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ABSTRACT. In the first part of this paper we give a
survey of classical results on Kummer surfaces with Picard
number 17 from the point of view of lattice theory. We prove
ampleness properties for certain divisors on Kummer surfaces
and we use them to describe projective models of Kummer
surfaces of (1, d)-polarized Abelian surfaces for d = 1, 2, 3. As
a consequence we prove that in these cases the Néron–Severi
group can be generated by lines.

In the second part of the paper we use Kummer surfaces
to obtain results on K3 surfaces with a symplectic action of
the group (Z/2Z)4. In particular we describe the possible
Néron–Severi groups of the latter in the case that the Picard
number is 16, which is the minimal possible. We describe
also the Néron–Severi groups of the minimal resolution of the
quotient surfaces which have 15 nodes. We extend certain
classical results on Kummer surfaces to these families.

1. Introduction. Kummer surfaces are particular K3 surfaces, ob-
tained as minimal resolutions of the quotient of an Abelian surface by
an involution. They are algebraic and form a 3-dimensional family of
K3 surfaces. Kummer surfaces play a central role in the study of K3
surfaces, indeed certain results on K3 surfaces are easier to prove for
Kummer surfaces (thanks to their relation with the Abelian surfaces),
but can be extended to more general families of K3 surfaces: the most
classical example of this is the Torelli theorem, which holds for every K3
surface. The aim of this paper is to describe some results on Kummer
surfaces (some of them are classical) and to prove that these results ex-
tend to 4-dimensional families of K3 surfaces. Every Kummer surface
has the following properties: it admits the group (Z/2Z)4 as group of
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automorphisms which preserves the period (these automorphisms will
be called symplectic) and it is also the desingularization of the quo-
tient of a K3 surface by the group (Z/2Z)4 which acts preserving the
period. The families of K3 surfaces with one of these properties are
4-dimensional: we study these families using the results on Kummer
surfaces and we prove that several properties of the Kummer surfaces
hold more in general for at least one of these families.

The first part of the paper (Sections 2, 3, 4, 5) is devoted to
Kummer surfaces. We first recall their construction and the definition
of the Shioda–Inose structure which was introduced by Morrison in
[Mo]. In particular we recall that every Kummer surface Km(A)
is the quotient of both an Abelian surface and a K3 surface by an
involution (cf. Proposition 2.16). Since we have these two descriptions
of the same surface Km(A) we obtain also two different descriptions of
the Néron–Severi group of Km(A) (see Proposition 2.6 and Theorem
2.18). In Section 3 we recall that every Kummer surface admits
certain automorphisms, and in particular the group (Z/2Z)4 as group
of symplectic automorphisms. In Proposition 3.3 we show that the
minimal resolution of the quotient of a Kummer surface Km(A) by
(Z/2Z)4 is again Km(A). This gives a third alternative description of
a Kummer surface and shows that the family of Kummer surfaces is a
subfamily both of the family of K3 surfaces X admitting (Z/2Z)4 as
group of symplectic automorphisms and of the family of the K3 surfaces
Y which are quotients of some K3 surfaces by the group (Z/2Z)4.

The main results on Kummer surfaces are contained in Section 4
and applied in Section 5: Nikulin, [Ni1], showed that a non empty set
of disjoint smooth rational curves on a K3 surface can be the branch
locus of a double cover only if it contains exactly 8 or 16 curves. In
the first case the surface which we obtain by taking the double cover
and contracting the (−1)-curves is again a K3 surface, in the second
case the surface we obtain in the same way is an Abelian surface and
the K3 surface is in fact its Kummer surface. In the sequel we call
even sets the sets of disjoint rational curves in the branch locus of
a double cover. In [GSa1] we studied the Néron–Severi group, the
ampleness properties of divisors and the associated projective models
of K3 surfaces which admit an even set of 8 rational curves. Here we
prove similar results for K3 surfaces admitting an even set of 16 rational
curves, thus for the Kummer surfaces. In Section 4 we prove that
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certain divisors on Kummer surfaces are nef, or big and nef, or ample.
In Section 5 we study some maps induced by the divisors considered
before and we obtain projective models for the Kummer surfaces of the
(1, d)-polarized Abelian surfaces for d = 1, 2, 3. As byproduct we show
that these Kummer surfaces have at least one model such that their
Néron–Severi group is generated by lines. Several models described are
already well known, but here we suggest a systematic way to produce
projective models of Kummer surfaces by using lattice theory.

