twice, that two orbits of three points are
swallowed by a quotient singularity. This must happen on the surfaces Xg 1 and Xg 2 for
N’, and for N” on X¢ 3 and Xg4. We give the rational curves from 4.1 disappearing in Y,
being replaced by rational curves in the minimal resolution of the quotient surface. Here
we do not mean that e.g. the curve N; indeed converges to the curve denoted by N in
the dual graph of the resolution. We just mean that all the curves denoted by letters in
the dual graph disappear:

N N. N. N, N N. N. N,

6.1 1 2 3 4 6.2 1 2 3 4
M,y M

N, N, N N, N, N, N N,

6.3 &3 6 7 8 6.4 &3 6 7 8

Degree 8: The only lines with two H-orbits are those of type M. The map to IP; there
has degree eight and total ramification order 14. The intersection with ) counts for two
points with ramification order three each. So there will be total ramification of order eight
off the quadric. The surface Xg; has 24-6/72 = 2 nodes on such a line, it swallows at least
one orbit. The surface Xg3 has 144/72 = 2 nodes too and swallows at least one orbit too.
The surface Xg4 has 96 - 3/72 = 4 nodes and swallows at least two orbits. Since the total
branching order adds up to at least 2+ 2+ 4 = 8, the bounds for the numbers of orders in
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fact are exact numbers. The dual graphs for the resolution of quotient singularities and
the curves swallowed are as follows:

My
8.1 Ry Ry Rs N1 N» 8.2 Ry Ry Rj
M,
M;
Ms3
8,3:M1 My 8,4:N1 Ny
My
Ms3

Notice, that it is not necessary here to distinguish between M3 and M. In fact it is
even impossible, since the two corresponding orbits of intersections of the line M with the
surface X are interchanged by monodromy.

Degree 12: Now a line of type M contains three H-orbits of length four. The total
branching order for the A-map is 22 on such a line. The intersection with () consists
of two six-fold points and decreases the branching order by 10. So the total branching
order off the quadric is 12. On such a line there are

on the surface | nodes orbits swallowed
X121 300 - 3/450 = 2 >1
X12,2 600 - 3/450 = 4 >2
X12,3 360 - 5/450 = 4 >2
X1274 60 - 15/450 =2 >1

Since the total branching order must add up to twelve, the number given is indeed the
number of swallowed orbits.

A line of type IV contains two H-orbits of length six. Just as in the preceding case one
computes the following numbers

on the surface | nodes orbits swallowed
X121 300 -4/200 =6 >2
X12,2 600 - 1/200 = 3 >1
X124 60 -10/200 = 3 >1

Again the total branching order adds up to twelve. Therefore the estimates give the precise
number of orbits swallowed.
M,
N N. N N, N N.
12,1: o o? et 12,2 o2

My
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12,3 : 12,4 :
My

Again, by monodromy it is impossible to distinguish between the curves My, Ms and Mg,
and likewise between the pairs { N1, No} and {N3, Ny}.

6. K3-SURFACES

In this section we show that the desingularized quotient surfaces Y) are K3 and that their
structure is not constant in \. We start with a crude but effective blow-up of IP3. Let
2= {(z,\) € IP3 x C : s,(z) + A¢"?(z) = 0}.
In addition we put:
e = C IP3 x IP; the closure of Z. It is a divisor of bidegree (n,1).
7 : = — IP3 the natural projection onto the first factor;
J + 2 — C the projection onto the second factor. It is given by the function A.
A := 771A. This pull-back of the base-locus is the zero-set of 7*¢ on =;
=20 ¢ = the complement of the finitely many points in = lying over the nodes of
the four nodal surfaces X.
e Y := =/G, the quotient threefold. Notice that the action of G, on IP3 lifts
naturally to an action on =.
e 1 : Y — € the map induced by f;
e 10 the image of Z°.

Lemma 6.1. a) The threefold = C P53 x C is smooth. .
b) If M C TPs, MNQ_‘ Q, is a ﬁac-lz'ne~ for an element £1 # g € G,, and M C = is its proper
transform, then M does not meet A in =.

Proof. a) By d)(sn + A\g"/?) = ¢"/? singularities of Z can lie only on 7~ 'A. But there
aﬁci(sﬂ + )\qn/Q) = 8xi3n'

Since s, = 0 is smooth along A, this proves that = is smooth.

b) The assertion is obvious, if M does not meet the base locus A. If however M N A =
{x1, 2} is nonempty, we use the fact, observed in sect. 3, that the polynomial Spttq™ 2\M
vanishes in z; to the first order for all smooth surfaces X : s, + tq”/ 2 — (. On M however
we have s, = —\¢™/? with n/2 > 1. So M will not meet 7~ {z1, x5} in E. (]

The G,-action on = has the following kinds of fix-points:
1) Fix-points on A for the group Z,;
2) Fix-points for the group Z, x Z, on the fibre 771 () over some intersection of lines
A;, A;- in the base locus A;
3) Fix-points for a group Zs x Z; on the fibre 7=!(z) over a point x, where a line in
the base locus meets some line M of fix-points not in the base locus. By lemma
5.1 b) 7~ !(x) and M do not intersect in Z.

4) Fix-curves L away from A lying over fix-lines L not contained in the base-locus.

All these curves are disjoint, when considered in Z°.
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The quotient three-fold Y/ = E/G,, is smooth in the image points of fix-points of types
1) or 2). It has quotient singularities A; in the image curves of the curves 771(z) of type
3). To be precise: The singularities there locally are products of an A; surface singularity
with a copy of the complex unit disc. Additional such cyclic quotient singularities Ay,
occur on the image curves of curves L of type 4). Where two such curves meet we have
higher singularities. But such points are removed in T°. So Y? is singular along finitely
many smooth irreducible rational curves. The singularities along each curve are products
with some cyclic surface quotient Ay.

Let T — Y° be the minimal desingularisation of T° along these singular curves. Locally
this is the product of the unit disc with a minimal resolution of the surface singularity
Ay Since the surfaces Y intersect the singular curves transversally, the proper transforms
Y, C T are smooth, minimally desingularized. They are the fibres of the map induced by
h. For X\;,i = 1,...,4, we denote by Y), the minimal resolutions of the quotient surfaces
X),/Grn. We do not (and cannot) consider them as surfaces in Y.

Proposition 6.1. The surfaces Yy are (minimal) K3-surfaces.

Proof. All cyclic quotient singularities on YT° are gorenstein. So there is a dualizing sheaf
wyo pulling back to the canonical bundle Ky on Y. Under the quotient map =0 — Y0
it pulls back to the canonical bundle K=, except for points on the divisor A. There we
form the quotient in two steps, as in sect. 3, first dividing by Z, and then by Z;. The
pull-back via the quotient by Z; is the canonical bundle of Z/Z,. The quotient map for
Z, is branched along A to the order s. So the adjunction formula shows: The dualizing

sheaf wyo pulls back to

KEO & OEO((l — S)A) = KEO X T*(O]P3(2 — 28))
The divisor Z C IP3 x IP; is a divisor of bi-degree (n,1). Hence = has a dualizing sheaf
W= = OIP3><IP1 (n — 4, —2).
Now the miracle happens:
n—4=2s—2.
This implies: The pull-back of wyo to Z° equals the restriction of Op,xp, (0, —2), i.e. it
is trivial on =°.
We distinguish two cases:
a) A # X\, ¢ = 1,...,4: The adjunction formula for Y’ = Y] = X, /G,, shows

wyr = wyo|Y.

So the pull-back of wy+ to X is trivial. This implies: deg(wy-)|C = 0 for all irreducible
curves C' C Y’ and then deg(Ky|C) = 0 for all irreducible curves C' C Y. The surfaces
Y have canonical bundles, which are numerically trivial. In particular those surfaces are
all minimal. By the classification of algebraic surfaces [BPV p. 168] they are abelian, K3,
hyper-elliptic or Enriques. Since we specified in sect. 6.1 rational curves on Y spanning a
lattice of rank 19 in NS(Y') the only possibility is K3.

b) A = A\, i = 1,...,4: The proof of a) shows deg(Ky|C) = 0 for all irreducible curves
C' C Y not passing through the exceptional locus of the minimal desingularization Y — Y.
In particular this holds for all curves C which are proper transforms of ample curves
D c Y'. Now an arbitrary curve C C Y is linearly equivalent to F + C; — Cy with E
exceptional and C; proper transforms of ample curves D; C Y. Since all singularities on
Y’ are rational double points of type A,D,E, we have Ky.E = 0. The method from a)
then applies here too. U]
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Proposition 6.2. The structure of the K3-surfaces Yy varies with \.

Proof. We restrict to surfaces near some surface Y, with Y’ the quotient of a smooth
surface X. Here we may assume that the total space T is smooth. If all surfaces near Y
were isomorphic, locally near Y the fibration would be trivial [FG]. L.e., there would be
an isomorphism ® : Y x D — T respecting the fibre structure. Here D is a copy of the
complex unit disc. By the continuity of the induced map

Y=Y x\—=Y,

there is an isomorphism Y — Y, mapping the 19 rational curves from sect. 4.1 on Y to
the corresponding curves on Y\, A € D. The covering X — Y is defined by a subgroup in
the fundamental group of the complement in Y of these rational curves. This implies that
the isomorphism Y — Y) induces an isomorphism of the coverings X — X, equivariant
with respect to the G,,-action.

Now this isomorphism must map the canonical bundle Ox(n —4) to the canonical bundle
Ox, (n —4). Since the surfaces X are simply-connected, the isomorphism maps Ox (1)
to Ox, (1), i.e., it is given by a projectivity. This is in conflict with the following. Il

Lemma 6.2. For general A # p there is no projectivity ¢ : P35 — P53 inducing some
Gr-equivariant isomorphism Xy — X,.

Proof. Assume that such an isomorphism ¢ exists. Equivariance means for each g € G,
and x € X that pg(z) = gp(x) or o~ tg lpg(z) = x. Since X, spans IP3 this implies the
same property for all x € IP3, i.e., the map ¢ is G,-equivariant on all of IP3. In particular,
if L C IP3 is a fixline for g € Gy, then so is ¢(L). Then we may as well assume (L) = L.
We obtain a contradiction by showing that the point sets X, N L and X, N L in general
are not projectively equivalent.

The cases n=6 and 12: We use the fix-line L := {xg = ©1 = 0} of type M, fixed under
01,3 = 0(q1,q1) (notation of [S, p. 432]). The group Hj, has order 8, containing in addition
the symmetries o(q1,1) and o(q192,q1¢2) sending a point z = (0:0: x9 : z3) € L to

o(qi, )(z) =(0:0:29: —x3), 0(q1q2,q192)(x) = (0:0: —x3: x3).

Omitting the first two coordinates and putting xo = 1,23 = u, we find that a general
Hp-orbit on L consists of points

(T:uw), (1:1/u), (1:—u), (1:—=1/u).
The cross-ratio of these four points

OR — 2u :1/u—|—u: 4o

u+1l/u’ 2/u (14 u?)?
varies with u. The intersection of Xg \ with L consists of one such orbit, the intersection
of Xyg ) of three orbits. This implies the assertion for n = 6 and 12.
The case n=8: Here we use the fix-line L := {x; = x3,29 = 0} of type M for mzmymsm).
Again Hj, has order 8 containing in addition w374 and o(q192,¢1¢g2). They send a point
r=(u:1:0:1) €L to

mamg(r) = (—2:u:0:u), o(q1q2,q1q2)(x) = (u:—1:0:—1).

Omitting the coordinates x3 and x4 we find that a general Hy-orbit consists of

(u:1), (—u:1), (2/u:1), (=2/u:1).
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Their cross-ratio
u—2/u —u—2/u _ (u?—2)?

u+2/u —u+2/u (u?+2)2
varies with u. The intersection of Xg ) consists of two such orbits. Il

CR =

Corollary 6.1. The general K3-surface Yy has Picard-number 19.

7. PICARD-LATTICES

Here we compute the Picard lattices of our quotient K3-surfaces Y.

7.1. The general case. Denote by V C H?(Y,Z) the rank-19 lattice spanned (over Z)
by the rational curves from sect. 4.1. For n = 6 and 8 this lattice V is not the total Picard
lattice:

Proposition 7.1. a) (n=6) After perhaps interchanging curves No;_1 and Na; the two
divisor-classes

L = Li1—Lo+Ly—Ls+ Ny — Ny+ N3— Ny+ N5 — Ng+ N7 — Ng,
L = Lll—Lé—l—Lil—L/S—l—Nl—N2—|—N3—N4—N5—|—N6—N7+N8
are divisible by 3 in NS(Y). Together with V the classes L/3 and L'/3 span a rank-19

lattice with discriminant 2 - 3% - 5.
b) (n=8) After perhaps interchanging M; and My the two classes

L = Li+ L3+ Ls+ M+ M3+ My+ Ry + Rs,
L' = Ly+Ly+ L5+ My + Mz + My + Ry + R

are divisible by 2 in NS(Y). Together with V the classes L/2 and L'/2 span a rank-19
lattice with discriminant 2% -3 - 7.

Proof. a) Consider reduction modulo 3
p3: 27 = H*(Y,Z) — H*(Y,IF3) = F52.
Because of
M12 = —2, Ml.L; = 0, det(L;, L;)i,j:l,..A = 5,
the images of My, L}, L, L, L, span a subspace of H?(Y,IF3) on which the intersection
form has rank 5. The orthogonal complement C of this lattice in H%(Y,IF3) has dimension
17 and the form is non-degenerate there. This C contains the classes mod 3 of the twelve
curves
Ly, Ly, Ly, L5, Ny, ..., Ng
Assume that
Dy := @3 < L1, La, L4, L5, N1, ..., N3 >
has IFs-dimension 12. Then
Dy := @3 < Ly — Ly, Ly — L5, Ny — Na, N3 — Ny, N5 — Ng, N7 — Ng >

has dimension six. Since D; L Ds, this is a contradiction. We have shown: A non-trivial
linear combination of the twelve classes L1, Lo, Ly, L5, N1, ..., Ng lies in the kernel of 3.
By [T] such a 3-divisible class contains at least 12 curves. Hence we may assume the class
is

L:= X (L1 —La)+ M(Ly — Ls) + Z Vi(Nai—1 — Na;)
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with A;,7; = £1 modulo 3. W.lo.g. we put A\;y = 1. Intersecting with L3 we find
Ay = 1 too. And after perhaps interchanging curves No;_; with Ny; we may assume
vy =..=v4=1.

Exactly in the same way we find a class

L':=L) = Lh+ Ly — L+ > vi(Naio1 — Nyg), v} = £1mod3,

which is 3-divisible in NS(Y'). Then L+ L’ is 3-divisible too, and by [T] contains precisely
12 curves. This implies that precisely two coefficients v/ cancel against the corresponding
coefficients of L. If these are the coefficients v4 and v}, we are done. If this should not
be the case, after perhaps interchanging { N1, No} with { N3, Ny}, {N5, Ng} with { N7, Ng}
we may assume v, = v4 = 1 and v} = 14 = —1. Denote by T : H*(X,Z) — H*(X,Z),
resp. H*(Y,Z) — H*(Y,Z) the monodromy about Xg o (circling the parameter Ay in the
parameter space) and by T3 the monodromy about Xg3. So 75 interchanges {Ni, Na}
with {N3, N4}, leaving fixed {N5, Ng}, { N7, Ng} with T3 doing just the opposite. NS(Y')
contains the classes (coefficients modulo 3)

Li—LotlLs—Ls Li—L3+Lj—Ly N1—No N3—Ns Ns—Ng Nz—Ng
3 3 3 3 3 3
L 1 0 1 1 1 1
r 0 1 1 -1 1 -1
L+L 1 1 -1 0 -1 0
To(L + L/) 1 1 0 +1 —1 0
Ts3(L + L/) 1 1 —1 0 0 +1

These classes would span in NS(Y)/V a subgroup of order 3%, in conflict with d(V) =
2.3%.5, contradiction.
b) Here we consider reduction modulo 2

o 1 Z%* = H*(Y,Z) — H?*(Y,TFy) = IF22.
The subspace
C =y < L1, L3, Ly, My, My, M3, My, Ry, Ry > C H*(Y,TF>)
is totally isotropic. It is orthogonal to D := ¢y < Ly, L}, L%, L)y, N1, Ny >. Because of
det(Lg.L;-)i7j:1,...,4 =5, det(N;.Nj)ij=1,2=3,

the intersection form on D is non-degenerate, and D= is non-degenerate of rank 16. This
implies dim C' < 8. So there is a class

L:= Z AiLi + piMi + piRR;
in the kernel of 9. By [N] it has precisely eight coefficients = 1. Intersecting

with | we find

Lo, Ly | A1 =A3=2X5=: A

Ry p1=p3=:p
This implies that precisely one coefficient u; will vanish and A = p = 1. In the same way
one finds a class

L':=I)+Li+ L5+ ) piM;+ Ry + Rs
in the kernel of 9 with precisely one p) vanishing. The class

L+ L =Li+Ls+Ls+ L + Ly + L5+ (ui + ) M;
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also is divisible by 2 and has precisely eight non-zero coefficients. It follows that precisely
two of the non-zero coefficients from p; and p); coincide. If pg = pg = pf = ply = 1 we
are done (perhaps after interchanging M; and Ms). If this is not the case, assume e.g.
p1 = p2 = pa =1, p3 = 0. Denote by T' the monodromy about the surface Xg4 (circling
the parameter )\ in the parameter space). It interchanges M3 and My. So the two classes

L 1
5 = E(Ll+L3+L5+M1+M2+M4+R1+R3)
T(L 1
% = §(L1+L3+L5+M1—|—M2+M3—|—R1+R3)
would belong to NS(Y). However this contradicts
L T(L) 7
~. W Lag
2 2 2 ¢ N

Theorem 7.1. If the Neron-Severi group of Y has rank 19, it is generated by V and
n |
6|L/3,L/3,
8| L/2,L'/2,
12 | no other classes.

Proof. Denote by W C NS(Y') the lattice spanned by the 19 rational curves from sect.
4.1 and by L/3, L'/3 from prop. 6.1 a) (if n = 6) resp. L/2, L'/2 from prop. 6.1 b) (if
n = 8). If NS(Y) # W there would be an integral lattice W’ with W c W’ c NS(Y)
and p := [W’ : W] a prime such that p? divides d(W). The only possibilities are p = 2
or = 3. The following table gives in each case generators for the p-subgroup (W /W)P of
WY /W

n p | generators for (WY /W)P

6 3 (Nl—NQ—N3+N4)/3, (N5—N6—N7—|—N8)/3

8 2| (M + My + M3)/2, (My + My + My)/2, (M1 + M3)/2 + (R1 + 2Ry + 3R3) /4
12 2| My/2, Mz/2, Ms)2

12 3| (N1 = N2)/3, (N3 — Nu)/3

By [N] a divisor consisting of m disjoint rational curves on Y can be divisible by 2 only if
m =8 or = 16. For n = 12, p = 2 there are only three such curves, while for n =8, p =2
there are only the six curves My, My, M3, My, Ry, Rs. These cases are excluded. By [T] a
divisor consisting of m disjoint pairs of rational curves, each pair meeting in one point, is
divisible by 3 only if m = 6 or = 9. This excludes the cases p =3 and n =6 or = 12. [

7.2. The special cases. Just as before we denote by V' C NS(Y') the sub-lattice spanned
by the rational curves from sect. 4.1. Now it has rank 20. In the same way, as in sect.
6.1 we check, that for n = 6 the classes L/3,L'/3 and for n = 8 the classes L/2,L'/2 in
NS(Y) exist. Intersecting with the twentieth rational curve we find, that the curves can
be labelled as in the diagrams of sect. 4.2.

Theorem 7.2. In all cases NS(Y') is spanned by the classes from sect. 6.1 and the
twentieth rational curve. The discriminants of the lattices are

case | 6,1 6,2 6,3 6,481 82 83 84 |121 12,2 123 124
d |-15 —60 —60 —15| 28 -84 —168 —112| 660 —1320 —792 —132
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Proof. Denote by C' the twentieth rational curve and by W the lattice spanned by V
and C. The discriminants in the table above are those of the lattice W. We have to
show W = NS(Y). If this would be not the case, there would be a lattice W' with
W c W' C NS(Y) such that p := [W' : W] is a prime with p? dividing d(W). In
the following table we collect the possibilities and give in each case generators for the
p-subgroup (WY /W)P of WY /W . (The cases 6,2 and 6,3 are essentially the same.)

case p | generators

6,2 2| M;/2, (N1 +C+ Ny)/2

8,1 2 (M1+M2—|—M4)/2, (M3+M4—|—R1—|—R3)/2

8,2 2 (M1+M2—|—M3)/2, (M1+M2—|—M4)/2

8,3 2| (My+ M+ My)/2, (My+ M2)/2 + (R1 + 2Ry + 3Ry) /4

8,4 2 (Ml+M2)/2—|—(2N1+20+M3+3M4)/4, (M1+M2)/2+(R1+2R2+3R3)/4

12,1 2| My/2, M3/2

12,2 2| M3/2, (2N1 +2C + M; + 3M>)/4

12,3 2| M3/2, (251 4+ 253 4+ 2C' + M, + 3M>) /4

3| (N1 —N2)/3, (N3 — N4)/3

12,4 2| My/2, M3/2
In each single case there are not enough rational curves to meet the conditions [N] for a
divisor divisible by 2 or [T] for a divisor divisible by 3. L]

8. COMMENTS

1) Denote by M}, the moduli-space of abelian surfaces with level-(1,k) structure In [Mu] the
quotients IP3/Gg, resp. IP3/Gy are identified with the Satake-compactification of Ms, resp
My, and IP3/G12 is shown to be birationally equivalent with the Satake-compactification
of Ms. However the proof there is not very explicit. It is desirable to have an explicit
identification of the quotient IP3/G,, with the corresponding moduli space. The pencil Y,
on IP3/G,, might be useful.

2) We did not consider the quotient threefold IP3/G,. We just identified the minimal
non-singular model Yy for each quotient Y;. Of course it would be desirable to have
a global resolution of IP3/G,, and to view our K3-surfaces as a pencil on this smooth
threefold. One would need a particular crepant resolution of the singularities of Y. Such
resolutions are given e.g. in [I, IR, Ro]. We would need a resolution, where the behaviour
of the K3-surfaces can be controlled, to identify the partial resolutions of the four special
surfaces.

3) Our quotient surfaces admit a natural involution induced by the symmetry C' from [S,
p. 433] normalizing G,,, but not belonging to SL(4, C). It would be interesting to identify
the quotients.

4) By [Mo] each K3-surface with Picard number 19 admits a Nikulin-involution, an invo-
lution with eight isolated fix-points. We do not know how to identify it in our cases. It
cannot be the involution from 3), because this has a curve of fix-points. It is also not clear
to us, whether this Nikulin-involution exists globally, i.e. on the total space T of our fibra-
tion. This Nikulin-involution is related to the existence of a sub-lattice Eg 1 Eg C NS(Y).
We did not manage to identify such a sub-lattice.

5) It seems remarkable that the Picard group of the general surface in a pencil of K3-
surfaces can be identified so explicitly, as it is done in sect. 6. It is also remarkable that
the quotient K3-surfaces have Picard number > 19. Such pencils have been studied in
[Mo] and [STZ]. We expect our surfaces to have some arithmetical meaning. In particular
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the prime factor n —1 = 5,7, 11 in the discriminant of the Picard lattices draws attention.
In fact, the same prime factor appears in each polynomial s,, n = 6,8,12 from [S]. It can
be found too in the cross-ratio CR(A1, ..., A\y) of the four special parameters in each pencil
X, and together with strange prime factors in the absolute invariant j:

(B]
[BPV]

n 6 8 12
2 2 112
CR 5 e
32 24.3 25.3
) 13%.37  133.1813 122413
I 198351 ¥ 3274 210.32. 54114
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GROUP ACTIONS, CYCLIC COVERINGS AND FAMILIES OF
K3-SURFACES

ALESSANDRA SARTI

ABSTRACT. In this paper we describe six pencils of K3-surfaces which have large Picard-
number (p = 19,20) and contain each precisely five special fibers: four have A-D-E
singularities and one is non-reduced. In particular we describe these surfaces as cyclic
coverings of the K 3-surfaces of [BS]. In many cases using 3-divisible sets, resp. 2-divisible
sets of rational curves and lattice theory we describe explicitly the Picard-lattices.

0. INTRODUCTION

In the last years using various methods (toric geometry, mirror symmetry, etc.), many
families of K 3-surfaces with large Picard-Number and small number of special fibers have
been constructed and studied (see e.g. [D], [VY] and [Be]). In these notes using group
actions and cyclic coverings we describe six new families where the generic surface has
Picard-number 19 and we identifies four surfaces with Picard-number 20. These six pen-
cils are related to three families of K3-surfaces studied by Barth and the author in [BS],
the generic surface has Picard-number 19 and the pencils contain four surfaces with sin-
gularities of A — D — FE type and p = 20 and one non-reduced fiber. The families arise as
minimal resolutions of quotients X /G, were G,, is a special finite subgroup of SO(4,R)
containing the Heisenberg group and { X} }xcp, is a Gp-invariant pencil of surfaces in Ps,
the latter are described in [S1] (we recall some facts in section 1). In section 1 and section
2 we describe six normal subgroups H of G, which contain the Heisenberg group, we
describe the fix points of H on X} and we show that the minimal resolutions are pencils
of K3-surfaces which contain five special surfaces. Then in section 3 we show that the new
families are certain cyclic coverings of the surfaces of [BS]. Then, by a classical result of
Inose, [I, Cor. 1.2], they have the same Picard-number, hence the general surface in each
of the six pencils has Picard number 19 and we have four surfaces with Picard-number
20. In section 4 by using the rational curves on the minimal resolutions and 2-divisible
and 3-divisible sets of rational curves, we describe completely the Picard-lattice of many
of the surfaces.

I thank Wolf Barth for introducing me to cyclic coverings and for many useful discus-
sions, and the referee for pointing me out the paper [I] of Inose and for many suggestions
improving the presentation of the paper.

1. NOTATIONS AND PRELIMINARIES
There are two classical 2 : 1 coverings:
SU(2) — SO(3,R) and 0 : SU(2) x SU(2) — SO(4,R).

Denote by T,0 C SO(3,R), the rotation group of tetrahedron and octahedron, by TL O

the corresponding binary subgroups of SU(2) and let Gg := o(T' x T), Gg := (O x O).

We denote an element of SU(2) x SU(2) and its image in SO(4,R) by (p1,p2). Let
89
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Xg = s¢ + \¢° and X§ = sg + A¢g* denote the pencils of Gg- and of Gg-invariant surfaces
in P3, which are described in [S1], s¢ denotes a Gg-invariant homogeneous polynomial
of degree six and sg denotes a Gg-invariant homogeneous polynomial of degree eight,
q = 23 + 23 + 23 + 23 is the equation of the quadric P; x Py in P3. The base locus of the
pencils XY are 2n lines on the quadric, n in each ruling and each pencil contains exactly
four nodal surfaces (cf. [S1]). Now recall the matrix:

C:= € O(4,R),

O = OO
o O O

0
-1

0 —

0

OO O

which operates on an element (p1,p2) € G1 X Ga by:

C ' (p1,p2)C = (p2,p1).

Moreover we specify the following matrices of SO(4,R):

0 -1 0 0 0 0 -1 0
1 00 0 0 0 01
@bhH=10 oo -1 | @V=1 o oo
0 01 0 0 -1 00
1 -1 1 -1 1 -1 0 0
11 -1 -1 1 10 0
_1 _ L
D) =2 1 1 1 1| D=3 0 01
11 11 0 01 1

Using these matrices the groups have the following generators:

Group ‘ Generators

GG (Q2y1)7(17Q2)’(p371)7(17p3)
GS (Q2, 1)7 (17 Q2)7 (p?n 1)7 (1,]93), (p47 1)7 (17]94)

Denote by PG the image of a subgroup G C SO(4,R) in PGL(4,R). We define the types
of lines in P3 which are fixed by elements (p1,p2) € PG of order 2,3 or 4 in the following
way:

order|2 3 4
type|M N R

1.1. Normal subgroups. In [S2] the author classifies all the subgroups of SO(4, R) which
contain the Heisenberg group V x V. Here we consider all the normal subgroups of Gg
and of Gg which contain the subgroup V x V, resp. Gg. We denote by H such a normal
subgroup, by o(H) its order and by i(H) = [G,, : H] the index of H in G,,. We list below
all the groups H and their generators, following the notation of [S2]. Moreover we do not
consider separately the groups H and C~'HC or, in general, groups which are conjugate
in O(4,R). The group T x T is in fact the same as Gg, but to avoid confusion we use this
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notation when we consider it as subgroup of Gg.

H C Gg | generators o(H) | i(H) || H C Gg | generators o(H) | i(H)
TxV |(q,1),(1,q1) | 96 3 OxT |(q1,1),(1,q1) | 576 |2
(p?nl) (p?nl)v(lvp?))
(p47 1)
(TTY (q1,1),(1,q1) | 96 3 (00)" | (q1,1),(1,q1) | 576 |2
(QQal)v(LQQ) (p?nl)v(lap?;)
(p3,p3) (P1G2, P1g2)
VxV (ql,l),(l,ql) 32 9 TxT (ql,l),(l,ql) 288 4
(QQal)v(LQQ) (p?nl)v(lap?;)

1.2. Fix-points. We analyze the different kind of fix-points for elements of the subgroups
PH C PG in the same way as in [BS]. Recall that the elements of the form (p, 1) or (1, p)
have each two disjoint lines of fix points contained in one ruling, respectively in the other
ruling of the quadric (cf. [S1, 5.4 p. 439)]).

1) Fiz-points on the quadric. The subgroups G1 x 1 and 1 x Gy of PH operate on the
two rulings of the quadric and determine orbits of lines. We give the lengths of the orbits
in the following tables. In the first row we write the order of the element which fixes two
lines of the orbit:

order of (p,1) | 2 3 4 order of (1,p) | 2 3 4
TXV 6 14 — TxV 2,2,2 —
OxT 12 8 6 OxT 6 4.4

(TTY 6 - (TTY 6 S
(00)” 6 8 - (00)” 6 g8 -
VxV 2,2,2 — — VxV 2,22 — —
TxT 6 4,4 TxT 6 4,4 —

In particular observe that in the case of the groups (T'T)" and (OO)” the meeting points
of the fix-lines of the two rulings of P; x IP; split into three orbits of length 12 and two
orbits of length 32, in the other cases these meeting-points form just one orbit.

2) Fiz-points off the quadric. We denote by FJ, the fix-group of a line L of P3 in PH and
by Hj the stabilizer group of L in PH, i.e.

Fr:={h € PH st. hv =z for all x € L}
Hy :={h e PH s.t. hL = L}.

Moreover denote by ¢(L) the length of the H-orbit of the line L and by g a representative
of a conjugacy class in H:

group TxV (TTY VxV
g (q,q1) (q1.92) (q1,93) | (q1,q1) (q1.q2) (q1,93) (p3,p3) | (4isq;)
Fy, Zg Zg ZQ ZQ ZQ ZQ Zg ZQ
type M, My Ms My My Ms N Mij
(L) 6 6 6 6 6 6 16 2
|Hy|/|FL| 4 4 4 4 4 4 1 4

Here we denote by g3 € SU(2) the product of ¢; and ¢o. In the last column of the table
the sum runs over i,j = 1,2,3. In this case we have nine distinct conjugacy classes with
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group OxT (00)" TxT
g (q1,q1) (p3.p3) (Paq2,42) | (pa,ps) (p3,p3) (P3,p3) (Pago.paqe) | (02.92) (p3,p3) (P3.p3)
Fy, Zo Zs Zo Ly Zs Zs Zo Zo Zs Zs
type M N M R N N’ M M N N’
o(L) 18 32 36 18 16 16 72 18 16 16
\Hp|/|FL|| 8 3 3 4 8 8 2 4 3 3

Remark 1.1. By taking the generator (p3,ps) for (TT)' instead of (ps,p3) we find a group
(TT)" which is conjugate in O(4,R) to ( T)’. The description of the fix points is similar
as in the case of (TT) .

2. QUOTIENT SURFACES

1. Quotient singularities. We consider now the projections:

o XS — XS$/H, mp o X§ — X§/H'

with H=T xV, (TT) or VxV; H =0 x T, (OO)" or T x T. In this section we run
the same program as in [BS], section 3 and describe the singularities of the quotients (for
the details cf. [BS]) .

1) Fiz-lines on g. The image in the quotient of the lines of the base locus of the pencils X §
and X § and of the intersection points of the lines of the base locus are smooth. Observe
that the points of intersection of the lines of the base locus of the pencils form one orbit
under the action of T x V, V x V, O x T and T x T. In the case of the groups (TT)" we
have three orbits and in the case of the group (OO)” we have two orbits, as described in
1.2, this means that the lines in the quotient will meet three times and two times. Now
we consider the points of intersection of the lines of the base locus with the other fix-lines
on ¢. In the table below we do not write the groups (I'T") and V' x V' because they do not
have other fix-points on g other than the lines of the base locus. We denote by Fix(P) the
fix-group in PG of a point P. In the next table we write the length and the number of
orbits of fix-points, and we describe which kind of singularities do we have in the quotient:

group | TxV | OxT | (00)" | TxT
FIX(P) Zg X Z2 Zg X Z2 Z4 X Zg Z2 X Zg Z2 X Zg Zg X ZQ Zg X ZQ ZQ X Zg
length 8 48 24 48 48 48 24 24
number 6 1 2 2 1 1 2 2
sing. 6A2 1A1 2A3 2A1 1A1 1A1 2A1 2A1

2) Fiz-lines off q. Denote by o(L) the order of the fix-group F7, of L. The number of points
not on ¢ cut out on XY\ by L is:

group|T><V|(TT)’|V><V|O><T|(OO)”|T><T
o(L) 2 |2 3] 2 2 3[4 3 2
number 4 4 6 4 6 |8 6
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In the next table we show in each case length and number of Hy-orbits, the number and
type(s) of the quotient singularity(ies):

group TxV (TTY VxV
o(L) 2 2 22 2 2 3 2
type M1 M2 M3 M1 M2 M3 N Mz‘j
length 4 4 4 4 4 4 1 4
number 1 1 1 1 1 1 6 1
singularities A1 A1 A1 A1 A1 A1 6A2 A1
group OxT (00)" TxT
o(L) 2 3 2 | 4 3 3 2|2 3 3
type M N M|R NN M|M N N
length 8 3 3 4 6 6 2 4 3 3
number 1 2 2 2 1 1 4 2 2
singularities A1 2A2 2A1 2A3 A2 A2 4A1 2A1 2A2 2A2

3) The singular surfaces. We denote by ns the number of nodes on the surfaces and by F'
the fix-group of a node in H. In the table below, we give the number of orbits of nodes
and their fix-groups in PH, PH' and we describe the singularities in the quotient. We
recall [BS, proposition 3.1]:

Proposition 2.1. Let X be a nodal surface with F' C SO(3) the fiz-group of the node.
Then the image of this node on X /H is a quotient singularity locally isomorphic with
C2/F, where F' C SU(2) is the binary group which corresponds to F.

group TxV (TTY VxV
A A1 A2 A3 VI Al A2 A3 Aq A1 A2 A3 Aq
ns 12 48 48 12 12 48 48 12 12 48 48 12
orbit 1 1 1 1 3 3 1 1 3 3 3 3
F ZQ X Z2 id id ZQ X Z2 T Z3 id Z2 X Z2 ZQ X Z2 id id ZQ X Z2
lines 1M1 - - 1M1 3Mz 1N - ].M1 3sz - - 3M7,]
meeting 1Mo 1Mo 4N 1M
1M;5 1M;5 1M;
sing. D4 A1 A1 D4 3E6 3A5 A1 D4 3D4 3A1 3A1 3D4
group OxT (00)" TxT
A A1 A2 A3 N\ A1 A2 A3 Aq A1 A2 A3 V]
ns 24 72 144 96 24 72 144 96 24 72 144 96
orbit 1 1 1 1 2 1 1 2 2 1 1 2
F T Zg X ZQ ZQ Zg O Z4 Zg Dg T ZQ id Zg
lines |3M 1M 1M’ 1IN| B3R 1R 1M IN(N))| 3M 1M — 1IN(N))
meeting | AN 2M’' 4N (N') 3M | AN(N")
6M
sing. E6 D4 A3 A5 2E7 A7 A3 2D5 2E6 Ag A1 2A5

2.2. Rational curves. Let

JY Y)\7H I X;?/H

be the minimal resolution of the singularities of X /H. In the following table we give
the number of rational curves coming from the curves of the base locus of X} (denote it
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by v1) and from the resolution of the singularities. The latter are of three kinds: those
coming from the intersection points of the lines of the base locus with other fix-lines on
¢, those coming from fix-points which are off ¢ and do not come from nodes of XY, and
those coming from the nodes. We denote their numbers by v, v3 and vy, then the total
number of rational curves is v := 11 + 19 + 3 + 4. The configurations of some of the
curves are then given in the figures in section 6. In the table we write the discriminant,
d, of the intersection matrix too, this is easy to compute since we know the configurations
of the rational curves. Since in each case d # 0 the classes of the curves are independent
in NS(Y)“H).

1. The smooth XY.

group | T xV (TTY VxV OxT (00)" TxT
V1 4 2 6 3 2 4
2 12 — — 9 2 4
V3 3 15 9 7 14 10
v 19 17 15 19 18 18
d 25.3%.5 23.36.5 213.5 25.33.7 _28.32.7 _22.36.7

2. The singular XY . In this case the surfaces X} do not have extra singularities on g,
hence the number 7 and v, remain the same as above and we do not write them again.

group TxV (TTY
A M o A3 A\ M o A3 A\
s — 3 3 — — 3 15 12
vy 4 1 1 4 18 15 1 4
v 20 20 20 20 20 20 18 18
d |—-2*.33.5 —26.33.5 —26.33.5 _—92¢.33.5|_-33.5 —26.33.5 _—24.36.5 _92.36.5
group VxV OxT
A M o A3 A\ M o A3 A\
s — 9 9 — 2 4 5 3
vy 12 3 3 12 6 4 3 5
v 18 18 18 18 20 20 20 20
d | —210.5 26,5 _92l6.5 _9l0.5)_9od4.32.7 _9ot.33.7 _95.33.7 _96.32.7
group (00)" TxT
A A\ o A3 A\ A\ o A3 A\
s — 8 12 6 — 8 10 2
vy 16 7 3 10 12 3 1 10
v 20 19 19 20 20 19 19 20
d | —=2%.7 27.32.7 28.32.7 _28.7|_3%.7 922.36.7 923.36.7 _2%4.3%.7

2.3. K3-surfaces. Since the groups H and H’ contain the subgroups V x V of Gg resp.
T x T of Gg the projections 7y and mgy+ are ramified on the lines of the base locus of the
families X\ with ramification index two and three. By using Hurwitz-formula and the
fact that in each case the previous rational curves are independent in the Neron-Severi
group, the same computation as in [BS, section 5] shows that the minimal resolutions of
the quotients are K 3-surfaces, a direct proof of this fact is given in the next section.



GROUP ACTIONS, CYCLIC COVERINGS AND FAMILIES OF K3-SURFACES 95

3. Cycric COVERINGS

We give another description of the pencils of K3-surfaces by using cyclic coverings.
We consider the pairs G,, and H so that G,,/H is cyclic, in our cases either |G,,/H| = 3
or |Gy, /H| = 2, and we consider the map:

7 XUH — X7 /G

3.1. The general case. For the moment assume that X7 is smooth. The group G, /H
acts on the points of the fiber 7=1(P). If the point P is not fixed by G,,/H then the map
is 3:1or 2:1 there. If P is fixed by G, /H then we have a singularity on X} /H, more
precisely an Ay or an A;, now the fiber 771(P) is one point and the map has multiplicity
2 or 3 there (cf. [M2, Lemma 3.6 p. 80]). We have a rational map between the minimal
resolutions of X{/H and X{/G,:

v:Yam———N\q,

which is 3: 1 or 2 : 1. Observe that this map is not defined over the (—2)-rational curves
in the blow up of the singular points of X} /G,, which comes from fix-points of G,,/H on
XV /H. The surfaces Y) g are K3-surfaces as well and by [I, Cor. 1.2] these have the same
Picard-number p(Y) i) = p(Yx q,. )= 19.
In this section we describe the map ~ by using cyclic coverings. For the general theory
about 2-cyclic coverings and 3-cyclic coverings we send back to the article [N] of Nikulin
and to the articles [M1] of Miranda and [T] of Tan. For the convenience of the reader
in Figure 1, section 6, we recall the configurations of (-2)-rational curves on the smooth
surfaces Y) g, and on Y) g, given in [BS].
By [BS, proposition 6.1] the following classes are 3-divisible in N.S(Y) ¢, ):

L:=Li—Ls+Ly— Ls+ N; — Ny + N3 — Ny + N5 — Ng + N7 — Ng,

E’ ZZLll— IQ—I—Lzl— /5+N1_N2+N3_N4_N5+N6_N7+N87
and also:

E—ﬁlZLl—L2+L4—L5— 11+L12_ 2+Lg—|—2(N5—N6—|—N7—N8),
L+L =Ly —Ly+Ly—Ls+ Ly —Ly+ L) — LL +2(Ny — No + N3 — Ny).

Making reduction modulo three we find the classes:

M :ZLl—L2+L4—L5—L,1+L,2— 2+L/5—(N5—N6+N7—N8),

M’ 2:L1—L2+L4—L5+L/1— ,2—|-L£1—L::’—(N1—N2—|—N3—N4).
In NS(Y) qg) the following classes are 2-divisible:

L:=1L1+ L3+ Ls+ M + M3+ My + Ry + R3,
L' =Ly + L5+ L{ + My + Ms + My + Ry + Rs.

Consider also the classes £ + £’ and £ — £/, which after reduction modulo two are the
same as:

M =L+ Ls+ Ls+ L} + Ly + Ly + My + Mo.

These classes consist of six disjoint As-configurations of curves and of eight disjoint A;-
configurations of curves (according to [T] and [N]). These are the resolutions of Ay and A,
singularities of X\ /G, which arise by doing the quotient of X\ /H by G,,/H. We construct
the 3-cyclic coverings and the 2-cyclic coverings by using the divisors £, £, M, M'. We
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recall briefly the construction in the case of 3-cyclic coverings, then in the case of 2-
cyclic coverings it is similar. First to avoid to produce singularities, we have to blow
up the meeting points of the As-configurations. Call Y;\)’GG the surface which we obtain
after these blow-ups. The meeting points are replaced by (—1)-curves and the two (—2)-
curves become now (—3)-curves. Denote by ¢ : Y>}7G6 — Y>?, G, the 3-cyclic covering with
branching divisor £, £" or M, M’ then

Proposition 3.1. A configuration of curves on Y£G6 :

-3 -1 -3
& ——————®
becomes a configuration:
iy 23 21

1
on Y)\7G6 .

Proof. We do the computation for one configuration of curves L — Lo, this is the same in
the other cases. Denote again by L; and L9 the curves on Yf’ G Which now are (—3)-curves
and denote by F the exceptional (—1)-curve. By the properties of cyclic coverings we have
o*L; = 312', where EZ is the strict transform of L;. Then:

9(Li)* = (¢*Li)* = (degg) L] = —9.
Hence (L;)? = —1. Since E-(L1—Ly) = 0 the map ¢ is not ramified on E' and the restriction

¢|jz is 3: 1 onto E. Hence we have ¢"E = E and E? = (¢*E)? = (deg¢)E? = 3E? = 3.
O

Our surface Y G, 18 now no more minimal. By blowing down the (—1)-curves, the curve

E becomes also a (—1)-curve so we blow it down too. By construction the surfaces which
we obtain are minimal K3-surfaces and are exactly the surfaces Y g which are obtained
as the minimal resolutions of X{/H, in fact we have a commutative diagram:

¢
Y)\17G6 Y>\07G6
/ \
Y
Y\ u - pgWen
\ /

X$/H S X§/Ge
The construction is similar in the case of 2-cyclic coverings of the surfaces Y) .. This gives

another description of the families of K3-surfaces Y) rxv, Y\ (rry and Y) oxr, Y) 00"
as finite coverings of the families Y) ¢, and Y) gq.-

Remark 3.1. By using the divisors L' and M’ on Yy g, for the coverings we obtain the
surfaces Y vxr and Yy (rryr and by taking the divisor L' on Yy g, we obtain the surface
Y xrxo. We do not discuss these surfaces separately in the sequel.
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3.2. The special cases. In these cases, the situation is a little more complicated. Now
in the counterimage 7~ *(P) of some singular point P of X}/G,, coming from the A;-
singularities of XY} we have singularities on XY /H too. In the following table we give the
singularities in the quotient X{/G,,, n = 6,8 and the type and the number of singularities
in the counterimage on XV /H. As in [BS] we donte by 6,1,...,8,4 the special surfaces in
the families.