In the second part of the paper (Sections 6, 7, 8, 9, 10) we apply
the previous results on Kummer surfaces to obtain general results on
K3 surfaces X with symplectic action by (Z/2Z)4 and on the minimal
resolutions Y of the quotients X/(Z/2Z)4. In Theorem 7.1, Proposition
8.1 and Theorem 8.3 we describe explicitlyNS(X) andNS(Y ) and thus
we describe the families of the K3 surfaces X and Y proving that they
are 4-dimensional and specialize to the family of the Kummer surfaces.

In [Ke2] Keum proves that every Kummer surface admits an En-
riques involution (i.e. a fixed points free involution). Here we prove that
this property extends to every K3 surface X admitting a symplectic
action of (Z/2Z)4 and with Picard number 16 (the minimal possible).
This shows that the presence of a certain group of symplectic auto-
morphisms on a K3 surface implies the presence of a non–symplectic
involution as well.

On the other hand certain results proved for Kummer surfaces hold
also for the K3 surfaces Y . In Proposition 8.5 we prove that certain
divisors on Y are ample (or nef and big) as we did in Section 4 for
Kummer surfaces. The surface Y admits 15 nodes, by construction. We
recall that every K3 surface with 16 nodes is in fact a Kummer surface;
we prove that similarly every K3 surface which admits 15 nodes is the
quotient of a K3 surface by a symplectic action of (Z/2Z)4. This result
is not trivial, indeed the analogue for a symplectic action of Z/2Z is
false, i.e. a K3 surface with 8 nodes is not necessarily the quotient of a
K3 surface by a symplectic involution. Moreover we show in Theorem
8.3 that K3 surfaces with 15 nodes exist for polarizations of any degree
(we give some examples in Section 10). This answers the question
which is the maximal number of nodes a K3 surface with a given
polarization can have (and it does not contain further singularities).
If the polarization L with L2 = 2t has t even then the maximal number
is 16 and it is attained precisely by Kummer surfaces, otherwise this
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maximum is 15. Finally, in Section 10 we give explicit examples of the
surfaces X and Y and we describe their geometry.

We point out that some results of the paper are (partially) contained
in the first author’s PhD thesis, [G1].

Acknowledgments: We are indebted with Bert van Geemen for
his support and invaluable help during the preparation of the paper.
The Proposition 3.5 and the Theorems 8.3 and 8.6 are motivated by a
question of Klaus Hulek and Ciro Ciliberto respectively. The study in
Section 5 of K3 surfaces with Néron–Severi group generated by lines
is motivated by several discussions with Masato Kuwata. We want to
thank all of them for asking the questions and for their comments.

2. Generalities on Kummer surfaces.

2.1. Kummer surfaces as quotients of Abelian surfaces. Kum-
mer surfaces are K3 surfaces constructed as desingularization of the
quotient of an Abelian surface A by an involution ι. Equivalently
they are K3 surfaces admitting an even set of 16 disjoint rational
curves. We recall briefly the construction: let A be an Abelian sur-
face (here we consider only the case of algebraic Kummer surfaces),
let ι be the involution ι : A −→ A, a 7→ −a. Let A/ι be the quo-
tient surface. It has sixteen singular points of type A1 which are
the image, under the quotient map, of the sixteen points of the set

A[2] = {a ∈ A such that 2a = 0}. Let Ã/ι be the desingularization

of A/ι. The smooth surface Km(A) := Ã/ι is a K3 surface. Consider

the surface Ã, obtained from A by blowing up the points in A[2]. The

automorphism ι on A induces an automorphism ι̃ on Ã whose fixed
locus are the sixteen exceptional divisors of the blow up of A. Hence

the quotient Ã/ι̃ is smooth. It is well known that Ã/ι̃ is isomorphic to
Km(A) and that we have a commutative diagram:

Ã
γ //

��

A

πA

��
Km(A) // A/ι

(1)

We observe that on Ã there are 16 exceptional curves of the blow
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up of the 16 points of A[2] ⊂ A. These curves are fixed by the
involution ι̃ and hence are mapped to 16 rational curves on Km(A).
Each of these curves corresponds uniquely to a point of A[2]. Since
A[2] ' (Z/2Z)4, we denote these 16 rational curves on Km(A) by
Ka1,a2,a3,a4 , where (a1, a2, a3, a4) ∈ (Z/2Z)4. Since the points in A[2]

are fixed by the involution ι, the exceptional curves on Ã are fixed by
ι̃ and so the curves Ka1,a2,a3,a4 are the branch locus of the 2 : 1 cyclic

cover Ã→ Km(A). In particular the curves Ka1,a2,a3,a4 form an even
set, i.e. 1

2 (
∑
ai∈Z/2ZKa1,a2,a3,a4) ∈ NS(Km(A)).

Definition 2.1. (cf. [Ni1]). The minimal primitive sublattice of
H2(Km(A),Z) containing the 16 classes of the curves Ka1,a2,a3,a4 is
called Kummer lattice and is denoted by K.

In [Ni1] it is proved that a K3 surface X is a Kummer surface if
and only if the the Kummer lattice is primitively embedded in NS(X).

Proposition 2.2. [PS, Appendix to section 5, Lemma 4] The lattice
K is a negative definite even lattice of rank sixteen. Its discriminant is
26.

Remark 2.3. Here we briefly recall the properties of K (these are well
known and can be found e.g. in [PS], [BHPV], [Mo]):

1) Let W be a hyperplane in the affine 4-dimensional space

(Z/2Z)4, i.e. W is defined by an equation of type
∑4
i=1 αiai = ε

where αi, ε ∈ {0, 1}, and αi 6= 0 for at least one i ∈ {1, 2, 3, 4}.
The hyperplane W consists of eight points. For every W , the
class 1

2

∑
p∈W Kp is in K and there are 30 classes of this kind.

2) The class 1
2

∑
p∈(Z/2Z)4 Kp is in K.

3) Let Wi = {(a1, a2, a3, a4) ∈ A[2] such that ai = 0}, i =
1, 2, 3, 4. A set of generators (over Z) of the Kummer lat-
tice is given by the classes: 1

2 (
∑
p∈(Z/2Z)4 Kp),

1
2

∑
p∈W1

Kp,
1
2

∑
p∈W2

Kp,
1
2

∑
p∈W3

Kp,
1
2

∑
p∈W4

Kp, K0,0,0,0, K1,0,0,0,
K0,1,0,0, K0,0,1,0, K0,0,0,1, K0,0,1,1, K0,1,0,1, K1,0,0,1,
K0,1,1,0, K1,0,1,0, K1,1,0,0.

4) The discriminant form of K is isometric to the discrimi-
nant form of U(2)⊕3. In particular the discriminant group is
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(Z/2Z)6, there are 35 non zero elements on which the discrimi-
nant form takes value 0 and 28 non zero elements on which the
discriminant form takes value 1.

5) With respect to the group of isometries of K there are three
orbits in the discriminant group: the orbit of zero, the orbit
of the 35 non zero elements on which the discriminant form
takes value 0 and the orbit of the 28 elements on which the
discriminant form takes value 1.

6) Let V and V ′ be two 2-dimensional planes (they are the
intersection of two hyperplanes in (Z/2Z)4 and thus isomorphic
to (Z/2Z)2), such that V ∩ V ′ = {(0, 0, 0, 0)}. Denote by
V ∗V ′ := V ∪V ′− (V ∩V ′), then the classes w4 := 1

2

∑
p∈V Kp

are 35 classes in K∨/K and the discriminant form on them
takes value 0; the classes w6 := 1

2

∑
p∈V ∗V ′ Kp are 28 classes in

K∨/K and the discriminant form on them takes value 1,(see
e.g. [G1, Proposition 2.1.13]).

7) Let Vi,j = {(0, 0, 0, 0), αi, αj , αi + αj} ⊂ (Z/2Z)4, 1 ≤ i, j ≤ 4
where α1 = (1, 0, 0, 0), α2 = (0, 1, 0, 0), α3 = (0, 0, 1, 0), α4 =
(0, 0, 0, 1). Then 1

2 (
∑
p∈V1,2

Kp),
1
2 (
∑
p∈V1,3

Kp),
1
2 (
∑
p∈V1,4

Kp),
1
2 (
∑
p∈V2,3

Kp),
1
2 (
∑
p∈V2,4

Kp),
1
2 (
∑
p∈V3,4

Kp)

generate the discriminant group of the Kummer lattice.