6,1 6,2 6,3 6,4 8,1 8,2 83 8,4

GG Eg A5 A5 Eg Gg E; D¢ Dy Ds
TxV D4 Al Al D4 OxT E6 D4 Ag A5
(TTY | 3Es 345 A, Dy |(00)'|2E; A; As 2D
VxV 3D4 3A1 3A1 3D4 TxT 2E6 Ag Al 2A5

By resolving the quotients we get a map like v as before and so again by the result of Inose
the minimal resolutions of the special K3-surfaces are K3-surfaces too with Picard-number
20. We can describe this map as before by using cyclic coverings. In the case of the special
surfaces in the family Y) g, we construct 3-cyclic covering as in the general case by using
the divisors £, L', M, M’ which are in the case of the special surfaces 3-divisible too, cf.
[BS, 6.2]. By taking £ and £’ we obtain the special K3-surfaces in the families Y 7y,
resp. Yy yxr, by taking M and M’ we obtain the special K3-surfaces in the covering
Yy (rry and Yy (pryr. In the case of the special surfaces in the family Y) ¢, we take the
divisors £, L', M and we do 2-cyclic coverings. By taking £ or £’ we find the singular
surfaces in the family Yy ox7 resp. Y\ rxo and by taking M we find the singular surfaces
in the family Y)\,(OO)”'

4. PICARD-LATTICES

We compute the Picard-lattices of the general K3-surface in the families Y) rxv, Yy oxv
and of the special surfaces with p = 20 in each pencil. First we recall some facts. Denote by
W the lattice spanned by the curves of section 2, 2.2. If W is not the total Picard-lattice,
which we call NS there is an integral lattice W’ s.t. W ¢ W/ € NS with p := [W' : W]
a prime number. Denote by d(W), d(W') the discriminant of the lattices W, W’. Since
(W’ : W2 = d(W) -d(W')~! (cf. [BPV, Lemma 2.1, p. 12]) we find that p? divides
the discriminant of W. Denote by (WY /W)P the p-subgroup of (WY/W)CNSY/NS
and denote by T the transcendental lattice orthogonal to the Picard-lattice. Since the
discriminant groups 7V /T and NSY/NS are isomorphic (cf. e.g. [BPV, p. 13 Lemma
2.5]), they have the same rank which is < rk(T'). It follows that also rk(W"Y /W)P < rk(T)).

Proposition 4.1. The Picard-lattices of the generic surface Yy rxv and Yy oxT are gen-
erated by the 19 rational curves of section 2, 2.2 and the classes:

Ly — Lo+ Ly—Ly+ L\ — Lo+ L) —LL+ LY —Ly+ L) — Lt

L.

_g' / / /3

Q}:_ Li+ L3+ L5+ L} + L5+ L + My + My
ho

p)

2
_ Li+ L3+ Ls+ L{ + L3 + L5 + My + M3
B 2
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of NS(Yx1xv), then the lattice has discriminant 2 -3 - 5; resp. the classes

L” _ L+ L3+ Ls+ 1 —I-L + L5 + M, + M,
kl, Ly — L2+L4—L5—L'1+L/ 4+ Li+Ni—No+ N3 — Ny
) 3

of NS(Yx.oxT), then the lattice has discriminant 23.3.7.

Proof. 1. The discriminant of the lattice generated by the 19 curves is 2°-33-5 hence we can
have 2-divisible classes or 3-divisible classes. The divisor L’ is 3-divisible since it is the pull
back of the divisor £’ on Y} ¢, which is 3-divisible too. And we cannot have more 3-divisible
classes. If there are no 2-divisible classes then the group (WV/W)? would contain the
classes M1 /2, Ma/2, M3/2, (Ly+Ls+Ls+ L +L5+L%)/2, (L1 +Ls+Ls+ LY+ L4+ LY)/2,
(L) + L5+ Li+ LY+ L5+ LY)/2 which are independent classes with respect to the intersection
form. Since the rank of (WV/W)? is less or equal as the rank of TV /T which is at most
three, it can not happen that we find five classes as before. Hence some combination of
them must be contained in the Neron-Severi group. So we have

1
5(A(Ll + Lg+ Ls) + N(L) + L+ LE) + N'(LY + LY + LY) + pu My + poMs + ugMs) € NS

for some parameters \, N, N, uy, po, u3 € Zs.

By Nikulin [N] such a 2-divisible set contains 8 curves. So putting A’ =0 and pg = 0 we
get the divisor hy /2, putting \' = 0 and ps = 0 we get the divisor he/2. The discriminant
of the lattice W together with these three classes now change into 2-3-5, hence we cannot
have more torsion classes.

2. Again the class L is the pull back of the class M’ on Y) gy hence it is 2-divisible. If there
are no 3-divisible classes then the group (WV/W)3 would contain the classes N; — Ny/3,
N3 — Ny/3 and (Ly — Ly + Ly — Ls + L} — L4 + L, — L{)/3 which are independent. By

specializing to the surfaces Y/\(802X) o and Y/\(803X) o we find also here these three independent

classes and so tk(WY/W)3 > 3. This is not possible in fact on these surfaces we have
rk(W)=20 which implies rk(W"/W)3 < 2. This means that the three classes fit together

giving a 3-divisible class in N.S(Y, )\(OX)O) and NS(Y, )EOX)T) and so in NS(Yy oxr) (cf. [vGT,
Lemma 2.3]). O

In the same way as before we can compute the Picard-lattices of the special surfaces in
the families. We give the results leaving the proofs to the reader.

Proposition 4.2. 1. The Picard-lattice of the special surfaces in Y\ 1xy and Y\ oxr 18
generated in all the cases but Y)580’4X)T by the curves of section 2, 2.2 and by the classes

L'/3, h1/2, ha/2, resp. L"/2, k1/3 of proposition 4.1. In the case of Y)580’4X)T the class:

Li+Ls+Ls+ N +C+Ny+ Ry + M
2

is a generator too, and they span the 20-dimensional Picard-lattice.

2. In the case of YA(i%)T), and of Y)\G(;)T) the class:

E'_ Nl_N2+N3_N4+N5—N6+N7—N8+N9—N10—|—N11—N12
3 3
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)
T)
N1+ Ci1+ Ny+ N5 +Cy+ Ng+ My + Mo
)

2
N1+ C1 4+ Ngy+ Ng + Cs + Nig + My + M3

2

is in the Neron-Severi group and in the case of Y/\(()&’; the classes:

are in the Neron-Severi group too. These together with the 20 curves of section 2, 2.2 span
the 20-dimensional Picard-lattice.

3. In the case of Y)Eés(’é)o)” and Y/\(fs(’é)o),,, the class:

L M+ My+ M3+ My + R + Ry + R + Ry

2 2
8,4)

18 in the Neron-Severi group and in the case of Y)\( (00" the class:

W  Ri+2Ry+3R3+ Ry + 2Ry + 3Ry + 2N, + 201 4 3M; + My + 2N3 + 2C5 + 3M3 + My
4 4

1s in the Neron-Severi group too.

Again these classes together with the 20 curves of section 2, 2.2 span the 20-dimensional
Picard-lattice.

The discriminants of the Picard-lattices then are:

Yy 1rxv Y\ (r1y
6,1 6,2 6,3 6,4 6,1 6,2
d]| -3.-5]-22.3.5[-22-3.-5[-3.-5]-3-5]—-22-3-5
Yy oxr Y\ 00y
8,1 8,2 8,3 8,4 8,1 8,4

d|—-22-7[-22-3.7]-2%-3.7|-2%2.7|-2%2.7] -2%.7

4.1. More cyclic coverings. Now we can construct the 3-cyclic covering of Y 7y, by
using the 3-divisible classes L’ and the 2-cyclic coverings of Y\ 0ox1, by using the 2-divisible
class L”. We can do this for the general surface in the pencil and for the special surfaces
too, in this case we obtain another description of the families Y) yxyv and Y\ rxr. In
particular also in these cases the general surface in the family has Picard-number 19 and
we have four surfaces with Picard-number 20. The description of the Picard-lattices of
the surfaces with p = 20 is given in the following proposition (again, we leave the proof to
the reader):

Proposition 4.3. The classes
LQ—L4+L§— /1+N1—N2+N3—N4+N5—N6+N7—N8
3 )
Ly—Ly+L3— Ly + Ny — Ny — N3+ Ny+ N5 — Ng — N7 + Ng
3

are in NS(YA(ST’IX)T) and in NS(Y)\(%L4X)T). Moreover the class
N1+ C1 + Ny+ N5 + Co + Ng + My + Mo

2
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s in NS(Y)EE?X)T) too. These classes together with the rational curves of section 2, 2.2 span

the 20-dimensional Picard-lattices of the surfaces Y)E%;IX)T and Y)\(%’flx)T. Then the lattices
have discriminant —7, resp. —22 - 7.

5. FINAL REMARKS

1. In the section 4 we identify explicitly the Picard-lattice of some K3-surfaces. It is
our next aim to compute the transcendental lattices orthogonal to the Picard-lattices to
classify the K3-surfaces. In particular by a result of Shioda and Inose, cf. [SI], K3-surfaces
with p = 20 are classified by means of their transcendental lattice.

2. By a result of Morrison, cf. [Mo], each K3-surface with p = 19 or 20 admits a so called
Shioda-Inose structure. This means that there is a Nikulin-involution, an involution with
eight isolated fix-points and the quotient is birational to a Kummer-surface. It would be
desirable to have an explicit description of this structure for our surfaces.

3. We do not describe the quotients 3-folds P3/G,,, P3/H, H a normal subgroup of G,,. It
would be interesting to have a global resolution of these spaces and to see our K 3-surfaces
as smooth pencils on the smooth 3-folds.

6. FIGURES: CONFIGURATIONS OF RATIONAL CURVES

In this section we give the configurations of rational curves on the surfaces with Picard-
number 19 and 20. In the case of the singular surfaces of the families Y) 71 and Y) ox7
also the curves L;, L and L are contained on the surfaces, but we do not draw again the

picture. Moreover the configurations of curves on the surfaces Y)E(iﬁx)v and Y)\(GJL?’X)  are the
same as on the surfaces Y)Eiflx)v resp Y)\(g’?x) v SO again we draw only one picture.
pEWen Yics
Ly Lo Ls Ly Ls Ly Lo Ls Ly Ls
[ L L L o L L L]
/ LI L/ L/ L/ / / L/ L/ L/
o o’ 3 @t o’ o o’ o’ 1 @
M,y
[
Ny Ny N3 Ny M, Mo Ny Ny
o—O0 o—O0 [ (] o——©
N5 Ng N7 Ng Ms My Ry Ry R3
o—©O o—©O [ [ J o—0—©

Fig. 1
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Fig. 3
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Ya1rxv Yyoxr
LI/ L// L// L// L// L L L R
ol o2 3 ol o’ &3 & b o2
Ly L Ls ILO L L Ly M M,y
° ° ° e o °
! / /
Ly ) ok PR LB R
Ls L .M3 N1 Ny N3 Ny
Fig. 2
My C  Ms M, C  M; Ny, Ny, C N3 Ny
@—I—g ® ® ® ® ® I ® ®
®
M, M, ® Ry
My My
(6,1) (6,4) (6,2) (6,3) (8,1)
Y)\,TXV(Y)\,TXV) Y)\,TXV(Y)\,TXV) Y)\,OXT
M, C My M, C My Ry Ny Ny C N3 Ny
o o —® ® ® ® ®
Ry
N; N, N3 N. Ny N, N3 N M, M, R
1 2 V3 4 1 2 3 4 Jh 2 v
(8,2) (8,3) (8,4)
Y)\,OXT Y)\,OXT Y)\,OXT
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Ny No Cp N3 Ny Ny No Cip N3 DNy Ry Ry Ry Ci N1 DN
® @ ® @ L ® @ I @ ® ® @ ® @ ®
Ns Ng Ca Nz N M, . M,
DO G \CAND T AN B (S (- TP B S RNFACH AL
No Nip C3 Ni Ni I I
o) 90 97 o ® Mo Moy
Ng Ny C3 Nip N
My My M3 ® 9 ® 10 3 ® 11 » 12 M My
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Ms
> > X
Ls = Ls 6 6,1) Lt - é% o
Y\ ary Yy ary Yy oy
Ry Ry R3g Ni No Ci My N1 No Ci N3 Ng N1 No Ci Ny Ny
® @ @ ® i @ @ @
M, My
,1 Rl2 Ré N3 Ny M3 N5 N6 02 N7 Ng N5 N6 CQ N7 Ng
® @ @ ® @ z ® o @ @ @ ®
My I Moy
Mo
/ / / /
® I I ® @ I 7 ®
/ / L4 4
Ly Ly L, L Ly La Ly I
(8,4) 8,1) (8,4)
Y/\,(OO)” Yyrxr Yyrxr
Fig. 4
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TRANSCENDENTAL LATTICES OF SOME K3-SURFACES

ALESSANDRA SARTI

ABSTRACT. In a previous paper, [S2], we described six families of K 3-surfaces with Picard-
number 19, and we identified surfaces with Picard-number 20. In these notes we classify
some of the surfaces by computing their transcendental lattices. Moreover we show that the
surfaces with Picard-number 19 are birational to a Kummer surface which is the quotient of
a non-product type abelian surface by an involution.

0. INTRODUCTION

Given a K3-surface an important step toward its classification in view of the Torelli theo-
rem is to compute the Picard lattice and the transcendental lattice. When the rank of the
Picard lattice (i.e. the Picard-number, which we denote by p) of the K3-surface is 20, the
maximal possible, the transcendental lattice has rank two. These K3-surfaces are called by
Shioda and Inose singular. In [SI], Shioda and Inose classified such surfaces in terms of their
transcendental lattice, more precisely they show the following:

Theorem 0.1. [SI, Theorem 4, §4] There is a natural one-to-one correspondence from the
set of singular K3-surfaces to the set of equivalence classes of positive-definite even integral
binary quadratic forms with respect to SLo(Z).

When the Picard-number is 19 the transcendental lattice has rank three and by results of
Morrison, [M], and Nikulin, [N], the embedding in the K3-lattice A := —Eg®—EsdUaUoU
is unique, hence it identifies the moduli curve classifying the K3-surfaces. In general however
it seems to be difficult to compute explicitly the transcendental lattice. In [S2] we describe
six families of K3-surfaces with Picard-number 19 and we identify in each family four surfaces
with Picard-number 20. The aim of these notes is to compute their transcendental lattice
and to classify them. In [S2] we describe completely the Picard lattice of the general surface
in two of the families and of the special surfaces and we describe the Picard lattice of six
surfaces with Picard-number 20 in the other families. Here by using lattice-theory and results
on quadratic forms we compute the transcendental lattices of these surfaces. The methods
are similar as the methods used by Barth in [B] for describing the K3-surfaces of [BS].

By a result of Morrison, [M, Cor. 6.4], K3-surfaces with p = 19 and 20 have a Shioda-Inose
structure, in particular this means that there is a birational map from the K3-surface to a
Kummer surface. It is well known (cf. [SI]) that if p = 20, then the Kummer surface is the
quotient by an involution of a product-type abelian variety. When p = 19 this is not always
the case. In fact we use the transcendental lattices to show that in our cases the abelian
variety is not a product of two elliptic curves. In this case we call the Shioda-Inose structure
simple.

The paper is organized as follows: in section 1 we recall some basic facts about lattices
and quadratic forms and the construction of the families of K3-surfaces. Then section 2

1991 Mathematics Subject Classification. 14J28, 14C22.
Key words and phrases. K3-surfaces, Picard-lattices.
105



106 ALESSANDRA SARTI

is entirely devoted to the computations of the transcendental lattices of the K3-surfaces of
[S2]. In section 3 we show that the Shioda-Inose structure of the surfaces with p = 19 is
simple. In section 4 we compare our singular K3-surfaces with already known surfaces, more
precisely with the Hessians surfaces which are described in [DvG]: we see that all our singular
K3-surfaces are Hessians of some cubic surface and we see that some of them are extremal
elliptic K3-surfaces in the meaning of [SZ]. Finally in section 5 we recall the rational curves
generating the Neron-Severi group of the K3-surfaces over Q.

I would like to thank Wolf Barth for letting me know about his paper [B]| and for many
discussions and Slawomir Rams and Bert van Geemen for many useful comments.

1. NOTATIONS AND PRELIMINARIES

1.1. Lattices and quadratic forms. A lattice L is a free Z-module of finite rank with a
Z-valued symmetric bilinear form:

b:LxL—7Z.

An isomorphism of lattices preserving the bilinear form is called an isometry, L is said to be
even if the associate quadratic form to b takes only even values, otherwise it is called odd.
The discriminant d(L) of L is the determinant of the matrix of b, L is said to be unimodular
if d(L) = +1. If L is non-degenerate, i.e. d(L) # 0, then the signature of L is a pair (s4,s_)
where s4 denotes the multiplicity of the eigenvalue 41 for the quadratic form on L ® R, L
is called positive-definite (negative-definite) if the quadratic form associate to b takes just
positive (negative) values. We will denote by U the hyperbolic plane i.e. a free Z-module of
rank 2 with bilinear form with matrix:

(Vo)

Moreover we denote by Eg the unique even unimodular positive definite lattice of rank 8,
with bilinear form with matrix:

2 0 -1 0 0 0 0 O
o 2 0 -1 0 0 0 O
-1 0 2 -1 0 0 0 O
o -1 -1 2 -1 0 0 O
o o o0 -1 2 -1 0 O
o o o o0 -1 2 -1 0
o 0 o o o0 -1 2 -1
o 0 o o o 0 -1 2

Let LY = Homy(L,Z) = {v € L®zQ | b(v,z) € Z for all x € L} denotes the dual of the
lattice L, then there is a natural embedding of L in LY via ¢ — b(c, —), and we have:

Lemma 1.1. (¢f. [BPV, Lemma 2.1, p. 12]) If L is a non-degenerate lattice with bilinear
form b. Then

1. [LY: L) =|d(L)|.

2. If M is a submodule of L with rank M =rank L, then

[L: M]?=d(M)d(L)™ .
Let A be a finite abelian group. A quadratic form on A is a map:

qg:A— Q/2Z
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together with a symmetric bilinear form:
b: Ax A— Q/Z

such that:

1. qg(na) = nq(a) for alln € Z and a € A

2. gla+d') —q(a) — q(a') = 2b(a,a’) (mod 27)

Let L be a non-degenerate even lattice then the Q-valued quadratic form on LY induces a
quadratic form

qr: LY/L — Q/27

called discriminant-form of L. By a result of Nikulin [N, Cor. 1.9.4], the signature and the
discriminant form of an even lattice determines its genus (we do not need the exact definition
here, cf. e.g. [CS]).

An embedding of lattices M — L is primitive if L/M is free.

Lemma 1.2. (¢f. [N, Prop. 1.6.1]) Let M — L be a primitive embedding of non-degenerate
even lattices and suppose L unimodular then:

1. There is an isomorphism M /M = (M*)V /M*.

2. qur = —qum-

Let now X be an algebraic K 3-surface, the group H?(X,Z) with the intersection pairing has
the structure of a lattice and by Poincaré duality it is unimodular. This is isometric to the
K3-lattice:

ANA=—-FEs®—-EseUpUU

(cf. [BPV, Prop.3.2, p. 241]). The Neron-Severi group NS(X) = H*(X,Z)NHY(X) and its
orthogonal complement Tx in H?(X,Z) (the transcendental lattice) are primitive sublattice
of H?(X,Z) and have signature (1,p — 1) and (2,20 — p), p =rank(NS(X)). By the Lemma
1.2 we have

NS(X)"/NS(X) = (Tx)"/Tx
and the discriminat-forms differ just by their sign. Moreover by the Lemma 1.1 we have

INS(X)Y/NS(X)| = [(Tx)"/Tx| = d(NS(X)).

We recall some more facts about K3-surfaces X with p = 20 (singular K3-surfaces, cf. [SI,
p. 128]). Denote by Q the set of 2 x 2 positive-definite even integral matrices:

2a c
(1 Q= (2 5 ) abeez

with d := 4ab — ¢ > 0 and a,b > 0. We define Q; ~ Q- if and only if Q; = vQoy for
some v € SLo(Z). Let [Q] be the equivalence class of @ and by Q/SLs(Z) the set of these
equivalence classes. Then:

Theorem 1.1. (¢f. [SI, Thm. 4]). The map X — [T'x]| estabilishes a bijective correspondence
from the set of singular K3-surfaces onto Q/SLo(Z).

In particular K 3-surfaces with p = 20 are classified in terms of their transcendental lattice.
By [Bu, Thm. 2.3, p. 14], we can assume that Q is reduced, i.e. —a < ¢ < a < b, and so
c? < ab < d/3. Recall the following:
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Theorem 1.2. ([Bu, Theorem 2.4, p. 15]) With the exception of

1 2a a 2a —a . 9 2a b 2a —b
‘\ a 2b —a 2b )77\ b 2a —b 2a
no distinct reduced quadratic forms are equivalent.

[T

Here the relation “~” is conjugation with a matrix of SLy(Z).

It is well known that the number of equivalence classes of forms of a given discriminat d,
i.e. the class number of d, is finite. If there is only one class we say that d has class number
one. In some other cases we have one class per genus. In [Bu, pp.81-82] with the assumption
g.c.d(a,c,b) = 1 all the discriminants of class number one and of one class per genus are
listed. If g.c.d(a,c,b) # 1 then the form is a multiple of a primitive form.

1.2. Families of K3-surfaces. Let G C SO(3) denotes the polyhedral group T, O or I,
and let G C SU(2) be the corresponding binary groups. Let

o:SU(2) x SU(2) — SO(4,R)

denotes the classical 2 : 1 covering. The images O‘(T X f) = G, 0(5 X 6) = Gg and
o(I x I) := Gz in SO(4,R) are studied in [S1], where we show that there are 1-dimensional
families in P3(C) of Gy,-invariant surfaces of degree n, which we denote by X7, A a parameter
in P;. In [BS] it is shown that the quotients Y} ¢,, n = 6,8,12 are families of K3-surfaces
where the general surface has Picard-number 19 and there are four surfaces with Picard-
number 20. Then in [S2] by taking special normal subgroups of G,, (n = 6,8) and making the
quotient of Xf resp. X § by these subgroups we find six more pencils of K3-surfaces, using
the notations there the subgroups are

G: TxV (TT) VxV OxT (00)" TxT

and the families of K3-surfaces are denoted by Y\ g. Here V denotes the Klein four group
in SO(3,R) and the groups (IT'T), (0OO)" are described in [S2], the others are the images
in SO(4,R) of the direct product of binary subgroups of SU(2). Moreover T x V, (TT)’
are subgroups of index 3 of Gg and V x V has index 3 in T x V, (TT)"; O x T, (0O0O)" are
subgroups of index 2 of Gg and T' x T has index 2 in O x T, (OO)". In the families Y) 7xy
and Y) ox7 the general surface has Picard-number 19 and we could identify four surfaces
with Picard-number 20. We denote them by YA(Z:J ), wheren =6,G=TxV and j =1,2,3,4
orn=8 G=0xT and j =1,2,3,4. In the other families we identify the Picard lattice of
the following surfaces with p = 20:

(6,1) (6,2) (8,1) (8,4) (8,1) (8,4)
Y.y Tairrys Ya ooy Ya00y Yarxr Yarxr:
We denote by NS the Picard-lattice, by 7" the transcendental lattice. We denote by Z,,(a)
the cyclic group Z,, with the quadratic form taking the value a € Q/2Z on the generator of
the group.

2. TRANSCENDENTAL LATTICES

In this section we identify first the transcendental lattice of the singular K 3-surfaces then of
the surfaces with p = 19. In each case we proceed as follows:

1. We determine generators for NSV/NS with the help of the intersection pairing (—, —),
which is defined on NS (recall that NSV ={v e NS®zQ | (v,z) € Z for all z € NS}).

2. We determine the discriminant-form of N §S.

3. We use Lemma 1.2 to determine the discriminant-form of T'.
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4. We list all the reduced quadratic forms which have the discriminant d(T") = d(N.S) (we
will see that in each case the matrices have form 1 or 2 as in the Theorem 1.2).

5. We use the discriminant form to determine 7', in fact we see that when the rank is two
the discriminants have class number one or one class per genus. When the rank is three in
our cases the discriminants are small, Def. 2.1, and these have one class per genus.

2.1. The singular cases. The family Y) rxy. We recall the following 3-divisible class of
NS

L'=L—Lo+Ly—Ls+ Ly —Ly+ Ly — Lo+ L) — L+ L — LY
and the following 2-divisible classes of NS
hi = Ly + L3 + Ls + Ly + Ly + Ly + My + Mo,
hy=1Li+ L3+ Ls+ L{ + L% + LY + My + Ms.
The general K 3-surface in the family has p = 19 and the family contains four singular K3-

surfaces. The discriminant of the general K 3-surface in the pencil is 2-3-5 which is the order
of NSY/NS by the Lemma 1.1. We specify the following generators:

M = My + My + Ms/2,
N: =Ly — Lo+ Ly—Ls— L)+ L, — L) + L./3,
L:=(3Ly—Ly—L)y—L}—-2Ly — 2L}, — 2L — 3L3 — 3L} — 3L}
—2Ly — 2L, —2L) — Ls — L, — LY)/5
where
M?=-3/2=1/2 mod 2%,
N%=-8/3=4/3 mod 2Z,
L*=-18/5=2/5 mod 2Z.
Hence the dicriminant form of the Picard lattice is
Z>(1/2) @ Z3(4/3) © Zs(2/5) = Z3o(7/30)

The singular case 6,1(6,4). Here the discriminant is —3 - 5 = —15 and the generators of
NSY/NS are N and L. The dicriminant form is

Z3(4/3) @ Zs(2/5) = Z15(26/15)
The singular case 6,2(6,3). Here the discriminant is —22-3-5 = —60, and the generators are
M, N, L and another class M’ = My/2 with M"?> = —1/2 = 3/2 mod 2Z. The discriminant
form is
Z2(1/2) ® Zo(3/2) ® Z3(4/3) @ Z5(2/5) = Zo(1/2) @ Z30(97/30).

The discriminant form of the transcendental lattice differs by the previous form just by the
sign, hence in the general case is

Z30(53/30)
and in the special cases is
67 1 (674) : Z15(4/15)7
6,2 (6,3) : Z2(3/2) ® Zs30(23/30).
Here we identify the transcendental lattices of these four singular K3-surfaces, and in the
next section of the general K3-surface.
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The singular case 6,1 (6,4). We classify all the reduced matrices with discriminant 15 (one
representant per class, cf. [Bu, pp.19-20]). We have just the following possibilities

21 4 1
(Fs)a=(14)
By taking the generator (4/15,—1/15) and the bilinear form defined by A, we find a lattice
Z15(4/15) which is exactly the lattice TV /T hence T = A.

The singular case 6,2 (6,3). We classify all the reduced matrices with discriminant 60( cf.
[Bu, pp.19-20]). We have just the following possibilities

(B )r=(6m) (5 i) (52)

By taking the generators (1/2,0) and (1/3,1/10) and the quadratic form B we find a lattice
Z5(3/2) & Z30(23/30) which is exactly the lattice TV /T, hence T = B.

The family Yy (rr)y . We recall the following 3-divisible class in N S:
L = N; — Ny + N3 — Ny+ N5 — Ng + Ny — Ny + Ng — Nig + N1 — Nia.

Now we identify the transcendental lattice of Y/\(i’%)T), and of Y)E?(’;)T),.
The singular case 6,1. In this case the discriminant is —3-5 = —15 and we have the following

generators of NSV /NS:
N :=(Ny — Ny + N3 — Ny — N5 + Ng — N7 + Ng)/3,
L := (3L3 — 3L%)/5,
where
N%?=-8/3=14/3 mod 27,
L?>=-18/5=2/5 mod 2Z.
Hence the transcendental lattice is the same as in the case of Y)Eiflx)\/'
The singular case 6,2. Recall the following 2-divisible classes in N.S:
N1+ Cy+ Ny + N5+ Cy + Ng + My + Mo,
N1+ Ci + Ny + Ny + C3 + Nig + My + M;.

The discriminant is —22 - 3 -5 = —60 and the classes
N, M = My + My + M3/2, M' = N5+ Cy+ Ng + My + M3/2, L
are generators for NSV/NS. Where
N2 = -8/3=4/3 mod 27Z,
M?=1/2 mod 2Z,
M’ =3/2 mod 27Z,
L?=-18/5=2/5 mod 2Z.
Hence the transcendental lattice is the same as in the case of Y)f(;’i)v.
The family Y ox7. Recall the following 2-divisible class of N.S:
L'=Li+ L3+ Ls+ L)+ Ly + Lt + My + Ms,
and the following 3-divisible class of N S:

ki=Ly —Lo+Ly—Ls— L} +Ly— L)+ L+ Ny — Ny + N3 — Ny.
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The general surface in the pencil has p = 19 and we have four surfaces with p = 20. The
discriminant of the general K 3-surface in the pencil is 22-3-7 = 168. We specify the following
generators of NSV/NS:

M := Ly + Ly + L5 + My/2,
M':= Ly + Ly + L5 + M3/2,

R = R2/2,

N :=N; — Ny —N3+N4/3,

L = (2L,2/+4L0 —2L1 —2[/1 +3L2+3Ll2 —3L3 —3Lg—2L4—2L£1—L5 —Lg)/?

where

M?=-2=0 mod 2Z,

M? =-2=0 mod 27,
R?=-1/2=3/2 mod 2Z,
N? = —4/3=2/3 mod 2Z,
L? = —16/7=12/7 mod 27Z.

Observe that the classes M, M" and L are not orthogonal to eachother in fact M - M’ =1/2
mod 2Z and M -L = M'-L =1 mod 2Z. Hence the discriminant form of the Picard lattice
is:

Z(0) © Z2(0) & Z2(3/2) © Z3(2/3) & Z7(12/7)) = Z2(0) & Z2(0) ® Za2(79/42).

The singular case 8,1. Here the discriminant is —22-7 = —28 and the generators for NSV /NS
are M, M’ and L. The discriminant form is

Z3(0) & Z»(0) © Z7(12/7)) = Z2(0) & Z14(12/7).

The singular case 8,2. The discriminant is —22-3-7 = —84 and the generators for NSV /NS
are M + R, M’ + R, N and L. The discriminant form is

Z5(3/2) ® L2(3/2) ® Z3(2/3)) & Z7(12/7) = Z3(3/2) ® La2(163/42) = Z3(3/2) ® Z42(79/42).

The singular case 8,3. Here the discriminant is —23 - 3 -7 = —168 and the generators for
NSY/NS are R,

R = My +2C + 3M> /4,
N and L, where R”? = 1/4 mod 2Z. The discriminant form is
Z5(3/2) © Za(1/4) @ Z3(2/3) © Z7(12/7)) = Zs(3/2) ® ZLsa(221/84) = Z2(3/2) & Zsa(53/84).
The singular case 8,4. Recall the 2-divisible class in N.S
Li+ L3+ Ls+ N1 +C+ Ny+ Ry + My
The discriminant is —22 - 7 = —28 and the generators for NSY/NS are L' + R,
M" = My + Ms + Ry/2,

and L, where M"? =1/2 mod 2Z.
The discriminant form is

Zo(3/2) @ Za(1/2) @ Zr(12/7)) 22 Za(3/2) ® Z1a(31/14) = Zo(3/2) @ Z14(3/14) (mod 2Z).

The discriminant of the transcendental lattice differs by the previous form just by the sign,
hence in the general case is

Z3(0) & Z2(0) & Z42(5/42)
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and in the special cases is

ZQ(O) D Zl4(2/7)7
Z(1/2) @ Zaa(5/42),

, Z3(1/2) @ Zgs(115/84),
8.4: Zo(1/2) @ Z14(25/14).

Here we identify the transcendental lattice for this four singular cases, and in the next section
for the general K 3-surface.

The singular case 8,1. We classify all the reduced matrices with discriminant 28 ([Bu, pp.19-
20]). We have just the following possibilities:

2 0 4 2
a=(05)e=(53)

Now take the form B and the generators (0,1/2) and (3/14,1/14). These span exactly the
lattice we were looking for.

The singular case 8,2.We classify all the reduced matrices with discriminant 84 ([Bu, pp.19-
20]). We have the following four cases:

2 0 6 0 42\ L _(10 4
0 42 )~ 0 14 )’ 2 22 ) 7 4 10 )°
Now we take the form C' and the generators (1/2,0) and (8/21,—19/42) and we are done.

The singular case 8,3.We classify all the reduced matrices with discriminant 168 ([Bu, pp.19-
20]). We have the following four cases

2 0 6 0 o 12 0 4 0

0 8 /> \ 0 28 )27 L 0 14 )7\ 0 42 )°
Now we take the form E and the generators (1/2,1/2) and (1/12,1/7). These span exactly
the lattice we were looking for.
The singular case 8,4. The discriminant is 28 like in the case of 8, 1. Now by taking the form

A and the generators (1/2,0) and (0,5/14) we are done.
The family Yy 0oy~ - Recall the following 2-divisible class of N.S

L =DM+ M+ Ms+ M+ Ry + Ry + R} + R}

)

)

oo 0o OO
W N =

We identify the transcendental lattices of the surfaces Y/\(S(’é)o),, and Y)Eg(’é)o),, .

The singular case 8,1. In this case the the discriminant is —22 -7 = —28 and we have the
following generators in NSY/NS

L:=2Ly+4L, — 2L’2 — 4L§1/7,
M := Ry + R3 + My + M3/2,
M = R1+R3+M1—|—M4/2,
where
L? =12/7 mod 27Z,
M?=M"?=0 mod 2Z.

Hence the transcendental lattice is the same as in the case Y)EE;O’IX)T.

The singular case 8,4. Recall the following 4-divisible class in NS

W := Ry + 2Ry + 3R3 + R} + 2R, + 3R} + 2Ny + 2Cy + 3M7 + My + 2N3 + 2Cy + 3Ms3 + Mjy.
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Moreover specify the classes:

v] := R + 2Rs + 3R3 /4,

vy := R + 2R, + 3R} /4,

vz 1= 2N 4+ 2C + 3M; + M /4,

vg 1= 2N3 4+ 2Cy + 3M3 + My /4, .
The discriminant is —2% - 7 = —112 and the generators of NSV/NS are

v] +v3/4, vo +v4/4, L
with
(v1 +v3/4)* = (V2 +v4/4)*> =0 mod 27Z.
The discriminant form of the Picard lattice is
74(0) @ Z4(0) © Z7(12/7) = Z4(0) ® Z2s(12/7).
Hence the discriminant form of the transcendental lattice is
74(0) @ Z2s(2/7)

We classify all the reduced matrices with discriminant 112, these are

2 0 40\ (80 8 4
05 )*\o28) " T\ 0 1a) \416)

We take the matrix F' and the generators (1/4,1/2) and (1/4,9/14), so we are done.
The family Yy rxr. A similar computation as before shows that in the singular case 8,1,
resp. 8,4 the transcendental lattice has bilinear form with intersection matrix:

21 4 2
14 )P {5 g )

Remark 2.1. Observe that if the reduced matrices had not been as in case 1 or 2 of Theorem
1.2 we would find two different isomorphism classes of K3-surfaces with the same discriminant
and the same discriminant form (cf. [SZ] p. 3).

2.2. The general cases. Here we identify the transcendental lattice of the general surfaces,
p = 19 in the families Y) 7y and Y) ox7. In the last section we have identified the discrim-
inant form of the transcendental lattice, we use it to determine T'. We need the following;:

Definition 2.1. (¢f.[B, Def. 1.1]) The discriminant d = dys = —dr is small if 4 - d is not
divisible by k* for any non square natural number k congruent to 0 or 1 modulo 4.

Then if dp is small , the lattice T is uniquely determined by its genus (cf. [CS, Thm. 21, p.
395]), hence by signature and discriminant form.
The family Y 7xv. The candidate lattice is

4 1 O

To:=11 4 0

0 0 -2

this has discriminant -30, and taking the generator
4/15
fi=1 —-1/15

1/2
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TABLE 1. Transcendental Lattices

Family general surface singular surfaces
v f é 8 ( 2 1 ) ( 2 0 ) ( 2 0 ) ( 2 1 )
A, Gg
00 —6 1 8 0 30 0 30 1 8
d —90 15 60 60 15
v 8 Qg 8 ( 2 0 ) ( 6 0 ) ( 6 0 ) ( 4 0 )
X,Gg
0 0 2 0 14 0 14 0 28 0 28
d —336 28 34 168 112
v ;lgi 8 (12 6) (6 0) <6 0) <4 2)
A, G2
0 0 —30 6 58 0 220 0 132 2 34
d —3960 660 1320 792 132
v ‘11 i 8 ( 4 1 ) ( 6 0 ) ( 6 0 ) ( 4 1 )
\,TXV
00 _o 1 4 0 10 0 10 1 4
d —30 15 60 60 15
v 12 13 8 (4 2) (10 4) (12 0) (2 0)
A,OXT
0 0 -2 2 8 4 10 0 14 0 14
d —168 28 34 168 28
4 1 6 0
Dy j ( 1 4 ) < 0 10 ) j i
d - 15 60 - -
2 0 8 0
Y. 00y - ( 0 14 ) . ) ( 0 14 )
d - 28 - - 112
2 1 4 2
Yarxr ) ( 1 4 ) ) ) ( 2 8 )
d - 7 - - 28

one computes g7, (f1) = —7/30 = 53/30 mod 2Z, hence the discriminant form is Zsy(53/30).
Since dp = —30 is small the transcendental lattice of the general K3-surface is Tj.
The family Y\ ox7. The candidate lattice is

10 4 0
T := 4 10 O
0 0 -2

this has discriminant -168, and taking the generators

1/2 1/2 8/21
f1 = 0 5 f2 = 0 5 f3 = —].9/42
1/2 ~1/2 0

we find g7, (fi) = 0 mod 2Z, i = 1,2 and ¢, (f3) = 5/42 mod 2Z, hence the discriminant
form is Z2(0) @ Z2(0) @ Za2(5/42). Since dr = —168 is small we have T = T7.

We collect the results in the table 1. We recall also the results of [B] about the general
surfaces of the families Y5(\), Ys(A), Yi2()\) and also about the singular surfaces in these
pencils, Barth computed the transcendental lattices of the singular surfaces too, but he did
not published his result. In the table we write also the discriminants of the lattices.
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2.3. Moduli curve. Let
Q= {[w] e P(A® O)|(w,w) = 0; (w,w) > 0},

this is an open subset in a quadric in P2L. If X is a K3-surface and wx € H*°(X), then it is
well known that wx € ) and it is called a period point. Moreover also the converse is true:
each point of € occurs as period point of some K3-surface, this is the so called surjectivity of
the period map (cf. [BPV, Thm. 14.2]). Now let M C A be a sublattice of signature (1,p—1)
and define:

Oy = {[w] € Q(w, 1) =0 for all p € M}.

This has dimension 20 — p = 20—rank M. If rank M =19 then this space is a curve. Let X
be a K3-surface with p = 19 since in this case the embedding of Tx in A is unique up to
isometry of A (cf. [M, Cor. 2.10]), T determines Qys, with M = Ty = NS(X) and so the
moduli curve, which classify the K3-surfaces. Hence in our cases the transcendental lattices
given in the table 1 identify the moduli curve of the K3-surfaces in the families Y) 7« and
Yxoxr (in the case p = 19).

3. SHIODA-INOSE STRUCTURE

By a result of Morrison K3-surfaces with p = 19 or p = 20 admit a Shioda-Inose structure.
Before discussing our cases we recall some facts.

Definition 3.1. (¢f. [M, Def. 6.1]) A K3-surface X admits a Shioda-Inose structure if there
1s a Nikulin Involution ¢ on X with rational quotient map m : X — — — 'Y such that Y is a
Kummer surface, and 7, induces an Hodge isometry Tx (2) = Ty .

Hence we have the following diagram:

(2) A X

N /
N /
N 7/

s s

Afi<— Y —X/L

where A is the complex torus whose Kummer-surface is Y, ¢ is a Nikulin involution, i.e. an
involution with 8 fix-points on X, 4 is an involution on A with 16 fix-points and the rational
maps from A to Y and from X to Y are 2:1. By definition we have Tx(2) = Ty and by [M,
Prop. 4.3], we have T4(2) = Ty hence the diagram induces an Hodge isometry Tx = T4.

In our cases the K3-surface which we consider are algebraic hence A is an abelian variety (cf.
[M, Thm. 6.3, (ii)]). Moreover whenever X is an algebraic K3-surface and p(X) = 19 or 20
then X admits always a Shioda-Inose structure (cf. [M, Cor. 6.4]). Whenever p = 20 Shioda
and Inose show that A = C7 x Cy where C7 and Cy are elliptic curves

Ci;=C/Z+7 7, i=1,2
whith
71 = (et V=d)/2a, 2 = (c+V=d)/2, (d=dab— )

We show that in the case of the general K3-surfaces of the families Y) 74y and of Y) oxr
the abelian surface A(A) is simple, i.e. it is not a product of elliptic curves, in this case we
say that the Shioda-Inose structure is simple.

The transcendental lattice T'4() has rank 3 hence its orthogonal complement NSy in U 3
has rank 3 too and we have NS(A(X)) = T(Y(\))(—1) because by [CS, Thm. 21, p. 395],
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the lattices are uniquely determined. We use this fact to show:

Theorem 3.1. For general A\, A = A(X) is not a product of elliptic curves.

Proof. (cf.[B, Thm. 5.1]) We show that A does not contain any elliptic curve C, i.e. a curve
with C? = 0.

The general surface in Yy 7xyv: We have intersection form on the transcendental lattice with
matrix

4 1 0
To:=11 4 0
0 0 -2
hence the form on NS4 is
-4 -1 0
-1 -4 0
0 0 2

The associated quadratic form is

—4x? — 2wy — 4y + 222, x,y,z € Z.
If A contains an elliptic curve, then there are z,y, z € Z with

22% = 4a? + 2zy + 4y?
hence
82% = 162° + 8xy + 163>
Put v = 42 + y, then
(3) 822 = u? + 15y%.
Hence we have u? = 322 mod 5Z, since 3 is not a square modulo 5 we have u = z = 0
mod 5Z, hence u = buy, 2 = 521, so
(4) 3y% = 5(82% —u?)
hence y = 5y; and substituting in (4) and dividing by 5 we find
15y% = 82% — u?

which is the same as (3).
The general surface in Y\ oxr: We have intersection form on the transcendental lattice with
matrix:

10 4 0
Ty = 4 10 0
0 0 -2
Hence the form on NS4 is
—-10 -4 0
-4 —-10 0
0 0 2

The quadratic form is

—102% — 8xy — 10y = 222, z,y,z € Z
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If A contains an elliptic curve, then there are x,y, z € Z with
22% = 102? + 8y + 10y
hence dividing by 2 and multiplying by 5 we find
52% = 2522 + 20zy + 252 = (5z + 2y)? + 2132,
Put v = 5z + 2y, then
(5) 522 = u® + 213>

Hence we have u? = 522 mod 7Z. Since 5 is not a square modulo 7 we have v = Tuq,
z = 721, SO we obtain

(6) 3y? = 7(52¢ — uf)
hence 3y?> =0 mod 7Z. Since 3 is not a square modulo 7 we have y = 7y; and substituting
in (6) and dividing by 7 we find

21y? = 527 — u?

which is again (5). O

4. HESSIANS AND EXTREMAL ELLIPTIC K3-SURFACES

Many of the singular K3-surfaces of this article appear already in other realizations.
In [DvG]| Dardanelli and van Geemen give a criteria to estabilish if a singular K3-surface is
the desingularization of the Hessian of a cubic surface:

Proposition 4.1. (¢f. [DvG, Prop. 2.4.1]) Let T be an even lattice of rank 2,

2n  a
T_< a 2m>'

There is a primitive embedding T — THess if and only if at least one among a, n and m is
even. In this case T embeds in U @ U(2).

Here Tess = U U (2)® A2 (—2). If we look in table 1 we see that all our singular K 3-surfaces
are desingularizations of Hessians of cubic surfaces. In particular Dardanelli and van Geemen
study explicitely the singular K3-surfaces with

4 1
T < 'l ) |
They call the surface X9 and show that it is the desingularization of the Hessian of the cubic

surface with 10 Eckardt points. The latter has e.g. the following equation in P*
4

4
Zazf’ =0, sz =0.
i=0 i=0

Finally observe that the singular surfaces of the families Y) ¢q, Y 7xv and Yy (pr) are ez-

tremal elliptic K3-surfaces, in the sense of Shimada and Zhang (cf. [SZ]), in fact these are
the numbers: 322, 173, 102, 148, 276 in their list in [SZ, Table 2, pp. 15-24].
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5. FIGURES: CONFIGURATIONS OF RATIONAL CURVES

In this section we recall the configurations of (—2)-rational curves generating the Neron-
Severi group over Q. In the case of the families Y) 7xy and Y) oxr the curves L;, L} and LY
on the general K3-surface are also contained in the Neron-Severi group of the singular K3-
surfaces, but we do not draw their configuration again. Moreover since the singular surfaces
Y)E%‘BV and Y)\(g’}x) v as the surfaces Y)\(76’2X) v and Y)Ei}i)v have the same graph, we draw just
one picture.

Y\ as Y\ cs
L, Ly Ly L Ls L, Ly Ly L L
@ @ @ [ o @ @ [
L L L L L L L! L L L
o o’ 3 ol e o o2 o 1 g

M,y

°
N1 Ny N3 Ny My Mo N1 Ny
o— 0 o— 0 [ ] o e O
Ns Ng N7 Ng Ms My R, Ry R3
e o e ° ° e o o

Yrxv Yyoxr

L/l L// Ll/ L/l LI/
1 Py 2 3 P 4 P 5

® ® ®
Li Ly L3 ILO Ly Ly L} M M,
° ® ) e o )
/ / /
Ly Lﬁ 0M2 ® 3 £ 4 £ 5 £\4 2

L / N- N- N- N,
5 Ly ° 1 2 3 4



TRANSCENDENTAL LATTICES OF SOME K3-SURFACES

119

Ml C M3 M1 C M3 N1 N2 C N3 N4
s ® ® ®——® 2" —®
I ® I
M, M, ® Ry o
My M,
6,1 6,4 6,2 6,3 8,1
Yirar (Agoy) iy (Varay) Yiour
M, C M, M, C My Ry N1 Ny C N3 Ny
9 9 ® 9o 9 9o @
Ry
N1 Ny N3 Ny N1 Ny N3 Ny My My Ry
9 o @ s o @
(8,2) (8,3) (8:4)
Y)\,OXT Y)\,OXT Y)\,OXT
N1y Ny Ci N3 Ny Ny Ny (Ci7 N3 Ny Ry Ry Rs Ci Ny No
oo  ® 9o —® o @ i *—® o o —® i )
N5 N6 CQ N7 NS Ml Ml
* Tt B s Lo B & s 0
Ny N C3 Nu N i i
Yo Mo s Nu N My My
M, M, M;s Ng Nig C3 Nix Nio M M
s o ® LA IM' * ®° ®
3
QL’ @/3 Ly L4C Ly L
7 y(62) v (6.1 y &
A\ (TT) A\(TT) A (00)"
Ry Ry R3 N1 N Ci My Nt N Ci N3 Ny Ny No Ci N3 Ny
9o 9 o9 I T — I oo 9o 9 9o 9
M2 Ml
/1 R/Z Ré N3 Ny Ms Ns Ng Co N7 Ng Ns Ng Cy N7 Ng
o 9o° 9 o —® I s ® 9 I ) ® 9 9 8 @
M M.
4 2 ﬁﬁ ﬁ@
bRpE e
O—Q—O ® ® ® I‘ i ®
Ly Ly L Lo Ly La Ly L ! !
(8,4) (8,1) (8:4)
Yy 0oy Yyrxr Yy ryr



120 ALESSANDRA SARTI

REFERENCES

[B] W.Barth: On the K3 Quotients of Sarti’s Polyhedral Invariant Surfaces, preprint

[BPV] W. Barth, C. Peters, A. van de Ven: Compact Complex Surfaces, Ergebnisse der Math. 3. Folge, Band
4, Springer (1984).

[BS] W.Barth, A.Sarti: Polyhedral Groups and Pencils of K3-Surfaces with Mazimal Picard Number, Asian
J. of Math. Vol. 7, No. 4, 519-538, December 2003.

[Bu] D.A. Buell: Binary Quadratic forms, classical Theory and Modern Computations, Springer-Verlag 1989.

[CS] J.H. Conway, N. J. A. Sloane: Sphere packings, Lattices and Groups, Grundlehren der mathematischen
Wissenschaft 290, Springer-Verlag 1988.

[DvG] E. Dardanelli, B. van Geemen: Hessians and the moduli space of cubic surfaces, prerint,
mathAG/0409322.

[M] D.R. Morrison: On K3 surfaces with large Picard number, Invent. Math. 75, 105-121 (1984).

[N] V.V. Nikulin: Integral Symmetric Bilinear Forms and Some of their Applications, Math. USSR Izvestija
Vol. 14 (1980), No. 1, 103-167.

[S1] A. Sarti: Pencils of Symmetric Surfaces in Ps, J. of Alg. 246, 429-452 (2001).

[S2] A. Sarti: Group actions, cyclic coverings and families of K3-surfaces, to appear in Canad. Math. Bull.

[SI] T. Shioda, H. Inose: On singular K3 Surfaces, in: Complex analysis and algebraic Geometry (Baily,
Shioda eds.) Cambridge 1977.

[SZ] 1. Shimada, D.-Q. Zhang: Classification of extremal elliptic K3 surfaces and fundamental groups of open
K3 surfaces, Nagoya Math. J. 161 (2001), 23-54.

ALESSANDRA SARTI, FACHBEREICH FUR MATHEMATIK, JOHANNES GUTENBERG-UNIVERSITAT, 55099 MAINZ,
GERMANY

Current address: UNIVERSITA DI MILANO, DIPARTIMENTO DI MATEMATICA, Via C. SALDINI, 50, 20133 MILANO,
ItALy

FE-mail address: sarti@mat.unimi.it, sarti@mathematik.uni-mainz.de



Nikulin involutions on K3 surfaces

to appear in Mathematische Zeitschrift



NIKULIN INVOLUTIONS ON K3 SURFACES
BERT VAN GEEMEN AND ALESSANDRA SARTI

ABSTRACT. We study the maps induced on cohomology by a Nikulin (i.e. a symplectic) involution
on a K3 surface. We parametrize the eleven dimensional irreducible components of the moduli space
of algebraic K3 surfaces with a Nikulin involution and we give examples of the general K3 surface
in various components. We conclude with some remarks on Morrison-Nikulin involutions, these are
Nikulin involutions which interchange two copies of Es(—1) in the Néron Severi group.

In his paper [Nil] Nikulin started the study of finite groups of automorphisms on K3 surfaces, in

particular those leaving the holomorphic two form invariant, these are called symplectic. He proves
that when the group G is cyclic and acts symplectically, then G = Z/nZ, 1 < n < 8. Symplectic
automorphisms of K3 surfaces of orders three, five and seven are investigated in the paper [GS]. Here
we consider the case of G = Z/2Z, generated by a symplectic involution ¢. Such involutions are called
Nikulin involutions (cf.[Mo, Definition 5.1]). A Nikulin involution on the K3 surface X has eight fixed
points, hence the quotient Y = X/ has eight nodes, by blowing them up one obtains a K3 surface Y.
In the paper [Mo] Morrison studies such involutions on algebraic K3 surfaces with Picard number
p > 17 and in particular on those surfaces whose Néron Severi group contains two copies of Fg(—1).
These K3 surfaces always admit a Nikulin involution which interchanges the two copies of Eg(—1).
We call such involutions Morrison-Nikulin involutions.
The paper of Morrison motivated us to investigate Nikulin involutions in general. After a study of
the maps on the cohomology induced by the quotient map, in the second section we show that an
algebraic K3 surface with a Nikulin involution has p > 9 and that the Néron Severi group contains
a primitive sublattice isomorphic with Eg(—2). Moreover if p = 9 (the minimal possible) then the
following two propositions are the central results in the paper:

Proposition 2.2. Let X be a K3 surface with a Nikulin involution ¢ and assume that the Néron
Severi group N'S(X) of X has rank nine. Let L be a generator of Eg(—2)* ¢ NS(X) with L? = 2d > 0
and let

Aoy :=ZL @ Eg(—2) (C NS(X)).
Then we may assume that L is ample and:
(1) in case L? = 2 mod 4 we have Ayg = NS(X);
(2) in case L? = 0 mod4 we have that either NS(X) = Ayg or NS(X) = A5; where A is the
unique even lattice containing Agg with Ag; JAoq = Z /27 and such that Fg(—2) is a primitive
sublattice of Ag;.

Proposition 2.3. Let I' = Agyq, d € Zsg or I' = Ay, d € 2Z. Then there exists a K3 surface X

with a Nikulin involution ¢ such that NS(X) =T and (H?(X,Z)")* = Eg(—2).

The second author is supported by DFG Research Grant SA 1380/1-1.
2000 Mathematics Subject Classification: 14J28, 14J10.
Key words: K3 surfaces, automorphisms, moduli.
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The coarse moduli space of I'-polarized K3 surfaces has dimension 11 and will be denoted by Moy
if I'= Agd and by Mﬁ if I'= AE&

Thus we classified all the algebraic K3 surfaces with Picard number nine with a Nikulin involution.
For the proofs we use lattice theory and the surjectivity of the period map for K3 surfaces. We also
study the (*-invariant line bundle L on the general member of each family, for example in Proposition
2.7 we decompose the space PH?(X,L)* into :*-eigenspaces. This result is fundamental for the
description of the t-equivariant map X — PH?(X, L)*. In section three we discuss various examples
of the general K3 surface in these moduli spaces, recovering well-known classical geometry in a few
cases. We also describe the quotient surface Y.

In the last section we give examples of K3 surfaces with an elliptic fibration and a Nikulin involution
which is induced by translation by a section of order two in the Mordell-Weil group of the fibration.
Such a family has only ten moduli, and the minimal resolution of the quotient K3 surface Y is again
a member of the same family. By using elliptic fibrations we also give an example of K3 surfaces with
a Morrison-Nikulin involution. These surfaces with involution are parametrized by three dimensional
moduli spaces. The Morrison-Nikulin involutions have interesting applications towards the Hodge
conjecture for products of K3 surfaces (cf. [Mo], [GL]). In section 2.4 we briefly discuss possible
applications of the more general Nikulin involutions.

1. GENERAL RESULTS ON NIKULIN INVOLUTIONS

1.1. Nikulin’s uniqueness result. A Nikulin involution ¢ of a K3 surface X is an automorphism
of order two such that *w = w for all w € H>%(X). That is, ¢ preserves the holomorphic two form
and thus it is a symplectic involution. Nikulin, [Nil, Theorem 4.7], proved that any abelian group G
which acts symplectically on a K3 surface, has a unique, up to isometry, action on H?(X,Z).

1.2. Action on cohomology. D. Morrison ([Mo, proof of Theorem 5.7],) observed that there exist
K3 surfaces with a Nikulin involution which acts in the following way on the second cohomology group:

D H2(X,Z) = U3 S ES(_]') EBE?S(_]-) - HQ(X,Z)7 (u7:1:7y) — (U,y,ﬂ?).

Thus for any K3 surface X with a Nikulin involution ¢ there is an isomorphism H?(X,Z) = U3 &
Eg(—1) & Eg(—1) such that .* acts as above.
Given a free Z-module M with an involution g, there is an isomorphism

(M, g) = Mj & M, & My,
for unique integers r, s, ¢ (cf. [R]), where:

My = (Z,1; = 1), M_y:=(Z,1_1 = —1), M, := (z%p = ( (1)

)

X o+~

Thus for a Nikulin involution acting on H?(X,Z) the invariants are (s,t,r) = (6,0, 8).

1.3. The invariant lattice. The invariant sublattice is:
H*(X,Z)" = {(u,z,z) € US® Eg(—1) ® Es(—1) } = U® @ FEg(-2).

The anti-invariant lattice is the lattice perpendicular to the invariant sublattice:
(H*(X,2)")" = {(0,z,—2) € U @ Eg(—1) @ Es(—1) } = Es(-2).

The sublattices H?(X,Z)" and (H?(X,Z)")* are obviously primitive sublattices of H?(X,Z).
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1.4. The standard diagram. The fixed point set of a Nikulin involution consists of exactly eight
points ([Nil, section 5]). Let 3 : X — X be the blow-up of X in the eight fixed points of ¢. We denote
by I the involution on X induced by ¢. Moreover, let ¥ = X /t be the eight-nodal quotient of X, and
let Y =X /7 be the minimal model of Y, so Y is a K3 surface. This gives the ‘standard diagram’:

/6 ~

X — X
| L
Y — Y.

We denote by F;, i = 1,...,8 the exceptional divisors in X over the fixed points of ¢ in X, and by
N; = w(E;) their images in Y, these are (—2)-curves.

1.5. The Nikulin lattice. The minimal primitive sublattice of H?(Y,Z) containing the N; is called
the Nikulin lattice N (cf. [Mo, section 5]). As N2 = —2, N;N; = 0 for i # j, the Nikulin lattice

contains the lattice < —2 >8. The lattice N has rank eight and is spanned by the N; and a class N:

N:<N1,...,N8,N>, N:(N1—|—+N8)/2

A set of 8 rational curves on a K3 surface whose sum is divisible by 2 in the Néron Severi group is
called an even set, see [B] and section 3 for examples.

1.6. The cohomology of X. It is well-known that
H*(X,Z) = H*(X,Z) ® (0%_,ZE;) = U ® Fs(—1)’® < -1 >%.

For a smooth surface S with torsion free H?(S,Z), the intersection pairing, given by the cup product
to H*(S,Z) = Z, gives an isomorphism H?(S,Z) — Homz(H?(S,Z),Z).
The map [* is:

B*: H*(X,Z) — H*(X,Z) = H*(Y,Z) ® (5_,ZE;),  x+— (z,0),

and its dual 3. cH*(X,Z) — H*(X,Z) is (z,e) — . )
Let m : X — Y be the quotient map, let 7* : H?(Y,Z) — H?*(X,Z) be the induced map on the
cohomology and let 7, : H*(X,Z) — H*(Y,Z) be its dual, so:

@ -b=a-m"b (a € H¥(X,Z), b€ HX(Y,Z)).
Moreover, as 7* is compatible with cup product we have:
™b-m*c=20b-¢)  (b,c€ H*(Y,Z)).

1.7. Lattices. For a lattice M := (M,b), where b is a Z-valued bilinear form on a free Z-module
M, and an integer n we let M (n) := (M, nb). In particular, M and M (n) have the same underlying
Z-module, but the identity map M — M (n) is not an isometry unless n =1 or M = 0.

1.8. Proposition. Using the notations and conventions as above, the map m, : H2%(X,Z) —
H2(Y,Z) is given by

T U@ Eg(—1) @ Eg(~1)® < -1 >3 U2 @ N @ Eg(—1) — H*(Y,Z),

Tt (u,x,y,2) — (u, 2,2 + ).
The map 7*, on the sublattice U(2)3 & N @ Es(—1) of H*(Y,Z) is given by:

™ U2 &N @ FEs(—1) — H*X,Z)=U3® Fs(—1) ® Es(-1)® < —1 >5,

7 (u,n, ) — (2u,x,z,2n),
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here if n = > n;N;, n =Y n;E;.

Proof. This follows easily from the results of Morrison. In the proof of [Mo, Theorem 5.7}, it is shown
that the image of each copy of Eg(—1) under 7, is isomorphic to Eg(—1). As Eg(—1) is unimodular, it is
a direct summand of the image of 7. As m.* = m,, we get that 7,(0,2,0,0) = 7,(0,0,y,0) € Eg(—1).
The < —1 >® maps into N (the image has index two). As U3 is a direct summand of H?(X,Z)*, [Mo,
Proposition 3.2] gives the first component.

As 7, and 7* are dual maps, n*a = b if for all ¢ € H%(X,Z) one has (b - c)g = (a-mec)y. In
particular, if a € U(2)3 and ¢ € U? we get (m*a-¢)y = (a- mc)y = 2(a-c)y since we compute in
U(2)?, hence 7*a = 2a. Similarly, (7*N;-E;) ¢ = (N;-m.E})y = —23;5, so 7 N; = 2E; (this also follows
from the fact that the IN; are classes of the branch curves, so 7*N; is twice the class of 7T_1(N7;) = F;).
Finally for z € Eg(—1) and (y,0) € Es(—1)* we have (7*z - (y,0)) ¢ = (z - m(y,0))y = (z - y)y and
also (7*z - (0,y)) ¢ = (z - y)y, so 7z = (z,z) € Eg(—1)2. O

1.9. Extending 7*. To determine the homomorphism 7* : H2(Y,Z) — H?*(X,Z) on all of H?(Y, Z),
and not just on the sublattice of finite index U(2)? & N @ Eg(—1) we need to study the embedding
U(2)2 @ N — U? ® Eg(—1). This is done below. For any z € U? @ Eg(—1), one has 2z € U(2)> ® N
and 7*(2z) determined as in Proposition 1.8. As 7* is a homomorphism and lattices are torsion free,
one finds 7z as 7*x = (7%(2x))/2.

1.10. Lemma. The sublattice of (U(2)> & N) ® Q generated by U(2)? & N and the following six
elements, each divided by two, is isomorphic to U3 @ Eg(—1):

€1+(N1+N2+N3+N8), 62+(N1+N5+N6+N8), 63+(N2+N6+N7+N8),
Ji+ (N1 +No+ Ny+Ng),  fo+ (N1+ Ns+ N+ Ng),  f3+ (N3 + Ng+ N5+ Ny),
2

here e;, f; are the standard basis of the i-th copy of U(2) in U(2)3. Any embedding of U(2)? @ N into
U3 @ Eg(—1) such that the image of N is primitive in U? @ Eg(—1) is isometric to this embedding.

Proof. The theory of embeddings of lattices can be found in [Ni2, section 1]. The dual lattice M* of
a lattice M = (M, b) is
M*=Hom(M,Z)={zre M®Q: blx,m) €Z Ym e M}.
Note that M < M?*, intrinsically by m +— b(m,—) and concretely by m — m @ 1. If (M,bys) and
(L,br) are lattices such that M < L, that is byr(m, m’) = br(m,m') for m,m’ € M, then we have a
map L — M* by [ — br(l,—). In case M has finite index in L, so M ® Q = L ® Q, we get inclusions:
M— L L"— M*.

Therefore L is determined by the image of L/M in the finite group Ap; := M*/M, the discriminant
group of M.

Since b = by extends to a Z-valued bilinear form on L C M* we get q(I) := br(I,]) € Z for | € L.
If L is an even lattice, the discriminant form

av Ay — Q/2Z, m* —— br(m*,m")

is identically zero on the subgroup L/M C Ajp. In this way one gets a bijection between even
overlattices of M and isotropic subgroups of Ay;. In our case M = K @ N, with K = U(2)?, so
Ay = Ag © Any and an isotropic subgroup of Aj,s is the direct sum of an isotropic subgroup of
Ak and one isotropic subgroup of Ay. We will see that (Ax,qx) = (An,—qn), hence the even
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unimodular overlattices L of M, with N primitive in L, correspond to isomorphisms v : Ay — Ag
with gy = —qx o~. Then one has that

L/M = {(’y(’ﬁ),’ﬁ) €cAy =Agx DAy : D€ AN}.
The overlattice L, corresponding to vy is:
L,:={(u,n) e K*®&N*: ~v(n)=u }.
We will show that the isomorphism < is unique up to isometries of K and N.
Let e, f be the standard basis of U, so € = f2 = 0,ef = 1, then U(2) has the same basis with
e? = f2=0,ef = 2. Thus U(2)* has basis e/2, f/2 with (¢/2)? = (f/2)? =0, (e/2)(f/2) = 2/4 = 1/2.
Thus Ay = (U(2)*/U(2))? = (Z/2Z)%, and the discriminant form qx on A is given by

qK : Ag = (Z/ZZ)6 — Z /27, i (x) = T129 + T34 + T5T6.

The Nikulin lattice N contains ©ZN; with N? = —2, hence N* C Z(N;/2). As N =<
Ni, (30 N;)/2 > we find that n* € Z(N;/2) is in N* iff n* - (3° N;)/2 € Z, that is, n* = ) z;(N;/2)
with > 2; = 0 mod 2. Thus we obtain an identification:

Ay = N*/N ={(1,...,28) € (Z/2Z)%: > 2; =0}/ < (1,...,1) >= (Z/2Z)°,

where (1,...,1) is the image of (>  N;)/2. Any element in Ay has a unique representative which
is either 0, (Nz + Nj)/Z, with 7 75 ] and ((Nz + N])/2)2 = 1 mod 2Z, or (Nl + Nz + Nj + Nk)/Z
(= (Ni + Ny, + N, + N,.)/2), with distinct indices and with {7,...,r} ={2,...,8} and (N1 + N; +
Nj+ Ng)/2)? = 0 mod 2. The quadratic spaces, over the field Z/2Z, ((Z/2Z), qx) and ((Z/2Z)°, qn)
are isomorphic, an explicit isomorphism is defined by

’y:AN—>AK, ’)/((N1+N2+N3+N8)/2):€1/2,

etc. where we use the six elements listed in the lemma.

The orthogonal group of the quadratic space ((Z/2Z)%,qy) obviously contains Sg, induced by
permutations of the basis vectors in (Z/2Z)®, and these groups are actually equal cf. [Co]. Thus any
two isomorphisms Ay — Ag preserving the quadratic forms differ by an isometry of Ay which is
induced by a permutation of the nodal classes N1,..., Ng. A permutation of the 8 nodal curves IV; in
N obviously extends to an isometry of N.

This shows that such an even unimodular overlattice of U(2)? @ N is essentially unique. As these
are classified by their rank and signature, the only possible one is U3@® Eg(—1). Using the isomorphism
7, one obtains the lattice L., which is described in the lemma. ]

1.11. The lattices N & N and I'14. Using the methods of the proof of Lemma 1.10 we show that
any even unimodular overlattice L of N & N such that N @ {0} is primitive in L, is isomorphic to
the Barnes-Wall lattice I'ig(—1) (cf. [Se, Chapter V, 1.4.3] ). The lattice I'ig(—1) is the unique even
unimodular negative definite lattice which is not generated by its roots, i.e. by vectors v with v? = —2.

The discriminant form gy of the lattice N has values in Z/2Z, hence qy = —qn. Therefore
isomorphisms v : N — N correspond to the even unimodular overlattices L, of N @ N with N @ {0}
primitive in L,. Since N @& N is negative definite, so is L,. The uniqueness of the overlattice follows,
as before, from the fact O(qy) = Ss. To see that this overlattice is I'16(—1), recall that

P16:{$:(IE1,...,(1}16)€Q162 2x; € 7, {Ifi—ijZ, ZIEZEQZ },

and the bilinear form on I'jg is given by ) x;y;. Let e; be the standard basis vectors of Q6. As
N @ N — T6(—1), (Ni,0) — e; + eits, (0, Ni) — e; — eits,



126 BERT VAN GEEMEN AND ALESSANDRA SARTI

is a primitive embedding N @ N into I'jg(—1) (note (N,0) — (3 e;)/2 € T'16, (0,N) — ((Z?:l €i) —
16 €:))/2 € ') the claim follows.
1=9

2. ELEVEN DIMENSIONAL FAMILIES OF K3 SURFACES WITH A NIKULIN INVOLUTION
2.1. Néron Severi groups. As X is a K3 surface it has H%(X) = 0 and
Pic(X) =NS(X)=H"(X)NH*(X,Z)={x € H*(X,Z): 2-w=0Yw e H*'(X)}.
For x € (H*(X,Z)")* we have *r = —x. As 1*w = w for w € H?>%(X) we get:
wr=rw-lr=—w-zx hence (H?(X,Z)")* c NS(X).

As we assume X to be algebraic, there is a very ample line bundle M on X, so M € NS(X) and
M? > 0. Therefore the Néron Severi group of X contains Eg(—2) = (H?(X,Z)")* as a primitive
sublattice and has rank at least 9.

The following proposition gives all even, rank 9, lattices of signature (14, 8—) which contain Eg(—2)
as a primitive sublattice. We will show in Proposition 2.3 that any of these lattices is the Néron Severi
group of a K3 surface with a Nikulin involution. Moreover, the moduli space of K3 surfaces, which
contain such a lattice in the Néron Severi group, is an 11-dimensional complex variety.

2.2. Proposition. Let X be a K3 surface with a Nikulin involution ¢ and assume that the Néron
Severi group of X has rank 9. Let L be a generator of Eg(—2)* € NS(X) with L? = 2d > 0 and let

A=Ay :=ZL® Es(—-2) (C NS(X)).

Then we may assume that L is ample and:
(1) in case L? = 2 mod 4 we have A = NS(X); . .
(2) in case L? = 0 mod4 we have that either NS(X) = A or NS(X) = A where A = Ag; is
the unique even lattice containing A with A/A = Z/2Z and such that Eg(—2) is a primitive
sublattice of A.

Proof. As L? > 0, either L or —L is effective, so may assume that L is effective. As there are no
(—2)-curves in L+ = Eg(—2), any (—2)-curve N has class aL + e with a € Z~¢ and e € Eg(—2). Thus
NL = aL? > 0 and therefore L is ample.

From the definition of L and the description of the action of + on H?(X,Z) it follows that ZL
and Eg(—2) respectively are primitive sublattices of N.S(X). The discriminant group of < L > is
Ap =< L >* | < L > 7/2dZ with generator (1/2d)L where L? = 2d and thus ¢, ((1/2d)L) = 1/2d.
The discriminant group of Eg(—2) is Ap = (1/2)Fs(—2)/Fs(—2) = (Z/2Z)8, as the quadratic form
on Fg(—2) takes values in 4Z, the discriminant form ¢p takes values in Z/2Z.

The even lattices A which have A as sublattice of finite index correspond to isotropic subgroups
H of Ap @ Ap where A :=< L >* /| < L >= Z/2dZ. If Fg(—2) is a primitive sublattice of A, H
must have trivial intersection with both A; and Ag. Since Ag is two-torsion, it follows that H is
generated by ((1/2)L,v/2) for some v € Eg(—2). As ((1/2)L)? = d/2 mod2Z and (v/2)? € Z/2Z,
for H to be isotropic, d must be even. Moreover, if d = 4m + 2 we must have v?> = 8k + 4 for
some k and if d = 4m we must have v? = 8k. Conversely, such a v € Eg(—2) defines an isotropic
subgroup < (L/2,v/2) >C Ap & Ag which corresponds to an overlattice A. The group O(Es(—2))
contains W (Eg) (cf. [Co]) which maps onto O(qg). As O(gg) has three orbits on Ag, they are {0},
{v/2:(v/2)2=0(2)} and {v/2: (v/2)? =1 (2)}, the overlattice is unique up to isometry. O
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2.3. Proposition. Let I' = Ayy, d € Zsg or I' = Ay, d € 2Z>¢. Then there exists a K3 surface X
with a Nikulin involution ¢ such that NS(X) =T and (H?(X,Z)")* = Eg(—2).

The coarse moduli space of I'-polarized K3 surfaces has dimension 11 and will be denoted by Moy
ifI' = Agd and by M% if ' = Af;l

Proof. We show that there exists a K3 surface X with a Nikulin involution ¢ such that NS(X) = A5
and under this isomorphism (H?(X,Z)")* = Eg(—2). The case NS(X) = Ay is similar but easier
and is left to the reader.

The primitive embedding of A% in the unimodular lattice U? @ Eg(—1)? is unique up to isometry
by [Ni2, Theorem 1.14.1], and we will identify As; with a primitive sublattice of U? & Eg(—1)? from
now on. We choose an w € AiLE ®z C with w? = 0, ww > 0 and general with these properties, hence
wtN (U2 @ Eg(—1)%) = Az By the ‘surjectivity of the period map’, there exists a K3 surface X with
an isomorphism H?(X,Z) = U? @ Eg(—1)? such that NS(X) = Ag.

The involution of A = ZL @& Eg(—2) which is trivial on L and —1 on FEg(—2), extends to an
involution of Ay = A+ Z(L/2,v/2). The involution is trivial on the discriminant group of Ag; which
is isomorphic to (Z/2Z)%. Therefore it extends to an involution ¢ of U3 @ Eg(—1)? which is trivial on
AEL;[. As (U3 @ Eg(—1)?)")+ = Eg(—2) is negative definite, contains no (—2)-classes and is contained
in NS(X), results of Nikulin ([Nil, Theorems 4.3, 4.7, 4.15]) show that X has a Nikulin involution
¢t such that t* = ¢y up to conjugation by an element of the Weyl group of X. Since we assume L to
be ample and the ample cone is a fundamental domain for the Weyl group action, we do get t* = ¢,
hence (H?(X,Z)")* = Eg(—2).

For the precise definition of I'-polarized K3 surfaces we refer to [Do]. We just observe that each
point of the moduli space corresponds to a K3 surface X with a primitive embedding I"' — NS(X).
The moduli space is a quotient of the 11-dimensional domain

Dr={weP(lt®zC): w?=0, wo>0}
by an arithmetic subgroup of O(I). O

2.4. Note on the Hodge conjecture. For a smooth projective surface S with torsion free H2(S, Z),
let T := NS(S)* < H%*(S,Z) and let Tsq =Ts ®z Q. Then Tg, the transcendental lattice of .S, is
an (integral, polarized) weight two Hodge structure.

The results in section 1 show that m, o * induces an isomorphism of rational Hodge structures:

¢ :Tx.q — Tvq
in fact, both are isomorphic to Ty Q Any homomorphism of rational Hodge structures ¢ : T'x,q —
Ty,q defines, using projection and inclusion, a map of Hodge structures H 2(X,Q) — Tx.q — Ty —
H?(Y,Q) and thus it gives a Hodge (2,2)-class
¢ € HX(X,Q)" @ H*(Y,Q) = H*(X,Q) ® H*(Y,Q) — H'(X x Y,Q),

where we use Poincaré duality and the Kiinneth formula. Obviously, the isomorphism ¢, : T'x q —
Ty,q corresponds to the class of the codimension two cycle which is the image of X in X x Y under
(8.7).

Mukai showed that any homomorphism between T's @ and T g where S and Z are K3 surfaces which
is moreover an isometry (w.r.t. the quadratic forms induced by the intersection forms) is induced by
an algebraic cycle if dimT5q < 11 ([Mu, Corollary 1.10]). Nikulin, [Ni3, Theorem 3], strengthened
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this result and showed that it suffices that N.S(X) contains a class e with e? = 0. In particular, this
implies that any Hodge isometry Tsq — 7z q is induced by an algebraic cycle if dimT5q < 18 (cf.
[Ni3, proof of Theorem 3]).

The Hodge conjecture predicts that any homomorphism of Hodge structures between T's g and T q
is induced by an algebraic cycle, without requiring that it is an isometry. There are few results in this
direction, it is therefore maybe worth noticing that ¢, is not an isometry if Tx has odd rank, see the
proposition below. In [GL] a similar result of D. Morrison in a more special case is used to obtain new
results on the Hodge conjecture. In Proposition 4.2 we show that there exists a K3 surface X with
Nikulin involution where T'x q has even rank and T’y q s isometric to Ty,q.

2.5. Proposition. Let ¢, : Tx q =, Ty q be the isomorphism of Hodge structures induced by the
Nikulin involution ¢ on X and assume that dim Ty q is an odd integer. Then ¢, is not an isometry.

Proof. Let @ : Q" — Q be a quadratic form, then @ is defined by an n x n symmetric matrix, which
we also denote by Q: Q(x) := ‘zQz. An isomorphism A : Q" — Q" gives an isometry between (Q", Q)
and (Q", Q") iff Q' ='A71QA™!). In particular, if (Q", Q) = (Q", Q') the quotient det(Q)/ det(Q’)
must be a square in Q*.

For a Z-module M we let Mq := M ®z Q. Let Vx be the orthogonal complement of Fg(—2)q C
NS(X)q, then det(NS(X)q) = 28det(Vx) up to squares. Let V3 be the orthogonal complement of
Nq C NS(Y)q then det(NS(Y)q) = 25det(Vy) up to squares. Now B,.7* : H2(Y,Q) — H*(X,Q)
induces an isomorphism Vx — Vy which satisfies (Gin*x)(Ben*y) = 2xy for z,y € Vy, hence
det(Vx) = 2% det(Vy) where d = dim Vy = 22 — 8 — dimTxq, so d is odd by assumption.

For a K3 surface S, det(Ts.q) = —det(NS(S)q) and thus det(Tx.q)/det(Ty.q) = 242 up to
squares. As d is odd and 2 is not a square in the multiplicative group of Q, it follows that there exists
no isometry between T'x g and Ty,q. O

2.6. The bundle L. In case NS(X) has rank 9, the ample generator L of Eg(—2)* ¢ NS(X) defines
a natural map
pr: X — P9, g=n"(L)—-1=1L%/2+1
which we will use to study X and Y. As (*L = L, the involution ¢ acts as an involution on PY = |L|*
and thus it has two fixed spaces P¢, P with (a+1)+ (b+1) = g+ 1. The fixed points of : map to these
fixed spaces. Even though L is t-invariant, it is not the case in general that on X we have 8*L = 7* M
for some line bundle M € NS(Y). In fact, 3*L = n*M implies L? = (8*L)? = (7*M)? = 2M? and
as M? is even we get L? € 4Z. Thus if L? ¢ 4Z, the -invariant line bundle L cannot be obtained
by pull-back from Y. On the other hand, if for example |L| contains a reduced t-invariant divisor D
which does not pass through the fixed points, then 3*D = 37! D is invariant under 7 on X and does
not contain any of the F; as a component. Then $*D = n*D’ where D’ C Y is the reduced divisor
with support m(571D).
The following lemma collects the basic facts on L and the splitting of P9 = PH?(X, L)*.

2.7. Proposition.

(1) Assume that NS(X) = ZL ® Eg(—2). Let E, ..., Fg be the exceptional divisors on X.
In case L? = 4n + 2, there exist line bundles M;, My € NS(Y) such that for a suitable
numbering of these E; we have:

ﬁ*L—El—EQZﬂ'*Ml, ﬁ*L—Eg,—...—Eg:ﬂ‘*MQ.
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The decomposition of H?(X, L) into +*-eigenspaces is:
HY(X,L) =7 H)Y, M) @ n*HY (Y, Ms),  (h°(My) =n+2, h°(My) =n +1).

and the eigenspaces P"*!, P" contain six, respectively two, fixed points.
In case L? = 4n, for a suitable numbering of the E; we have:

3L —FEy—Ey—Ey—Ey =My,  §°L— Es — Eg— By — Eg = 7* Mo
with My, My € NS(Y). The decomposition of H°(X, L) into ¢*-eigenspaces is:
HO(X,L) = n*HO(Y, My) ® 7 HO(Y, M),  (h°(M;y) = h®(My) =n +1).

and each of the eigenspaces P contains four fixed points.
(2) Assume that ZL & Eg(—2) has index two in NS(X). Then there is a line bundle M € NS(Y)
such that:

FL=x"M,  H(X,L)=H(Y,M)®H'(Y,M - N),

where N = (Z§:1 N;)/2 € NS(Y) and this is the decomposition of H°(X,L) into ¢*-
eigenspaces. One has h°(M) = n + 2, h%(M — N) = n, and all fixed points map to the
eigenspace P! ¢ p2ntl = P9,

Proof. The primitive embedding of ZL @ Eg(—2) in the unimodular lattice U3 @ Eg(—1)? is unique
up to isometry by [Ni2, Theorem 1.14.1]. Therefore if L2 = 2r we may assume that L = e; +rf; €
U c U3 @ Eg(—1)3 where ey, f; are the standard basis of the first copy of U.

In case r = 2n + 1, it follows from Lemma 1.10 that (e; + (2n + 1)f1 + N3+ Ng)/2 € NS(Y). By
Proposition 1.8, M; := (e1+(2n+1) fi+N3+Ny)/2— N3 — Ny satisfies 7 My = 8*L— E3—Ey. Similarly,
let My = (€1+(2n+1)f1+N3+N4)/2—N S NS(Y), then 7* My = *L — (E1+E2+E5+...+E8).

Any two sections s,t € H°(X, L) lie in the same (*-eigenspace iff the rational function f = s/t
is (-invariant. Thus s,t € 7*H°(Y, M;) are (*-invariant, hence each of these two spaces is contained
in an eigenspace of /* in H°(X,L). If both are in the same eigenspace, then this eigenspace would
have a section with no zeroes in the 8 fixed points of . But a ¢-invariant divisor on X which doesn’t
pass through any fixed point is the pull back of divisor on Y, which contradicts that L? is not a
multiple of 4. Thus the 7*H%(Y, M;) are in distinct eigenspaces. A dimension count shows that
hO(L) = h%(My) + hO(Ms), hence the 7* HO(Y, M;) are the eigenspaces.

In case r = 2n, again by Lemma 1.10 we have (e; + N1 + Ny + N3 + Ng)/2 € NS(Y). Let
My = ’I’Lf1+(61—|—N1+N2+N3+N8)/2—(N1+N2+N3—|-N8) then 7*M; = ﬁ*L—(El—I-EQ—I-Eg—I-Eg).
Put My = My + N — (Ny 4+ N5 + Ng + N7), then n*My = §*L — (E4 + E5 + Eg + E7). As above, the
7*HO(Y, M;), i = 1,2, are contained in distinct eigenspaces and a dimension count again shows that
hO(L) = hO(My) + hO(M>).

If ZL @ Es(—2) has index two in NS(X), the (primitive) embedding of NS(X) into U3 @ Eg(—1)
is still unique up to isometry. Let L? = 4n. Choose an a € Eg(—1) with o® = —2 if n is odd,
and o? = —4 if n is even. Let v = (0,0, —a) € Eg(—2) C U3 @ Eg(—1)? and let L = (2u,, ) €
U3 ® Eg(—1)? where u = ey + (n+1)/2f; if nis odd and u = e; + (n/2 + 1) f1 if n is even. Note that
L? = 4u?+20a? = 4n and that (L+v)/2 = (u,«,0) € U3®FEg(—1)2. Thus we get a primitive embedding
of NS(X) — U? @ Eg(—1)? which extends the standard one of Eg(—2) C NS(X). Proposition 1.8
shows that 8*L = m*M with M = (u,0,a) € U3(2) ® N & Eg(—1) C H?(Y,Z). For the double cover
7 : X — Y branched along 2N = S° N; we have as usual: .05 = Oy @ Oy (—N) hence, using the
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projection formula:
HY (X, 7" M) = HO(Y, m.(m"M @ O%) = H(Y, M) @ H°(Y, M — N).

Note that the sections in 7* HO(Y, M — N ) vanish on all the exceptional divisors, hence the fixed points
of © map to a P"*1, O

3. EXAMPLES

3.1. In Proposition 2.3 we showed that K3 surfaces with a Nikulin involution are parametrized by
eleven dimensional moduli spaces Maq and M, with d,e € Z~(. For some values of d, e we will now
work out the geometry of the corresponding K3 surfaces. We will also indicate how to verify that the
moduli spaces are indeed eleven dimensional.

3.2. The case Mj. Let X be a K3 surface with Nikulin involution ¢ and NS(X) = ZL @ Eg(—2)
with L? = 2 and (*L = L (cf. Proposition 2.3). The map ¢ : X — P? is a double cover of P?
branched over a sextic curve C, which is smooth since there are no (—2)-curves in L. The covering
involution will be denoted by ¢ : X — X. The fixed point locus of ¢ is isomorphic to C.

As i* is +1 on ZL, —1 on Eg(—2) and —1 on T’x, whereas ¢* is +1 on ZL, —1 on Eg(—2) and +1
on Ty, these two involutions commute. Thus ¢ induces an involution zp2 on P? (which is :* acting on
PH°(X, L)*) and in suitable coordinates:

ip2 : (wo: a1 :x2) — (—x0: 21t X2).
We have a commutative diagram

cC - X 5 X
> e 1¢
C — P2 X p2= X/

The fixed points of ip2 are:
(PHip2 =loU{p}, lo: x0=0, p=(1:0:0).

The line [y intersects the curve C in six points, which are the images of six fixed points x3,...,zg of
¢t on X. Thus the involution ¢ induces an involution on C' C X with six fixed points. The other two
fixed points x1,xo of ¢ map to the point p, so i permutes these two fixed points of ¢. In particular,
these two points are not contained in C so p ¢ C (C P?), which will be important in the moduli count
below. The inverse image Co = ¢~ '(lp) is a genus two curve in the system |L|. Both ¢ and i induce
the hyperelliptic involution on Cy. By doing then the quotient by ¢, since this has six fixed points on
C5 we obtain a rational curve Cj.

To describe the eight nodal surface Y = X/i, we use the involution iy of ¥ which is induced by
i € Aut(X). Then we have:

Q:=Y/iy 2 X/ <1,i > P?/ips.
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This leads to the following diagrams of double covers and fixed point sets:

X {z1,22} UC Uy
p? Y S {pruC Ul {y1, 12} UCLU Gy {po} UC4 U Dy
NS T~
Q {g} UCLU Hy

The quotient of P? = X/i by tp2 is isomorphic to a quadric cone @ in P3 whose vertex ¢ is the
image of the fixed point (1:0:0). In coordinates, the quotient map is:

P2 — Q=P?/ip: C P3, (zo:x1:a0) — (Yo :...:y3) = (x8: 2% : 2129 : 23)

and Q is defined by y1y3 — 33 = 0.

The sextic curve C C P2, which has genus 10, is mapped 2:1 to a curve Cy4 on the cone. The double
cover C — (4 ramifies in the six points where C intersects the line g = 0. Thus the curve Cj is
smooth, has genus four and degree six (the plane sections of Cy are the images of certain conic sections
of the branch sextic) and does not lie in a plane (so C4 spans P3). The only divisor class D of degree
2g — 2 with h°(D) > g on a smooth curve of genus g is the canonical class, hence Cy is a canonically
embedded curve. The image of the line [y is the plane section Hy C @ defined by gy = 0.

The branch locus in @ of the double cover

Y —Q=Y/iy
is the union of two curves, Cy and the plane section Hy, these curves intersect in six points, and the

vertex q of Q.
To complete the diagram, we consider the involution

ji=t10i: X — X, S:=X/j.

The fixed point set of j is the (smooth) genus two curve Cy lying over the line Iy in P? (use j(p) = p
iff 4(p) = i(p) and consider the image of p in P?). Thus the quotient surface S is a smooth surface.
The Riemann-Hurwitz formula implies that the image of Cy in S is a curve Dy € | — 2Kg|, note that
Dy = Cs.

The double cover S — @ branches over the curve C4y C @ and the vertex ¢ € ). It is well-known
that such a double cover is a Del Pezzo surface of degree 1 ([Dem], [DoO]) and the map S — Q C P3
is given by ¢_ok, which verifies that the image of Dy is a plane section.

On the other hand, any Del Pezzo surface of degree 1 is isomorphic to the blow up of P? in eight
points. The linear system | — Kg| corresponds to the pencil of elliptic curves on the eight points, the
ninth base point in P? corresponds to the unique base point pg of | — Kg| in S. The point pg maps
to the vertex ¢ € @ under the 2:1 map ¢_sx ([DoO, p. 125]). The Néron Severi group of S is thus
isomorphic to

NS(S)=Zey®Zey®...®Zeg, e2=1 e =-1 (1<i<8)
and eje; = 0 if i # j. The canonical class is Kg = —3eg + e + ...+ eg. Since K2 = 1, we get a direct
J S

sum decomposition:
NS(S)~2ZKs® K& = ZKg & Fg(—1)
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(cf. [DoO, VIL5]). The surface S has 240 exceptional curves (smooth rational curves E with E? = —1),
cf. [DoO, p.125]. The adjunction formula shows that EKg = —1 and the map E — E + K gives a
bijection between these exceptional curves and the roots of Eg(—1), i.e. the z € Eg(—1) with 2% = —2.
An exceptional divisor E C S meets the branch curve Dy (€ | —2Kg|) of X — S in two points, hence
the inverse image of F in X is a (—2)-curve. Thus we get 240 such (—2)-curves. Actually,

§* NS(S) = ZKs ® Es(—1) — NS(X) = ZL @ Es(—2)

is the identity on the Z-modules and NS(X) = NS(S)(2). The class of such a (—2)-curve is L + x,
with z € L+ = Eg(—2), 2> = —2. Asi*(L+2) = L — x # L + x, these (—2)-curves map pairwise
to conics in P2, which must thus be tangent to the sextic C. As also +(L + z) = L — x, these conics
are invariant under 7p2 and thus they correspond to plane sections of Q C P3, tangent to Cj, that is
tritangent planes. This last incarnation of exceptional curves in S as tritangent planes (or equivalently,
odd theta characteristics of Cy) is of course very classical.

Finally we compute the moduli. A ip2-invariant plane sextic which does not pass through p = (1:
0 : 0) has equation

Z aijead vz (2 + 75+ k=6, apoo # 0).

The vector space spanned by such polynomials is 16-dimensional. The subgroup of GL(3) of elements
commuting with zpz (which thus preserve the eigenspaces) is isomorphic to C* x GL(2), hence the
number of moduli is 16 — (1 + 4) = 11 as expected.

Alternatively, the genus four curves whose canonical image lies on a cone have 9 — 1 = 8 moduli
(they have one vanishing even theta characteristic), next one has to specify a plane in P3, this gives
again 8 + 3 = 11 moduli.

3.3. The case Mg. The map ¢y, identifies X with a complete intersection of a cubic and a quadric
in P%. According to Proposition 2.7, in suitable coordinates the Nikulin involution is induced by

tp1 s P4 — P4, (xo:x1:x9:x3:24) — (—T0: —T1 : To: T3: XTyq).
The fixed locus in P* is:
(P4)LP4:lUH, l: x9o=23=24=0, H: z9g=21=0.