Here we want to relate the Néron–Severi group of the Abelian surface
A with the Néron–Severi group of its Kummer surface Km(A). Recall
that for an abelian variety A we have H2(A,Z) = U⊕3 (see e.g. [Mo,
Theorem-Definition 1.5]).

Proposition 2.4. The isometry ι∗ induced by ι is the identity on
H2(A,Z).

Proof. The harmonic two forms on A are dxi ∧ dxj , i 6= j, i, j =
1, 2, 3, 4 where xi are the local coordinates of A viewed as the real
four dimensional variety (R/Z)4. By the definition of ι we have:

dxi ∧ dxj
ι∗7→ d(−xi)∧ d(−xj) = dxi ∧ dxj . So ι induces the identity on

H2(X,R) = H2(X,Z) ⊗ R and hence on H2(X,Z) since H2(X,Z) is
torsion free. �
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Let Ã be the blow up of A in the sixteen fixed points of the involution
ι and let πA : A −→ A/ι be the 2 : 1 cover. As in [Mo, Section 3],

let HÃ be the orthogonal complement in H2(Ã,Z) of the exceptional
curves and HKm(A) be the orthogonal complement in H2(Km(A),Z)

of the 16 (−2)-curves on Km(A). Then HÃ
∼= H2(A,Z) and there are

the natural maps (see [Mo, Section 3]):

π∗A : HKm(A) → HÃ
∼= H2(A,Z);

πA∗ : H2(A,Z) ∼= HÃ → HKm(A) ⊂ H2(Km(A),Z)

Lemma 2.5. We have πA∗(U
⊕3) = πA∗(H

2(A,Z)ι
∗
) = H2(A,Z)ι

∗
(2) =

U⊕3(2) and so πA∗(U
⊕3) = U(2)⊕3.

Proof. Follows from [Mo, Lemma 3.1] and Proposition 2.4. �

By this lemma we can write ΛK3 ⊗ Q ∼= H2(Km(A),Q) '(
U(2)⊕3 ⊕ 〈−2〉⊕16

)
⊗Q. The lattice U(2)⊕3 ⊕ 〈−2〉⊕16 has index 211

in ΛK3 ' U⊕3 ⊕ E8(−1)⊕2.

Proposition 2.6. Let Km(A) be the Kummer surface associated to the
Abelian surface A. Then the Picard number of Km(A) is ρ(Km(A)) =
ρ(A) + 16, in particular ρ(Km(A)) ≥ 17.

The transcendental lattice of Km(A) is TKm(A) = TA(2). The
Néron–Severi group NS(Km(A)) is an overlattice K′NS(A) of NS(A)(2)⊕
K and

[NS(Km(A)) : (NS(A)(2)⊕K)] = 2ρ(A).

Proof. We have that πA∗(NS(A)⊕TA) = NS(A)(2)⊕TA(2) and this
lattice is orthogonal to the 16 (−2)-classes in H2(Km(A),Z) arising
form the desingularization of A/ι.

Since πA∗ preserves the Hodge decomposition, we have NS(A)(2) ⊂
NS(Km(A)) and TA(2) = TKm(A) (cf. [Mo, Proposition 3.2]). Hence
the Néron–Severi group of Km(A) is an overlattice of finite index of
NS(A)(2) ⊕K. In fact we have rankNS(Km(A)) = 22 − rankTA =
22− (6− rank(NS(A))) = 16 + rank(NS(A)) = rank(NS(A)(2)⊕K).
The index of this inclusion is computed comparing the discriminant of
these two lattices indeed 26−ρ(A)d(TA) = d(TKm(A)) = d(NS(Km(A)))

and d(NS(A)(2) ⊕ K) = 262ρ(A)d(NS(A)) = 26+ρ(A)d(TA), thus
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d(NS(A)(2) ⊕ K)/d(NS(Km(A))) = 26+ρ(A)d(TA)/26−ρ(A)d(TA) =
22ρ(A) which is equal to [NS(Km(A)) : (NS(A)(2) ⊕ K)]2 (see e.g.
[BHPV, Ch. I, Lemma 2.1]). �

Now we will consider the generic case, i.e. the case of Kummer
surfaces with Picard number 17. By Proposition 2.6, if Km(A) has
Picard number 17, then its Néron–Severi group is an overlattice, K′4d,
of index 2 of NS(A)(2)⊕K ' ZH ⊕K where H2 = 4d, d > 0. In the
next proposition we describe the possible overlattices of ZH ⊕K with
H2 = 4d and hence the possible Néron–Severi groups of the Kummer
surfaces with Picard number 17.