The points X Nl and X N H are fixed points of ¢ on X and Proposition 2.7 shows that (X N1) = 2,
#(X N H) = 6. In particular, the plane H meets the quadric and cubic defining X in a conic and a
cubic curve which intersect transversely. Moreover, the quadric is unique, so must be invariant under
tp4, and, by considering the action of tps on the cubics in the ideal of X, we may assume that the
cubic is invariant as well.

loo(z2, T3, 24) 2% + L1 (22, T3, 24) 23 + lo1 (T2, T3, T4)T0T1 + f3(T2,73,24) = O
Qo0T3 + a1173 + ag1xor1 + f2(x9, T3, 24) =0

where the o;; are constants, the [;; are linear forms, and fs, f3 are homogeneous polynomials of degree
two and three respectively. Note that the cubic contains the line [ : x93 = x3 = x4 = 0.

The projection from P* to the product of the eigenspaces P! x P? maps X to a surface defined by an
equation of bidegree (2,3). In fact, the equations imply that (> l;jxix;)/fs = (3 aujxiz;)/ f2 hence
the image of X is defined by the polynomial: (}_ lj;xziz;)fa — (D aujaix;) f3. Adjunction shows that
a smooth surface of bidegree (2,3) is a K3 surface, so the equation defines Y. The space of invariant
quadrics is 3 + 6 = 9 dimensional and the space of cubics is 3 - 3 + 10 = 19 dimensional. Multiplying
the quadric by a linear form aszs + asxs + asx4 gives an invariant cubic. The automorphisms of P
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commuting with ¢ form a subgroup which is isomorphic with GL(2) x GL(3) which has dimension
4+ 9 =13. So the moduli space of such K3 surfaces has dimension:

9-1)+(19-1)—-3-(13-1)=11
as expected.

3.4. The case M,. The map ¢, : X — P? is an embedding whose image is a smooth quartic surface.
From Proposition 2.7 the Nikulin involution : on X c P3 = P(C*) is induced by

L: C4 B C47 ($0,$1,$2,$3) — (—LITO, —$1,$2,5E3)

for suitable coordinates. The eight fixed points of the involution are the points of intersection of these
lines g = z1 = 0 and z9 = x3 = 0 with the quartic surface X.

A quartic surface which is invariant under ¢ and which does not contain the lines has an equation
which is a sum of monomials zgx8x$2¢ with a +b=0,2,4 and c+d =4 —a — b.

The quadratic polynomials invariant under 7 define a map:

P — P%, (zo:...:@3)— (20:21:...:25) = (@3 : 22 : 22 : 22 : Loy : Tox3)

which factors over P3/i. Note that any quartic invariant monomial is a monomial of degree two in
the z;. Thus if f = 0 is the equation of X, then f(zo,...,z3) = q(20,...,25) for a quadratic form q.
This implies that

V. _ 2 _ 2 _
Y : q(z0,...,25) =0, 2021 —2; =0, 2223 —25=0

is the intersection of three quadrics.

The invariant quartics span a 549 + 5 = 19-dimensional vector space. On this space the subgroup
H of GL(4) of elements which commute with tps acts, it is easy to see that H = GL(2) x GL(2) (in
block form). Thus dim H = 8 and we get an 19 — 8 = 11 dimensional family of quartic surfaces in P3,
as desired. See [I] for some interesting sub-families.

3.5. The case Mj. In this case ZL ® Eg(—2) has index two in NS(X). Choose a v € Eg(—2) with
v? = —4. Then we may assume that NS(X) is generated by L, Es(—2) and E; := (L 4+ v)/2, cf. (the
proof of ) Proposition 2.2. Let Ey := (L —v)/2, then E? = L?/4+v?/4 = 1—1 = 0. By Riemann-Roch
we have:

X(£E;) = E?/24+2=2

and so h'(£E;) > 2 so E; or —FE; is effective. Now L - E; = L?/2 +v/2- L = 2, hence F; is effective.
As po(E;) = 1 and E;N > 0 for all (—2)-curves N, each E; is the class of an elliptic fibration. As
L = E1 + Es, by [SD, Theorem 5.2] the map ¢y, is a 2:1 map to a quadric @ in P3 and it is ramified
on a curve B of bi-degree (4,4). The quadric is smooth, hence isomorphic to P! x P!, because there
are no (—2)-curves in N.S(X) perpendicular to L.

Let 7 : X — X be the covering involution of X — (). Then ¢ and the Nikulin-involution ¢ commute.
The elliptic pencils £, and Eo are permuted by ¢ because «*L = L,/*v = —v. This means that the
involution 7 on @ = P! x P! induced by ¢ acts as ((s : t), (u : v)) — ((u : v), (s : t)). The quotient of
Q /g is well known to be isomorphic to P2

The fixed point set of i in P! x P! is the diagonal A. Thus A intersects the branch curve B in eight
points. The inverse image of these points in X are the eight fixed points of the Nikulin involution.

The diagonal maps to a conic Cy in P2 = Q/ L@, which gives the representation of a smooth quadric
as double cover of P? branched along a conic (in equations: t2 = ¢(x,y, z)). The curve B maps to a



134 BERT VAN GEEMEN AND ALESSANDRA SARTI

plane curve isomorphic to B = B/t. As ¢ has 8 fixed points on the genus 9 curve B, the genus of B
is 3 and B C P? is a quartic curve.

Let j =it = 1i € Aut(X). The fixed point set of j is easily seen to be the inverse image C3 of the
diagonal A C Q. As C35 — A branches over the 8 points in B N A, Cs is a smooth (hyperelliptic)
genus three curve. Thus the surface S := X/j is smooth and the image of C3 in S lies in the linear
system | — 2Kg|. The double cover S — P? is branched over the plane quartic B C P2. This implies
that S is a Del Pezzo surface of degree 2, cf. [Dem], [DoO)].

This leads to the following diagrams of double covers and fixed point sets:

BuUC(s

I A N
[V

N L7

BuU Co
In particular the eight nodal surface Y is the double cover of P2 branched over the reducible sextic
with components the conic Cy and the quartic B. The nodes of Y map to the intersection points of
Cy and B.
To count the moduli we note that the homogeneous polynomials of degree two and four in three
variables span vector spaces of dimension 6 and 15, as dim GL(3) = 9 we get: (6—1)+(15—-1)—(9—-1) =
11 moduli.

3.6. The case Msg. We have H(X,L) = 7*HO(Y, M;) @ 7*H°(Y, M) and L? = 8, M? = 2 so
hO(L) = 6, h°(M;) = 3 for i = 1,2. The image of X under ¢z, is the intersection of three quadrics in
P® and ¢ is induced by

L: CG - 067 (x()axlaanyanlayQ) — ($0,$1,$2, —Y0, = Y1, _y2)

The multiplication map maps the 21-dimensional space S2H°(X, L) onto the 18-dimensional space
H°(X,2L). Using ¢ we can get some more information on the kernel of this map, which are the
quadrics defining X ¢ P®. We have:

S?*HO(X,L) = (S*HO(Y, M) ® S H (Y, Ms)) & (H°(Y, My) ® HO(Y, My)),
Moreover, as
B*(2L) ="M, with M =2My + Ny + ...+ Ny =2Ms + N5+ ... + Ny,
(cf. Proposition 2.7) we have the decomposition
HO(X,2L) 2 n*HY(Y, M) ® 7*H'(Y,M — N),  (h°(M) = (M?)/2 42 =10, h%(M — N) = 8).
In particular, the multiplication maps splits as:
HO(M,) ® H(My) — HO(Y,M — N)
(vector spaces with dimensions with 3-3 =9 and 8 resp.) and

S?HO(Y, M) © S*HO(Y, My) — H(Y, M)
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(with dimensions 6+6 = 12 and 10 resp.). Each of these two maps is surjective, and as S2H®(Y, M) —
HO(Y, M) is injective (¢, maps Y onto P?), the quadrics in the ideal of X can be written as:

Q1(z) — Q2(y) =0, Q3(r) — Qu(y) =0, B(z,y) =0

with @; homogeneous of degree two in three variables, and B of bidegree (1,1). Note that each
eigenspace intersects X in 2 - 2 = 4 points.

The surface Y maps to P? x P? with the map ¢ M, X @u,, its image is the image of X under the
projections to the eigenspaces P> — P2 x P2. As (zg:...:92) — Q1(7)/Q2(y) is a constant rational
function on X and similarly for Q3(x)/Q4(y), there is a ¢ € C such that the image of X is contained
in the complete intersection of type (2,2), (1,1) in P? x P? defined by

Q1(7)Qa(y) — cQ3(z)Q2(y) = 0, B(z,y) = 0.

By adjunction, smooth complete intersections of this type are K3 surfaces.

To count the moduli, note that the first two equations come from a 6 + 6 = 12-dimensional vector
space and the third comes from a 3 -3 = 9-dimensional space. The Grassmanian of 2-dimensional
subspaces of a 12 dimensional space has dimension 2(12 — 2) = 20. The subgroup of GL(6) which
commutes with ¢ps is isomorphic to GL(3) x GL(3) and has dimension 9 + 9 = 18. Thus we get
204+ (9—1) — (18 — 1) = 11 moduli, as expected.

3.7. The case Mgz. We have HO(X,L) = r*HO(Y,M) ® m*H°(Y,M — N) and L? = 8, M? = 4 so
hO(M) = 4,h°(M — N) = 2. The image of X under ¢, is is the intersection of three quadrics in P
and ¢ is induced by

~. 6 6
r:C C ) ($07$17$2ax3ay07y1) (x07x17x27x37 —Yo, _yl)

To study the quadrics defining X, that is the kernel of the multiplication map S?HY(X,L) —
HO(X,2L) we again split these spaces into ¢*-eigenspaces:

S2HO(X, L) = (S2H0(Y, M) @ S2HO(Y, M — N)) ® (HO(Y, M) @ HO(Y, M — N)) ,
(with dimensions 21 = (10 + 3) + 8) and
H(X,2L) = n*HO(Y,2M) @ n*H(Y,2M — N)

(with dimensions h0(2M) = 10, h°(2M — N) = 8).

This implies that there are no quadratic relations in the 8 dimensional space H°(Y, M)® H°(Y, M —
N ). As ¢pr maps Y onto a quartic surface in P3 and M — N is a map of Y onto P!, the quadrics in
the ideal of X are of the form:

ye=0Q1(x),  yoyr=Qa(z), ¥} =Qs(x).
The fixed points of the involution are the eight points in the intersection of X with the P? defined by
Yyo=y1 =0.

The image of Y by ¢y is the image of the projection of X from the invariant line to the invariant
P3, which is defined by = y1 = 0. The image is the quartic surface defined by Q1Q3 — Q=0
which can be identified with Y. The equation is the determinant of a symmetric 2 x 2 matrix, which
also implies that this surface has 8 nodes, (cf. [Ca, Theorem 2.2], [B, section 3]), the nodes form an
even set (cf. [Ca, Proposition 2.6]).

We compute the number of moduli. Quadrics of this type span a space U of dimension 3+ 10 = 13.
The dimension of the Grassmanian of three dimensional subspaces of U is 3(13—3) = 30. The group of
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automorphisms of C% which commute with ¢ps is GL(2) x GL(4). So we have a 30 — (4 +16—1) = 11
dimensional space of such K3-surfaces in P, as expected.

3.8. The case Mjy. We have HY(X,L) = 7*HY(Y, M;) ® n*HO(Y, M3) and L? = 12, M? = 4 so
hO(L) = 8, h%(M;) = 4 for i = 1,2. The image of X under ¢, is the intersection of ten quadrics in P”.

Following Example 3.6, we use ¢* to split the multiplication map from the 36 = (10 + 10) + 16-
dimensional space S2H%(X, L) onto the 26 = 14 + 12-dimensional space H%(X,2L), again $*(2L) =
7*M for an M € NS(Y) with M2 = 24. Thus we find 20 — 14 = 6 quadrics of the type Q1(z) — Q2(y)
with @; quadratic forms in 4 variables, and 16 — 12 = 4 quadratic forms B;(x,y), i = 1,...,4 where
x,y are coordinates on the two eigenspaces in H°(X, L).

In particular, the projection from P7 to the product of the eigenspaces P3 x P? maps X onto a
surface defined by 4 equations of bidegree (1,1). Adjunction shows that a complete intersection of
this type is a K3 surface, so the four B;’s define Y C P3 x P3.

Each B; can be written as: Bj(z,y) = >, lij(2)y; with linear forms /;; in @ = (zo,...,z3). The
image of ¥ C P3? x P3 under the projection to the first factor is then defined by det(l;;(z)) = 0,
which is a quartic surface in P? as expected. In fact, a point = € P3 has a non-trivial counter image
(z,y) € X C P3 x P3 iff the matrix equation (/;;)y = 0 has a non-trivial solution.

As X is not a complete intersection, we omit the moduli count.

3.9. The case M. In this case 3*L = n*M, h®(L) = 8 = 5+ 3 = h®(M) + h®(M — N). We
consider again the quadrics in the ideal of X in Example 3.7. The space S?H°(X, L) of quadrics on
P7 decomposes as:

S2HO(X, L) = (S2H0(Y, M) + S2HO(Y, M — N)) @ (HO(Y, M) @ HO(Y, M — N)) ,
with dimensions 36 = (15 + 6) + 15, whereas the sections of 2L decompose as:
hO(2L) = (4L?)/2 + 2 = 26 = 14 + 12 = h%(2M) & h°(2M — N).

Thus there are (154 6) — 14 = 7 independent quadrics in the ideal of X C P7 which are invariant and
there are 15 — 12 = 3 quadrics which are anti-invariant under the map

e CS — CSa (.TO, <3 X4,Y0, Y1, 92) [ — (.TO, <oy T4y, —Yo, — Y1, _y2)

An invariant quadratic polynomial looks like go(zo,...,24) + q1(y0,¥1,¥2), and since the space of
quadrics in three variables is only 6 dimensional, there is one non-zero quadric ¢ in the ideal of the
form ¢ = ¢q(xo,...,24). An anti-invariant quadratic polynomial is of bidegree (1,1) in = and y. In
particular, the image of the projection of X to the product of the eigenspaces P*xP? is contained in one
hypersurface of bidegree (2,0) and in three hypersurfaces of bidegree (1,1). The complete intersection
of four general such hypersurfaces is a K3 surface (use adjunction and (2+3-1,3-1) = (5,3)).

The three anti-invariant quadratic forms can be written as » | y lij(x)y;, i =1,2,3. The determinant
of the 3 x 3 matrix of linear forms (/;;(x)), defines a cubic form which is an equation for the image
of X in P* (cf. Example 3.8). Thus the projection Y of X to P* is the intersection of the quadric
defined by ¢(z) = 0 and a cubic.

The projection to P? is 2:1, as it should be, since for general y € P? the three linear forms in z
given by >, l;j(x)y; define a line in P* which cuts the quadric ¢(z) = 0 in two points.
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4. ELLIPTIC FIBRATIONS WITH A SECTION OF ORDER TWO

4.1. Elliptic fibrations and Nikulin involutions. Let X be a K3 surface which has an elliptic
fibration f : X — P! with a section o. The set of sections of f is a group, the Mordell-Weil group
MW ¢, with identity element o. This group acts on X by translations and these translations preserve
the holomorphic two form on X. In particular, if there is an element 7 € MW} of order two, then
translation by 7 defines a Nikulin involution ¢.

In that case the Weierstrass equation of X can be put in the form:

X: =2 +alt)r+b(t)

the sections o, T are given by the section at infinity and 7(t) = (x(¢),y(t)) = (0,0). For the general
fibration on a K3 surface X, the degrees of a and b are 4 and 8 respectively.

4.2. Proposition. Let X — P! be a general elliptic fibration with sections ¢, 7 as above in section
4.1. and let ¢ be the corresponding Nikulin involution on X. These fibrations form a 10-dimensional

family.
The quotient K3 surface Y also has an elliptic fibration:
Y: y? = z(z? — 2a(t)x + (a(t)® — 4b()),
We have:

NS(X)2NS(Y)=2U®N, Tx=Ty=U>®N.

The bad fibers of X — P! are eight fibers of type I; (which are rational curves wit a node) over
the zeroes of a? — 4b and eight fibers of type I5 (these fibers are the union of two P1’s meeting in two
points) over the zeroes of b. The bad fibers of Y — P! are eight fibers of type I over the zeroes of
a® — 4b and eight fibers of type I; over the zeroes of b.

Proof. Since X has an elliptic fibration with a section, NS(X) contains a copy of the hyperbolic
plane U (with standard basis the class of a fiber f and f + o). The discriminant of the Weierstrass
model of X is Ay = b%*(a? — 4b) and the fibers of the Weierstrass model over the zeroes of Ax are
nodal curves. Thus f : X — P! has eight fibers of type I; (which are rational curves with a node)
over the zeroes of a? — 4b and 8 fibers of type Iy (these fibers are the union of two P!’s meeting in
two points) over the zeroes of b.

The components of the singular fibers which do not meet the zero section o, give a sublattice
< —2 >8 perpendicular to U. If there are no sections of infinite order, the lattice U® < —2 >® has
finite index in the Néron Severi group of X. Hence X has 22 — 2 — 10 = 10 moduli. One can also
appeal to [Shim] where the Néron Severi group of the general elliptic K3 fibration with a section of
order two is determined. To find the moduli from the Weierstrass model, note that a and b depend
on 5+ 9 = 14 parameters. Using transformations of the type (x,4) — (A2, \3y) (and dividing the
equation by A%) and the automorphism group PGL(2) of P! we get 14 — 1 — 3 = 10 moduli.

The Shioda-Tate formula (cf. e.g. [Shio, Corollary 1.7]) shows that the discriminant of the Néron
Severi group is 28/n? where n is the order of the torsion subgroup of M W;. The curve defined by
22 + a(t)z + b(t) = 0 cuts out the remaining pair of points of order two on each smooth fiber. As
it is irreducible in general, MW, must be cyclic. If there were a section o of order four, it would
have to satisfy 20 = 7. But in a fiber of type I» the complement of the singular points is the group
G = C* x (Z/2Z) and the specialization MW; — G is an injective homomorphism. Now 7 specializes
to (&£1,1) (the sign doesn’t matter) since 7 specializes to the node in the Weierstrass model. But
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there is no g € G with 2¢g = (£1,1). We conclude that for general X we have MW; = {o, 7} = Z/2Z
and that the discriminant of the Néron Severi group of X is 26.
The Néron Severi group has Q basis o, f, N1,..., Ng where the IN; are the components of the Iy
fibers not meeting 0. As7-0=0,7-f=1and 7-N; =1, we get:
r=0+4+2f—N, N=(N +...+Ng)/2.
Thus the smallest primitive sublattice containing the N; is the Nikulin lattice. Comparing discrimi-
nants we conclude that:

NS(X)={(s,f)®(Ny,...,Ng,N) = U@ N.

The transcendental lattice Tx of X can be determined as follows. It is a lattice of signature
(24+,10—) and its discriminant form is the opposite of the one of N, but note that gy = —qu since gy
takes values in Z/2Z. Moreover, T% /Tx = N*/N = (Z/2Z)S. Using [Ni2, Corollary 1.13.3], we find
that T'x is uniquely determined by the signature and the discriminant form. The lattice U? @ N has
these invariants, so

Tx 2U?@ N.

As the Nikulin involution preserves the fibers of the elliptic fibration on X, the desingularisation Y
of the quotient X /¢ has an elliptic fibration g : Y — P!, with a section &, (the image of o). Observe
that given any elliptic curve in Weierstrass form, as explained in [ST, Section 4, p.76 and Proposition
p.79] there is a straightforward way to write down the Weierstrass form of its quotient by a translation
by a point of order two, and so one can immediately write down the Weierstrass equation of Y.

The discriminant of the Weierstrass model of Y is Ay = 4b(a? — 4b)? and, reasoning as before,
we find the bad fibers of g : Y — P'. In particular, the I; and I, fibers of X and Y are indeed
‘interchanged’.

Geometrically, the reason for this is as follows. The fixed points of translation by 7 are the eight
nodes in the I;-fibers, blowing them up gives Is-type fibers which map to Is-type fibers in Y. The
exceptional curves lie in the ramification locus of the quotient map, the other components, which meet
o, map 2:1 to components of the Is-fibers which meet 6. The two components of an I>-fiber in X are
interchanged and also the two singular points of the fiber are permuted, so in the quotient this gives
an I1-type fiber. ]

4.3. Remark. Note that NS(X) @ Tx = U® @ N2, however, there is no embedding of N? into
Eg(—1)2, such that N @ {0} (C NS(X)) is primitive in Fg(—1)2. However, N2 C I';g(—1) (cf. section
1.11), an even, negative definite, unimodular lattice of rank 16 and U3 @ T'1(—1) = U3 @ Eg(—1)? by
the classification of even indefinite unimodular quadratic forms.

4.4. Morrison-Nikulin involutions. D. Morrison observed that a K3 surface X having two per-
pendicular copies of Eg(—1) in the Néron Severi group has a Nikulin involution which exchanges the
two copies of Eg(—1), cf. [Mo, Theorem 5.7]. We will call such an involution a Morrison-Nikulin
involution. This involution then has the further property that 7y = T'x(2) where Y is the quotient
K3 surface and we have a Shioda-Inose structure on Y (cf. [Mo, Theorem 6.3])

4.5. Moduli. As Eg(—1) has rank eight and is negative definite, a projective K3 surface with a
Morrison-Nikulin involution has a Néron Severi group of rank at least 17 and hence has at most three
moduli. In case the Néron Severi group has rank exactly 17, we get

NS(X) = (2n) & Es(—1) & Es(—1)
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since the sublattice Eg(—1)? is unimodular. Results of Kneser and Nikulin, [Ni2, Corollary 1.13.3],
guarantee that the transcendental lattice T := N.S(X)* is uniquely determined by its signature and
discriminant form. As the discriminant form of T’x is the opposite of the one on N.S(X) we get

TX = <—2n> ) U2.

In case n = 1 such a three dimensional family can be obtained from the double covers of P? branched
along a sextic curve with two singularities which are locally isomorphic to y® = z°. The double cover
then has two singular points of type Ejg, that is, each of these can be resolved by eight rational curves
with incidence graph FEg. As the explicit computations are somewhat lengthy and involved, we omit
the details. See [GL, Appendix], [P] and [Deg] for more on double covers of P2 along singular sextics.

4.6. Morrison-Nikulin involutions on elliptic fibrations. We consider a family of K3 surfaces
with an elliptic fibration with a Morrison-Nikulin involution induced by translation by a section of
order two. It corresponds to the family with n = 2 from section 4.5.

Note that in the proposition below we describe a K3 surface Y with a Nikulin involution and
quotient K3 surface X such that Ty = T'x(2), which is the ‘opposite’ of what would happen if the
involution of Y was a Morrison-Nikulin involution. It is not hard to see that there is no primitive
embedding Ty < U3, so Y does not have a Morrison-Nikulin involution at all (cf. [Mo, Theorem
6.3]).

4.7. Proposition. Let X — P! be a general elliptic fibration defined by the Weierstrass equation
X : y? = z(z® + a(t)z + 1), a(t) = ag + a1t + agt? + t* € C[t].

The K3 surface X has a Morrison-Nikulin involution defined by translation by the section, of order
two, ¢t +— (x(t),y(t)) = (0,0). Then:

NS(X) = (4) @ Eg(—1) ® Es(—1), Tx = (-4)® U~

The bad fibers of the fibration are nodal cubics (type I1) over the eight zeroes of a?(t) — 4 and one
fiber of type I1g over t = oo.
The quotient K3 surface Y has an elliptic fibration defined by the Weierstrass model:

Y: y? = x(z? — 2a(t)x + (a(t)? — 4)), Ty = (—8) d U(2)%.

This K3 surface has a Nikulin involution defined by translation by the section ¢ — (z(t),y(t)) = (0,0)
and the quotient surface is X. For general X, the bad fibers of Y are 8 fibers of type Is over the same
points in P! where X has fibers of type I; and at infinity Y has a fiber of type Is.

Proof. As we observed in section 4.1, translation by the section of order two defines a Nikulin
involution.

Let a(s) := s*a(s™!), it is a polynomial of degree at most four and @(0) # 0. Then on P! — {0},
with coordinate s = t~!, the Weierstrass model is

v? = u(u?® 4 a(s)u + s°), A = s'(a(s)? — 4s%), u=stz, v=s5,

where A is the discriminant. The fiber over s = 0 is a stable (nodal) curve, so the corresponding fiber
X is of type I, where m is the order of vanishing of the discriminant in s = 0 (equivalently, it is
the order of the pole of the j-invariant in s = 0). Thus X, is an [;4 fiber. As the section of order
two specializes to the singular point (u,v,s) = (0,0,0), after blow up it will not meet the component
of the fiber which meets the zero section.
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The group structure of the elliptic fibration induces a Lie group structure on the smooth part of
the I fiber. Taking out the 16 singular points in this fiber, we get the group C* x Z/16Z. The zero
section meets the component Cy, where

C, = P x {n} — X,

and the section of order two must meet Cg. Translation by the section of order two induces the
permutation C), — C),4g of the 16 components of the fiber. The classes of the components C,, with
n = —2,...,4, generate a lattice of type A7(—1) which together with the zero section gives an Fg(—1).
The Nikulin involution maps this Eg(—1) to the one whose components are the Cy,, n = 6,...,12, and
the section of order two. Thus the Nikulin involution permutes two perpendicular copies of Eg(—1)
and hence it is a Morrison-Nikulin involution.

The bad fibers over P! — {oc} correspond to the zeroes of A = a?(t) — 4. For general a, A has eight
simple zeroes and the fibers are nodal, so we have eight fibers of type I in P! — {oo}.

By considering the points on P! where there are bad fibers it is not hard to see that we do get a
three dimensional family of elliptic K3 surfaces with a Morrison-Nikulin involution. Thus the general
member of this three dimensional family has a Néron Severi group S of rank 17.

As we constructed a unimodular sublattice Eg(—1)? C S, we get S &< —d > ®FEg(—1)? and d (> 0)
is the discriminant of S. The Shioda-Tate formula (cf. e.g. [Shio, Corollary 1.7]) gives that d = 16/n>
where n is the order of the group of torsion sections. As n is a multiple of 2 and d must be even it
follows that d = 4. As the embedding of N.S(X) into U3 @ Eg(—1)? is unique up to isometry it is easy
to determine T = NS(X)*. Finally Ty = Tx(2) by the results of [Mo].

The Weierstrass model of the quotient elliptic fibration Y can be computed with the standard
formula cf. [ST, p.79], the bad fibers can be found from the discriminant A = —4(a? — 4)? (and
j-invariant). Alternatively, fixed points of the involution on X are the nodes in the I;-fibers. Since
these are blown up, we get 8 fibers of type I over the same points in P! where X has fibers of type
I;. At infinity Y has a fiber of type I3 because the involution on X permutes of the 16 components
of the Ig-fiber (C), < Cj45). Now the minimal model of the quotient surface of Y by the translation
of order two is again X, cf. [ST, Section 4, p.76]. Indeed consider the generic fiber, this is an elliptic
curve C in Weierstrass form, its quotient by a point of order two is an elliptic curve C. The kernel of
the multiplication by two:

2]:C—C
contains all points of order two. Hence this map factorizes as
2:1 — 21
C——(C—=C.
g

4.8. Remark. The Weierstrass model we used to define X, y? = z(2? + a(t)r + 1), exhibits X as
the minimal model of the double cover of P! x P!, with affine coordinates = and t. The branch curve
consists of the the lines z = 0, # = oo and the curve of bidegree (2,4) defined by z? + a(t)z + 1 = 0.
Special examples of such double covers are studied in section V.23 of [BPV]. In particular, on p.185
the 16-gon appears with the two sections attached and the FEjg’s are pointed out in the text. Note
however that our involution is not among those studied there.

4.9. Remark. Note that if X — P! is an elliptic fibration with a section, multiplication by n on
each smooth fiber gives a fiber preserving rational map X — — — X of degree n?. In the Proposition
4.7 we give an example with n = 2 (such self-maps are rather rare for non-rational surfaces).
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SYMPLECTIC AUTOMORPHISMS OF PRIME ORDER ON
K3 SURFACES

ALICE GARBAGNATI AND ALESSANDRA SARTI

ABSTRACT. We study algebraic K3 surfaces (defined over the complex number field) with
a symplectic automorphism of prime order. In particular we consider the action of the
automorphism on the second cohomology with integer coefficients (by a result of Nikulin
this action is independent on the choice of the K3 surface). With the help of elliptic
fibrations we determine the invariant sublattice and its perpendicular complement, and
show that the latter coincides with the Coxeter-Todd lattice in the case of automorphism
of order three.

0. INTRODUCTION

In the paper [Nil] Nikulin studies finite abelian groups G acting symplectically (i.e.
Glg2o(x,c) = idjg20(x,c)) on K3 surfaces (defined over C). One of his main result is that
the action induced by G on the cohomology group H?(X,Z) is unique up to isometry.
In [Nil] all abelian finite groups of automorphisms of a K3 surface acting symplectically
are classified. Later Mukai in [Mu] extends the study to the non abelian case. Here we
consider only abelian groups of prime order p which, by Nikulin, are isomorphic to Z/pZ
forp=2,3,5,7.

In the case of p = 2 the group is generated by an involution, which is called by Morrison
in [Mo, Def. 5.1] Nikulin involution. This was very much studied in the last years, in par-
ticular because of its relation with the Shioda-Inose structure (cf. e.g. [CD], [GL], [vGT],
[L], [Mo]). In [Mo] Morrison proves that the isometry induced by a Nikulin involution
¢ on the lattice Ax3 ~ U @ U @ U @ Eg(—1) @ Eg(—1), which is isometric to H?(X,Z),
switches the two copies of Fg(—1) and acts as the identity on the sublattice U @ U & U.
As a consequence one sees that (H?(X,Z)"" )" is the lattice Eg(—2). This implies that
the Picard number p of an algebraic K3 surface admitting a Nikulin involution is at least
nine. In [vGS] van Geemen and Sarti show that if p > 9 and Eg(—2) C NS(X) then the
algebraic K3 surface X admits a Nikulin involution and they classify completely these K3
surfaces. Moreover they discuss many examples and in particular those surfaces admitting
an elliptic fibration with a section of order two. This section operates by translation on
the fibers and defines a Nikulin involution on the K3 surface.

The aim of this paper is to identify the action of a symplectic automorphism o, of the
remaining possible prime orders p = 3,5,7 on the K3 lattice Ax3 and to describe such
algebraic K3 surfaces with minimal possible Picard number. Thanks to Nikulin’s result
([Nil, Theorem 4.7]), to find the action on Ags, it suffices to identify the action in one
special case. For this purpose it seemed to be convenient to study algebraic K3 surfaces
with an elliptic fibration with a section of order three, five, resp. seven. Then the trans-
lation by this section is a symplectic automorphism of the surface of the same order. A

The second author was partially supported by DFG Research Grant SA 1380/1-2.
2000 Mathematics Subject Classification: 14J28, 14J10.
Key words: K3 surfaces, automorphisms, moduli.
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concrete analysis leads us to the main result of the paper which is the description of the
lattices H?(X,Z)% and Q, = (H?(X,Z)°7)* given in the Theorem 4.1. The proof of the
main theorem consists in the Propositions 4.2, 4.4, 4.6. We describe the lattice €2, also as
Z]wy)-lattices, where wy, is a primitive p root of the unity. This kind of lattices are studied
e.g. in [Bal, [BS] and [E]. In particular in the case p = 3 the lattice Q3 is the Coxeter-Todd
lattice with the form multiplied by —2, K12(—2), which is described in [CT] and in [CS].
The elliptic surfaces we used to find the lattices €2, do not have the minimal possible
Picard number. We prove in Proposition 5.1 that for K3 surfaces, X, with minimal Picard
number and symplectic automorphism, if L is a class in NS(X) which is invariant for
the automorphisms, with L? = 2d > 0, then either NS(X) = ZL & Q, or the latter is
a sublattice of index p in NS(X). Using this result and the one of the Proposition 5.2
we describe the coarse moduli space of the algebraic K3 surfaces admitting a symplectic
automorphism of prime order.

The structure of the paper is the following: in section 1 we compute the number of moduli
of algebraic K3 surfaces admitting a symplectic automorphism of order p and their min-
imal Picard number. In section 2 we give the definition of Z[wy|-lattice and we associate
to it a module with a bilinear form, which in some cases is a Z-lattice (we use this con-
struction in section 4 to describe the lattices €, as Z[w,|-lattices). In section 3 we recall
some results about elliptic fibrations and elliptic K3 surfaces (see e.g. [Mil], [Mi2], [Shim],
[Shio] for more on elliptic K3 surfaces). In particular we introduce the three elliptic fi-
brations which we use in section 4 and give also their Weierstrass form. In section 4 we
state and proof the main result, Theorem 4.1: we identify the lattices €2, and we describe
them as Z[wpl-lattices. In section 5 we describe the Néron-Severi group of K3 surfaces ad-
mitting a symplectic automorphism and having minimal Picard number (Proposition 5.1).
In section 5 we describe the coarse moduli space of the algebraic K3 surfaces admitting
a symplectic automorphism and the Néron-Severi group of those having minimal Picard
number.

We would like to express our deep thanks to Bert van Geemen for suggesting us the problem
and for his invaluable help during the preparation of this paper.

1. PRELIMINARY RESULTS

Definition 1.1. A symplectic automorphism o, of order p on a K3 surface X is an
automorphism such that:

1. the group G generated by o, is isomorphic to Z/pZ,
2. 05(8) =0, for all § in H*(X).

We recall that by [Nil] an automorphism on a K3 surface is symplectic if and only if it
acts as the identity on the transcendental lattice T'x. In local coordinates at a fixed point
op has the form diag(wp,wg_l) where w), is a primitive p-root of unity. By a result of
Nikulin the only possible values for p are 2,3,5,7 see [Nil, Theorem 4.5] and [Nil, §5]. The
automorphism o3 has six fixed points on X, o5 has four fixed points and o7 has three fixed
points. The automorphism o}, induces a o, isometry on H %(X,Z) = As. Nikulin proved
[Nil, Theorem 4.7] that if o, is symplectic, then the action of 0, is unique up to isometry
of AK3.

Let w, be a primitive p-root of the unity. The vector space H 2(X,C) can be decomposed
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in eigenspaces of the eigenvalues 1 and wy;:

H*(X,C)=H*(X,O)" @ ( @ H(X,C),).

7':1771071

We observe that the non rational eigenvalues w; have all the same multiplicity. So we put:
ap = multiplicity of the eigenvalue 1, b, :=multiplicity of the eigenvalues w;.
In the following we find a,, and b, by using the Lefschetz fixed point formula:

1) 1y = S (=1)trace(o} | H' (X, ©))

T

where p;, denotes the number of fixed points. For K3 surfaces we obtain
p =140+ trace(U;\HZ(X, C))+0+1.

Proposition 1.1. Let X, 0y, a,, b, be as above, p = 3,5,7. Let p, be the Picard number of
X, and let m, be the dimension of the moduli space of the algebraic K3 surfaces admitting
a symplectic automorphism of order p. Then

a3:10 b3=6 p3213 m3§7
a5:6 b5=4 p5217 m5§3
ay =4 by =3 pr > 19 my < 1.

Proof. The proof is similar in all the cases, here we give the details only in the case p = 5.
A symplectic automorphism of order five on a K3 surface has exactly four fixed points.
Applying the Lefschetz fixed points formula (1), we have as + bs(ws + w2 + w3 + wi) = 2.

Since wh ™ = (EZ o wh), the equation becomes as — bs = 2.
Since dim H2(X7 C) = 22, a5 and b5 have to satisfy:
a5 — b5 = 2
(2) { as +4bs = 22.
We have

dim H?(X,C)% = 6 = a5 and
dim H?(X,C)y; = dim H*(X,C),z = dim H*(X,C),3 = dim H*(X,C) 1 = 4 = bs.

Since Tx ® C C H2(X,C)%, (HX(X,C)%)* = H2(X,C)u, & HX(X,C) 2 & H(X,C) 3 &
H?*(X,C), 1 C NS(X) ®@C. We consider only algebraic K3 surfaces and so we have an
ample class h on X, by taking h + ofh + ngh + O';?’h + 0% 4h we get a os-invariant class,

hence in H2(X,C)%. From here it follows that p, =rank NS(X) > 16 4+ 1 = 17, whence
rank Tx < 22 — 17 = 5. The number of moduli is at most 20 — 17 = 3. ]

Remark. In [Nil, §10] Nikulin computes rank(H?(X,Z)’»)* = (p — 1)b, and
rank(H2(X,Z)°) = a,. In [Nil, Lemma 4.2] he also proves that there are no classes
with self intersection —2 in the lattices (H?(X,Z)°)"; we describe these lattices in the
sections 4.1, 4.4, 4.6 and we find again the result of Nikulin.
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2. THE Z[w]-LATTICES

In the sections 4.2, 4.5, 4.7 our purpose is to describe (H?(X,Z)% )+ as Z[w,]-lattice. We
recall now some useful results on these lattices.

Definition 2.1. Let p be an odd prime and w := w, be a primitive p-root of the unity. A
Z|w]-lattice is a free Z[w]-module with an hermitian form (with values in Z[w]). Its rank
is its rank as Zlw|-module.

Let {L,hr} be a Z[w]-lattice of rank n. The Z[w]-module L is also a Z-module of rank
(p — 1)n. In fact if e;, i = 1,...,n is a basis of L as Z[w]-module, wie;, i = 1,...,n,
j=0,...,p—21is a basis for L as Z-module (recall that wP~! = —(wP~2+wP™3+.. . +1)).
The Z-module L will be called L.

Let T'y := Gal(Q(w)/Q) be the group of the automorphisms of Q(w) which fix Q. We
recall that the group I', has order p — 1 and its elements are automorphisms p; such that
pi(1) =1, pi(w) =w’ wherei=1,...,p— 1. We define a bilinear form on Ly,

3) by (e, ) = —11, S (b B)).

Note that by, takes values in %Z[w], so in general {Lz, by} is not a Z-lattice. We call it
the associated module (resp. lattice) of the Z[w]-lattice L.

Remark. Remark. By the definition of the bilinear form is clear that

1
b(e ) = = Trow)glhela, §).
For a precise definition of the Trace see [E, page 128]

2.1. The Z-lattice F},. We consider a K3 surface admitting an elliptic fibration. Let p
be an odd prime number. Let I, be a semistable fiber of a minimal elliptic fibration, i.e.
(cf. section 3) I, is a fiber which is a reducible curve, whose irreducible components are
the edges of a p-polygon, as described in [Mil, Table 1.4.1], we denote the p-irreducible
components by C;, ¢ =0,...,p— 1, then

-2 ifi=j mod p
C;-Cj = 1 if li—jl=1 mod p
0 otherwise.

We consider now the free Z-module F), with basis the elements of the form C; — Ciyq,
i=1,...,p—1 and with bilinear form bg, which is the restriction of the intersection form
to the basis C; — Cj11, then {F),bp, } is a Z-lattice.

2.2. The Zlw,y]-lattice G,. Let G, be the Z[w]-lattice G = (1 — w)?Z[w], with the
standard hermitian form: h(a, 8) = af. A basis for the Z-module G,z is (1 — w)?w?,
1=0,....,p—2.

On Z|w] we consider the bilinear form by, defined in (3), with values in %Z,

b, 8) = —~ 3 plaB),  a,f €zl
pEl’p
then we have
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Lemma 2.1. The bilinear form b restricted to G, (denoted by bg) has values in Z and
coincides with the intersection form on F, by using the map F, — G, defined by C; —
Civ1—w(l-w)?i=1,....,p—1, C, = Cy.

Proof. An easy computation shows that we have for p > 3:

—6 ifk=h modp,

4 if |k—h|=1 mod p,
-1 if|[k—h/=2 mod p,
0 otherwise,

and for p = 3:

—6 ifk=h modp,
bo(wWF(1 —w)?,wh(1 —w)?) = {3 if |k —h| =1 fnodp.

The intersection form on F), is easy to compute (cf. section 2.1) and this computation
proves that the map F,, — G, defined in the lemma is an isometry. U

In section 4 we apply the results of this section and we find a Z[w]-lattice {L,, hz,} such
that

e {Ly,h,} contains G, as sublattice;
o {Lyz,br,} is a Z-lattice;
o the Z-lattice {Lpz,br,} is isometric to the Z-lattice (H?*(X,Z)°%)* for p = 3,5,7.

3. SOME GENERAL FACTS ON ELLIPTIC FIBRATIONS

In the next section we give explicit examples of K3 surfaces admitting a symplectic auto-
morphism o, by using elliptic fibrations. Here we recall some general results about these
fibrations.

Let X be an elliptic K3 surface, this means that we have a morphism

f: X —p!

such that the generic fiber is a (smooth) elliptic curve. We assume moreover that we have
a section s : P! — X. The sections of X generate the Mordell-Weil group M Wy of X
and we take s as zero section. This group acts on X by translation (on each fiber), hence
it leaves the two form invariant. We assume that the singular fibers of the fibration are
all of type Ip,, m € N. Let Fj be a fiber of type I,,;, we denote by C'é] ) the irreducible
components of the fibers meeting the zero section. After choosing an orientation, we
denote the other irreducible components of the fibers by C’fj ), ey C’T(ij),fl. In the sequel we
always consider m; a prime number, and the notation C’i(J )

section r we define the number k := k;(r) by

means i € Z/m;Z. For each

ro O =Tandr-CY =0ifi=0,...,m;—1 i #k.

If the section r is a torsion section and % is the number of reducible fibers of type I,
then by [Mi2, Proposition 3.1] we have

(4) }ij k() (1 _ %@) 4
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Moreover we recall the Shioda-Tate formula (cf.[Shio, Corollary 5.3] or [Mil, p.70])
h
(5) rank(NS(X)) =2+ > (m; — 1) + rank(MW;).
j=1

The rank(MWy) is the number of generators of the free part. If there are no sections of
infinite order then rank(MWy) = 0. Assume that X has h fibers of type I,,, m € N,
m > 1, and the remaining singular fibers are of type I;, which are rational curves with
one node. Let U @ (A,—1)" denote the lattice generated by the zero section, the generic
fiber and by the components of the reducible fibers not meeting s. If there are no sections
of infinite order then it has finite index in N.S(X) equal to n, the order of the torsion part
of the group MW;. Using this remark we find that
det(A,,_1)" mh

(6) |det(NS(X))| = 2 =7
3.1. Elliptic fibrations with a symplectic automorphism. Now we describe three
particular elliptic fibrations which admit a symplectic automorphism o3, o5 or o7. Assume
that we have a section of prime order p = 3,5,7. By [Shim, No. 560, 2346, 3256] there
exist elliptic fibrations with one of the following configurations of components of singular
fibers I, not meeting s such that all the singular fibers of the fibrations are semistable (i.e.
they are all of type I,, for a certain n € N) and the order of the torsion subgroup of the
Mordell-Weil group o(MWy) =p :

p= 3: 6A2 O(MWf) = 37
(7) p=>5: 444 o(MWy) =25,
p= 7 3A6 O(MWf) =7.

We can assume that the remaining singular fibers are of type I;. Since the sum of the
Euler characteristic of the fibers must add up to 24, these are six, four, resp. three
fibers. Observe that each section of finite order induces a symplectic automorphism of
the same order which corresponds to a translation by the section on each fiber, we denote
it by 0,. The nodes of the I; fibers are then the fixed points of these automorphisms,
whence 0, permutes the p components of the I, fibers. For these fibrations we have rank
NS(X) = 14, 18, 20 and dimensions of the moduli spaces six, two and zero, which is
one less then the maximal possible dimension of the moduli space we have given in the
Proposition 1.1.

3.1.1. Weierstrass forms. We compute the Weierstrass form for the elliptic fibration de-
scribed in (7). When X is a K3 surface then this form is

(8) y? =23+ A(t)x + B(t), t € P!
or in homogeneous coordinates
9) r323 = 23 + A(t)x12% + B(t)x)

where A(t) and B(t) are polynomials of degrees eight and twelve respectively, x3 = 0 is
the line at infinity and also the tangent to the inflectional point (0: 1 : 0).

Fibration with a section of order 3. In this case the point of order three must be an
inflectional point (cf. [C, Ex. 5, p.38]), we want to determine A(t) and B(t) in the
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equation (8). We start by imposing to a general line y = [(t)z 4+ m(t) to be an inflectional
tangent so the equation of the elliptic fibration is
4 2 6
y? = a3+ A(t)z + B(t), t € P!, with A(¢) = 21(’5)7”(%) Uy — MO U)° — [#)°
Since A(t) and B(t) are of degrees eight and twelve, we have degl(t) = 2 and degm(t) = 6.

The section of order three is
2 3
. <@ @m@) .

373

The discriminant A = 4A3 4+ 27B? of the fibration is
(51(t)% + 27m(t))(1(t)® + 3m(t))?

27
hence in general it vanishes to the order three on six values of ¢ and to the order one on
other six values. Since A and B in general do not vanish on these values, this equation
parametrizes an elliptic fibration with six fibers I3 (so we have six curves As not meeting
the zero section) and six fibers I; (cf. [Mil, Table IV.3.1 pag.41]).
Fibration with a section of order 5. In the same way we can compute the Weierstrass form
of the elliptic fibration described in (7) with a section of order five.
In [BM] a geometrical condition for the existence of a point of order five on an elliptic
curve is given. For fixed t let the cubic curve be in the form (9) then take two arbitrary
distinct lines through O which meet the cubic in two other distinct points each. Call 1, 4
the points on the first line and 2, 3 the points on the second line, then 1 (or any of the
other point) has order five if:
-the tangent through 1 meets the cubic in 3,
-the tangent through 4 meets the cubic in 2,
-the tangent through 3 meets the cubic in 4,
-the tangent through 2 meets the cubic in 1.
These conditions give the Weierstrass form:

vy =23+ A(t)x + B(t), t € P!, with

A =

(=b(t)* 4 b(t)%a(t)? — a(t)* — 3a(t)b(t)® + 3a(t)3b(t))

(b(1)% + a(®)?)(19b(t)* — 34b(t)%a(t)? + 19a(t)* + 18a(t)b(t)® — 18a(t)3b(t))
108

where deg a(t) = 2, degb(t) = 2. The section of order five is

t— ((2b(t)% — a(t)®)2 : 3(a(t) + b(t))(a(t) — b(t))* : 6)

and the discriminant is

= %(b(ﬁ)2 —a(t)®)*(1L(b(t)* — a(t)*) + 4a(t)b(t)).

By a careful analysis of the zeros of the discriminant we can see that the fibration has four
fibers I5 and four fibers I; (cf. [Mil, Table IV.3.1 pag.41]).

Fibration with a section of order 7. To find the Weierstrass form we use also in this case
the results of [BM]. We explain briefly the idea to find a set of points of order seven on
an elliptic curve. One takes points 0,3,4 and 1,2,4 on two lines in the plane. Then the
intersections of a line through 3 different from the lines {3, 2}, {3,4}, {3, 1} with the lines
{1,0} and {2, 0} give two new points —1 and —2. By using the conditions that the tangent
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through 1 goes through —2 and the tangent through 2 goes through 3 one can determine
a cubic having a point of order seven which is e.g. 1. By using these conditions one can
find the equation, but since the computations are quite involved, we recall the Weierstrass
form given in [T, p.195]

V4 1+t —2)ay+ (2 — 3y =25+ (1% — t3)2>.

By a direct check one sees that the point of order seven is (0(¢),0(¢)). This elliptic fibration
has three fibers I and three fibers I;.

4. ELLiPTIC K3 SURFACES WITH AN AUTOMORPHISM OF PRIME ORDER
In this section we prove the main theorem:

Theorem 4.1. For any K3 surface X with a symplectic automorphism o, of order p =
2,3,5,7 the action on H*(X,Z) decomposes in the following way:

p=2: H*X,2)? = Ex(-2) U o U U, (H*(X,Z)72)+ = Fg(—2).

p=3: H3(X,2)3 =UaUB)aU3)® Ay ® Ay
ri=2; mod (1 —ws),

(H*(X,2)%) " =1 (21, 26) € (Zlws])*° = Ki2(-2)
Z?:1 ;=0 mod (1 —w;3)?

with hermitian form h(a, 8) = 320 (aif;).

p=5: H*X,2) =UaU(B)aU(5)

r] =29 =223 =214 mod (1 —ws),
(H*(X,Z)5)t =< (21,...,74) € (Z]ws))P* :

(3 —ws)(x1 +22) +23+24=0 mod (1 — ws)?

with hermitian form h(a, 8) = Z?Zl ;B + ijzg fa;fB; where f =1 — (w2 + w3).

p="7: HYX,2)°" =U(7) & < 11 ; )
1 =9 = 635'3 mod (]- - W7),
(HX(X,2)77)* = (21,22,23) € (Zwr])®? -

(14 5w7)zy + 3224+ 223 =0 mod (1 —wy)?

with hermitian form h(a, B) = a181 + fiaefifz + faasf2fs
where fi =3+ 2(wr +w?) + (W? +w2) and fo =2+ (w7 + o).

In the case p = 3, K12(—2) denotes the Coxeter-Todd lattice with the bilinear form mul-
tiplied by —2.

This theorem gives a complete description of the invariant sublattice H?(X, Z)U; and its
orthogonal complement in H?(X,Z) for the symplectic automorphisms op of all possible
prime order p = 2,3,5,7 acting on a K3 surface. The results about the order two auto-
morphism is proven by Morrison in [Mo, Theorem 5.7].

We describe the lattices of the theorem and their hermitian forms in the sections from 4.1
to 4.7. The proof is the following: we identify the action of o, on H 2(X,Z) in the case
of X an elliptic K3 surface, this is done in several propositions in these sections, then we
apply [Nil, Theorem 4.7] which assure the uniqueness of this action.
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4.1. A section of order three. Let X be a K3 surface with an elliptic fibration which
admits a section of order three described in (7) of section 3. We recall that X has six
reducible fibres of type I3 and six singular irreducible fibres of type I;. In the preceding
section we have seen that the rank of the Néron-Severi group is 14. We determine now
NS(X) and Tx.

Let t1 denote the section of order three and ¢35 = ¢1 + t1. Let o3 be the automorphism of
X which corresponds to the translation by ¢;. It leaves each fiber invariant and o3(s) =

t1, o3(t1) = to, o3(t2) = s. Denoted by C’éi),C’{i),Céi) the components of the ¢ — th
reducible fiber (i = 1,...,6), we can assume that sz) b= Céz) ctg = C’éz) -s=1.

Proposition 4.1. A Z-basis for the lattice NS(X) is given by
S, tly t27 F7 Cfl)a Cél)a sz)a Céz)a Cfg)a 053) y C£4)7 054)7 C£5)7 C§5) .

Let U @ AS be the lattice generated by the section, the fiber and the irreducible components
of the six fibers Is which do not intersect the zero section s. It has index three in the Néron-
Severi group of X, NS(X). The lattice NS(X) has discriminant —3* and its discriminant
form is

2

Z3(3) EBZ3(3) @23(3) @Z:&(—g)

The transcendental lattice Tx s
Tx =UaU(3)® Ay ® Ay
and has a unique primitive embedding in the lattice Aks.

Proof. Tt is clear that a Q-basis for NS(X) is given by s, F, C’(Z) Cél), i=1,...,6. This
basis generates the lattice U @ AS. It has discriminant d(U & AG) = 36, We denote by

—20 4+, C=Y¢,
d _C()+2C§”, D=Yd,.
Since we know that ¢; € NS(X) we can write

ti=as+0F + Y %O+ 60, a,8,%,6 € Q.

Then by using the fact that t;-s =1ty - Céi) =0 and t; - C’{i) = {1 - F = 1 one obtains that
a=1,3=2andy = —2/3,6; = —1/3 hence :C € NS(X). A similar computation with
to shows that %D € NS(X). So one obtains that

(10) t1 =s+2F — %CENS(X),
ty=s+2F — 3D € NS(X).
and so
6 . .
3(t —t1) = Y _(CF) — 03y =C — D.
=1

We consider now the Q-basis for the Néron-Severi group
S, tly t27 F7 Cfl)a Cél)a sz)a Céz)a Cfg)a 053) ) C£4)7 054)7 C£5)7 055) .

By computing the matrix of the intersection form respect to this basis one finds that the
determinant is —3*. By the Shioda-Tate formula we have | det(NS(X))| = 3%. Hence this
is a Z-basis for the Néron-Severi group. We add to the classes which generate U @ A$ the
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classes t; and o (t1) = t2 given in the formula (10). Since d(U® A§) = 3% and d(NS(X)) =
—3% the index of U AS in NS(X) is 3. Observe that this is also a consequence of a general
result given at the end of section 3.

The classes

generate the discriminant group, which is NS(X)V/NS(X)= (Z/37)%%.
These classes are not orthogonal to each other with respect to the bilinear form, so we
take

Wy = V1 — V2, Wg = U3 — V4, W3 =01 +Vz+v3+ Vg, wy =01+ vy — (v3+ v4)

which form an orthogonal basis with respect to the bilinear form with values in Q/Z. And
it is easy to compute that w? = w3 = w3 = 2/3, w? = —2/3. The discriminant form of
the lattice N.S(X) is then

2 2 2 2

11 Z3(=) ®Z3(=) D Zs(=) ®Zs(—=).

(11) 3(3)@ 3(3)@ 3(3)@ 3( 3)

The transcendental lattice Tx orthogonal to NS(X) has rank eight. Since NS(X) has
signature (1,13), the transcendental lattice has signature (2,6). The discriminant form
of the transcendental lattice is the opposite of the discriminant form of the Néron-Severi
lattice. So the transcendental lattice has signature (2,6), discriminant 3%, discriminant
group Ty /Tx = (Z/3Z)®* and discriminant form Zz(—32) & Zs(—3) @ Z(—3) & Z3(3). By
[Ni2, Cor. 1.13.5] we have T' = U & T" where T’ has rank six, signature (1,5) and 7"
has discriminant form as before. These data identify 7" uniquely ([Ni2, Corollary 1.13.3]).
Hence it is isomorphic to U(3) @ Ag ® Az with generators for the discriminant form

(6—f)/3, (€+f)/37 (A—B)/?), (A/—B/)/?),

where e, f, A, B, A’, B" are the usual bases of the lattices.
The transcendental lattice

Tx =UdU(3)® Ay ® Ay

has a unique embedding in the lattice Axs by [Ni2, Theorem 1.14.4] or [Mo, Corollary
2.10]. 0

4.1.1. The invariant lattice and its orthogonal complement.

Proposition 4.2. The invariant sublattice of the Néron-Severi group is isometric to U(3)
and it is generated by the classes F' and s + t1 + to.

The invariant sublattice H*(X,7)% is isometric to U U(3) ©U(3) © Ay © As.

Its orthogonal complement Qg := (H?(X,Z)% )" is the negative definite twelve dimensional



SYMPLECTIC AUTOMORPHISMS OF PRIME ORDER ON K3 SURFACES 153

lattice {Z2, M} where M is the bilinear form

-4 2 -3 -2 0 -2 0 -2 0 -2 0 -2
2 —4 3 1.0 1 O 1 0 1 0 1
-3 3 -8 0 O O O O 0 0 3 -9
-2 1 o -6 -3 0 0O 0 0 0 0 O
0 O o -3 4 3 2 0 0 0 0 O
-2 1 o o0 3 -6 -3 0 0 0 0 O
0 O o 0 2 -3 -4 3 2 0 0 O
-2 1 o o0 o0 o 3 -6 -3 0 0 O
0 O o 0o o o0 2 -3 -4 3 2 0
-2 1 o o0 o o o o 3 -6 -3 0
0 0 3 0 0 0 o0 0O 2 -3 -4 3
-2 1 -9 o0 0 O O o o0 0 3 -6

and it is equal to the lattice (NS(X)73)L.

The lattice Q3 admits a unique primitive embedding in the lattice Aks.
The discriminant of Q3 is 35 and its discriminant form is (Zg(%))EBG.
The isometry o3 acts on the discriminant group Q03 /3 as the identity.

Proof. 1t is clear that the isometry o3 fixes the classes I' and s + t1 + t2. These generate
a lattice U(3) (with basis F' and F' + s + t1 + t2).
The invariant sublattice H2(X, Z)% contains Tx and the invariant sublattice of the Néron-
Severi group. So (H%(X,7Z)%)*+ = (NS(X)?)+, this lattice has signature (0,12) and
by [Nil, p. 133] the discriminant group is (Z/3Z)®%. Hence by [Ni2, Theorem 1.14.4]
there is a unique primitive embedding of (H?(X,Z)% )" in the K3-lattice. By using the
orthogonality conditions one finds the following basis of Q3 = (N.S(X)7)*:

bi=ty—t1, by=s5—ts, by=F—3CY, by =CP - i=1,....5

bojys=C — O =1, 4
An easy computation shows that the Gram matrix of this basis is exactly the matrix M
which indeed has determinant 3°.
Since H?(X,7)73 D Tx®NS(X)% = UaU(3)oU(3)D A2® Ay and these lattices have the
same rank, to prove that the inclusion is an equality we compare their discriminants. The
lattice (H%(X,Z)?3)" has determinant 3. So the lattice (H2(X,Z)%) has determinant
—3% (because these are primitive sublattices of H?(X,Z)). The lattice U @ U(3) @ U(3) @
Ay @ Ay has determinant exactly —3°, so

HY(X,2) =UaUB)®U(3) & Ay & As.

Since NS(X)Y/NS(X) C QY /Q3 the generators of the discriminant form of the lattice Q3
are classes wq, ..., wg with wy, ..., wy the classes which generate the discriminant form of
NS(X) (cf. the proof of the Proposition 4.1) and

1 1 1 1
Wy = g(b1+2bg) = §(2$—t1 —tg) We = g(bl+2b2—2bg) = §(2$—t1 —t2—2F+GC§5)).

These six classes are orthogonal, with respect to the bilinear form taking values in Q/Z,

and generate the discriminant form. Their squares are w? = w3 = w? = w2 = %
mod 27, w? = wg = —% mod 2Z. By replacing wy, wg by wy — wg, wg + wg we obtain

the discriminant form (Z3(%))®°.
By computing the image of w;, ¢ = 1,...,6 under o3 one finds that o§(w;) —w; € Q3. For
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example: o(ws) — w5 = $(2t; —ty — s) — $(2s — t; — t3) = t; — s which is an element of
Q3 (in fact it is orthogonal to F' and to s + ¢; + t2). Hence the action of o3 is trivial on
QY /Q3 as claimed. O

In the next two subsections we apply the results of section 2 about the Z[w]-lattices to
describe the lattice {23, M} and to prove that 3 is isomorphic to the lattice Kj2(—2),
where K7 is the Coxeter-Todd lattice (cf. e.g. [CT], [CS] for a description of this lattice).

4.2. The lattice (3. Let w3 be a primitive third root of the unity. In this section we
prove the following result (we use the same notations of section 2):

Theorem 4.2. The lattice Q3 is isometric to the Z-lattice associated to the Z[ws]-lattice
{Ls3, hr,} where

ri=2; mod (1 —ws),
Ls=1{ (v1,...,76) € (Z]ws])® :
2?21 z; =0 mod (1 — ws)?

and hr, is the restriction of the standard hermitian form on Z[ws]®°.

Proof. Let F = F$ be the Z-sublattice of N.S(X) generated by

oW _ o)

| VL i=0,1,2, j=1,...,6

with bilinear form induced by the intersection form on NS(X).

Let G = GY denote the Z[ws]-lattice (1 — w3)?Z[w3]®® with the standard hermitian form.

This is a sublattice of Z[w3]®5. Applying to each component of G the Lemma 2.1 we know

that {Gz,bg} is a Z-lattice isometric to the lattice F'. The explicit isometry is given by
e — )~ (1 —ws)2(wi,0,0,0,0,0)

0P — ) (1 —w3)2(0,w71,0,0,0,0)

% — ¥ (1 —w3)2(0,0,0,0,0,w5 1.

The multiplication by ws of an element (1 — w3)?e; (where e; is the canonical basis)

corresponds to a translation by ¢; on a singular fiber, which sends the curve CZ-(] ) to the
)

curve C;;. Hence we have a commutative diagram:

F — d
o3 | 1 w3
F — (.

The elements CZ-(j) — C’lgj), i,k =0,1,2, j =1,...,6 are all contained in the lattice Q3 =
(NS(X)?3)*, but they do not generate this lattice. A set of generators for Q3 is

s—t, ti—ty CY—c®™ in=01,2 jk=1,..,6.
From the formula (10) we obtain that

6
1, Nl G :
s—ti= (50 - &) + goi(cy - ¢y,
j=1
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After the identification of F' with Gz we have
1
s—1t1 = (1 — w3)2(§(1 + wg))(l, 1,1,1,1, 1) (1,1,1,1,1, 1)

The divisor t; — t2, which is the image of s — ¢; under the action of o3, corresponds

W _ @

to the vector (ws,ws,ws,ws,ws,ws). Similarly one can see that the element C;

corresponds to the vector (1 —ws)(1,—1,0,0,0,0,0) and more in general C( 2 Ci(k) with
j # k corresponds to the vector (1 — ws)(wi 'e; — wh Ley) where e; is the standard basis.

The lattice L3 generated by the vectors of Gz and by
wi(1,1,1,1,1,1) (1 — w3)wi '(—ej +wsex) i=0,1,2, j,k=1,...6,

is thus isometric to 3.
In conclusion a basis for Lg is

lh = —ws(1,1,1,1,1,1) lh = —w3(1,1,1,1,1,1) = (1 + w3)(1,1,1,1,1,1)
13 (1 —w3)2(0,0 0,0,1 —w3,0) Iy = (1—-ws3)%(1,0,0,0,0,0)
= (1 -ws3)(1,-1,0,0,0,0) ls = (1 —w3)%(0,1,0,0,0,0)
l7 = (1 -w3)(0,1,-1,0,0,0) Is = (1 —w3)%(0,0,1,0,0,0)
lg = (1 —w3)(0,0,1,—1,0,0) lio = (1 —ws3)?(0,0,0,1,0,0)
l11 (1 - wg)(0,0,0, 1, —1,0) l12 = (1 - w3)2(0,0,0,0, 1,0).

The identification between €23 and Lg is given by the map b; — ;.
After this identification the intersection form on {23 is exactly the form b7, on L.
The basis [; of Lg satisfies the condition given in the theorem, and so

Ly C {(x1,...,26) € (Z[w3))®® : z;=2; mod (1 —ws),
6

;=0 mod (1—ws)?}

Since the vectors (1—ws)?e;, (1 —ws)(e; —e;) and (1,1,1,1,1,1) generate the Z[ws]-lattice
{(x1,...,26) € (Z[ws])®® : ;= 2; mod (1 —ws), S0 2;=0 mod (1 —ws)?} and
since they are all vectors contained in Lg, the equality holds. ]

4.3. The Coxeter-Todd lattice Ki-.
Theorem 4.3. The lattice Q3 is isometric to the lattice K12(—2).

Proof. The lattice Kj2 is described by Coxeter and Todd in [CT] and by Conway and
Sloane in [CS]. The lattice Kjo is the twelve dimensional Z-module associated to a six
dimensional Z[ws]-lattice Ag®.
The Z]ws]-lattice Ag? is described in [CS] in four different ways. We recall one of them
denoted by A®) in [CS, Definition 2.3], which is convenient for us. Let § = w3 — w3, then
Ag? is the Z[ws]-lattice
6
A ={(x1,...,26) : = € Z]ws],z; =x; mod 0, sz =0 mod 3}
i=1

with hermitian form %txyj. We observe that § = w3(1 — ws3). The element w3 is a unit
in Z[ws] so the congruence modulo 6 is the same as the congruence modulo (1 — ws).
Observing that —3 = #? it is then clear that the Z[ws]-module Ag® is the Z[ws]-module
L3. The Z-modules Ki9 and L3z are isomorphic since they are the twelve dimensional
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Z-lattices associated to the same Z|ws]-lattice. The bilinear form on the Z-module K5 is
given by

1
by, (T,y) = —xy = ETT(:U@)

and the bilinear form on L3 7 is given by

1
b, (z,y) = —gTT(fﬂ)-

So the Z-lattice {L3z,b1,} is isometric to Kia(—2). O

Remark. 1) In [CT] Coxeter and Todd give an explicit basis of the Z-lattice Ki2. By a
direct computation one can find the change of basis between the basis described in [CT]
and the basis {b;} given in the proof of Proposition 4.2.

2) The lattice Q23 does not contain vectors of norm —2 (cf. [Nil, Lemma 4.2]), but has
756 vectors of norm —4, 4032 of norm —6 and 20412 of norm —8&. Since these properties
define the lattice K19(—2), (cf. [CS, Theorem 1]), this is another way to prove the equality
between Q3 and Kia(—2).

3) The lattice K12(—2) is generated by vectors of norm —4, [PP, Section 3.

4.4. Section of order five. Let X be a K3 surface with an elliptic fibration which admits
a section of order five as described in section 3. We recall that X has four reducible fibres
of type I5 and four singular irreducible fibres of type I;. We have seen that the rank of
the Néron-Severi group is 18. We determine now NS(X) and Tx.

We label the fibers and their components as described in the section 3. Let ¢; denote the
section of order five which meets the first singular fiber in Cfl). By the formula (4) of
section 3 up to permutation of the fibers only the following situations are possible:

t1- C’{l) =t - sz) =t C’é?’) =t - C§4) =1land t - C’i(j) = 0 otherwise;
or ty - Cfl) =1 - C'f) =1t - Cés) =1 - C§4) =1and ¢t - C(j) = (O otherwise.

i
Observe that these two cases describe the same situation if we change the ”orientation”
on the last two fibers, so we assume to be in the first case. Let o5 be the automorphism

of order five which leaves each fiber invariant and is the translation by ¢, so oi(s) =
tl, Ug(tl) = tg, Ug(tz) = t3, Ug(tg) = t4, O'g(t4) = S.

Proposition 4.3. A Z-basis for the lattice NS(X) is given by
S, tla t27 t3a t4a Fv C§1)a 02(1)a C:E,l)a Czil)v C§2)7 052)7 C?(,2)7 £2)7 C§3)a 02(3)a C§3)a 053) .

Let U @ Aﬁ be the lattice generated by the section, the fiber and the irreducible components
of the four fibers Is which do mot intersect the zero section s. It has index five in the
Néron-Severi group of X, NS(X).

The lattice NS(X) has discriminant —5% and its discriminant form is

2 2
Zs(= Zs(—=).
§(2) & Zs(~2)
The transcendental lattice is
Tx =UaU(b)

and has a unique primitive embedding in the lattice Axs.
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Proof. The proof is similar to the proof of Proposition 4.1. So we sketch it briefly. The
classes s, F) C’i(]), i=1,...,4, j =1,...,4, generate U @ A}. By using the intersection
form, or by the result of [Mi2, p. 299], we find

b= s+2F 1[0 (0 +3¢f) + 200 + i)+

(12) : . . .
+34 600 + 60y + 40y + 20| .

A Zebasis is 5,11, b, 13, t4, F,CV 0V 0P .oV 0P o, ¢, ¢, cP, el e o).
Since d(NS(X)) = —5% and d(U @ A}) = —5%, the index of U @ A} in NS(X) is five. Let

w1 and wy be

wy = 220 1408 + o8P 130 + a0 1 3¢ 120 + CP);
wy = 130 + ) + 40P + 20 + 0 208 + 3¢ +4c).

The classes v; = w; —ws, v9 = w;+wse are orthogonal classes and generate the discriminant
group of NS(X), the discriminant form is

2 2
Zs(=) B Zs(—=).
5( 5) @ Zs( 5)
The transcendental lattice Tx has rank four, signature (2,2) and discriminant form
Zs5(—%) ® Zs(2). Since in this case Ty is uniquely determined by signature and dis-

criminant form (cf. [Ni2, Corollary 1.13.3]) this is the lattice
Tx =UaU(b).

The transcendental lattice has a unique embedding in the lattice Ax3 by [Ni2, Theorem
1.14.4] or [Mo, Corollary 2.10]. O

4.4.1. The invariant lattice and its orthogonal complement.

Proposition 4.4. The invariant sublattice of the Néron-Severi lattice is isometric to the
lattice U(5) and it is generated by the classes F and s + t; + to + t3 + t4.

The invariant lattice H*(X,7)% is isometric to U @ U(5) @ U(5) and its orthogonal com-
plement Qs = (H*(X,Z)% )" is the negative definite sizteen dimensional lattice {Z'6, M}
where M is the bilinear form

-4 2 0 0 0O -1 0 O O0O-1 0 0 -1 1 -1 0
2 -4 2 0 5 2 -1 o0 o0 2 -1 0 1 -1 1 1
o 2 -4 2 -5 -1 2 -1 0 -1 2 -1 1 -1 0 -1
0 0 2 —4 o 0 -1 2 0 0 -1 2 -1 1 1 -1
o 58 -5 0-%0 O O O o o o o o0 0 5 -15

-1 2 -1 0 0o -6 4 -1 -3 0 0 0 0 0 O 0
0o -1 2 -1 o 4 -6 4 1 0 0 0 0 0 O 0
0O 0 -1 2 0o -1 4 -6 0 0 0 0 0 0 O 0
0 0 0 O 0o -3 1 0 -4 3 -1 0 2 0 O 0

-1 2 -1 0 o o o o 3 -6 4 -1 -3 0 O 0
0 -1 2 -1 o o o0 0 -1 4 -6 4 1 0 O 0
0O 0 -1 2 o o o0 o o0-1 4 -6 0 0 O 0

-1 1 1 -1 o o o0 o0 2 -3 1 0 -4 3 -1 0
1 -1 -1 1 o o o0 o o o0 o o0 3 -6 4 -1

-1 1 0 1 5 0 0 o0 0O 0 o0 0 -1 4 -6 4
o 1 -1 -1-1»% o0 O O O O0O O o0 0 -1 4 -6
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and it is equal to the lattice (NS(X)75 )L,

The lattice Q05 admits a unique primitive embedding in the lattice Ags.
The discriminant of Qs is 5% and its discriminant form is (Zs(2))®4.
The isometry of acts on the discriminant group ¥ /s as the zdentzty.

Proof. As in the case of an elliptic fibration with a section of order three, it is clear
that of fixes the classes F' and s + t1 + t2 + t3 + t4. These classes generate the lattice
U(5), and so H2(X,Z)% D U(5) @ Tx = U(5) @ U(5) @ U. Using Nikulin’s result in
[Nil, p. 133] we find that the lattice H?(X,Z)% has determinant —5%, which is exactly
the determinant of U(5) @ U(5) & U. Since these have the same rank, we conclude that
H*(X,7)% =U()oU(()aU.
The orthogonal complement (H?(X,7Z)% )"+ is equal to (NS(X)% ) as in Proposition
4.2. Tt has signature (0,16) and by [Nil, p. 133] the discriminant group is (Z/5Z)%%.
Hence by [Ni2, Theorem 1.14.4] there is a unique primitive embedding of (H?(X,Z)% )+
in the K3-lattice. By using the orthogonality conditions one finds the following basis of
05 = (NS(X)75) L

by =s—1t1, by =11 —ta, by =12 — 13, by =13 —ty, b5=F—5C§3),

b=cl —cl, i=6,78 by=cP-c?,

b; = 029 C%, i=10,11,12, bz =c? —c®¥,

b =C®, —c®,, i=14,1516.

2

N

The Gram matrix of this basis is exactly the matrix M.
The generators of the discriminant group of 25 are the classes vy, vy of the discriminant
form of NS(X) and the classes

vg = %(bg + 2by + 3by + 4by),
Vg = —(bg + 2b1 + 3byg + 4by — b5)

These have v3 = —2/5 mod 2Z, v = 2/5 mod 2Z. The generators vy, 2ve — 4vs — vy,
2v3, vy are orthogonal to each other and have self-intersection 2/5. U

4.5. The lattice Q5. Let ws be a primitive fifth root of the unity. In this section we prove
the following result

Theorem 4.4. The lattice Q5 is isometric to the Z-lattice associated to the Z[ws]-lattice
{Ls, hr,} where

T1 =29 = 223 = 214 mod (1 — ws)
Ls = (xl,...,a:4) S (Z[u}5])@4 :

(B—ws)r1+(B—ws)ra+r3+24=0 mod (1 —ws)?

with the hermitian form
2 4
(13) his(a,8) = Zaz@ +Zf0@fﬁg Y cilitTy b
i=1 j=3

where o, B € Ly C Zws|®4, f=1— (w5 +wd) and = ff =2 3(w? +wd).

Proof. The strategy of the proof is the same as in the case with an automorphism of order
three, but the situation is more complicated because the section 1 does not meet all the
fibers I5 in the same component. For this reason the hermitian form of the Z|ws]-lattice
L5 is not the standard hermitian form on all the components. It is possible to repeat the
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construction used in the case of order three, but with the hermitian form (13). We explain
now how we find this hermitian form. '
Let F := Fy be the lattice generated by the elements C’i(]) —cY) = 0,...,4,7=1,...,4.

41
This is a sublattice of (N.S(X)75*)L. A basis is

diti = (03)'(Cf - d%,%szwwﬁ—é%,@ﬂzwwwﬁ—Q%,
disti = (o3)' (Y =), i=0,....3
and the bilinear form is thus the diagonal block matrix @ = diag(A, A, B, B)

-6 4 -1 -1 -6 -1 4 4
4 -6 4 -1 -1 -6 -1 4
A=1 41 4 6 4| B= 4 -1 -6 -1
1 -1 4 —6 4 4 -1 —6

We want to identify the multiplication by ws in the lattice G with the action of the isometry
o% on the lattice F. We consider the Z[ws]-module G = (1 — w)?Z[w]®1. Now we consider
the Z-module G7. The map

1 2

¢: (o2)i(C) —CY) (1 —ws)?wi(1,0,0,0)
(02)(C = ) = (1 —ws)%wi(0,1,0,0)
(02)(C) = ) = (1 — ws)?wi(0,0,1,0)
(02 (Y = CY) = (1 - ws)?wi(0,0,0,1)

is an isomorphism between the Z-modules Gz and F'.
Now we have to find a bilinear form bz on G such that {Gz,bg} is isometric to {F,Q}.

On the first and second fiber the action of o7 is o (C(])) Cl(i)l, j=1,2,i=0,...4, s0
(ag)Z(Cf 7 _ C’éj)) = CZ(JF)1 Cz(g Hence the map ¢ operates on the first two fibers in the
following way:
. M (1) )2,
¢ : Cerl Cz+2 = (1 w5) w5(170a 070)
Cz(—?-)l Cz(—?-)Z = (]' - w5)2wg(0, 1a 07 O)

This identification is exactly the identification described in Lemma 2.1, so on these gen-
erators of the lattices F' and G we can choose exactly the form described in the lemma.
On the third and fourth fiber the action of of is different (because of is the translation
by t1 and it meets the first and second fiber in the component C; and the third and

fourth fiber in the component Cy ). In fact (of) (ij) - C’éj)) = Cézi_l - C’Q(f_)ﬂ, Jj =34,
1=0,...,4 and so

¢: C —cl, — (1 -ws)2i(0,0,1,0)

14 X
) O =8, = (1 —ws)2wi(0,0,0,1).

A direct verification shows that the map ¢ defines an isometry between the module gen-
erated by (o5)" (C'(j) C(J)), i=0,...,4 and (1 — ws)?Z|ws], (j = 3,4) if one considers
on (1— W5)ZZ[QJ5] the bilinear form associated to the hermitian form h(a, ) = 7o where
7 = (2—3(w? +wd)). The real number 7 is the square of f = 1— (w2+w3), so the hermitian
form above is also h(a, 3) = Taf = fafB. So now we consider the Z[ws]-lattice Z[ws)®*
with the hermitian form h given in (13) and G as a sublattice of {Z[ws]®* h}. We show
that Ls = Q5. We have to add to the lattice F' some classes to obtain the lattice 25, and
so we have to add some vectors to the lattice G to obtain the lattice L. It is sufficient to
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add to F' the classes s — t1, Cfl) — C(2), C’fZ) — C’P, C’f3) — C’f‘l) and their images under
o%. These classes correspond to the following vectors in Z[ws]®4:

s—t1=(1,1,¢,¢),

e —c® = (1 - ws)(1,-1,0,0),

O = O = (1 - ws) (0,1, ~(1 +w3),0),

) = O = (1= ws)(0,0, (1 + wd), =(1 + )

where ¢ = w5(2w? — w5 +2). A basis for the lattice Ly is then

ll = (1, 1,0, C) lg = (,U5l1

l3 = wgll l4 = wgll

Is = (1 — ws5)%(0,0,2 + dws + w2 + 3w, 0) Is = (1 —w5)?(1,0,0,0)
l7 == (U5l@ lg == wglg

lg = (1—ws)(1,~1,0,0) lo = (1 - ws5)2(0,1,0,0)
l11 = wslio Lo = wilo

l13 = (]- - (U5)(O, 17 _(1 + wg)a 0) l14 = (]- - W5)2(0,0, 170)
l15 = wslg lig = wilha.

The identification between 25 and Ls is given by the map b; — [;. After this identification
the intersection form on (25 is exactly the form by, on Ls. g

Remark. 1) We recall that the density of a lattice L of rank n is A = V,,/v/det L where
V,, is the volume of the n dimensional sphere of radius r (called packing radius of the
lattice), Vi, = r"n"/2/(n/2)!, » = /i/2 and p is the minimal norm of a vector of the
lattice.

The density of 25 is A = %?5% ~ 0.0094.

2) The lattice Q5 does not admit vectors of norm —2 and can be generated by vectors of
norm —4, and a basis is bl, b2, bg, b4, b5 - b13 - 2b14 - 3b15 - 4b16, b@, b7, bg, bg, b10 + blla
bi1 + b1z, bio + b11 + b1z, b13, bia + b1, b1s + b16, b1a + b15 + bie.

4.6. Section of order seven. Let X be a K3 surface with an elliptic fibration which
admits a section of order seven as described in section 3. We recall that X has three
reducible fibres of type Iy and three singular irreducible fibres of type I;. We have seen
that the rank of the Néron-Severi group is 20. We determine now NS(X) and Tx.

We label the fibers and their components as described in the section 3. Let ¢; denote the
section of order seven which meets the first fiber in Cfl). Again by the formula (4) of
section 3 we have

ty - C’fl) =1, t;- 02(2) =1, t;- C’és) =1, and t; - C’i(j) = 0 otherwise.
Let o7 denote the automorphism of order seven which leaves each fiber invariant and is
the translation by t1, so o%(s) = t1, oi(t1) = t2, 05(t2) = t3, 0i(t3) = ta, 05 (ts) = ts,
0X(ts) = ts, 0% (tg) = s. The proofs of the next two propositions are very similar to those

of the similar propositions in the case of the automorphisms of order three and five, so we
omit them.

Proposition 4.5. A Z-basis for the lattice NS(X) is given by
S, tlu t27 t37 t47 t57 t67 F7 Cfl) y C§1)7 C§1)7 C£1)7 Cél)a Cél)a sz)a Céz)a C,E(}Q)a Cziz) y CEE2)7 Cé2) .

Let U @ A} be the lattice generated by the section, the fiber and the irreducible components
of the three fibers I7 which do not intersect the zero section s. It has index seven in the
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Néron-Severi group of X, NS(X).
The lattice NS(X) has discriminant —7 and its discriminant form is Z7(—%).
The transcendental lattice Tx is the lattice {Z9%, Y} where

-(11)

and it has a unique primitive embedding in the lattice Ags3.
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4.6.1. The invariant lattice and its orthogonal complement.

Proposition 4.6. The invariant sublattice of the Néron-Severi lattice is isometric to the
lattice U(T) and it is generated by the classes F and s+ t1 + to + t3 + t4 + t5 + tg.

The invariant lattice H>(X,7)%7 is isometric to U(7) @ Tx. Its orthogonal complement
Qy == (H?(X,7)°7)* is the negative definite eighteen dimensional lattice {7'8, M} where
M is the bilinear form

-4 2 0 0 0 O 0o-1 0 o o0 O o 1 -1 0
2 -4 2 0 0 O o 2 -1 0 0 0 0 -1 1 1 -
0o 2 -4 2 0 0 T -1 2 -1 0 0 0 0 0 -1
o o 2 -4 2 0 - 0 -1 2 -1 0 1 -1 0 0
o o o0 2 —4 2 o 0 0 -1 2 -1 -1 1 1 -1
o o o0 0 2 -4 o o o o0 -1 2 -1 0 -1 1
o o - 0 O0-9 0O O O O 0 o0 0 0 O
-1 2 -1 0 0 O o -6 4 -1 0 O 0 0 0 O
0o -1 2 -1 0 O o 4 -6 4 -1 0 0 0 0 O
o o0 -1 2 -1 0 0o -1 4 -6 4 -1 0 0 0 0
0o 0 0 -1 2 -1 o 0 -1 4 -6 4 -1 0 0 O
o o0 o0 0 -1 2 o 0 0-1 4 -6 3 0 0 O
0o 0 0 1 -1 -1 o o0 o0 o0 -1 3 -4 3 -1 0
1 -1 0 -1 1 0 o 0 o o o o0 3 -6 4 -1
-1 1 0 0 1 -1 o 0 o o o 0 -1 4 -6 4 —
O 1 -1 0 -1 1 o o0 o0 o o o 0 -1 4 -6
0 -1 10 0 1 T o0 o o o o0 o0 0 -1 4 -
o o0 1 -1 0-1-220 O O O O O O 0 -1

and it is equal to the lattice (NS(X)77)+.

The lattice Q7 admits a unique primitive embedding in the lattice Ags.

The discriminant of Qr is 7° and its discriminant form is (Z7(2))®3.

The isometry o acts on the discriminant group 0 /7 as the identity.

The basis of (NS(X)°7)* associated to the matrix M is by = s—t1, by = t; —to, by = to—13,
by =ty —ty, bs = ta —ts5, bg = t5 — ts by = F —7CS by = CL — M i =8,...,12,
bis=CY —0® b =c®, -, i=14,... 18,

4.7. The lattice 27. Let w7 be a primitive seventh root of the unity. In this section we

prove the following result

Theorem 4.5. The lattice Q7 is isometric to the Z-lattice associated to the Z|wr]-lattice
{L7, hr.} where

T = T = 63
(1,22, 23) € (Zwr])®? -

mod (1 —wr),

Ly

(14 5w7)zy + 322 +223=0  mod (1 — wy)?

OOk, OO0 0O N+, OO O

|
o

DR OO OO0 R, OFFOO
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with the hermitian form

(15) his (e, B) = a1fy + fiaafifs + f2as f203,
where fi = 3 + 2(w7 + W) + (W2 + W), fo =2+ (w7 +wh).

Proof. As in the previous cases we define the lattice F' := F73 . We consider the hermitian
form

h(a, B) = a1B1 + frasfifBa + faasf2Bs

on the lattice Z[w7]®3, and define G to be the sublattice G = (1 — wr7)?Z[w]®? of
{Z[wr]®, h}.
The map ¢ : FF — G

¢: (o2)(C) =) (1 —wr)wi(1,0,0)
(@) = ) = (L=wn (0,10
1 w

7
*\17 3 3 2
(5O =) = (1 —wr)wi(0,0,1)
is an isomorphism between the Z-lattice Gz, with the bilinear form induced by the her-

mitian form, and F’ with the intersection form. We have to add to G some vectors to find
a lattice L7 isomorphic to €27. These vectors are

S —tl = (1,0,]{7),
e —c® = (1 —w)(1,—(1 + wh),0),
O — 0 = (1 —w)(0, (1 + wd), —(1 + wd +w3)),

where ¢ = 1+ 3w; + 3uf71 + w? and k= -5+ w7 — 5w$ - 3w$ - 3w§. A basis for the lattice
L7 is

l1 = (l,c, k) l2 ZW7Z1

I3 = wgll ly = w?ll

ls = wéll lg = w?ll

lr = (1 — w7)?(0,2 + 4wy + 6w2 + w2 + 3w + 5w2,0) Is = (1 —wr)?(1,0,0)
lg = (,U7l8 l10 = w%lg

l11 = w;lg l12 = w%lg

hs = (1 —wr)(1,—(1 4 w?),0) iy = (1 —w7)?(0,1,0)
lis = wrlig lig = wiliy

li7 = wiliy lis = wiliy

The identification between 27 and L7 is given by the map b; — [;. After this identification
the intersection form on {27 is exactly the form b, on L7 induced by the hermitian form

(15). O

9

Remark. 1) The density of Q7 is A = g—,\/% ~ 0.0044.

2) As in the previous cases the lattice €7 does not admit vectors of norm —2 and can be
generated by vectors of norm —4, and a basis is by, bs, b3, by, b5, bg, by — byg — 2b14 —
3b15 — 4b1g — Sby7 — 6b1s, bg + by, by + b1o, b1o + b11, b11 + b12, b1o + b11 + b2, bi3, b1a + 15,
bis + b1, big + b17, b17 + b1s, b1e + b17 + b1s.
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5. FAMILIES OF K3 SURFACES WITH A SYMPLECTIC AUTOMORPHISM OF ORDER p

In the previous sections we used elliptic K3 surfaces to describe some properties of the
automorphism o,. All these K3 surfaces have Picard number p, + 1, where p, is the
minimal Picard number found in the Proposition 1.1. In this section we want to describe
algebraic K3 surfaces with symplectic automorphism of order p and with the minimal
possible Picard number. Recall that the values of p, are

p 3 5 7
pp 13 17 19,

and €2, denote the lattices described in the sections 4.1, 4.4, 4.6.

Proposition 5.1. Let X be a K3 surface with symplectic automorphism of order p = 3,5,7
and Picard number p, as above. Let L be a generator of Qé C NS(X), with L? = 2d > 0
and let

LY, =7ZL®Q,
Then we may assume that L is ample and
(1) if > =2,4,...,2(p—1) mod 2p, then L, =NS(X),
(2)if L =0 mod 2p, then either L, =NS(X) or NS(X) = E;Z with E’Q’;/ﬁgd ~ 7./pZ
and in particular L5, is generated by an element (L/p,v/p) with v2 = 0 mod 2p and
L? + v =0 mod 2p>.

Proof. Since L? > 0 by Riemann Roch theorem we can assume L or —L effective. Hence
we assume L effective. Let N be an effective (—2) curve then N = aL + ¢/, with v' € Q,
and « > 0 since €, do not contains (—2)-curves. We have L - N = aL? > 0, and so L
is ample. Moreover recall that L and €, are primitive sublattices of N.S(X). Since the
discriminant group of L5, := ZL & Q,, is (Z/2dZ) & (Z/pZ)®"», with n3 = 6, ns = 4,
n7 = 3 an element in NS(X) not in £8, is of the form («L/2d,v/p), v € Q, and satisfy
the following conditions:

(a) p- (aL/2d, v/p) € NS(X),

(b) (aL/2d,v/p) - L € Z,

(c) (aL/2d,v/p)? € Z.

By using the condition (a) we obtain p - (aL/2d,v/p) — (0,v) € NS(X) and so

pal

— e NS(X).
57 € VS(X)
Hence by the primitivity of L in NS(X) follows that d = 0 mod p, d = pd’, d’ € Z~ and
SO
al
— e NS(X
5y € NVS(X)

which gives a = 2d" and the class (if there is) is (L/p,v/p). Now condition (b) gives
(L/pvfp) L=L*/pel
and so L? = 2p-r, r € Z~, since the lattice is even. And so if NS(X) = Ezo/d, then L2 =0
mod 2p. Finally condition (c) gives
2 _ L2 + ’1)2
2

and so since a square is even L? 4+ v? = 0 mod 2p?. O

(L/p,v/p)
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In the sections 4.1, 4.4, 4.6 we defined a symplectic automorphism o, p = 3,5,7 of order

p on some special K3 surfaces and we found the lattices 2, = (A;&)L. Now we consider

more in general an isometry on Ag3 defined as o, (we call it again o). In the next

theorem we prove that if X is a K3 surface such that NS(X) = £5, or NS(X) = Ez’;,
then this isometry is induced by a symplectic automorphism of the surface X.

Proposition 5.2. Let L, = LY, or L, = Eg/d if p=3,5 and let L7 = ZZ;. Then there
exists a K3 surface X with symplectic automorphism o, of order p such that NS(X) = L,
(p=13.5,7) and (H*(X,Z)70)" = Q.

Moreover there are no K38 surfaces with Néron-Severi group isometric to Ehd.

Proof. Let o5, p = 3,5,7, be an isometry as in the sections 4.1, 4.4, 4.6. We make the
proof in several steps.

Step 1: there exists a marked K3 surface X such that NS(X) is isometric to L,, and
there are no K3 surfaces with Néron-Severi group isometric to Ehd. By [Ni2, Theorem

1.14.4] the lattices £}, L’% e Eg 4 have a unique primitive embedding in the K3 lattice. The
lattice T5 = U(5) @ U (5) @ (—2d) has a unique primitive embedding in Ags, again by [Ni2,
Theorem 1.14.4]. Its signature is (2,3) and its discriminant form is the opposite of the
discriminant form of £5,. Since, by [Ni2, Corollary 1.13.3], £3, is uniquely determined
by its signature and discriminant form, it is the orthogonal of 75 in Ax3 and then Egd

admits a primitive embedding in Agxs3. The lattice E;d is a primitive sublattice of the
Néron-Severi group of the K3 surface described in the section 4.6, so it is a primitive
sublattice of Ax3 (the same argument can be applied to the lattices £3,, p = 3,5). Let
now w € Eé ®C C Ag3 ® C, with ww = 0, ww > 0. We choose w generic with these
properties. By the surjectivity of the period map of K3 surfaces, w is the period of a K3
surface X with NS(X) = wt N Ak = L.

The rank of the lattice £, is 19 and its discriminant group has four generators. If £7,,
was the Néron-Severi group of a K3 surface, the transcendental lattice of this surface
should be a rank three lattice with a discriminant group generated by four elements. This
is clearly impossible.