Theorem 2.7. Let Km(A) be a Kummer surface with Picard number
17, let H be a divisor generating K⊥ ⊂ NS(Km(A)), H2 > 0. Let
d be a positive integer such that H2 = 4d and let K4d := ZH ⊕ K.
Then: NS(Km(A)) = K′4d, where K′4d is generated by K4d and by a
class (H/2, v4d/2), with:
• v4d ∈ K, v4d/2 6∈ K and v4d/2 ∈ K∨ (in particular v4d ·Ki ∈ 2Z);
• H2 ≡ −v24d mod 8 (in particular v24d ∈ 4Z).

The lattice K′4d is the unique even lattice (up to isometry) such that
[K′4d : K4d] = 2 and K is a primitive sublattice of K′4d. Hence one can
assume that:
if H2 ≡ 0 mod 8, then

v4d =
∑
p∈V1,2

Kp = K0,0,0,0 +K1,0,0,0 +K0,1,0,0 +K1,1,0,0;

if H2 ≡ 4 mod 8, then

v4d =
∑

p∈(V1,2∗V3,4)

Kp

= K0,0,0,1 +K0,0,1,0 +K0,0,1,1 +K1,0,0,0 +K0,1,0,0 +K1,1,0,0.

Proof. The conditions on v4d to construct the lattice K4d can be
proved as in [GSa1, Proposition 2.1]. The uniqueness of K′4d and the
choice of v4d follows from the description of the orbits under the group
of isometries of K on the discriminant group K∨/K, see Remark 2.3.
�



KUMMER SURFACES, SYMPLECTIC ACTION 9

Remark 2.8. (cf. [G2], [BHPV]) 1) Let ωij := πA∗(γ
∗(dxi ∧ dxj)),

i < j, i, j = 1, 2, 3, 4 (we use the notation of diagram (1)). The six
vectors ωi,j form a basis of U(2)⊕3. The lattice generated by the
Kummer lattice K and by the six classes

uij = 1
2 (ωij +

∑
Ka1,a2,a3,a4)

where the sum is over (a1, a2, a3, a4) ∈ (Z/2Z)4 such that ai = aj = 0,
{i, j, h, k} = {1, 2, 3, 4}, and h < k, is isometric to ΛK3.

2) Observe that since for each d ∈ Z>0 there exist Abelian surfaces
with Néron–Severi group isometric to 〈2d〉, for each d there exist
Kummer surfaces with Néron–Severi group isomorphic to K′4d.

Let Fd, d ∈ Z>0 denote the family of K′4d-polarized K3 surfaces
then:

Corollary 2.9. The moduli space of the Kummer surfaces has a
countable number of connected irreducible components, which are the
Fd, d ∈ Z>0.

Proof. Every Kummer surface is polarized with a lattice K′4d, for
some d, by Propositions 2.6 and Theorem 2.7. On the other hand if a
K3 surface is K′4d polarized, then there exists a primitive embedding of
K in its Néron–Severi group and by [Ni1, Theorem 1] it is a Kummer
surface. �

Remark 2.10. The classes of type 1
2 (H + v4d +

∑
p∈W Kp), where

H and v4d are as in Theorem 2.6 and W is a hyperplane of (Z/2Z)4,
are classes in K′4d. We describe this kind of classes modulo the lattice
⊕p∈(Z/2Z)4ZKp. We use the notation of Theorem 2.7.

If H2 = 4d ≡ 0 mod 8, the lattice K′4d contains:

• 4 classes of type 1
2 (H −

∑
p∈J4 Kp) for certain J4 ⊂ (Z/2Z)4

which contain 4 elements: these classes are 1
2 (H + v4d) and

the classes 1
2 (H + v4d +

∑
p∈W Kp) where W ⊃ {(0, 0, 0, 0),

(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0)} ;
• 24 classes of type 1

2 (H −
∑
p∈J8 Kp) for certain J8 ⊂ (Z/2Z)4

which contain 8 elements: these classes are 1
2 (H + v4d +
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∑
p∈W Kp) whereW∩{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0)}

contains 2 elements.
• 4 classes of type 1

2 (H −
∑
p∈J12 Kp) for certain J12 ⊂ (Z/2Z)4

which contain 12 elements: these classes are 1
2 (H + v4d +∑

p∈(Z/2Z)4 Kp) and the classes 1
2 (H + v4d +

∑
p∈W Kp) where

W ∩ {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0)} = ∅.