Step 2: the isometry o, fizes the sublattice L. Since 0,,(§2) = ), and 0,,(L) = L (because

Le Qé which is the invariant sublattice of Ags), if £, = L), = ZL & Q,, it is clear that

oy(Ly) = Ly. Now we consider the case £, = L8,. The isometry o, acts trivially on

Q) /€y (cf. Propositions 4.2, 4.4, 4.6) and on (ZL)" /ZL. Let %(L,v/) € L,, with v € Q,,.
This is also an element in (Q, & LZ)Y/(Q, ® LZ). So we have O';(%(L,U/)) = %(L,v’)
mod (€2, ® ZL), which means

1 1
O';(—(L,’U/)) = —(L,v") + (BL,v"), BeZ, v'eqQ,.
p p
Hence we have 0,(Lp) = L).
Step 3: The isometry o, is induced by an automorphism of the surface X. The isometry

o, fixes the sublattice Ej of Aks, so it is an Hodge isometry. By the Torelli theorem
an effective Hodge isometry of the lattice Agg is induced by an automorphism of the
K3 surface (cf. [BPV, Theorem 11.1]). To apply this theorem we have to prove that

o, is an effective isometry. An effective isometry on a surface X is an isometry which

preserves the set of effective divisors. By [BPV, Corollary 3.11] o, preserves the set of the
effective divisors if and only if it preserves the ample cone. So if o, preserves the ample
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cone it is induced by an automorphism of the surface. This automorphism is symplectic
by construction (it is the identity on the transcendental lattice Tx C Q;j), and so if o),
preserves the ample cone, the theorem is proven.

Step 4: The isometry o, preserves the ample cone Ax. Let C;g be one of the two connected
components of the set {x € HY(X,R) | (z,2) > 0}. The ample cone of a K3 surface
X can be described as the set Ax = {z € C{ | (z,d) > 0 for each d such that (d,d) =
—2, d effective}. First we prove that oy fixes the set of the effective (—2)-curves. Since
there are no (—2)-curves in Q,, if N € £, has N> = —2 then N = %(aL,v’), e Q,,
for an integer a # 0. Since %GLZ =L-N >0, because L and N are effective divisor, we
obtain @ > 0. The curve N’ = ¢ (N) is a (—2)-curve because o, is an isometry, hence N’
or —N' is effective. Since N = 05(N) = (aL,0};(v')) we have =N’ L = —aL* < 0 and so
—N' is not effective. Using the fact that o, has finite order it is clear that o), fixes the set
of the effective (—2)-curves.

Now let * € Ax then o(z) € Ax, in fact (0,(x),0,(z)) = (z,) > 0 and for each

effective (—2)-curve d there exists an effective (—2)-curve d’ with d = o3(d’), so we have
(o5(2),d) = (o(x),05(d')) = (x,d") > 0. Hence oy preserves Ax as claimed. O

Corollary 5.1. The coarse moduli space of Ly-polarized K3 surfaces (cf. [Do] for the
definition) p = 3,5,7 has dimension seven, three, respectively one and is a quotient of

Dc, :{wEIP’([Z;@Z(C): w? =0, wo >0}
by an arithmetic group O(L,).

Remark. In particular the moduli space of K3 surfaces admitting a symplectic automor-
phism of order p = 3,5, 7 has dimension respectively seven, three and one.

6. FINAL REMARKS

1. In Proposition 5.2 it would be interesting to prove the unicity of the lattices ng, this
requires some careful analysis of the automorphism group of the lattices €2,, p = 3,5, 7.
2. Tt is not difficult to give examples of K3 surfaces (not elliptic) in some projective space
with a symplectic automorphism of order three or five. Consider for example the surfaces
of P3:

S1: qa(wo, x1) + q2(wo, w1) 2223 + I (20, 21)25 + 1y (20, 21) 75 + axjzi = 0

S2: aolx%x% + agga:%x% + ag123Tor1T2T3 + aogxgajz + algx?xg + alle.’L‘g’ + aogajoajg =0.

where ¢; is homogeneous of degree i, l;, I{ are linear forms, and a;; € C. The surfaces
S1 resp. S9 admit symplectic automorphisms of order three resp. of order five induced
by the automorphisms of P? given by o3 : (zg : o1 : 22 : 23) — (z0 : T1 : wW3xs : w%xg)
and o5 : (g : x1 @ x2 1 x3) — (wWszp : w§x1 : wga:g : ngg). The automorphisms of
P3 commuting with o3 resp. o5 form a space of dimension six, resp. four, since the
equations depend on 13, resp. seven parameters the dimension of the moduli space is
seven, resp. three as expected (this is the minimal possible dimension). In a similar way
one can costruct many more examples. In the case of order seven automorphisms it is
more difficult to give such examples. Already in the case of a polarization L? = 2, the K3
surface is the minimal resolution of the double covering of P ramified on a sextic with
singular points and these are the fixed points of the automorphisms. One should resolve
the singularities and analyze the action on the resolution before doing the double cover.
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PROJECTIVE MODELS OF K3 SURFACES WITH AN EVEN SET

ALICE GARBAGNATI AND ALESSANDRA SARTI

ABSTRACT. The aim of this paper is to describe algebraic K3 surfaces with an even set of
rational curves or of nodes. Their minimal possible Picard number is nine. We completely
classify these K3 surfaces and after a careful analysis of the divisors contained in the Picard
lattice we study their projective models, giving necessary and sufficient conditions to have an
even set. Moreover we investigate their relation with K3 surfaces with a Nikulin involution.

0. INTRODUCTION

It is a classical problem in algebraic geometry to determine when a set of (—2)-rational curves
on a surface is even. This means the following: let L1, ..., Ly be rational curves on a surface
X then they form an even set if there is § € Pic(X) such that

This is equivalent to the existence of a double cover of X branched on Ly + ...+ L,. This
problem is related to the study of even sets of nodes, in fact a set of nodes is even if the
(—2)-rational curves in the minimal resolution are an even set. In particular the study of
even sets on surfaces plays an important role in determining the maximal number of nodes a
surface can have (cf. e.g. [Be], [JR]). Here we restrict our attention to K3 surfaces.

In a famous paper of 1975 [N1] Nikulin shows that an even set of disjoint rational curves
(resp. of distinct nodes) on a K3 surface contains 0, 8 or 16 rational curves (nodes). If the
even set on the K3 surface X is made up by sixteen rational curves, the surface covering
X is birational to a complex torus A and X is the Kummer surface of A. This situation is
studied by Nikulin in [N1]. If the even set on X is made up by eight rational curves then the
surface covering X is also a K3 surface. There are some more general results about even sets
of curves not necessarily disjoint. More recently in [B1] Barth studies the case of even sets
of rational curves on quartic surfaces (i.e. K3 surfaces in P?) also in the case that the curves
meet each other and he finds sets containing six or ten lines too.

In the paper [B2] he discusses some particular even sets of disjoint lines and nodes on K3
surfaces whose projective models are a double cover of the plane, a quartic in P? or a double
cover of the quadric P! x P!, and he gives necessary and sufficient conditions to have an even
set.

Our purpose is to study algebraic K3 surfaces admitting an even set of eight disjoint rational
curves. We investigate their Picard lattices, moduli spaces and projective models. The
minimal possible Picard number is nine, and we restrict our study to the surfaces with this
Picard number. The techniques used by Barth in his article are mostly geometric, here we use
lattice theory: we investigate first the Picard lattices of the K3 surfaces and the ampleness
of certain divisors, then we study the projective models. We find again the cases studied by
Barth and we discuss many new cases, with a special attention to complete intersections. We

The second author was partially supported by DFG Research Grant SA 1380/1-2.
2000 Mathematics Subject Classification: 14J28, 14J10, 14E20.
Key words: K3 surfaces, even sets of curves, moduli.

167



168 ALICE GARBAGNATI AND ALESSANDRA SARTI

give also an explicit relation between the Picard lattice of an algebraic K3 surface with an
even set and the Picard lattice of the K3 surface which is its double cover. More precisely if X
admits an even set of eight disjoint rational curves, then by [N1], it is the desingularization of
the quotient of a K3 surface by a Nikulin involution (i.e. a symplectic automorphism of order
two). The Nikulin involutions are well known and are studied by Morrison in [M] and by van
Geemen and Sarti in [vGS]. In [vGS] the authors describe also some geometric properties of
the quotient by a Nikulin involution and so of K3 surfaces with an even set of eight nodes.
In [N1] Nikulin proves that a sufficient condition on a K3 surface to be a Kummer surface
(and so to have an even set made up by sixteen disjoint rational curves) is that a particular
lattice (the so called Kummer lattice) is primitively embedded in the Néron Severi group of
the surface. Here we prove a similar result: a sufficient condition on a K3 surface X to be
the desingularization of the quotient of another K3 surface with a Nikulin involution (and
so to have an even set made up by eight disjoint rational curves) is that a particular lattice
(the so called Nikulin lattice) is primitively embedded in the Néron Severi group of X. This
result is essential to describe the coarse moduli space of a K3 surface with an even set of
eight disjoint rational curves.

In the Section 1 we recall some known results on even sets on surfaces, in particular on K3
surfaces. In the Section 2 we study algebraic K3 surfaces X with Picard number nine. If
X admits an even set of eight disjoint rational curves, then its Néron Severi group has rank
at least nine (it has to contain the eight rational curves of the even set and a polarization,
because the K3 surface is algebraic). The main results of this section (and also two of the
main results of this paper) are the complete description of the possible Néron Severi groups
of rank nine of algebraic K3 surfaces admitting an even set and the complete description
of the coarse moduli space of the algebraic K3 surfaces with an even set of eight disjoint
rational curves. Moreover using the results of [vGS] we describe the relation between the
Néron Severi group of an algebraic K3 surface Y admitting a Nikulin involution ¢ and the
Néron Severi group of a K3 surface admitting an even set, which is the desingularization of
Y /i (Corollary 2.2). In the Section 3 we analyze the ampleness of some divisors (or more in
general the nefness). These classes are used in the Section 4 to describe projective models
of algebraic K3 surfaces with an even set of eight disjoint rational curves. In particular we
describe the following projective models:

e double covers of P?: these branch along a sextic with eight nodes (Paragraph 4.1) or
along a smooth sextic (Paragraph 4.4, a)) (these two situations are studied also by Barth in
[B2], first and second cases), or along a sextic with four nodes (Paragraph 4.7);

e quartic surfaces in P3: these have an even set of nodes (Paragraph 4.2) or an even set
of lines (Paragraph 4.5, a)) (these two situations are studied also by Barth in [B2], third and
forth cases), or it has a mixed even set of nodes and conics (Paragraph 4.8, b));

e double covers of a cone : these branch along a conic and a sextic on the cone, which
intersect in six points (Paragraph 4.3);

e complete intersections of a hyperquadric and a cubic hypersurface in P*: these
have an even set of nodes (Paragraph 4.4, b)) or an even set of lines (Paragraph 4.7, a));

e complete intersections of three hyperquadrics in P°: these have an even set of nodes
(Paragraph 4.5, b) and Paragraph 4.6, b)) or an even set of lines (Paragraph 4.8, a) and
Paragraph 4.9, a));

e double covers of a smooth quadric: these branch along a curve of bidegree (4,4)
(Paragraph 4.6) (this case is studied also by Barth in [B2], sixth case);
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e We study also the following complete intersections (c.i.) of hypersurfaces of bidegree (a,b)
in P x P

space | c.i. | paragraph
PT x P? (2,3) 4.9 b)
Pt x P? | (2,0),(1,1),(1,1),(1,1) | 4.4 c)
P2 x P? (1,2),(2,1) 4.10

P3 x P3| (1,1), (1, 1),(1,1),(1,1) 4.11

In Section 4 we describe moreover geometric properties of these K3 surfaces with an even set.
In Section 5 we use these properties to give sufficient conditions for a K3 surface to have an
even set.

We would like to thank Bert van Geemen for his encouragements and for many useful and
very interesting discussions. This work has been done during the second author’s stay at the
University of Milan, she would like to express her thanks to Elisabetta Colombo and Bert van
Geemen for their warm hospitality.

1. K3 SURFACES WITH AN EVEN SET OF NODES AND OF RATIONAL CURVES

Definition 1.1. Let X be a surface. A set of m disjoint (—2)-rational smooth curves, Ni,
+Nm, on X, is an even set of rational curves if there is a divisor § € Pic(X) such that

Ny + ...+ Ny ~ 26,
where " ~" denotes linear equivalence.

Definition 1.2. Let X be a surface and let N' = {p1,...,pm} be a set of nodes on X. Let
B : X — X be the minimal resolution of the nodes of X and let N; = 3~ Yp),i=1,.

These are (—2)-rational curves on X. The set N is an even set of nodes if Ny, ... ,Nm are
an even set of rational curves.

In the case of K3 surfaces linear equivalence is the same as algebraic equivalence (which we
denote by =) and Pic(X) = NS(X).

The existence of an even set Ni,..., Ny, on a surface X is equivalent to the existence of a
double cover 7 : Y — X from a surface Y to X branched on Ny+...+N,, [BPV, Lemma 17.1].

Let Y be a surface and ¢ be an involution on Y with exactly m distinct fixed points g1, ..., gm
and let Y be the blow up of Y at the points ¢y, ..., gn. The involution ¢ induces an involution
TonY. Let X be the quotient surface Y/. and 7’ : Y — X be the projection. The surface X
has m nodes in 7/(¢;), i = 1,...,m. Let 8 : X — X be the minimal resolution of X. Then
the following diagram commutes

vy 2 vy
& SR

x 2 x

The double cover 7 : Y — X is branched on Ny + ...+ N, where N; are the (—2)-curves
such that B(NZ) =n'(g;),i=1,...,m and these form an even set.

Conversely if 7 : Y — X is a double cover of X branched on the divisor Ni+...4+ N, where
N; are (—2)-rational curves, then there is a diagram as (1).

We recall some facts about even sets on K3 surfaces:
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o If Ni,..., N, is an even set of disjoint curves on a K3 surface, by a result of Nikulin
[N1, Lemma 3] we have m = 0,8 or 16.

e If m = 16 the surface Y in the diagram (1) is a torus of dimension two ([N1, Theorem
1]), the involution ¢ is defined on Y as y — —y, y € Y and has sixteen fixed points.
So X is the Kummer surface associated to the surface Y (a Kummer surface is by
definition the K3 surface obtained as the desingularization of the quotient of a torus
Y by the involution y — —y, y € Y). If Y is an algebraic torus (so an Abelian
surface), then X is an algebraic K3 surface and its Picard number is p > 17.

e If m = 8 then the surface Y is a K3 surface and the cover involution has eight isolated
fixed points (it is a Nikulin involution, cf. Definition 1.3 below). If Y is an algebraic
K3 surface, then X is algebraic and its Picard number is p > 9.

Definition 1.3. Let Y be a K3 surface. Let ¢ be an involution of Y. The involution ¢ is
called Nikulin involution if ¢|2.0(x,c) = id|g20(x,C)-

We recall some facts about the Nikulin involutions:

e An involution ¢ on a K3 surface is a Nikulin involution if and only if it has eight
isolated fixed points [N2, Section 5].

e The Nikulin involutions are the unique involutions on a K3 surface Y such that the
desingularization of Y/1 = X is a K3 surface. In fact let Y be the blow up of ¥ on the
fixed points of the involution ¢. In this way we obtain more algebraic classes on 17,
but the transcendental classes are the same and so H20(Y)"" = H20(Y)". Since an
automorphism of a K3 surface induces a Hodge isometry on the second cohomology
group we have (*(H29(Y)) = H20(Y) ~ C and since H20(Y)" = H29(X) ~ C it
follows that ¢* is the identity on H*°(Y), so ¢ is a symplectic automorphism.

2. EVEN SETS AND NIKULIN INVOLUTIONS

Let N1,..., Ng be an even set of eight disjoint smooth rational curves on a K3 surface X, then
by adjunction N? = —2 and Morrison shows in [M, Lemma 5.4] that the minimal primitive
sublattice of H?(X,Z) containing these (—2)-curves is isomorphic to the Nikulin lattice:

Definition 2.1. [M, Definition 5.3] The Nikulin lattice is an even lattice N of rank eight
generated by {N;}$_, and N = %ENZ-, with bilinear form induced by

Nz’ . Nj = —252']'.

Observe that N2 = —4 and N - N; = —1. This lattice is a negative definite lattice of
discriminant 2% and discriminant group (Z/27Z)%5.

From now on X is an algebraic K3 surface. A K3 surface has an even set of eight disjoint
rational curves if there are eight disjoint rational curves spanning a copy of N in N.S(X) (then
rank NS(X) > 8). Since X is algebraic the signature of the Néron Severi group N.S(X) is
(1, p— 1), where p is the Picard number of X (i.e. the rank of NS(X)). So the Néron Severi
group of X has signature (1,p — 1) and has to contain the negative lattice N of rank eight,
so NS(X) contains also a class with positive self intersection. Clearly p > 9 and we will see
that the generic algebraic K3 surface with an even set has p = 9 and that the number of
moduli is 20 — 9 = 11 (Corollary 2.3). Here we study the case of algebraic K3 surfaces with
Picard number nine.

Proposition 2.1. Let X be an algebraic K3 surface with an even set of eight disjoint rational
curves and with Picard number nine, let L be a divisor generating N+ C NS(X), L? > 0.
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Let d be a positive integer such that L?> = 2d and let
Log=7ZL® N.
Then
(1) if L?* =2 mod 4 then NS(X) = Log,
(2) if L> =0 mod 4 then either NS(X) = Lag or NS(X) = L), where L), is generated by
Log and by a class (L/2,v/2), with

o v2 €47,
e v-N;,€2Z (ve N butv/2¢ N),
o 2= —v2 modS.

Proof. The discriminant group of Log = ZL @& N is (Z/2dZ) @ (Z/27)%5, hence an element
in the Néron Severi group of X but not in Lo4 is of the form (aL/2d,v/2) with a € Z,
v e N. Since 2- (aL/2d,v/2) —v € NS(X) we can assume that o = d and so the element is
(L/2,v/2). We can write v = 3" a;N; + BN, 8 € {0,1}, we have

L v
—,=)-N; € Z.
(5:3)Nie
Hence by doing the computations it follows
1
5(—2041 - B) €Z,
hence 3 € 27, and so we may assume (3 = 0. We have also
L v, -
— =) N€eZ
(5:5) Ne

SO

ez

hence ay + ...+ ag € 2Z and so o + ...+ a2 € 27Z too. We have

v? = =23 a2 482 -28> o

= 203 ).
It follows that v? € 4Z and v - N; € 2Z.
Since the Néron Severi lattice of a K3 surface is even we have

L vy, L?+0?

( 5" 2) == € 27
which gives L? € 47, so d must be even and L? +v?2 =0 mod 8.
Assume now that there is another class (L/2,v'/2)e NS(X), then the class (L/2,v/2) —
(L/2,v'/2) = (v—1")/2 € NS(X) too. Since N is primitive (v — v')/2 € N. So there is a
de Nst.v—v" =25 So (L/2,v'/2) € NS(X) if and only if (L/2,v'/2) = (L/2,v/2) + ¢
for certain § € N. This concludes the proof of the proposition. O

Proposition 2.2. Under the assumptions of the Proposition 2.1, L}, is the unique even
lattice (up to isometry) such that [LY, : Log) = 2 and N is a primitive sublattice of L.

Proof. We describe briefly the group O(N) of isometries of N. These must preserve the
intersection form, so the image of each (—2)-vector under an isometry is a (—2)-vector. The
only (—2)-vectors in the Nikulin lattice N up to the sign are the eight vectors N; and so if
o € O(N) then o(N;) = £Nj, 4,5 = 1,...,8. In particular the group of permutation of eight
elements g is contained in O(N). This group fixes the class N.
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Each class v in N is v = Zle aiN; + aN , a;, a € Z. We consider two different elements v
and v" such that Lo4 together with the class (L/2,v/2) or with the class (L/2,v'/2) generate
an overlattice of L9y. We want to prove that there exists an isometry o of IV such that
o(v) = v'. From the conditions given on v, or v/, (in particular from the fact that v- N; € 27Z),
v = Z§:1 a;N;, a; € Z and v/ = Z§:1 BiN;, B; € Z, we may assume that a;, 3; € {0,1}. The
only possibilities for v? (or v'?) are —4,—8,—12, (by the condition on v? given in the previous
proof) and this depends only on the number of a/s (resp. (.s) equal to one.

We distinguish two different cases: v? = v? and v? # v but v> = v> mod 8 (since
—v? = L? = —v? mod 8).
The case v? = v"2. This condition implies that there are the same number of a; and f3; equal

to one. Hence there is a permutation o € ¥g C O(N) of the N, s.t. o(v) =v'.

Observe that if L2 =0 mod 8, then it is clear from the description above that v? = v/ = —8
and so we are in this case.

The case v? # v, v> = v> mod 8 and L? = 4 mod 8. If L? = 4 mod 8 then v>
and v? are —4 or —12. So we can assume v2 = —4 and v? = —12 and v = N; + N,
v' = N3+ Ny+ N5+ Ng+ N7+ Ng (up to isometry of the lattice). Observe that v'/2 = N—v/Q
hence the lattice generated by Lo4 and by (L/2,v/2) or by Lo and by (L/2,v'/2) are the
same. U

Corollary 2.1. Let L?> =0 mod 4 and NS(X) = L},;. Then there are two possibilities:

e [2=4 mod 8. In this case one can assume that v = —Ny — Ny and (L—N3—...—
Ng)/2=(L+v)/2+ N — (N3 +---+ Ng) is in NS(X) too.

e I2 =0 mod 8. In this case one can assume that v = —(Ny + No + N3 + Ny) and
(L — N5 — Ng — Ny — Ng)/2 is in NS(X) too.

Proposition 2.3. Let I' = Log or L), then there exists a K3 surface X with an even set of
eight disjoint rational (—2)-smooth curves, such that NS(X)=T.

In the proof of this proposition we will use the relations between the Néron Severi group of a
K3 surface Y with a Nikulin involution and the Néron Severi group of a K3 surface X which
is the desingularization of the quotient of Y by the Nikulin involution. Here we recall the
two following Propositions of [vGS] in which the properties of the Néron Severi group of a
K3 surface with a Nikulin involution are described (we use the notation of the Diagram 1).
Proposition [vGS, Proposition 2.2] Let Y be an algebraic K3 surface admitting a Nikulin
involution and with Picard number nine. Let M be a divisor generating Es(—2)* € NS(Y),
M? =2d >0 and let

M2d’ =7ZM & Eg(—?)

Then M s ample, and

(1) if M? =2 mod 4 then NS(Y) = Moy,

(2) if M> =0 mod 4 then either NS(Y) = Moy or NS(Y) = M, , where M, is generated
by Moy and by a class (M/2,v/2), with v € Eg(—2).

Proposition [vGS, Proposition 2.7] (1) Assume that NS(Y) = ZM @& Eg(—2) = Moy . Let
E1, ..., Eg be the exceptional divisors on'Y. Then: (i) In case M? = 4n + 2, there exist line
bundles Ly, Ly € NS(X) such that for a suitable numbering of these E; we have:

6*M — E1 — Ey = n*Ly, G6*M — E3—...— Eg =n"Lo.

The decomposition of H(Y, M) into t*-eigenspaces is:

HO(Y,M) = r*H%X, L) ® m*H(X, Ly), (RO(Ly) =n+2, hO(Ly) =n +1)

and the eigenspaces PP P™ contain siz, respectively two, fized points.
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(ii) In case M? = 4n, for a suitable numbering of the E; we have:

O6*M—FE1—FEy—FE3—Ey =7*L, B*M — Es— Eg— E7— FEg = m* Lo with Ly, Ly € NS(X).
The decomposition of H(Y, M) into t*-eigenspaces is:

HO(Y,M) = r*H%X, L) ® mH(X, Ly), (RO(Ly) = h%(Ly) = n+1).

and each of the eigenspaces P™ contains four fixed points.

(2) Assume NS(Y) = M. Then there is a line bundle L € NS(X) such that:

B*M = 1*L. The decomposition of H°(Y, M) into 1*-eigenspaces is:

HO(Y,M) =~ H(X,L)® H°(X,L — N), (WO(L) =n+2, (L — N) =n)

and all fized points map to the eigenspace PP+ C P2+l

Proof of Proposition 2.3. First observe that the lattices Lo4 and £, are primitively embedded
in the K3 lattice by [N3, Theorem 1.14.1], so we can identify them with sublattices of U® @
FEg(—1)%

1) We consider first the case of I' = L9 = ZL @ N in this case I?=2 moddor L? =0
mod 4. We show that there exists a K3 surface with an even set of (—2)-smooth curves s.t.
NS(X) = La3. Let Y be a K3 surface with p(Y) = 9, with Nikulin involution and Néron
Severi group containing the lattice ZM @ Eg(—2) with index two and with M? =0 mod 4;
such a K3 surface exists by [vGS, Proposition 2.2, 2.3] (in this case its Néron-Severi group
is M, for some non-negative integer d’). We have a diagram like Diagram 1, and so a K3
surface X, which is the minimal resolution of the quotient of Y by the Nikulin involution.
Since p(Y) = 9 then p(X) = 9 too. By [vGS, Proposition 2.7] there is a line bundle L,
L € NS(X) with 7*L = 3*M. By the properties of the map 7*, 2L? = (7*L)? = (3*M)? =
M? =0 mod 4 and so L?> =2 mod 4 or L?> =0 mod 4. Moreover X has an even set made
up by the eight curves in the resolutions of the nodes of the quotient X.

If L2 =2 mod 4 then by the Proposition 2.1 NS(X) = Log, where L? = 2d, as required.

If I? = 0 mod 4 we must exclude that NS(X) = £}, Assume that we have an element
Ly =(L—N;—DNy)/2 € NS(X). If NS(Y) = M., the primitive embedding of NS(Y") in
U3 @ Fg(—1)? is unique up to isometry. Assume that M? = 4n and choose an o € Fg(—1)
with a? = —2 if n is odd and a? = —4 if n is even. Let v € Eg(—2) C U3 @ Eg(—1)? be
v=(0,a,—a) and let M be M = (2u, o, o) € U@ FEg(—1)? where u = e + (n;rl)fl if n is odd,
and u = e;+(5+1) f1 if nis even (here ey, f1 denotes the standard basis of the first copy of U).
Then M? = 4n and (M +v)/2 = (u,,0) € U3 @ Eg(—1)%. This gives a primitive embedding
of NS(Y) in U3 @ Eg(—1)?, which extends the standard one of Eg(—2) C U3® Eg(—1)2. Now
we can assume that L = (u,0,a) € U(2) ® N & Es(—1) C H*(X,Z), so by [vGS, Proposition
1.8] we have 8*M = 7*L. Now (L — N; — N3)/2 = (u,—N1 — Na,a)/2 € NS(X). By using
[vGS, Proposition 1.8] again we obtain 7*((L — N1 — N2)/2) = (u, §, 5, —E1 — E») € NS(Y)
and so (u,§,5) € NS(Y), this means that M/2 € NS(Y) which is not the case. Hence
(L—N1—N3)/2 ¢ NS(X), in a similar way one shows that (L—N;—Na—N3—N4)/2 ¢ NS(X)
and so we conclude that NS(X) = Log.

2) Assume now that I' = £} ;. In this case we have either

a) L? =4 mod 8 and so (L — Ny — No)/2 and (L — N3 — ... — Ng)/2 are in I or

b) L? =0 mod 8 and so (L — Ny — Ny — N3 — N,)/2 and (L — N5 — Ng — N7 — Ng)/2 are in
I". We do the proof assuming that we are in case a), for the case b) the proof is very similar.
Let Y be a K3 surface with p(Y") = 9, Nikulin involution, Néron Severi group NS(Y) = ZM &
FEg(—2)(which is Moy for a non-negative integer d') and M? = 4n+2, such a K3 surface exists
by [vGS, Proposition 2.2, 2.3]. Moreover by [vGS, Proposition 2.7] there are line bundles L
and Lo in NS(X) with 8*M — E; — Ey = n*Ly, f*M — E5 — ... — Eg = m*Lg. Since the
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embedding of ZL@® Eg(—2) in the K3 lattice is unique we may assume that M = e;+(2n+1) f1
and L1 = (e + (2n+ 1)f1 + N1 + N3)/2 — Ny — Ny € NS(X), by [vGS, Proposition 1.8] we
have *M — Ey — Fy = ©*Ly. The class U(2) 5 (e1 + (2n+ 1)f1) = 2L; + N1 + Ny is in
NS(X), is orthogonal to the N; and has self intersection 8n'+4, we call it L. By Proposition
2.1 we have NS(X) = L), with d = 4n + 2, so we are done. O

Remark. By using the surjectivity of the period map one can show the existence of a K3
surface X with NS(X) =T, it is however difficult to show that there is an embedding of
the classes IV; as irreducible (—2)-smooth curves in NS(X). This is assured by the previous
proposition.

From the Proposition 2.3 follows a relation between the Néron Severi group of the K3 surface
Y admitting a Nikulin involution and the Néron Severi group of a K3 surface X which is the
desingularization of the quotient.

Corollary 2.2. LetY be an algebraic K3 surface with p(Y) =9 admitting a Nikulin involu-
tion, and let X be the desingularization of its quotient.

(1) NS(Y) = Myq if and only if NS(X) = L],;

(2) NS(Y) =M, if and only if NS(X) = Lag.

Proof. The proof follows from [vGS, Proposition 2.7] and Proposition 2.3. We sketch it briefly.
The proof of the direction <= of the statement follows immediately from the proof of Proposi-
tion 2.3. For the other direction we distinguish three cases (we use the notation of loc. cit.):
(a) Case (1), (i). Clearly (3*M — E; — E3)? = (7*L1)? and in the proofs of Proposition 2.3,
case (2), and of [vGS, Proposition 2.7] it is proved that

(2) Li=(L— Ny —Ny)/2, Ly=(L—Ns—...—Ng)/2.

Since 7 is a 2 : 1 map to X the previous equality becomes 4n+2—1—1= %(L — N1 —Ny)? =
$(L? — 4) and so L? = 2(4n + 2). By the Proposition 2.1, where we describe the possible
Néron-Severi groups of K3 surfaces with an even set, we obtain that NS(X) = £}, d = 2
mod 4.

(b) Case (1), (2i). As before, in the proof of [vGS, Proposition 2.7] it is proved that:

(3) Li=(L—-Ny—...—Ny)/2 Ly=(L—Ns—...— Ng)/2.

So we obtain 4n —4 = (3*M — Ey — Ey — B3 — E4)> = 2((L — Ny — ... — Ny)/2)* = $(L? - 8)
and so L? = 2(4n). By the Proposition 2.1 we obtain that NS(X) = £,;, d =0 mod 4.

(c) Case (2), M? = 2L?, and so by an argumentation as in the proof of the Proposition 2.3,
case (1), we have NS(X) = Log. O

Some explicit correspondence between the K3 surfaces Y and X are shown in the Table 1.
Remark. Let X be a K3 surface such that the lattice I' = Lo4 or L"2 4 1s primitively embedded
in NS(X) and p(X) > 9. There exists a deformation of the K3 surface { X; } such that X7 = X
and X is such that NS(Xg) = I'. Let Yy be the K3 surface such that the desingularization
of its quotient by a Nikulin involution is Xo. The Néron Severi group of Yj is either M/, or
M. The deformation on X induces a deformation {Y;} of Yy such that the surface Y; admits
a Nikulin involution and the desingularization of its quotient by the Nikulin involution is X3.
This means that X7 admits an even set of eight disjoint rational curves.

In particular if X is an algebraic K3 surface such that Log (resp. £);) is primitively embedded
in NS(X), then X is the minimal resolution of the quotient of a K3 surface Y such that M/,
(resp. My) is primitively embedded in NS(Y').
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Corollary 2.3. The coarse moduli space of I'-polarized K3 surfaces (cf. [D, p.5] for the
definition) is the quotient of

Dr={wePTt®;C): w? =0, wo >0}

by an arithmetic group O(T") and has dimension eleven. The generic K3 surface with an even
set of eight disjoint rational curves has Picard number nine.

Proof. By Proposition 2.1, each K3 surface with an even set is contained in this space, on the
other hand, by Proposition 2.3 each point of this space corresponds to a K3 surface with an
even set of irreducible (—2)-curves. O

3. AMPLENESS AND NEFNESS OF SOME DIVISORS ON X

Our next aim (cf. Section 4) is to describe projective models of K3 surfaces with an even
set of eight disjoint rational curves. Here we give some results on ampleness and on nefness
of divisors on such K3 surfaces. We prove moreover that the associated linear systems have
no base points. These properties guarantee that the maps induced by the linear systems are
regular (in fact birational) maps.

Definition 3.1. A divisor L on a surface S is:

nef if >0 and L-C >0 for each irreducible curve C on S,
pseudo ample if L >0 and L-C >0 for each irreducible curve C on S,
(or big and nef)

e ample if L >0 and L-C > 0 for each irreducible curve C' on S.

If X is a K3 surface with a line bundle L such that L2 > 0, the condition L - C > 0 for
each irreducible curve C' on X is equivalent to the condition L -§ > 0 for each irreducible
(—2)-curve 6 on X (cf. [BPV, Proposition 3.7]).

Let H be an effective divisor on a K3 surface. The intersection of H with each curve C
is non-negative except when C' is a component of H and C is a (—2)-curve. If the linear
system |H| does not have fixed components and if H? > 0, then the generic element in |H|
is smooth and irreducible and H is a pseudo ample divisor (cf. [SD, Proposition 2.6]). The
fixed components of a linear system on a K3 surface are always (—2)-curves [SD, Paragraph
2.7.1]. Recall that by [R, Theorem p.79] if H is pseudo ample (or ample) then either |H]|
has no fixed components or H = aF + I' where |E| is a free pencil and I is an irreducible
(—2)-curve such that ET = 1. Finally in [SD, Corollary 3.2] Saint-Donat proves that a linear
system on a K3 surface has no base points outside its fixed components.

Let now H be a pseudo ample divisor on X. If | H| has a fixed component B, then H = B+ M,
where M is the moving part of the linear system |H|. The linear system |H| defines a map
¢ and if H = M + B then ¢y = ¢pr. Now we assume that |H| has no fixed components
(and hence no base points). The system |H| defines the map:

¢ 2 X — Pral)

where p,(H) = H%/2 + 1 and there are two cases (cf. [SD, Paragraph 4.1)):

(i) either ¢ is of degree two and its image has degree p,(H) — 1 (¢ is hyperelliptic),

(ii) or ¢ is birational and its image has degree 2p,(H) — 2.

In particular in the second case if H is ample (i.e. does not contract (—2)-curves) ¢g is an
embedding, so H is very ample.
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Proposition 3.1. Let X be as in the Proposition 2.1. Then we may assume that L is pseudo
ample and it has no fized components.

Proof. Since X and Y are algebraic, by using the notations of the Diagram 1, the surface X
is embedded in some projective space and has eight nodes. The generic hyperplane section
of X is a smooth and irreducible curve (it does not pass through the nodes). Its pull back on
X is then orthogonal to Ni,..., Ng, we call it H, observe that H = aL for some integer «.
Since H is pseudo ample then L is pseudo ample too, in particular observe that LI' > 0 for
each (—2)-curve which is not one of the N;’s. If L has fixed components then by [R, Theorem
p.79] it is L = aE + T where |E| is a free pencil and I' an irreducible (—2)-curve such that
ET'=1. If ' # N; for each i = 1,...,8, then 0 < LI’ = a — 2, which gives a > 2. Now
0=LN; =aFEN;+TN,, since a > 2, EN; > 0, I'N; > 0 we obtain EN; =0 and ' N; = 0 for
each 7, so I' is in (N)L which is not possible. If I' = N; for some ¢, then 0 = LN; = a — 2 so
a=2then L =2E+ N; and so (L — N;)/2 is in the Néron Severi group too which is not the
case. So by [SD, Proposition 2.6] we can assume that L is smooth and irreducible. O

Proposition 3.2. Let X be as in the Proposition 2.1. Ifd > 3, i.e. L?> > 6, then the class
L — N in the Néron Severi group is an ample class.

Proof. The self intersection of L — N is (L — N)2 = 2d — 4, which is positive for each d > 3.
So to prove that L — N is ample we have to prove that for each irreducible (—2)-curve C' the
intersection number C' - (L — N ) is positive.

In the proof we use the inequality:

(4) D) <n)y o
i=1 i=1

which is true for every (x1,...,z,) € R™. Suppose that there exists an effective irreducible
curve C such that C - (L — N) < 0, then we prove that C' - C < —2.
We observe that each element in the Néron Severi group is a linear combination of L and
N; with coefficients in %Z. We consider the curve C = alL + Z?:l b;N; where a,b; € %Z. If
a = 0 the only possible (—2)-curves are the Ny’s and N; - (L — N) = 1. So we can assume that
a # 0. Since C is an irreducible curve, it has a non-negative intersection with all effective
divisors. Hence C' - L = 2da > 0,s0a >0, and C - N; = —2b; > 0, so b; < 0.
Now we assume that C - (L — N) < 0, then

8 8

(aL+Y biN;) - (L—N)=2da+> b; <0.

=1 =1
Since b; <0, 2da— ;" |bi| <0 and so 2da < ", |b;|, where each member is non negative.
So it is possible to pass to the square of the relation, obtaining 4d%a® < (3°1_, |b;])?. Using
the relation (4) one has

n 8
(5) Ad%a® < (D |bil)> <8 b},
i=1 i=1
Now we compute the square of C' and we use the inequality (5) to estimate it:

8
C-C=2da> -2 (b7) < 2da’ — d*a’.
=1
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If d > 5 then 1/ﬁ < %, and so for d > 5 we have C'-C < —2 (because a > %) This proves
the theorem in the case d > 5.
More in general for each d > 3, djf—w < 1, so for the cases d = 3 and d = 4 one has to

study only the case a = %

For d = 3, then L? = 6 and so in NS(X) all the elements are of the form aL + 3.5, b;N;
with @ € Z (and not in %Z) Then the theorem is proved exactly in the same way as before.
Let d = 4. By the previous computations follows that the only possible irreducible (—2)-
curves with a negative intersection with (L — N) are of the form $(L+ N1+ Ny + N3+ Ny) +
Z§:1 GiN; with 6; € Z, p1,...,84 < —1 and f5,...,0s < 0. It is easy to see that the only
(—2)-curves of this type are L+N1+N§+N3+N4 — N;y — Ny — N3 — N4y — Nj, j =5,6,7,8 and
these curves have a positive intersection with L — N. Then the proposition is proved also for
d=4. O

Proposition 3.3. In the situation of Proposition 3.2, m(L — N) and mL — N form € Z~q,
are ample. If d = 2, i.e. (L — N)? =0, then m(L — N) is nef and mL — N is ample for
m > 2.

Proof. 1t is a similar computation as in the proof of Proposition 3.2. U

Proposition 3.4. The divisors L— N, mL — N and m(L — N), m € Z~g, do not have fived
components for d > 2.

Proof. We proof the proposition for the divisor L — N. The proof in the other cases is
essentially the same. R
For d = 2 we have (L — N)? = 0 and is nef by the Proposition 3.3 so by [R, Theorem p. 79,
(b)] L — N = aF where |E| is a free pencil, and so the assertion is proved in this case.
Assume d > 3, then for [R, Theorem p. 79, (d)] we have either L — N has no fixed components
or L — N =aFE + 7T, where |E| is a free pencil and I' is an irreducible (—2)-curve such that
ET = 1. We assume we are in the second case, then since L — N is ample we have
0<T(L-N)=a-2

and so a > 2. We distinguish two cases:
1. T'=alL+ ) BjN;, I' # N; for each i, so a # 0. For each i we have:

1 = N;(L — N) = aEN; +T'N;
Since EN; > 0 and a > 2 then EN; = 0 and so

1=TN; = (aL+>_ B;N;)N; = —28;.
J

We obtain 8; = —1/2 for all j, so
Ni+...4+ Ng -

F:aL—f:aL—N.

By considering the self-intersection of I' we obtain
—2=a%2d — 4> 6a* — 4

which is positive since « is a non zero integer. So this case is not possible.
2. I' = N; for some i = 1,...,8. We have

1=N;(L—N)=N;(aE+N;) =aEN; —2=a— 2
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so a =3, L— N =3E+N,. For j # i we have
= (L — N)N; = 3EN;
but this is impossible. Hence L — N has no base components. O

Lemma 3.1. The map ¢;_5 is

e an embedding if L? > 10,

e a 2:1 map to P x P! if L? =8,

e a 2:1 map to P? if L? = 6.
Proof. By the Proposition 3.2 L — N is ample and by the Proposition 3.4 |L — N | has no
fixed components; for a K3 surface this implies that |[L — N| has no base points too (cf.
[SD, Corollary 3.2]), and it defines a map ¢, 5. The assertion for L? = 6 is clear since
(L — N )2 = 2 and hence the map ¢; _x defines a double cover of P2. We show that in the
case L2 = 2d > 10, i.e. d > 5, the map is not hyperelliptic. By [SD, Theorem 5.2] L — N is
hyperelliptic iff (7) there is an elliptic irreducible curve E with E - (L — N) = 2 or (ii) there
is an irreducible curve B, with p,(B) = 2 and L — N = O(2B). The case (ii) would implies
L— N =2B and so 3(L — N) € NS(X) which is not possible by the description of N.S(X)
of Proposition 2.1. We have to exclude (). We argue in a similar way as in Proposition 3.2.
Assume that there is F = aL + > b;N; an irreducible curve with E - (L — N) = 2. Then we
show E? # 0. Since E is the class of an irreducible curve, a € %Z>0 and b; € %Zgo- We have
2=FE-(L—N)=2da+ >} b and so 2da — 2 = — Y _| b; which gives together with the
inequality (4):

(da —1)? Z\b\ <8Z\b|2
and so (da — 1)2 < 23°% | b2. On the other hand we have

8
E? =2da®> —2) b7 < 2da® — (da — 1)* = 2da® — d*a® — 1 + 2da.
=1

We have E2 < 0 for a < Y24 or ¢ > 2¥24 ginee g > 1/2 and 4= V2d % for each

d(d—2) d(d—2)° d(d—2)
d>5 and Z&g < 5 for each d > 6, we obtain E? < 0 for d > 6. We analyze the case of
d =5. Here L? = 10 and so a € Zwq, for d = 5 we have Z&@ = 5+\/_ < 1. In conclusion

for each d > 5 we obtain E? < 0. In the case of d = 4, then we have L? = 8 and the
classes B = L_Nl_Ng_Ng’_N“, FEy = L_N5_N§_N7_N8 are in the Néron Severi group. We
have E% = E22 =0, F1-Ey=2and L—N=EF, + E3, 80 ¢; 5 defines a 2:1 map to a quadric
in P! x P! (cf. [SD, Proposition 5.7]). O

Proposition 3.5. 1) Let D be the divisor D = L—(N1+...+ N;) (up to relabel the indices),
1 <r<8.

o If NS(X) = Log, then D is pseudo ample for d > r;

o if NS(X) = L, then D is nef for d =r + 4 and pseudo ample for d > r + 4,

e if D is pseudo ample and NS(X) = Log then it does not have fixed components.
2) Let NS(X) = Lh,. Let D= (L — (Ny+...+ N,))/2 with r = 2,6 if 2d =4 mod 8 and
r=41if2d =0 mod 8. Then
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e the divisor D is nef and is pseudo ample whenever it has positive self intersection,
e if D is pseudo ample then it does not have fized components, if D? = 0 then the
generic element in |D| is an elliptic curve.

Proof. The arguments are similar as those used in the the proof of the Proposition 3.2 for
the ampleness properties and in the proof of the Proposition 3.4 for the absence of fixed
components. O

Corollary 3.1. Let D and D be divisors as in the Proposition 3.5. We suppose that D? >0,
D? > 0. Let C be a (—2)-curve with C-D = 0 or C-D = 0. Then C = N; for some
i=1,...,8.

Lemma 3.2. With the same notation as in Proposition 3.5, we have:

o for NS(X) = Loq and D? > 4 the map ¢p is birational,
e for D? > 4 the map ®p s birational.

Proof. The proof is very similar to the proof of Lemma 3.1 and is left to the reader. O

We prove the following proposition which is a generalization of [C, Proposition 2.6] to the
case of surfaces in P™.

Proposition 3.6. Let F' be a surface in P and let N be a subset of the set of nodes of F.
Let G C P" be a hypersurface s.t. divp(G) = 2C (here divp(G) denotes the divisor cut out
by G on F), with C a divisor on F which is not Cartier at the points of N. Then N is an
even set of nodes iff G has even degree. Conversely if N is an even set of nodes then there
is an hypersurface G as above.

Proof. The proof is identical to the proof of [C, Proposition 2.6], we recall it briefly.
Let F' — F be the minimal resolution of the singularities of F', let H denote the pull-back
on F' of the hyperplane section on F' and let deg G = m then

where C' denotes the strict transform of C' on F and the N;’s denote the exceptional curves
over the nodes. Since C' is not Cartier at the singular points, the o; are odd. Hence

>N~ GH 42 ([%]H - Z[%]Ni)

where 6 = 0,1 according to m even or odd. Now if > N; is an even set then 6 = 0 and m is
even. If m is even then § = 0 and so ) IV, is an even set.
On the other hand, if A/ is an even set then

2B~ > N
For B € Pic(F) choose r such that 7H — B is linearly equivalent to an effective divisor C.
Then

2rH ~2B+2C =2C+» N,

so there is a hypersurface G (~ 2rH) with the properties of the statement. O
From this follows a geometrical characterization of even set of nodes on K3 surfaces.

Corollary 3.2. Let X ¢ P™1, d > 2, be a surface of degree 2d with a set of m nodes N,
s.t. its minimal resolution is a K3 surface. Then

(i) if m =8, then N is even iff G is a quadric,

(ii) if m = 16 and d > 3, then N is even iff G is a quadric.



180 ALICE GARBAGNATI AND ALESSANDRA SARTI

Proof. (i) Let L := H N X be the generic hyperplane section with 2d = L? and let V' be an
even set of nodes. Then the lattice ZL & N ¢ NS(X) and we have 2N = S° N;. Since the
self-intersection of L — N is 2d —4 > 0 by the theorem of Riemann-Roch L — N or —(L— N )
is effective. Since (L — N)-L >0, L — N is effective, so 2L = 2(L — N) + > N;. And so
G € |2L] and divg(G) = 2C = 2(L — N). The converse follows from the Proposition 3.6.

(74) The proof in this case is essentially the same. We use the Kummer lattice K instead
of the Nikulin lattice N. The lattice K is generated over Q by the sixteen disjoint rational
(—=2)-curves Ki,...,Kjs and it contains the class (K7 + ... + Ki6)/2, which we use in the
proof above instead of the class N (for a precise definition of the lattice K see [N1]). O

Remark. In particular this means that if f( is a K3 surface with an even set of nodes, then
there exists a quadric cutting a curve on X with multiplicity two, passing through the even
set of nodes (this is the condition divp(G) = 2C' of the theorem).

4. PROJECTIVE MODELS

In this section we determine projective models of K3 surfaces with an even set of nodes and
Picard number nine. These were already partially studied by Barth in [B2]. Here we recover,
with different methods, some of these examples and we discuss many new examples. Observe
that some of the cases that Barth describes require Picard number at least ten (these are
case five and case four in his list (cf. Paragraph 4.5 below)).

In Section 3 we proved that the divisors L, L — N, and (L—N;y—...—Np)/2, m =2or
m =4 or m = 6 on X define regular maps. We use these divisors to give projective models of
a K3 surface X with Néron Severi group isometric to Laq or to £}, and in general we study
the projective models of the same surface by using different polarizations. In particular in
each case one can use as polarization L or L — N , if L? > 4. The first polarization contracts
the curves of the even sets to eight nodes on the surface, the second one sends these curves
to lines on the projective model.

In case (1) of the Corollary 2.2 it is also possible to study the projective models given by the
maps ¢r,,, resp. ¢r, (for L? > 0) where Ly and Ly are the divisors defined in (2) or in (3).
They give projective models of X in the projective space P(H?(X, Ly)), resp. P(H°(X, Ls))
or give 2 : 1 maps to the images of X in these spaces. If the maps are not 2 : 1, the image of
X contains nodes and lines, which on X form an even set. The image of X under ¢, X ¢r, :
X — P(H(X, L)) x P(HY(X, Ly)) is a surface, which is the image of ¥ < Ph*(L1)+h"(L2)~1
under the projection to the eigenspaces: PP (L)+h"(L2)=1 __, p(HO(X, L)) x P(H(X, Ly)).
Indeed put h°(Ly) = my + 1, h%(Lg) = ma + 1, then h°(M) = my + msy + 2 and we have a
commutative diagram:

v

Y —— prmatma+l P" D Vi +ma+1

|

| lp

\4

X—=Ppuxpmz_—°2 S p’'~Hg

mi1+ma

Here the rational map between Y and X follows from Diagram 1, v is the Veronese embedding
and so r = (m1+m2+2)2(m1+m2+3), s is the Segre embedding and so 7’/ = (m1 + 1)(mg2 +1) — 1,
p is the projection, Vi, ym,+1 is the image of P™1 ™2+l in P and S, 1, is the image of

. ! . . . .
P™ x P™2 in P™. The Nikulin involution on P1+tm2+1 gperates as:

(oo iy TY0 e Yma) o (TO e i Ty YO et —Ymy)
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which induces an operation on the coordinates of P" as

(mé:m; : ...:yé:yg S D Yma—1Yms  TOYL P TOY2 e Ty Ymg )
(TG :xy e tYG YT e Ymo—1Ymy - —TOYL D —T0Y2 - D — Ty Yms)-
The projection p goes to the invariant space P" with coordinates (Toy1 : ToY2 & -+ Tiny Ymsy)

and so the equations of the image of Y in Vj,, ym,+1 in these coordinates give equations for
the image of the surface X in Sy, 4m, (cf. also [vGS, Proposition 2.7]).

Observe that the sum of the divisors L; and Lo is exactly L—N. From now on if N'.S (X) =L,
and d/2 is odd then Ly := (L — Ny — N2)/2, Ly :== (L — N3 — ... — Ng)/2, if NS(X) = L,
and d/2 is even then Ly := (L — Ny — ... — Ny)/2, Ly := (L — N5 — ... — Ng)/2.

In the case NS(X) = L94 the construction above holds if instead of L; and Lo we take L
and L — N.

4.1. The case of L? =2, NS(X) = L3, the polarization L. Since L is pseudo ample by
the Proposition 3.1 the linear system |L| defines a 2 : 1 map X’ — P? ramified on a sextic
curve with eight nodes where X’ is the surface X after contraction of the (—2)-curves. More
precisely we have a commutative diagram:

X — X
1 !
P2 — P2

where P? is the blow up of P? at the eight double points of the sextic. By general results
on cyclic coverings the pull back of the branching sextic on X is 3L — (N; + ...+ Ng) =
3L—2N = (L—-N)+(2L—-N). Now (L—N)?2=2—-4=—-2L-(L—N)=2and so by
using Riemann-Roch Theorem the divisor L — N is effective, and is a rational curve of degree
two on P2. Observe that its image is an irreducible conic, in fact we are assuming that X’
has exactly eight nodes and no other singularities. On the other hand (2L — N 2 =8-4=4
so by Proposition 3.4 and by [SD, Proposition 2.6] the generic member in [2L — N | is an
irreducible curve of genus three, and its image in P2 is a curve of degree four (and in fact
genus 3 = (4 — 1)(4 — 2)/2). In both cases we have (L — N)-N; = (2L — N) - N; = 1 and
so the curves intersect at the points which are the images of the curves N; in P2. This is the
first case in the paper of Barth, [B2].

4.2. The case of L? = 4, NS(X) = L4, the polarization L. By the Proposition 3.1 the
linear system |L| defines a birational map ¢ from X to a quartic surface in P3, the curves
N; are contracted to nodes. In this case (L — N)? = 0 and by the Proposition 3.4 |L — N|
has no base components, so the generic member in the system is an irreducible elliptic curve
(observe that by the structure of the Néron Severi group it cannot be the multiple of an
elliptic curve). Since L - (L — N ) = 4 the elliptic curve is sent to a quartic curve in P? and is
a complete intersection of two quadrics (observe that it cannot be a plane quartic since this
has genus three). Moreover since (L — N )+ N; = 1, the quartic contains the nodes. There is a
third quadric passing through the nodes, in fact h'(L — N) = 0 ([SD, Proposition 2.6]) hence
hO(L—N) = 2 and again by loc. cit. h°(2(L—N)) = 3. Now 2(L—N) = 2L — (N1 +...+ Ng)
and the image of these divisors are precisely the quadrics which vanish on the eight singular
points (cf. Corollary 3.2). Let s1,s be a basis of HO(L — N) then s2, 559,53 is a basis of
H°(2(L — N)) and these are the three quadrics through the nodes. This is the case three of
Barth [B2] and by the Table 1 it corresponds to the case of M’g of [vGS].
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TABLE 1. Néron Severi lattices and projective models

X Y
NS(X) = L2 NS(Y) = M}
oL double plane (singular sextic) dmr smooth quartic in P?
NS(X) = L4 NS(Y) = Mg
oL quartic with even set of nodes ¢ap  complete intersection in P°
NS(X) =L} NS(Y) =M.
oL double cover of a cone dmr double plane
oL, elliptic fibration
NS(X) =CLs NS(Y) = Mi,
oL singular complete intersection in P*  ¢as projective model in P”
dr_x double plane (smooth sextic)
oL X dp_x complete intersection in P* x P2
NS(X) = Ls NS(Y) = Mis
oL singular complete intersection in P5 ¢y projective model in P°
b1 x smooth quartic in P?
NS(X) = Lj NS(Y) =My
oL singular complete intersection in P5 ¢y smooth quartic in P?
OL_R double cover of a quadric
NS(X) = Lo NS(Y) = My
b1 smooth complete intersection in P* ¢y projective model in P!
¢L*Z‘Ll N; double cover of a plane
NS(X):ﬁlg NS(Y):M,24
Or_x smooth complete intersection in P®>  ¢a projective model in P
G-t N, singular quartic in P?
(mixed even set with conics)
NS(X) =L, NS(Y) = Ms
Or_ smooth complete intersection in P°  ¢p;  complete intersection in P*
b1, X ¢,  surface of bidegree (2,3) in P' x P?
NS(X) = L6 NS(Y) = Ms
oL, X ¢L, complete intersection in P? x P2 ¢ap  complete intersection in P°
NS(X) = Lo NS(Y) = M,
oL, X ¢L, complete intersection in P? x P? ¢p  complete intersection in P7

4.3. The case of L? =4, NS(X) = L.

(a) The polarization L. We may assume that the class (L/2,v/2) is equal to (L/2, (—Nj —
N3)/2). By the Proposition 3.5 and [SD, Proposition 2.6] this defines a pencil of elliptic
curves which we denote by E. Observe that L = 2F + Ny + Ny with N; - E = 1, hence
by [SD, Proposition 5.7, (iii), a)] L defines a 2 : 1 map to a cone of P3. The pencil |E|
corresponds to the system of lines through the vertex of the cone under this map. The class
Cy:=FE—N+N;+ N,y = L/2+ (—N3 —...— Ng)/2 is effective with Cy - N; = 1, similarly
we may assume that the class Cs := 3L/2 4 (—N3 — ... — Ng)/2 is an irreducible curve (it
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follows by Proposition 3.5), with Cg - N; = 1, moreover Cy-Cg =0, Cy- L = 2 and Cg- L = 6.
Let ¢ := ¢(C2) and cg := ¢1(Cs). These two curves meet on the cone at the images of
N;, © = 3,...,8. Their union is a curve of degree eight, which is the branch divisor of the
covering. In fact if Cy is not a component of the branch divisor then ¢ (C3) has degree
one and so is a line. But this means that Cy € |E| which is not the case. Hence Cs is a
component of the branch divisor and ¢y is a conic. If now Cg is not in the branch divisor,
we have degcg = 3, and co - ¢g = 6, but then cg is contained in the plane of ¢y and on the
cone too, which is impossible. Hence Cy is also a component of the branch divisor. Finally
observe that ¢ (N;) = @, for i = 1,2 where @ is the vertex of the cone. This surface is also
described in [vGS, Paragraph 3.2].

(b) An elliptic fibration. Now we describe the elliptic fibration on X defined by the
divisor E. We consider the rational curve Co = L/2+ (—N3 —...— Ng)/2, it has intersection
one with the class of the fiber E. So Cj is a section of the fibration ¢p : X — P! and the
classes E and Cy generate a lattice isometric to U.

Since the six (—2)-curves N3, Ny,..., Ng are orthogonal to E, they are the components of
some reducible fibers. All these curves intersect the section Cs so they are components of six
different reducible fibers. The rational curve Nj is another section of the fibration (because
its intersection with F is one). The Néron Severi group is generated over QQ by the classes
E of the fiber, by C5, by the components N;, ¢ = 3,...,8 of the reducible fibers and by
the other section Ni. The Néron Severi group of an elliptic fibration admitting a section
is generated by the class of the fiber, by the zero section, by the irreducible components of
the reducible fibers (not meeting the zero section) and by other sections. Since the Picard
number is nine the six reducible fibers containing N;, i = 3, ..., 8 are the only reducible fibers
of the fibration, they are all of type s (two rational curves meeting in two distinct points).
The Euler characteristic of a K3 surface is 24 and is the sum of the Euler characteristics of
the singular fibers. The singular irreducible fibers in the generic case are of type I; (singular
irreducible curve with a node). Each fiber of type I; has Euler characteristic one, and each
fiber of type Iy has Euler characteristic equal to two. By the computation on the Euler
characteristic it is clear that there are twelve singular fibers of type I; and six of type Is.
There are two independent sections, so the rank of the Mordell-Weil lattice is one. One of
these sections (the zero section) is the curve Co, mapped by ¢ to the conic in the branch
locus on the cone. Other sections correspond to the curves N and N», these are both mapped
to the vertex of the cone.

Since X is a double cover of a cone, it admits an involution j. This involution fixes the classes
N;, v = 3,...,8, because they correspond to the intersection points between the conic and
the sextic in the branch locus on the cone; it fixes the class C5, and switches the classes Ny
and Na. The involution j fixes also the class L which defines the double cover ¢r. On the
fibration the involution j fixes the class of the fiber F and so it acts on the base, P!, of the
fibration as the indentity, it fixes the zero section, which corresponds to the class Cs, and
switches the other two independent sections N7 and Ns. On the reducible fiber the involution
j clearly fixes the component NV; and it fixes the other component E — N; too, since it fixes
the fiber and a reducible fiber has two components. On E — N, the involution j switches the
points P; and P», which are the points of intersection between the fiber and the sections Ny,
respectively Na.

The surface X admits an even set of eight disjoint rational curves, so it is the minimal
resolution of the quotient of a K3 surface Y by a Nikulin involution. The elliptic fibration of
X on P! induces a fibration of Y (the blow up of Y) on P! and so of Y (cf. Diagram 1). Let
E denote the generic fiber of the fibration on X and A the generic fiber of the fibration on
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Y. By the Hurwitz formula, we have

2g(A) —2=2(29(F) —2) +deg R
where R is the branch divisor. Since X has an elliptic fibration we have g(E) = 1 and
deg R = 2 because the involution ramifies on the points of intersection £ N Ny alld ENNs.

So we find 2g(A) — 2 = 2(2 — 2) + 2, hence the generic fiber of the fibration ¥ — P! is
hyperelliptic of genus two.

4.4. The case of L? =6, NS(X) = L.

(a) The polarization L — N. In this case (L — N)? = 2 by Lemma 3.1 it defines a 2 : 1
map to P2. The curves N; are mapped to lines in the plane. Let [ := ¢, (L — N), then
for each curve C' in the plane we have the formula ¢7 (I) - ¢7 <(C) = 2(C -1). Since
LiN
which are tritangents to the branch divisor, and so go*L_ N(T’) = N; + N/. The curves N;, N/

(L — N ) - N; = 1 the curves N; are contained in the preimage ¢ (T;) where T; are lines

meet in three points. Barth in [B2, Paragraph 2] shows that there is a quartic in P? meeting
the branch sextic at the tangency points.

(b) The polarization L. We consider the projective model of X as complete intersection
of a cubic and a quadric hypersurface, it has eight nodes and the map is ¢7, : X — P4 The
curve L — N (cf. Proposition 3.4) has degree 6 = L - (L — N) and genus (L — N)?/2+1=2.
Since (L — N) -N;=1,i=1,...,8 its image in P* passes through the eight singular points.
This curve is contained in the intersection of three quadrics in P4, in fact h%(2L — (L —N)) =
(L 4+ N)?/2 + 2 = 3. The eight singular points of the surface are contained in three more
quadrics, in fact h%(2L — (3°5_, N;)) = 6 (cf. Corollary 3.2).

We consider now the linear system |L — N | associated to the hyperplane sections passing
through the eight singular points of the image of X in P*. We have h%(L — N) = 3 and let Iy,
l2, I3 be its generators. The six elements 17, (3, (3, I1 - o, I - I3, l2-I3 span |2L—Z?:1 N;| = P°
(these are the quadrics passing through the nodes).

(c) The map ¢r x ¢, . In [vGS, Paragraph 3.9] the K3 surface ¥ admitting a Nikulin
involution with Néron Severi group M/, is described. Its quotient X is birational to a
K3 surface which is complete intersection of a hypersurface of bidegree (2,0) and three hy-
persurfaces of bidegree (1,1) in P* x P? (for a more detailed description of this complete
intersection see the Section 5). The minimal resolution of the quotient X is the K3 surface
X with NS(X) = L¢. The projection of X to the first factor is defined by the divisor L and
to the second one by L — N. The first projection contracts eight disjoint rational curves and
the same curves are sent to eight lines by the second projection (the 2 : 1 map to P2).

4.5. The case of L? =8, NS(X) = Ls.

(a) The polarization L — N. We have (L — N)? = 4 and the map ¢; 5+ X — P3 exhibits
X as a quartic surface in P? with eight disjoint lines. This case is studied by Barth in [B2].
He describes two conditions to have an even set. The second one is not satisfied in our case,
since it requires Picard number at least ten. In fact he shows that in this case there are two
skew lines Z1, Zs on the quartic surface with Z; meeting four lines and skipping the other
four lines, and viceversa for Z;. An easy computation shows that the intersection matrix of
the hyperplane section, of the lines N; and of Z; (or Z3) has rank ten.

Barth’s first condition says that there is an elliptic quartic curve in P? which meets in two
points four rational curves and skips the other four. In term of classes in the Néron Severi
lattice this means that there is a curve E = oL+ b;N; with E? =0, EN; = 2fori=1,...,4
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and EN; =0 for ¢+ = 5,...,8. By using the intersection products we obtain a =1, b; = —1
fort=1,...,4and b; =0 for : = 5,...,8. So the elliptic curveis F = L — N; —...— Ny and
in fact E- (L — N) = 4 which is the degree of E in P3. Similarly the curve L — N5 —... — Ng
meets the other four curves and skips the first four. Finally observe that these divisors are
not studied in Proposition 3.5, with the notation there this is the case d = r and the proof
does not work in this case.

We describe briefly the elliptic fibration defined by E. Since £ - N; = 0, for ¢ = 5,...,8
these are components of reducible fibers. On the other hand the curves N;, ¢ = 1,....,4
are bisections of the fibration. The curves L — Ny — N3 — Ny — N; — Nj, with j # k and
J,k =5,6,7,8 are rational (—2)-curves which meet E in two points and N;, N}, in two points
as well. Hence they are also bisections of the fibration, and since a bisection meets also the
singular fiber in two points, the curves Ns,..., Ng are contained in four different singular
fibers, which are of type Is. The remaining singular fibers are of type I;, and we have 16
of them. This fibration does not admit sections. In this case the even set consists of four
bisections and of four components of the singular fibers 5 (these are all disjoint).

(b) The polarization L. We consider the projective model of X given by the map

¢r, : X — P, this is a complete intersection of three quadrics and has eight nodes. The
generic element in |L — N| is a curve of degree 8 = L- (L — N)) and genus (L — N)2/2+1 =3
(cf. Proposition 3.4). Since (L — N)-N; =1,i=1,...,8 the image of the curve L — N in P?
passes through the eight singular points, moreover this divisor is not Cartier at the nodes.
By the Corollary 3.2 there exists a quadric G which cuts on the surface the curve L — N
passing through all the singular points, so this curve is contained in the intersection of four
quadrics in P?, in fact k(2L — (L — N)) = (L + N)?/2 + 2 = 4. The quadric G’ must cut
the image of L — N with multiplicity two since deg(X) = 8 and the intersection has degree
16. The eight singular points of the surface are contained in the intersection of ten quadrics,
in fact h0(2L — (Z?:l N;)) = 10. We consider the linear system |L — N| associated to the
hyperplane section passing through the eight singular points. We have h°(L — N ) = 4 and
we call [, lo, I3, l4 its generators. The ten elements l%, l%, lg, li, lils, Lils, l1ly, lolg, loly, I3l
span 2L — Z§:1 N;|.

(c) The map ¢ x ¢, x. This K3 surface is the minimal resolution of the quotient of a
K3 surface Y by a Nikulin involution. The Néron Severi group of Y is M/ by the Table 1,
and M is the ample class on Y with M? = 16. This gives an immersion of Y in P?, and the
action of the Nikulin involution is induced by (zg : ... : @5 :yo:...:y3) — (g : ... : T5:
—40 ¢ ...: —y3). By the projection formula we have HO(Y, M) = HO(X,L) ® H°(X,L — N),
with h9(X, L) =6, h°(X,L — N) = 4. Now

S2HO(Y, M) = (S?H°(X,L) & S?H°(X,L — N)) @ (H(X,L) ® H*(X,L — N)).
This has dimension 55 = (21 + 10) + 24. On the other hand
HO(Y,2M) =~ H°(X,2L) & H°(X,2L — N)

and the dimensions are 34 = 18 + 16. This shows that there are (21 4+ 10) — 18 = 13
invariant quadrics and 24 — 16 = 8 antiinvariant quadrics Q;(x,y), ¢ = 1...,8 in the
ideal of Y. Since the quadrics in four variables are only ten, there are three quadrics
q1(zo,...,7s5), q2(z0,...,75), ¢3(x0,...,s5) in the ideal of Y. The map ¢ x¢,;  sends X to
the product P5 x P? and its image is the image of Y C P? into the product of the eigenspaces,
hence it is contained in three quadrics ¢ (zo,...,x5), q2(zo,...,x5), q3(zo,...,x5) of bide-
gree (2,0) and eight quadrics Q;(z,y), i = 1,...,8, of bidegree (1,1) in particular it is not a
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complete intersection of quadrics. The quadrics ¢ (zo,...,x5), g2(xo,...,25), g3(zo,...,T5)
define the image of Y in P%, which is X with the polarization L. Since the fixed points of the
Nikulin involution are contained in the space yg = ... = y3 = 0, then the projection of the

ten quadrics of the kind ¢(x) — ¢/(y) = 0 to P? are ten quadrics cutting out the set of nodes
on X C P°. The projection to P? is X with the polarization L — N and is a quartic. One can
obtain an equation for the quartic in the following way: a point x € X C Pj5 has a non-trivial
counterimage if there is a non-trivial solution of Q;(z,y) = Z?:o aij(y)e; =0,1=1,...,8
which for a fixed x is a linear system of eight equations in six variables. Hence all the 6 x 6
minors of the matrix (a;;(y)) are zero. Each of these is a sextic surface of P? vanishing on
X C P2, Since this is a surface of degree four, each of them splits into a product q(z) - ps(z)
where py(z) = 0 is an equation of X C P3.

4.6. The case of L? =8, NS(X) = L.

(a) The polarization L — N. In this case we have the divisor By := (L/2,v/2) with
v’ = —8 and v = —N; — Ny — N3 — Ny, and also the divisor Ey := (L/2,v'/2) with v/ =
— N5 — Ng— Ny —Ng so (L/2,v/2)* = (L/2,v'/2)> =0 and L— N = (L/2,v/2) + (L/2,—v/2)
is the sum of two elliptic curves (cf. Proposition 3.5). This is a 2 : 1 map to P! x P! (by
Lemma 3.1) and the curves N; are sent to lines on the quadric. Moreover since Fy-N; = 1 and
FEy-N; =0fori=1,2,3,4 the images of these lines belong to the same ruling on the quadric
and the images of N;, ¢ = 5,6,7,8 belong to the other ruling. By a similar computation as
in Paragraph 4.4 the curves IV; are one of the two components of the preimage of a curve on
the quadric which splits on X, hence ¢, (N;) = T; and these are bitangents to the branch
curve of bidegree (4,4). Let ¢7 (T;) = N; + N then

Op/(Ny+...+Ng+Nj +...+N}) = Op/(4L — N)) = Op (2(2(L — N)))

By Proposition 3.4 2(L — N) is a curve, and has bidegree (2,2) on the quadric. Hence the
divisor cut out by Ny + ...+ N¢ is two times the divisor cut out by 2(L — N) + pu where p is
a 2-torsion element in the Picard group. Barth shows in [B2], case six, that such an element
does not exist. This implies that the tangency points of the 7; on the quadric are cut out by
a curve of bidegree (2,2).

(b) The polarization L. All the considerations of the Paragraph 4.5, case (b) are true.
Moreover there are two elliptic curves L = L_Nl_Ng_N?’_N‘l, Ly = L_N5_N26_N7_N8 passing
through four of the eight singular points each and not passing through the other four. Ob-
viously also in this case the image of 2(L — N) = 2(L; + Ly) is cut out by a quadric. By
the Table 1 this case corresponds to a K3 surface Y with NS(Y) = My. After a change of
coordinates the surface X can be written in the form

2 2
q(20,...,25) =0, 2021 — 23 =0, 2223 —25 =0

and there are four singularities on zgp = z; = z4 = 0 and four on zy = z3 = z5 = 0 (the two
copies of P2 which are the vertices of the cones). Now the quadrics of the kind z;z; = 0 with
i =0,1 and j = 2,3 meet the K3 surface in two curves C;, C; with multiplicity two, hence
2C; € |[L— (N1 + ...+ Ng)| and 2Cj € |[L — (N5 + ... + Ng)| and so Cj, C; are in the linear
system of L1, resp. of Lo.

4.7. The case of L? =10, NS(X) = L1g.

(a) The polarization L — N. Since (L — N)? = 6, then the projective model of X is a
complete intersection of a quadric and a cubic hypersurfaces in P* with an even set of eight
lines (cf. Lemma 3.1).
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(b) The polarizations L — Ny — Ny — N3 — Ny and L — N5 — Ng — N7 — Ng. The divisors
L— Ny —Ny—N3— Ny and L — N5 — Ng— N7 — Ng are pseudo ample classes by the Proposition
3.5. They define two maps 2 : 1 to P?. Each of these maps contracts four curves of the eight
rational curves N; and maps the other four in four conics.

4.8. The case of L? =12, NS(X) = L12.

(a)The polarization L — N. Since (L — N)2 = 8 the projective model of X is a K3 surface
in P° with an even set of eight disjoint lines.

(b) The polarizations L — N; — Ny — N3 — Ny and L — N5 — Ny — N7 — Ng. The curves
E1 =L— N1 — N2 — N3 — N4 and E2 =L— N5 — NG — N7 — Ng have self intersection fOUI",
so they define two maps to P3 (by Lemma 3.2). The map ¢p, contracts the four curves N;,
it =1,...,4 and sends the other in four conics. The map ¢, contracts the other four curves
and sends N;, i =1,...,4 in conics.

4.9. The case of L? =12, NS(X) = L},.
(a)The polarization L — N. Observe that the considerations of Paragraph 4.8, (a) are
true also in this case. Moreover there are two curves C7 = L_Nl_NQ_NS_N4_N5_N6 and

Cy = % intersecting respectively six and two of the lines V; in one point. The curve
C1 has degree three and genus one. The curve Csy has degree five and genus two.

(b) The map ¢, X ¢r,. The intersection properties of L; and Lo are L1-Ly; =2, La-Ly =0
and Ly - L» = 3. The K3 surface X is the minimal rsolution of the quotient X of a K3 surface
Y admitting a Nikulin involution with NS(Y) = Mg which is described in [vGS, Paragraph
3.3]. The surface X has bidegree (2,3) in P! x P2, The maps ¢, and ¢, are respectively
the projection to the second and to the first projective space.

The map ¢z, : X — P? is a 2:1 map. It contracts the six rational curves Ns, ..., Ng to six
nodes of the branch sextic and the two curves N; and Ny are mapped to lines in P? which are
tritangent to the branch locus. The map ¢, : X — P! is an elliptic fibration, it contracts
the two rational curves Ny, N,, whence the curves N3, ..., Ng are six independent sections
of the fibration. This fibration has two reducible fibers of type I, (made up by the classes
Nl, E2 - N1 and NQ, E2 - Ng)

The Segre map s sends P! x P? in P5.

]I_Dl
¢L2 / \
X P plyp2 5, ps
¢L1 \« 1/
]P)2

Observe that the map so(¢r, x ¢r,) : X — P° is the map ¢, 11, = ¢, (since L1+ Ly =

L— N) Indeed let s1, 52, s3 be a basis of H°(L1), and s4, s5 be a basis of H(Ly). Then the
products s184, S1S5, S254, S2S5, S354, S3S5 are linear independent sections in HO(Ll + L) and
define the Segre embedding of X in P! x P2. Since h°(L; + Ly) = 6 then the map ¢, 41, is
exactly the map so (¢, X ¢r,).

4.10. The case of L? = 16, NS(X) = ‘6> the map ¢, X ¢r,. The intersection properties
of Ly and Ly are Ly - Ly =2, Ly- Ly = 2 and Ly - Ly = 4. In [vGS, Paragraph 3.6] is described
the K3 surface Y admitting a Nikulin involution with Néron Severi group Mg. Its quotient
X is the complete intersection of a hypersurface of bidegree (1,1) and of a hypersurface of
bidegree (2,2) in P? x P2, its minimal resolution is X. A K3 surface which is a complete
intersection of a bidegree (1,1) and a bidegree (2, 2) hypersurface in P2 xP? is a Wehler surface



188 ALICE GARBAGNATI AND ALESSANDRA SARTI

(cf. [W]). We describe this surface more in details in the Section 5. The surface X has a
projective model in P? x P? and the map associated to the divisors L; and Lo are respectively
the projection to the first and to the second projective space. The map ¢r, : X — P? is a
2 : 1 map. It contracts the four rational curves Ns, ..., Ng to nodes of the branch sextic of the
double cover. The four curves Ny, ..., N, are mapped to lines in P2. Since their intersection
with Lq is equal to one, each of them is one of the two components of the pullback of a line
in P2. So their image under the map ¢y, is a line tritangent to the branch curve. The branch
curve has degree six and has four nodes so its genus is (6 —1)(6 —2)/2 —4 = 6. The curve R;
on X such that ¢r,(R;) is the branch curve, has degree six and genus six (because it is the
branch curve, so the genus of the curve on X is the genus of its image on P?), this implies
that the curve Ry has self-intersection ten (¢ = R?/2 + 1) and its intersection with L; is six.
The curve Ry has to intersect the curves N;, i = 1,...,4 in three points (because N; are
mapped to tritangent to the sextic) and the curves N;, i = 5,...,8 in two points (because
the branching curve has nodes in the points which are the images of these curves). So we
find

2
Exactly in the same way one sees that the branch curve of the second projection is

L~ Ns— Ng— N7 — N,
R2:3< 5 26 7 8

L — Ny — Ny —N3— N,
R1=3< . 2 ’ 4>—(N5+N6+N7+N8)-

>—(N1+N2+N3+N4)-

The equation of a generic K3 surface which is complete intersection of a (1,1) and a (2,2)
hypersurface in P? x P? is given by the system

Zi,j=071,2 Qij(xo B $2)yiyj =0
i=0,1,2 li(wo : 1 : w2)y; =0

where ¢;; and [;, 7,7 = 0,1, 2 are homogeneous polynomial of degree respectively two and one
in the variables x;, which are the coordinates of the first copy of P? and y; denote coordinates
of the second copy of P?.

For a generic point (Tg : T1 : T3) of P? the system has two solutions in (yo : y1 : ¥2) and this
gives the 2:1 map to P2. If the point (Tg : T7 : Z3) is such that 21:0,1,2 li(To:Z1:T2)y; =0
for each (yo : y1 : y2), then the fiber on it is the quadric Zi,j=0,1,2 q(To : 71 : T2)yiy; = O.
Otherwise if Zi,j=0,l,2 q(To : T1 : T2)yiy; = 0 for each (yo : y1 : y2) then the fiber on
(To : o1 : T2) is a line.

Since in our case each map to P? contracts four lines, then for each copy of P? there are
four points in which Zi,j=0,l,2 q(xo : x1 @ @2)y;y; = 0 are identically satisfied. Up to a
projective transformation one can suppose that the four points with dimension one fiber are,
on each P2, (1 :0:0),(0:1:0),(0:0:1),(1:1:1). This implies that the equation
Zi,j=0,1,2 q(zo : x1 : x2)y;y; = 0 is of the form

Yyoy1(xoz1 + axoxs — (a + 1)x122) + yoy2(bxox1 + cxox2 — (b + ¢)r122)+
+y1y2(— (1 + b)zoz1 — (@ + ¢)xoxs + (a+ b+ c+ 1)z120) = 0.

and so it depends on three projective parameters. The equation of type (1,1) are
zoyo + droyr + exoy2 + friyo + gr1yr + ha1ys + lxayo + mrayr + naxays =0

and so depends on eight parameters (we can not apply other projective transformations
because we have chosen the points on which there are lines as fibers). So a Wehler K3 surface
such that the projection ¢, to P? contracts four rational curves of the K3 surface and ¢,
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contracts four other rational curves (disjoint from the previous curves) depends exactly on
eleven parameters.

4.11. The case of L? = 24, NS(X) = L},, the map ¢, X ¢r,. The intersection properties
of L1 and Lo are Ly - L1 =4, Ly - Ly =4 and Ly - Ly = 6. Each of them defines a map from
X to P3 (by Lemma 3.2). Each map ¢z, i = 1,2 contracts four rational curves and sends
the other in four lines. The curve L; is sent by ¢, to a curve of degree six, and viceversa.
In [vGS, Paragraph 3.8] it is described the K3 surface Y admitting a Nikulin involution with
Néron-Severi group Mq. Its quotient is X and it is a complete intersection of four varieties
of bidegree (1,1) in P3 x P3, the minimal resolution is X (cf. Table 1). The projections to
the two copies of P3 are ¢, and ¢r,.

5. GEOMETRIC CONDITIONS TO HAVE AN EVEN SET.

In this section we describe geometrical properties of K3 surfaces which imply the presence of
an even set. These even sets can be of eight nodes, of eight rational curves (lines or conics)
or of some nodes and some rational curves. The following results are in a certain sense the
converse of the results of the previous section, where we supposed that a K3 surface admits
an even set and we described its geometry. To prove the existence of an even set on S we
will prove that either the lattice Loq or £}, is embedded in N'S(S) and that the sublattice
N of Log (or of L},;) is generated over Q by (—2)-irreducible curves. Since rank L97 =rank
L}, =9 and since the K3 surfaces with Néron Severi group equal to Lo4 or L), have an even
set, then the number of moduli of the families of K3 surfaces that we describe here is eleven.

5.1. Double cover of a cone with an even set. Let S be a K3 surface which is a double
cover of a cone, then by [SD, Proposition 5.7 case iii)] the map from S to the cone is given
by a class L' in NS(S) such that either

a) L' =2F' 4+ To+ Ty withlg- ' =Ty-E'=1and I'o-T';1 =0 or

b) L' =2E"+2T'g+...+ 2T+ 1+ Tpgo, with B/ - Ty =T - Tj41 =1i=0,...,n—1,

I'n - Tpy1 =T, - T'hio =1 and the other intersections are equal to zero.

The I';’s are irreducible (—2)-curves. If we are in the case a), then we can give a sufficient
condition for S to have an even set of eight disjoint rational curves.

Proposition 5.1. Let S be a K3 surface such that there exist a map ¢y : S 2] Z, where Z
is a cone and L' = 2E' +To+ T withTg-E' =T1-E =1 and I'y-T'y = 0. If the branch
locus of the double cover is the union of a conic and a sextic meeting in six distinct points
and not passing through the vertex of the cone, then S admits an even set of eight disjoint
rational curves.

Proof. We prove that under the hypothesis the lattice £ is embedded in the Néron Severi
lattice of S. In particular there exist eight disjoint rational curves in NS(S) generating on
Q a copy of N in the Néron Severi lattice. This implies that S admits an even set made up
by these eight disjoint rational curves.

By the hypothesis the classes L', E' and I’y are linearly independent and are in N.S(S). The
map ¢z is a 2 : 1 map to the cone, which contracts the two rational curves I'y and I'; to
the vertex of the cone. The (smooth) K3 surface S is the double cover of the blow up of the
cone in the vertex and in the six singular points of the ramification locus. On S there are six
rational curves I';, i+ = 2,...,7 on the six singular points of the ramification locus, and the
two rational curves I'y and I'; on the blow up of the vertex of the cone (since this is not in
the ramification locus we obtain two curves).
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Let C9 be the curve such that ¢/ (C)) = ¢, is the conic of the branching locus. Since ¢ is a
conic, Cy - L = 2 and since it does not pass through the vertex then C5 -T'y = C5 - T'; = 0,
so Cy - E' = 1, moreover C} is a rational curve and so C% = —2. Since on the cone c}
passes through the six singular points of the ramification locus, on the K3 surface we have
C,-Ti=1,i=2,...,1.

The classes L', E', Ty, Cy, T';, i = 2,...,7 spans a lattice R which is isometric to the lattice
L. In fact a basis for £} is given by (L — N1 — N2)/2, N and N;, i = 1,...7. The map

E' v (L—Ni —Ny)/2, Co+FE —L'+— N, T;+—Niyq i=0,...,7.
gives the explicit change of basis from R to L. (]

5.2. Complete intersection of one (2,0) and three (1,1) hypersurfaces in P4 x P2
If S is a complete intersection of a hypersurface of bidegree (2,0) and three hypersurfaces of
bidegree (1,1) in P* x P2, by the adjunction formula S is a K3 surface. The Néron Severi
group of a generic K3 surface which is a complete intersection of this type is generated by the
two divisors D7 and D associated to the two projections. The family of the K3 surfaces of
this type has Picard number two and so it has 18 moduli. To give the complete description
of the Néron Severi group we compute the intersection D7 - Do. We describe here how to find
D - D; as explained in [vG, Section 5]. On the K3 surface the divisors D; and Dy correspond
to the restriction to S of the pull back of the hyperplane section of P4, respectively of P2. We
put h = P3 x P2 and k = P* x P'. It is clear that h3 = {point} x P2, and so h* = 0 because
in P* it corresponds to the intersection between a point and a space. In the same way one
computes that k2 = P* x {point} (intersection of two lines in P?) and k3 = 0, h3k? = 1
({point} x {point}). The hypersurface of bidegree (2,0) corresponds to 2h (has degree two
with respect to the first factor, so with respect to h, and zero with respect to the second
factor, k) and the hypersurfaces of bidegree (1,1) correspond to the divisor h + k. Since X
is the complete intersection of one hypersurface of bidegree (2,0) and three hypersurfaces of
bidegree (1,1), X corresponds in P4 x P2 to the divisor 2h(h + k)3. We want to compute
Dy - Dy which is h - k restricted to 2h(h + k)3. Then D - Dy is equal to hk(2h)(h + k)3 in the
six dimensional space P* x P2. The terms h'k? with i + j = 6 correspond to the intersections
of codimension six and so are a finite number of points. The sum of the coeflicients of these
terms is exactly the number of points, so D - Dy = 6.

Hence the general K3 surface which is complete intersection of a (2,0) hypersurface and three
g g } }. This
is a sublattice of the Néron Severi lattice of any K3 surface which is a complete intersection
of a (2,0) hypersurface and three (1, 1) hypersurfaces in P4 x P2,

(1,1) hypersurfaces in P* x P? has Néron-Severi lattice isometric to {Z2, [

Proposition 5.2. Let S be a complete intersection of one hypersurface of bidegree (2,0) and
three hypersurfaces of bidegree (1,1) in P* x P2, Let ¢4, and ¢4, be the projections to the
first and to the second factor associated to the pseudo ample class Ay, with A% =6, and to
the pseudo ample class As, with A% = 2. If there exist eight curves R;, 1 =1,...,8 such that
¢4, contracts all these curves to eight nodes of the image and ¢4, sends these curves in lines
on P?, then R;, i =1,...,8 form an even set.

Proof. The idea of the proof is similar to the proof of Proposition 5.1 and is based on the pres-
ence of certain divisors in NS(S5). The divisors 4;, j = 1,2, R;, i =1,...,8 are contained in
the Néron Severi group. Nine of these classes are linearly independent. The lattice generated
by A1, A2, R1, Ry, R3, Ry, Rs5, Rg, Ry is embedded in NS(S) and a computation shows that
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it is isometric to the lattice Lg. Since the lattice Lg contains an even set, also in the Néron
Severi group of S there is an even set made up by Ry,...,R7,245, —2A; + R1 + ...+ R7;.[0

Remark. Observe that Proposition 5.2 gives a sufficient condition for a K3 surface complete
intersection in P* to have an even set of nodes (or of eight rational curves in the minimal
resolution).

5.3. Complete intersection of three quadrics in P° with an even set of nodes. We
give two different sufficient conditions for a K3 surface in P? to have an even set of nodes.
These two possibilities correspond to the fact that the Néron Severi group of such a K3
surface, with Picard number nine, is equal either to the lattice Lg or L.

Proposition 5.3. Let S be a K3 surface admitting two maps ¢a,, ¢4, associated to the
pseudo ample class A1 with A2 = 8 and to the ample class Ay with A3 = 4. If there exist
eight curves R;, i = 1,...,8 such that ¢4, contracts all these curves to eight nodes and ¢4,
sends these curves to lines on the quartic in P2, then R;, i =1,...,8 form an even set.

Proof. One can prove that Lg is primitively embedded in NS(S) as in the Propositions 5.1
and 5.2. O

Proposition 5.4. Let X be a K3 surface in P° having eight nodes. These nodes form an
even set if X is the complete intersection of a smooth quadric and two quadrics, which are
singular in two planes H = P? and K = P2, HN K = () and four of the points are contained
in H and the other four in K.

Proof. Let hg = h1 = hg = 0 and kg = k1 = ko = 0 be the equations defining H resp. K in
PS5, then we can write the equations of the two cones as hohy — h% = 0 and kokq, — k% = 0.
The quadrics h;k; = 0, 7 = 0,1, j = 0,1 meet the K3 surface in two curves C;, C; with
multiplicity two, which passes through four singular points, resp. to the other four. So
2(C; +Cj) € 2L — (N1 + ... + Ng)|, which shows that Ny + ...+ Ng form an even set. [

5.4. Double covers of P2. Here we consider two different K3 surfaces with an even set
which admit maps 2 : 1 to P2. The first one is a Wehler surface, the second one is not. In the
first case the curves of the even sets are contracted to singular points of the branch locus or
are sent to lines of P? which are tritangent to the ramification locus, in the second case they
are contracted or sent to conics. Other double covers of P? with an even set are described in
[B2].

5.4.1. The first case: complete intersections of bidegree (1,1), (2,2) in P2 xP2. The complete
intersections of bidegree (1,1) and (2,2) in P? x P? are the Wehler surfaces. The projections
to the two copies of P? are 2:1 maps. It is known (but can also be computed as in Section
5.2) that the Néron Severi group of the generic member of this family is the two dimensional

lattice {Z?2, [ i ;l }} The number of moduli of the family of the Wehler K3 surfaces is
18.

Proposition 5.5. Let S be a Wehler K8 surface such that the first projection w1 contracts
four rational disjoint curves R;, | = 1,...,4 on S and the second projection my contracts
other four rational disjoint curves Ry, | = 5,...,8. Moreover the map w1 sends the curves
contracted by mo to lines on P? and viceversa. Then the eight rational curves Ry, 1 =1,...,8
form an even set on S.

Proof. One can prove that L)y is primitively embedded in N.S(S) as in the Propositions 5.1
and 5.2, and that N C £/, is generated over Q by the curves R;. (]
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5.4.2. The second case.

Proposition 5.6. Let S be a K3 surface admitting two maps 2 : 1 to P2. If there exist
eight curves R;, i = 1,...,8 such that the map on the first copy of P? contracts the curves
R;, i =1,...,4 and sends the others in four conics and the map on the second copy of P>
contracts the curves R; 1 = 5,...,8 and sends the others in conics, then R;, 1 =1,...,8 is
an even set of eight disjoint rational curves.

Proof. One can prove that L£q¢ is primitively embedded in NS(S) as in the Propositions 5.1
and 5.2. ]

5.5. A mixed even set.

Proposition 5.7. Let S be a K3 surface admitting two maps to P3. If there exist eight curves
R;, i=1,...,8 such that the map on the first copy of P? contracts the curves R;, i =1,...,4
and sends the others in four conics and the map on the second copy of P3 contracts the curves
R;, i =5,...,8 and sends the others in conics, then R;, it = 1,...,8 is an even set of eight
disjoint rational curves.

Proof. One can prove that L£19 is primitively embedded in N.S(S) as in the Propositions 5.1
and 5.2. N

In this case we have on a quartic in P? a mized even set, in fact it consists of four nodes and
of four conics.

5.6. Surfaces of bidegree (2,3) in P! x P2. A K3 surface in P! x P? has bidegree (2, 3) by
the adjunction formula. These K3 surfaces are studied in [vG, Paragraph 5.8]. The family
has 18 moduli, in fact the Néron Severi group of such a K3 surface has to contain two classes
D1, Dy giving the regular maps ¢p, and ¢p,, which correspond to the projections to P! and
to P2. We can compute the intersection properties of D; and D5 as in the Paragraph 5.2
(these computations can be found also in [vG, Paragraph 5.8]). The general K3 surface which
g ; ]} This is
a sublattice of the Néron Severi lattice of all the K3 surfaces which have bidegree (2,3) in
P! x P2,

has bidegree (2,3) in P! x P? has Néron-Severi lattice isometric to {Z?,

Proposition 5.8. Let S be a K3 surface of bidegree (2,3) in P' x P2 and such that the
projection to the first space py (which gives an elliptic fibration) contracts two disjoint rational
curves and the projection py to the second space contracts other six disjoint rational curves.
If the curves contracted by p1 are sent to lines by pa and the curves contracted by ps are sent
by p1 to two sections of the elliptic fibration, then the eight rational curves on S form an
even set.

Proof. One can prove that £}, is primitively embedded in N.S(S) as in the Propositions 5.1
and 5.2. O

5.7. Complete intersections in P3? xP3. The Néron Severi group of a complete intersection
of four hypersurfaces of bidegree (1,1) in P3 x P3 is generated by the two divisors D; and
Dy associated to the two projections. The divisors D7 and Ds have self intersection equal
to four, computing as before the intersection between D and D one finds D; - Dy = 6, so
the Néron Severi lattice of the generic K3 surface which is a complete intersection of four

bidegree (1,1) hypersurfaces in P? x P3 is {Z2, [ g Z }}
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Proposition 5.9. Let S be a complete intersection of four bidegree (1,1) hypersurfaces in
P3 x P3. Let Ay and As be two pseudo ample divisors defining two maps to P3. If the map
b4, respectively ¢ a,, contracts four rational curves Ry, Ra, Rs, R4, respectively Rs, Rg, Ry,

Rg, and sends the others four rational curves in lines, then R;, 1 =1,...,8 is an even set on

X.

Proof. One can prove that £}, is primitively embedded in NS(S) as in the Propositions 5.1

and 5.2. O]
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CONTRACTION OF EXCESS FIBRES BETWEEN THE MCKAY
CORRESPONDENCES IN DIMENSIONS TWO AND THREE

SAMUEL BOISSIERE AND ALESSANDRA SARTI

ABSTRACT. The quotient singularities of dimensions two and three obtained from poly-
hedral groups and the corresponding binary polyhedral groups admit natural resolutions
of singularities as Hilbert schemes of regular orbits whose exceptional fibres over the
origin reveal similar properties. We construct a morphism between these two resolu-
tions, contracting exactly the excess part of the exceptional fibre. This construction is
motivated by the study of some pencils of K3-surfaces arising as minimal resolutions of
quotients of nodal surfaces with high symmetries.

1. INTRODUCTION

Consider a binary polyhedral group G C SU(2) corresponding to a polyhedral group
G C SO(3,R) through the double-covering SU(2) — SO(3,R). The group G acts freely
on C? — {0} and the quotient C?/ G is a surface singularity with an isolated singular point
at the origin. The exceptional divisor of its minimal resolution of singularities X — C?/ G
is a tree of smooth rational curves of self-intersection —2, intersecting transversely, whose
intersection graph is an A-D-E Dynkin diagram. The classical McKay correspondence
([23]) relates this intersection graph to the representations of the group G, associating
bijectively each exceptional curve to a non-trivial irreducible representation of the group:
the correspondence in fact identifies the intersection graph with the McKay quiver of
the action of G on CZ2. Among these irreducible representations we find all irreducible
representations of the group G: we call them pure and the remaining ones binary. Since
G/G = {+1}, one can produce a G-invariant cone C2/{£1} = K < C3 whose quotient
K/G is isomorphic to C?/ G. In this note, we prove the following result, conjectured by
W. P. Barth:

Theorem 1.1. There exists a crepant resolution of singularities of C3/G containing a
partial resolution Y — K /G with the property that the intersection graph of its exceptional
locus is precisely the McKay quiver of the action of G on C2, together with a resolution
map X — Y mapping isomorphically the exceptional curves corresponding to pure repre-
sentations and contracting those associated with binary representations to ordinary nodes.

We make this construction in the framework of the Hilbert schemes of regular orbits of
Nakamura ([25]) providing, thanks to the Bridgeland-King-Reid theorem ([5]), the natural
candidates for the resolutions of singularities in dimensions two and three. We produce a
morphism . between these two resolutions of singularities, define our partial resolution

1991 Mathematics Subject Classification. Primary 14C05; Secondary 14E15,20C15,51F15.
Key words and phrases. Quotient singularities, McKay correspondence, Hilbert schemes, polyhedral
groups.
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Y as the image of this map and study the effect of . on the exceptional fibres:

G-Hilb (C?) G- H11b (C3)

\ /
|

K/G— C3/G

C2/G

Although the exceptional fibres can be described very explicitly in all cases (see [19]), by
principle our proof avoids any case-by-case analysis. Therefore, the key point consists in
a systematic modular interpretation of the objects at issue.

From the strict point of view of the McKay correspondence, this construction shows some
new properties revealing again the fertility of the geometric construction of the McKay
correspondence following Gonzales-Sprinberg and Verdier [14], Ito-Nakamura [19], Ito-
Najakima [18] and Reid [26]. The beginning of the story was devoted to the study of all
situations in dimension two and three, in general by a case-by-case analysis. Then efforts
were made to understand how to get all these cases by one general geometric construction
([18, 5]). The development followed then the cohomological direction in great dimensions
in a symplectic setup ([21, 11]), leading to an explicit study of a family of examples of
increasing dimension for the specific symmetric group problem ([3]). The new point of view
in the present paper consists in working between two situations of different dimensions
for different - but related - groups and construct a relation between them. This may be
considered as a concrete application of some significant results in this area coming again
at the beginning of the story, dealing with a now quite classical material approached by
natural transformations between moduli spaces.

This study is motivated by previous works of Sarti [27] and Barth-Sarti [2] studying special
pencils of surfaces in P3 with bipolyhedral symmetries. The minimal resolutions of the
associated quotient surfaces are K3-surfaces with maximal Picard numbers. For some
special fibres of these pencils, the resolution looks locally like the quotient of a cone by
a polyhedral group, and our result gives a local interpretation of the exceptional locus in
these cases.

The structure of the paper is as follows: in Section 2 we introduce the notations and
we recall some basic facts about clusters and in Section 3 we recall the construction of
the Hilbert schemes of points and clusters. The Sections 4, 5 and 6 give a brief survey
on polyhedral, binary polyhedral and bipolyhedral groups, their representations and the
classical Mckay correspondences in dimensions two and three. In Section 7 we start the
study of the map .. First we show that it is well defined (lemma 7.1) and then that it is
a regular projective map, which induces a map between the exceptional fibres (proposition
7.2). In Section 8 the theorem 8.1 is the fundamental step for proving the main theorem 1.1:
we show that the map .¥ contracts the curves corresponding to the binary representations
and maps the curves corresponding to the pure representations isomorphically to the
exceptional curves downstairs. In Section 9, as an example we describe in details the case
when G is a cyclic group. Finally the Section 10 is devoted to an application to resolutions
of pencils of K3-surfaces.
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2. CLUSTERS

In the sequel, we aim to study a link between the two-dimensional and the three-dimensional
McKay correspondences. In order to avoid confusion, we shall use different sets of letters
for the corresponding algebraic objects at issue in both situations. In this section, we fix
the notations and the terminology.

2.1. General setup. Let V be a n-dimensional complex vector space and & a finite
subgroup of SL(V). We denote by O(V) := S*(VV) the algebra of polynomial functions
on V, with the induced left action g- f := fog~! for f € O(V) and g € &.

We choose a basis Xi,...,X,, of linear forms on V, denote the ring of polynomials in
n indeterminates by S := C[X1,...,X,] and identify O(V) = S. The ring S is given a
graduation by the total degree of a polynomial, where each indeterminate X; has degree
1. In particular, the action of the group & on S preserves the degree.

Let mg := (X1,...,X,) be the maximal ideal of S at the origin. We denote by S®
the subring of &-invariant polynomials, by mge its maximal ideal at the origin and by
ng = mge - S the ideal of S generated by the non-constant ®-invariant polynomials
vanishing at the origin. The quotient ring of coinvariants is by definition Sg := S/ neg.
An ideal 3 C S is called a ®&-cluster if it is globally invariant under the action of &
and the quotient S/J is isomorphic, as a $-module, to the regular representation of &:
S/3 = C[®]. A closed subscheme Z C C" is called a &-cluster if its defining ideal J(Z) is
a B-cluster. Such a subscheme is then zero-dimensional and has length |®|. For instance,
a free &-orbit defines a &-cluster. In particular, a -cluster contains only one orbit: the
support of a cluster is a union of orbits, and any function constant on one orbit and
vanishing on another one would induce a different copy of the trivial representation in the
quotient S/7J.

We are particularly interested in ®-clusters supported at the origin. Then J C mg and
in fact this condition is enough to assert that the cluster is supported at the origin: else,
the support of the cluster would consist in more than one orbit. Furthermore, one has
automatically ng C J, since any non-constant function f € ng not contained in J would
induce a new copy of the trivial representation in the quotient S/J, different from the one
already given by the constant functions. Hence we wish to understand the structure of
the &-clusters J such that ng C J C mg, equivalent to the study of the quotient ideals
J/ng C mg/ng C S/ng = S, with the exact sequence:

(1) 0— J/ng — Sg — S/T — 0.
From now on, we assume that the group & is a subgroup of index 2 of a group R € GL(V)
generated by reflections (we follow here the terminology of [7]), i.e. elements g € PR such

that rk(¢g — Idy) = 1.
The structure of the action of R on S has the following properties (see [7]):

e The algebra of invariants S™ is a polynomial algebra generated by exactly n alge-

braically independent homogeneous polynomials f1,..., f, of degrees d;.
e The set of degrees {dy,...,d,} is independent of the choice of the homogeneous

generators.
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e The algebra of coinvariants is isomorphic to the regular representation: Sg = C[R].

As a byproduct, we get that the algebra of coinvariants Sg is a graded finite-dimensional
algebra.
From this and the fact that & = /8 N SL(V), one deduces the structure of the action of &
on S (see [4, 12, 13]):
e There exists a homogeneous R-skew-invariant polynomial f, 11 € S, i.e. such that
g fn+1 = det(g). frny1 for all g € R, unique up to a multiplicative constant, dividing
any R-skew-invariant polynomial: hence the set f,,q - S™ is precisely the set of
R-skew-invariants. A natural choice for this element is f,11 = Jac(f1,..., fn).
hd S@ = (C[flv . '>fn>fn+1]'
e Ny =N D Cfn+1.
e Sy =956 DCfni1
Note that, as a &-module, C[R] is isomorphic to two copies of C[&]. It follows that mg/ng
is a graded finite-dimensional algebra which, as a -module, consists exactly of each non-
trivial representation p of & repeated 2 dim p times: one can denote the occurrences of each
representation p by V1 (p), ..., VEdme)(5) where each V() (p) is given by homogeneous
polynomials modulo ng.
Thanks to the exact sequence (1), giving a B-cluster supported at the origin consists in
choosing, for each non-trivial representation p of &, dim p copies of p in mg/ng. But this
gives many choices since any linear combination of some V#(p) and V) (p) provides such
a copy. The ground idea is that one does not have to make all these choices in order to
define J (see §9 for an explicit example).
For such an ideal J with ng C J C mg, we consider the finite-dimensional &-modules
W C S generating J in the sense that 3 = W - S + ng. Such modules do exist thanks to
the preceding construction. Among these choices, we consider the minimal ones, i.e. such
that no strict ®-submodule of them generate J in the preceding sense.
If W is a generator in this sense, then

IJ=W- -S4+ng=W+mg-WH+ng=W +mg-JT+ ne.

This means that the C-linear map W — J/(mg - J + ng) is surjective. Also, since W is a
B-module and since mg - J 4+ ng is B-stable, this map is G-linear. If W is a minimal set of
generators, it satisfies in particular W N (mg - J + ng) = {0} since this intersection would
provide a B-submodule whose complementary in W is a smaller $-submodule generating
J. Hence, for W minimal one gets an isomorphism of &-modules W = J/(mg - J + ng).
We set then V(J) :=J/(mg - T+ ng). The set of generators of V(J) may not be uniquely
determined, but its structure as a &-module is unique. The important issue, that will
be the core of the classification, will be to determine whether V(J) is irreducible or not,
although it is a minimal set of generators.

2.2. Notations for the two- and three-dimensional cases. When applying the pre-
ceding constructions in dimensions two or three, we fix the following notations:

e For n = 2, the polynomial ring is denoted by A := C|xz,y], the group by G and
any ideal by 1.

e For n = 3, the polynomial ring is denoted by B := Cla, b, ], the group by G and
any ideal by J.

3. MODULI SPACE OF CLUSTERS

We recall here the constructions of the Hilbert schemes of points or clusters.
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3.1. Hilbert scheme of points. Let X C P¢ be a quasi-projective scheme and N a
positive integer. Consider the contravariant functor Hz’lb% from the category of schemes
to the category of sets
HilbY : (Schemes) — (Sets)
which is given by
(a) Z is a closed subscheme
, b) the morphism Z — T x X & T is flat
W) =L zcTxx| |
Hilbx (T) . (¢) VteT,Z; C X is a closed subscheme
of dimension 0 and length N

By a theorem of Grothendieck ([15]), this functor is representable by a quasi-projective
scheme Hilb" (X)) equipped with a universal family E% c HilbY (X) x X. In the sequel,
we shall always denote by p the projection to the moduli space (here Hilb™ (X)) and by
q the projection to the base (here X). When X is projective, the scheme HilbY (X) is
projective and comes with a very ample line bundle (for ¢ > 0):

det (p* (ozﬁ ® q*Ox (5))) .

When X = C", one gets an open immersion Hilb™¥ (C") — Hilb" (P{) corresponding to the
restriction of the universal family. The induced restriction of the preceding determinant

line bundle provides us the very ample line bundle det (p*(’)E%n) on Hilb" (C™).

There exists a natural projective morphism from HilbY (X) to the symmetric product
sV (X) sending a closed subscheme to the corresponding 0-cycle describing its support,
called the Hilbert-Chow morphism:

2 HilbY (X) — SV (X).

By a theorem of Fogarty ([10]), the scheme Hilb™ (X) is connected. For dim X = 2, it is
reduced, smooth and the morphism 7 is a resolution of singularities.

3.2. Hilbert scheme of regular orbits. We consider the sub-functor &-Hilb, of Hilb(‘cefj

given by
B-Hilbgn (T) := {Z e Hilb\S/(T) |Vt € T, 2, c C" is a ®-c1uster} :

This functor is representable by a quasi-projective scheme &-Hilb(C"™) called the Hilbert
scheme of &-reqular orbits, which is a union of some connected components of the sub-

&
scheme of &-fixed points (Hilb|®|(C")) . Furthermore, the quotient C"/® can be iden-

tified with a closed subscheme of S‘@‘((C”) and since the support of a &-cluster consists
exactly of one orbit through &, the restriction of the Hilbert-Chow morphism factorizes
through a projective morphism (see [5, 18, 28]):

€ . -Hilb(C") — C"/&.

There is a unique irreducible component of &-Hilb(C"™) containing the free ®-orbits and
mapping birationally onto C"/&. This component is taken as the definition of the Hilbert
scheme of &-regular orbits in [25]. By the theorem of Bridgeland-King-Reid [5], if n <
3, then ®-Hilb(C") is already irreducible, reduced, smooth and the map J# a crepant
resolution of singularities of the quotient C"/&. Moreover, ¢ is an isomorphism over the
open subset of free &-orbits. As a byproduct, the two definitions coincide.
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As before, the scheme &-Hilb(C") is equipped with a universal family Zg which is the re-
striction of the universal family Eﬁ; corresponding to the closed immersion &-Hilb(C") —

Hilb‘@‘((C”). The induced restriction of the determinant line bundle provides us, by nat-
urality of the construction of the determinant of a family (see [17, §8.1]), the very ample
line bundle det (p.Oz, ) on &-Hilb(C").

4. ROTATION GROUPS

4.1. Polyhedral groups. Let SO(3,R) be the group of rotations in R?. Up to conjuga-
tion, there are five different types of finite subgroups of SO(3,R), called polyhedral groups:
e the cyclic groups C), = Z/nZ of order n > 1;
e the dihedral groups D,, = Z/nZ x Z/2Z of order 2n, n > 1;
e the group 7 of positive isometries of a regular tetrahedra, isomorphic to the alter-
nate group 2, of order 12;
e the group O of positive isometries of a regular octahedra or a cube, isomorphic to
the symmetric group &, of order 24;
e the group 7 of positive isometries of a regular icosahedra or a regular dodecahedra,
isomorphic to the alternate group 25 of order 60.

4.2. Binary polyhedral groups. Let H be the real algebra of quaternions, with basis
(1,4,7, k). The norm of a quaternion ¢ = a-1+b-i+c-j+d-k is N(q) :== a®+ b*>+ 2+ d?,
a,b,c,d € R. Let S be the three-dimensional sphere of quaternions of length 1 and H the
three-dimensional vector subspace of pure quaternions (i.e. a = 0). For ¢ € S, the action
by conjugation ¢(q) : H — H, z + q-x-q ' is an isometry. Since the group S is
isomorphic to SU(2) by the identification

(a+ib c+id
" \—c+id a—1ib)’

0 — {1} — SU(2) N SO(3,R) — 0.

one gets an exact sequence

For any finite subgroup G C SO(3,R), the inverse image G := ¢~ G is called a binary
polyhedral group. It is a finite subgroup of SU(2) or equivalently, up to conjugation, of
SL(2,C):

the binary cyclic groups 6n & (U9, have order 2n;

the binary dihedral groups l~?n have order 4n;

the binary tetrahedral group T has order 24;

the binary octahedral group O has order 48;

the binary icosahedral group 7 has order 120.

4.3. Representations of polyhedral groups. Consider a binary polyhedral group é,
the associated polyhedral group G and set 7 := {£1}:

¢

0—7——G-2%aG—o.

This exact sequence induces an injection of the set of irreducible representations of GG in the
set of irreducible representations of G: if p: G — GL(V) is an irreducible representation
of G, it induces by composition a representation of G which is T-invariant, i.e. such that
p(—g) = p(g) for all g € G. Thanks to this property, if the representation p would admit
a non-trivial é—submodule, it would also be a non-trivial G-submodule after going to the
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quotient G /T = G. This shows also that the image of the injection (since G is a quotient
of G):

Irr(G) — Irr(G)
consists precisely on those irreducible representations which are 7-invariant. These rep-
resentations are called pure and the remaining representations are called binary. More

precisely, if p : G — GL(V') is an irreducible representation of GG, the subspace
Vii={veV|v=p(-1)v}

is a G-submodule of V. Hence either V™ = V and the representation p is pure, or p is
binary and V7 = {0}.
For each type of binary polyhedral group, we draw the list of the irreducible representations
with their dimension. The binary representations are labelled by a “~” and the trivial
representation is denoted by g in all cases:
e binary cyclic group 6n, n>1:
representation || xo | {x;}j=1,..n—1 | {Xj}i=1,.n
dimension 1 1 1
e binary dihedral group ﬁn forn=20+1¢>1:
representation || xo | x1 | {7j}i=1,..0 | X1 | X2 | {0 }j=1,..¢
dimension 1|1 2 111 2
e binary dihedral group D, for n = 20, 0> 1:
representation || xo | x1 | x2 | x3 | {75}j=1,..0-1 | {0;}j=1,..¢
dimension 171111 2 2

e binary tetrahedral group T:

representation || xo | X1 | X2 | X3 | X1 | X2 | X3
dimension 1 1 113|222

e binary octahedral group O:

representation || xo | X1 | X2 | X3 | X4 | X1 | X2 | X3
dimension 111123321214

e binary icosahedral group 7

representation || xo | X1 | X2 | X3 | X4 | X1 | X2 | X3 | X4
dimension 113|345 |2|2|4]|6

4.4. Bipolyhedral groups. For p,q € S, the action o(p,q) : H — H,z + p-x-¢ ! is an

isometry and one gets an exact sequence
0 — {£1} — SU(2) x SU(2) %+ SO(4,R) — 0.
For any binary polyhedral group G, the direct image o(G x G) C SO(4,R) is called a
bipolyhedral group. In §10, we shall make use of the following particular groups:
e Gg =0(T x T) of order 288;
e Gg =0(0 x 0) of order 1152;
e Gi19 = 0(Z x I) of order 7200.

5. GRAPH-THEORETIC INTUITION

5.1. McKay quivers. If & C SL(n,C) is a finite subgroup, it defines a natural faithful
representation Q of &. Let {Vp,...,Vi} be a complete set of irreducible representations
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of &, where Vjy denotes the trivial one. For each such representation, one may decompose
the tensor products

k
Qe =P,
j=0

for some non-negative integers a; ;. If the character of the representation Q is real-valued,
then a;; = aj; for all 4,j. One defines the McKay quiver as the graph with vertices
Vo, Vi,..., Vi and a;; edges between the vertices V; and V. In particular, this quiver
may contain some loops. For our purpose, we only consider the reduced McKay quiver
with vertices Vi, ..., V; and one edge between V; and Vj if i # j and a; ; # 0: this means
that we remove from the McKay quiver the vertex Vj, all edges starting from it, all loops
and all multiple edges. When there is an edge joining V; and Vj, the vertices are called
adjacent.

One may check that all finite subgroups of SL(2) or SO(3,R) enter in this context since
their natural representation Q is real-valued.

5.2. McKay quivers for the polyhedral groups. For each binary polyhedral group
G C SU(2) and its corresponding polyhedral group G C SO(3,R), we draw the reduced
McKay quiver with our conventions. For the binary polyhedral groups, we denote by a
white vertex the pure representations and by a black vertex the binary ones. We get (see
for example [14, 12, 13]) the graphs of figure 1.
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FiGURE 1. Reduced McKay quivers

Dimension 2

Dimension 3
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In the sequel, we shall interpret these graphs as the intersection graphs of a family of
smooth rational curves meeting transversally. One may then get the following intuition:
looking at the two-dimensional graphs, if one contracts the curves associated to a binary
representation (black nodes), then one gets as intersection graph precisely the correspond-
ing graph in dimension three!

Another property of the two-dimensional quivers is that no two pure representations and no
two binary representations are adjacent. This means that the preceding idea of contraction
contracts only one curve each time.

6. EXCEPTIONAL FIBRES IN DIMENSIONS TWO AND THREE

Considering the Hilbert-Chow morphism . : &-Hilb(C") — C"/®, our purpose is to
describe the exceptional fibre 77 ~1(O) over the origin O € C"/®& in the two- and three-
dimensional cases. Note that all finite subgroups of SL(2,C) or SO(3,R) enter in the
context of §2 since they are subgroups of index 2 of a reflection group (see [13, §2.7]).
Hence we may apply the general procedure for the study of the clusters supported at the
origin.

The understanding of the exceptional fibre in these cases was achieved by [to-Nakamura
[19, 20] in dimension two and by Gomi-Nakamura-Shinoda [12, 13] in dimension three, by
a case-by-case analysis. For the two-dimensional case, there is another proof by Crawley-
Boevey [8] avoiding this case-by-case analysis. We recall the results.

For any finite group &, Irr*(®) denotes the set of irreducible representations but the trivial
one.

6.1. Structure of the exceptional fibre in dimension two. Let G C SL(2,C) be a
binary polyhedral group and denote the Hilbert-Chow morphism by
7 : G-Hilb (C?) — C%/G.
For each non-trivial irreducible representation p of é, set
E(p):={I € %_I(O)red | V(I) D p}.
Theorem 6.1. ([19, Theorem 3.1]
e Fach E(p) is a smooth rational curve of self-intersection —2.
e T HO)yed = U, E(p) and 7 10) = >.,dimp - E(p) as a Cartier-divisor, p €
Irr* (G).
o IfT € E(p) and I & E(p') for all p # p', then V(I) = p.
o IfI C E(p)NE(), then V(I) = p® p' and the curves E(p) and E(p') intersect
transversally at I.
o The intersection graph of these curves is the reduced McKay quiver of the group

G.

In particular, a generator V(I) does not contain more than one copy of any irreducible
representation, and E(p)NE(p') # 0 if and only if the representations p and p’ are adjacent.

6.2. Structure of the exceptional fibre in dimension three. Let G C SO(3,R) be
a polyhedral group and denote the Hilbert-Chow morphism by

7 : G-Hilb(C?) — C?*/G.
For each non-trivial irreducible representation p of G, set
C(p) = {J € W_I(O)red | V(J) 2 P}-
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Theorem 6.2. ([13, Theorem 3.1])

Each C(p) is a smooth rational curve.

7T_l(o)mul = Up C(p), pE Il”l”*(G).

If Je€ C(p) and J & C(p) for all p # p', then V(J) = p.

The intersection graph of these curves is the reduced McKay quiver of the group

G.

6.3. Explicit parameterizations. Let us explain briefly the explicit parameterizations
of the exceptional curves obtained in loc.cit. This description holds both in dimensions
two and three so we do it with our general notations. The example of the cyclic group is
treated in §9. As we explained in §2,

2dim p

ms/ne= P P VP(p)

pelrr(®) =1
PFP0

where py denotes the trivial representation. Thanks to the exact sequence
0 — J/ng — mg/ng — mg/T — 0,

if one wants to parameterize a flat family of clusters over Py, one has to choose, in the
trivial sheaf:

pelrr(&) =1
PFP0

a locally free B-equivariant sheaf affording the regular representation on each fibre whose
quotient is also locally free. The parameterizations are then produced as follows: one
chooses one non trivial subbundle

O]P’1(_1) Qp— O]P’1 ® (V(Z) (p) ©® V(J) (p))

for some appropriate choice of the indices, and shows that this gives the required family
whose points J are characterized by their generator

V(3) cP(VD(p) & VU (p)).

That is: once one choice has been made, the other choices are automatic, and we shall see
that they always correspond to a trivial subbundle (see 8.4).

7. GEOMETRIC CONSTRUCTION

Let G be a binary polyhedral group acting on A = Clz,y]. Set 7 := (1) C G and
G:=G /7 the associated polyhedral group as before. It is important for the sequel to
begin so, and not to choose the group G with its action on some coordinates first, as we
shall see. We aim to define a regular map

7 : G-Hilb(C?) — G-Hilb(C?)

inducing a map between the exceptional fibres over the origin.
Since AT = C[z?,y?, 2], we consider the following composition of ring morphisms, with
B = Cla, b, c]:

(2) o: B—B [{ab— ?) —=AT——=A
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where the identification is defined by a = 22, b = y?, ¢ = xy. The action of G on A induces
an action of G on A". Using the identification, we can define an action of G on the
coordinates a, b, ¢, inducing an action on B with the property that the cone K = (ab— c?)
is G-invariant. This is the reason why we did not fix the action of G at first: another
choice of identification would induce another action of G.

Let I be an ideal of A and J := o~ !(I) the corresponding ideal of B. Observe the following
property of the map o:

Lemma 7.1. If I is a G-cluster in A, then J is a G-cluster in B. Furthermore, if I is
supported at the origin, then so is J.

Proof. If I is a G-cluster, then A/I = C[G]. Since the group 7 is finite, we have isomor-
phisms:

B/J = AT/I" = (A/I)" = C[G]” = C[G],
hence J is a G-cluster in B. Furthermore, note that " 'm4 = mp hence if I is a G-cluster
supported at the origin, one has I C m4 and then J C mp, which implies that J is also
supported at the origin (see §2.1). O

Therefore, this construction defines set-theoretically a map between the two moduli spaces

of clusters .7 : G-Hilb (C?) — G-Hilb(C?) by .7 (1) 2 7. It remains to see that this

map is a regular morphism.

Proposition 7.2. The map . is reqular, projective, and induces a map between the
exceptional fibres.

Proof.
¢ In order to get that the map .¥ is regular, we show that it is induced by a natural
transformation between the two functors of points

G-Hilbes (1) = G-Hilbgs (-).

Let T be a scheme and Z € é—Hz’leQ (T). Then Z C T x C2% is a flat family of G-clusters
over T and the map Z < T x C? is 7-equivariant (for a trivial action on T'). It induces a
family
Z|T— T x (C?/7) — T x C3

where the quotient C?/7 is considered as the cone (ab — c?) in C3. If T is a point, this is
precisely our set-theoretic construction since then if Z is given by an ideal I, Z/7 is given
by the ideal I".

In order to show that Z/7 € G-Hilb.3(T'), we have to prove that this family is flat over T'.
Since this problem is local in T, we may assume that 7" is an affine scheme, say T' = Spec R.
Then the family Z is given by a 7-equivariant quotient R® A — @ so that the composition
R — R®c A — @ makes @ a flat R-module. The family Z/7 is then given by the quotient

R— R®cB—+» R®c AT - Q",

where the quotient R®c B —» R®Qc A" is induced by tensorization of the quotient B — AT.
We have to show that this makes Q7 a flat R-module. By hypothesis, the functor QQ ® —
in the category of R-modules is exact. Since 7 is finite, the functor (—)” is also exact in
this category, and we note that the functor Q7 ® g — is the composition of this two functors
since

QT®rN =(Q®rN)"
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for any R-module N. Hence the functor Q™ ® p — is exact, which means that the family
is flat.
o The composition of ring morphisms (2) gives an equivariant ring morphism

() ()

inducing a surjective map at the level of the invariants: Cla, b, C]G —> Clz, y]G , hence

a closed immersion
n:C?/G = SpecClz,y]¥ — SpecCla, b, % = C?/G.

Taking more care of the cone K = C?/7 (in the notations of the introduction), the equi-
variant map

c2——C?%/r —— 3
W W W
induces the n map between the quotients:
n:C?G—= (C*/7)/G—=C?/C
sending the origin O € C2/ G to the origin O € C3 /G and by definition of . the following

diagram is commutative:
G-Hilb (C?) —Z~ G-Hilb (C?)
/G ———C¥/G
This implies that . induces a map between the exceptional fibres
#10) L 7 10).

¢ We prove that the map . is proper by applying the valuative criterion of properness.
Let K be any field over C and R C K any valuation ring with quotient field K. Consider
a commutative diagram:

Spec K — G-Hilb (C2)

R
Spec R —-= G-Hilb (C?)

We have to show that there exists a unique factorization

Spec K 2 G-Hilb ((C2)

)
Spec R —-~ G-Hilb (C?)

making the whole diagram commute.
By modular interpretation, the data of the map ¢ consists in an ideal I C K|[z,y| such

that K[z,y]/I = C[G] ®c K and Klz,y]/I is K-flat (it is here trivial since K is a field).
Similarly, the data of the map v consists in an ideal J C RJ[a, b, c] such that Rla,b,c|/J =
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C|G] ®c R and R|a,b,c]/J is R-flat. The commutativity . o ¢ = ¢ o4 : Spec K —
G-Hilb ((C3) means the following. Consider the diagram of ring morphisms induced by
natural extension of scalars and base-change from the map o:

|

Then the commutativity condition means that O‘I_{I(I )=J-Kla,b,c|.

We are looking for a mapvgzg such that poi=¢ and & o ¢ = 1, i.e. for an ideal IcC
R[z,y] such that R[z,y]/I = C[G] ®c R and Rlz,y]/I is R-flat, satisfying the conditions
I Klz,y]=1 and o*}_%l(ff) =J.

A natural candidate is T = 71 R[z,y]. We have to prove that it satisfies all the conditions

and that it is unique for these properties. Denote by v : K — {0} — H the valuation with
values in a totally ordered group H, satisfying the properties:

v(z-y)=v(z)+v(y) and v(z +y) > min(v(x),v(y)) for z,y € K — {0}

and such that R = {z € K |v(z) > 0} U{0}. Recall that R is by definition integral and
that a R-module is flat if and only if it is torsion-free (see for instance [1, 16]).

e It is already clear that I - Klz,y] C I. Conversely, Let P =}, pi 'y’ € I and

p € {pi;} an element of minimal valuation. If v(p) > 0, then P € I. Else all
coefficients of p~! P have positive valuation and so p~'P € I.SoP= p-(p71P) €
I K [z,y], hence the equality.

e By commutativity of the above diagram,

oz (I) = o7 (I N Rz, y))
= U;}l(f) N Rla,b, c|
= (J-Kla,b,c]) N R[a,b,c].

It is already clear that J C (J - Kla,b,c]) N R[a,b,c]. Conversely, let P € (J -
Kla,b,c])NR]a,b,c]|, decomposed as P =Y, U;-Vy with Uy € J and V; € KJa, b, c|.
As before, there exists a coefficient ¢ in all V;’s of minimal valuation, and we
assume v(q) < 0 (else there is no problem). Then ¢~ !P € J. By assumption, the
R-module Rla,b,c|/J is torsion-free, so the multiplication by ¢~ € R is injective.
This means that P € J. _

e By definition, we have an R-linear inclusion Rx,y]/I — K]|xz,y]/I, which shows
that Rlz,y] /T is torsion-free, hence flat. It inherits an action of G and since
Klz,y]/I = C|G) @c K, there exists a subrepresentation V of C[G] such that
R[z,y]/I = V@cR (this uses the flatness, see [20, lemma 9.4]). By the isomorphism
of R-modules Rz, y]/I ®r K = K[z,y]/I, the representation V is such that V ®@p
K = C|G] ®¢ K, which forces V = C[G].

e The uniqueness of the candidate follows from the condition I - K[z,y] = I since as
we already noted:

IﬂR[.Z‘,y] = (iK[l‘,y])ﬂR[l‘,y] =1

so our natural candidate is the only possibility.
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¢ To finish with, remark that any proper map between to quasi-projective varieties is
automatically a projective map. U

8. CONTRACTED VERSUS NON-CONTRACTED FIBRES

Theorem 8.1. Consider the restriction of the map . : G-Hilb ((CQ) — (G-Hilb ((C3) to
a reduced curve E(p). Then:
(1) If the representation p is pure, then . maps isomorphically the curve E(p) onto
the curve C(p).
(2) If the representation p is binary, then .# contracts the curve E(p) to a point.

Proof. Let E(p) be any exceptional curve. Since the map . sends this curve to the bunch
of curves 7~1(0), the image lies in some irreducible component C' and the restricted
morphism . : E(p) — C is a proper map. We prove that:
e if the representation p is binary, then the map . : E(p) — C contracts the curve
to a point;
e if the representation p is pure, then C' = C(p) and the restricted map .7 : E(p) —
C(p) is an isomorphism.
The parameterizations of the two curves E(p) and C' defines a composite proper map f
whose properties reflect those of the restriction of .#:

Py —> E(p) C G-Hilb(C?)

Y

Py —;> C C G-Hilb(C?)

We know (see [16, 11.6.8,11.6.9]) that either the map f contracts the curve to a point, or
it is a finite surjective map. The basic idea in order to determine which case occurs is
to suppose given an ample line bundle Op, (a) on the target (with a > 0): if the map f
contracts the curve to a point, then f*Op, (a) is trivial and else f*Op, (a) = Op, (deg(f)-a)
is ample.

The natural candidate for an ample line bundle over the curve C is the determinant
det(p«Oz(cy) obtained by restriction of the universal family Z(C) := Z¢|.

The parameterization Py -2, G-Hilb ((Cz) of the curve E(p) corresponds to a flat fam-
ily Zz(p) C Py x C* which is the restriction to E(p) of the universal family Z5 over
G-Hilb ((CQ). The direct image p*(’)Zé(p) is a vector bundle of rank |é | over Py equipped
with an action of G affording the regular representation on each fibre. It admits an isotyp-

ical decomposition over the irreducible representation of G and we recall the well-known
explicit decomposition:

Lemma 8.2.

POz (p) = (Opl( 1)@ Oop M- 1) wpd P 0g™ @
o' €lrr(G)
o' #p
Proof of the lemma. This is an equivalent form of [22, §2.1 lemma] or [18, Proposition
6.2(3)]. We recall briefly the argument. Since this bundle is a quotient of Op, ® A (see
§6.3), it is generated by its global sections, hence it is a sum of line bundles Op, (a) for
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a > 0. By the classical observation deg(p«Oz_(,)) =1 (see [14]), all line bundles are trivial
but one, of degree one. O

In particular, note that det(p.Oz_(,)) = Op, (dim p) is the ample determinant line bundle

in dimension two.
Thanks to the functorial definition of the map ., the composition

P, -2 G-Hilb (C2) -Z» G-Hilb (C?)

parameterizes the flat family Zx(p)/7 whose structural sheaf is OZ@(p) /r = <Ozé(p)>7

and one gets:
F*(det(p.Oz(c))) = det (p2Oz,))7)

Now, as we noticed in §4.3, taking the invariants under 7 keeps invariant the pure repre-
sentations and kills the binary ones. Hence:

e If the representation p is binary, then:

p'€lrr

hence det(p.Oz_(,))" = Op, is trivial;
o If the representation p is pure, then:

T : _ : ’
(p*ozé(p)) = <O]p>1(1) @Oglfhmp l) RpD @ Ogldlmp ® 0
p elrr(G)
o'#p
hence det(p.Oz_(,))" = Op, (dim p) is ample.
This achieves the first part of the proof. It remains to show that in the case of a pure
representation p, the target curve is C' = C(p) and that the finite surjective map f is an
isomorphism. We do it by hand. A point I € E(p) is characterized by the choice of V(1)
and generically V(1) = p. For a pure representation p, the polynomials defining V' (I) are
even hence:
VIT) =V ((A-V(I)+n4)") DV)
so generically V (I7) = V(I) (only modified by setting a = 22,b = y?, ¢ = xy). This means
that C' = C(p) and if I # J € E(p), then V(I) # V(J) hence the images are also different,
so the map is generically injective. This concludes the proof. O

As a byproduct of our argument, we get the following equivalent in dimension three of the
lemma 8.2 which, to our knowledge, does not appear explicitly in the literature:

Corollary 8.3. For any finite subgroup G C SO(3,R) and any non-trivial representation
p of G, the restriction of the tautological bundle to the exceptional curve C(p) decomposes
as:
~ dim p—1 dim p/
p elrr(G)
o' #p

Proof. The same argument as in the proof of lemma 8.2 shows that this bundle in generated
by its global sections. The bijectivity of the map f on the curves associated to pure
representations (in the notation of the proof of theorem 8.1) implies that det(p.Oz,(,)) =
Op, (dim p), hence in the isotypical decomposition there is only one non-trivial line bundle,
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of degree one, and we already know by the explicit parameterizations that the isotypical
component corresponding to p is not trivial. U

Remark 8.4. In the decomposition of the lemma 8.2, the unique presence of the Op, (1)
corresponds to the choice of the line V(I) in a projective space P(p & p) as explicitly
described in §6.3. The fact that no other ample bundle occurs reflects the property that
once one choice has been made, the other generators of the ideal do not involve the choice
any more, as one can easily notice from the explicit computations of [20, §13,§14] (see §9
in this paper for an example). In the three-dimensional case, the same situation occurs
thanks to the corollary 8.3.

We get now the theorem 1.1 presented in the introduction as a corollary of the theorem
8.1:

Corollary 8.5. The image Y := .7 (G-Hilb (C?)) projects onto the quotient K /G, induc-
ing a partial resolution of singularities containing only the exceptional curves corresponding
to pure representations. The map ¥ : G-Hilb ((C2) — Y is a resolution of singularities
contracting the excess exceptional curves to ordinary nodes.

Proof. The projection 7 : JJ — C3/G factors through K/G by construction of ). The
other assertions result from theorem 8.1. The excess curves contract to ordinary nodes
since, as one checks with the figure 1, each excess (—2)-curve is contracted to a different
point. O

9. EXAMPLE: THE CYCLIC GROUP CASE

Let the cyclic group C,, 2 Z/(2n)Z act on C? with generator:

< g 591 > with & = e

The choice of coordinates made in §7 implies that the group C, = Z/nZ acts on C? with
generator:

£ 0 0

0 &2 0

0 0 1
The irreducible representations of the cyclic group C, are given by the matrices (£%),
i1=20,...,2n — 1. For i even, they are also the irreducible representations of C,,. There
are then n pure and n binary representations. With the notations of §4.3, we set y; :=
p2; and X; = poiaq for ¢ = 0,...,n — 1. By Theorem 8.1, the exceptional curves on

én—Hilb ((C2) corresponding to the binary representations are contracted by .# to a node
on . (C,-Hilb ((C2)) whereas the curves corresponding to the pure representations are in
1: 1 correspondence with the exceptional curves downstairs (see figure 2). In this section,
we check this by a direct computation.

The ring of invariants C|z, y]an is generated by 22", 42", 2y and C[a, b, c]°" is generated
by ¢,a™, b, ab. Recall the description of the exceptional curves of C,,-Hilb ((C2) following
[20, Theorem 12.3]. We sort the basis of the algebra of coinvariants with respect to each
irreducible representation:

{1}, {=, y2"_1}, . {mi, yQ”_i}, R {xQ”_l, y}.
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X1 3

FI1GURE 2. Contracted fibres for 64

To choose a cluster I/ny4 supported at the origin amounts in choosing one copy of each
non-trivial representation, i.e. for all i = 1,...,2n — 1 a point (p; : ¢;) € P; defining the
ideal by the generators:

(pix — qy® L pirt =y pan—12® T = qano1y).

But the point is that one only needs one choice. Suppose there exists an index ¢ such that
pigi # 0, and take the smaller i with this property. Set p = p;,q = ¢; and v = px’ — qy?>" .
Then since zy is invariant, z+t1, ... 22"~ € I/ny and 2"+, ... y?"~ 1 € I/ny so all
our other choices were trivial, and V(I) = C - v. More formally, we parameterized the

exceptional curve E(p;) by a subbundle:

Op, (—1) @ pi & P Or, @ pj — E(Op, ® Or,) @ p;.
j#i j

If there is no such index, suppose z* is the minimal power of x in the choice: in order to
find once each non-trivial representation one has to choose y?"~*1 and the minimal set
of generators V(I) = C- 2! @ C - y?"~**! contains two adjacent representations.
Otherwise stated, a Cj,-cluster at the origin takes the form:

Li(p:q) := (pr? — qy®" 7, wy, a?*1 20,
1<j<2n-1, (p:q) Py

(the above expression contains enough generators to include the two possible cases) and
E(pj) ={Li(p: 0}
By the same method, one sees easily that a C),-cluster at the origin takes the form:
Jp(s:t) := (sa¥ — tb"F ¢, a®t1 bR ab),
1<k<n-1, (s:t)eP;

and

Clxr) ={Jk(s: )}
Recall that with the construction (2) we have to compute o~ !(Z;(p : ¢)). Denoting by &
the map B /(ab — %) — A, it is equivalent to compute ¢~ 1(I;(p : ¢)). First we compute
Ii(p:q)" € A7. We distinguish two cases:
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e j even, i.e. j =25, 77 =1,...,n— 1. In this case we have

’ i’ n—j’ i +1 n—j'+1
Lip:q)" =ILi(p:a) = (p®) —a®)" " 2y, ),
expressed in A™ = C[z?,y?, zy]. Then
6_1(Ij(p . Q)) — <paj/ _ qbn—j" c, CLj/+1’ bn—j/+1>
=Ji(p:q).

o jodd, ie j=2j+1, j=0,...,n—1 Observe that zy € Ij(p: q)" and (227",
yn—j/ c I](p . q)T’ but pxzj,""l _ qy2n—2j,_1 ¢ _[](p . q)T SO

G Ii(p @) = (@ T 6" c).
We observe then that
o (Ii(p : q)) € Clpjr) N Clpjrga)

since
~—1
M Ii(p:q) = Jp(0:1) = Jpi(1:0).
The curves E(p;) with j even correspond to the pure representations and are not con-

tracted by . as the previous computation shows, the curves with j odd correspond to the
binary representations: these are contracted by .7.

10. APPLICATION

10.1. Pencils of symmetric surfaces. Let H¢ := H®g C be the complexification of the
space of quaternions. By the choice of the coordinates ¢ = a-14+b-i+c-j+d-k, a,b,c,d € C,
one gets an isomorphism P3 = P(Hg) such, that for n = 6,8,12 the bipolyhedral group
G, acts linearly on P3, leaving invariant the quadratic polynomial Q := a® + b* + ¢ + d°.
In [27] it is shown that the next non-trivial invariant is a homogeneous polynomial S, of
degree n. Consider then the following pencil of G,,-symmetric surfaces in Pj:

X,(A) ={S, + Q"2 =0}, reC.

In [27] it is proved that the general surface X, (\) is smooth and that for each n there
are precisely four singular surfaces in the corresponding pencil: the singularities of these
surfaces are ordinary nodes forming one orbit through G,,.

Consider now the pencil of quotient surfaces in Pg/ G,:

{Xn()‘)/Gn}7 reC.

In [2] it is proved that these quotient surfaces have only A-D-E singularities and that
the minimal resolutions of singularities Y,,(\) — X, (\)/ G,, are K3-surfaces with Picard
number greater than 19. For the four nodal surfaces in each pencil, a careful study of the
stabilizers of the nodes shows that, if X denotes one of these nodal surfaces, the image
of the node on X/G,, C P3/ G, is a particular quotient singularity locally isomorphic to
c?/ G cC3 /G for some polyhedral group G explicitly computed (see [2, §3, Proposition
3.1)):

e forn==6: C3,7;

o for n =8: Dy, D3, Dy, O;

e forn=12: D3, D5, 7,T.
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Therefore, our theorem 1.1 gives locally a group-theoretic interpretation of the exceptional
curves of the K3-surfaces Y,,(\) over the particular singularities of the nodal surfaces.
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