If H2 = 4d ≡ 4 mod 8, the lattice K′4d contains:

• 16 classes of type 1
2 (H −

∑
p∈J6 Kp) for certain J6 ⊂ (Z/2Z)4

which contain six elements: these classes are 1
2 (H + v4d) and

the classes 1
2 (H + v4d +

∑
p∈W Kp) where

W∩{(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)}
contains 4 elements;

• 16 classes of type 1
2 (H−

∑
p∈J10 Kp) for certain J10 ⊂ (Z/2Z)4

which contain 10 elements: these classes are 1
2 (H + v4d +∑

p∈(Z/2Z)4 Kp) and the classes 1
2 (H + v4d +

∑
p∈W Kp) where

W∩ {(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)}
contains 2 elements.

Remark 2.11. The discriminant group of K′4d is generated by
(H/4d)+ 1

2 (
∑
p∈V3,4

Kp),
1
2 (
∑
p∈V1,3

Kp),
1
2 (
∑
p∈V1,4

Kp),
1
2 (
∑
p∈V2,3

Kp),
1
2 (
∑
p∈V2,4

Kp) if H2 = 4d ≡ 0 mod 8

and by (H/4d) + 1
2 (
∑
p∈V1,2

Kp),
1
2 (
∑
p∈V1,3

Kp),
1
2 (
∑
p∈V1,4

Kp),
1
2 (
∑
p∈V2,3

Kp),
1
2 (
∑
p∈V2,4

Kp) if H2 = 4d ≡ 4 mod 8.

2.2. Kummer surfaces as K3 surfaces with 16 nodes. Let S be a
surface with n nodes and let S̃ be its minimal resolution. On S̃ there are
n disjoint rational curves which arise from the resolution of the nodes

of S. If S̃ is a K3 surface, then n ≤ 16, [Ni1, Corollary 1]. By [Ni1,
Theorem 1], if a K3 surface admits 16 disjoint rational curves, then
they form an even set and the K3 surface is in fact a Kummer surface.
Conversely, as remarked in the previous section, every Kummer surface
contains 16 disjoint rational curves. Thus, the Kummer surfaces are
the K3 surfaces admitting the maximal numbers of disjoint rational
curves or equivalently they are the K3 surfaces which admit a singular
model with the maximal number of nodes.
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2.3. Kummer surfaces as quotient of K3 surfaces.

Definition 2.12. (cf. [Mo, Definition 5.1]) An involution ι on a K3
surface Y is a Nikulin involution if ι∗ω = ω for every ω ∈ H2,0(Y ).

Every Nikulin involution has eight isolated fixed points and the
minimal resolution X of the quotient Y/ι is again a K3 surface ([Ni3,
§11, Section 5]). The minimal primitive sublattice ofNS(X) containing
the eight exceptional curves from the resolution of the singularities of
Y/ι is called Nikulin lattice and it is denoted by N , its discriminant is
26.

Definition 2.13. (cf. [vGS]) A Nikulin involution ι on a K3 surface
Y is a Morrison–Nikulin involution if ι∗ switches two orthogonal copies
of E8(−1) embedded in NS(Y ).

By definition, if Y admits a Morrison–Nikulin involution then
E8(−1) ⊕ E8(−1) ⊂ NS(Y ). A Morrison–Nikulin involution has the
following properties (cf. [Mo, Theorem 5.7 and 6.3]):

• TX = TY (2);
• the lattice N ⊕ E8(−1) is primitively embedded in NS(X);
• the lattice K is primitively embedded in NS(X) and so X is a

Kummer surface.

Definition 2.14. (cf. [Mo, Definition 6.1]) Let Y be a K3 surface
and ι be a Nikulin involution on Y . The pair (Y, ι) is a Shioda–Inose

structure if the rational quotient map π : Y // X is such that X
is a Kummer surface and π∗ induces a Hodge isometry TY (2) ∼= TX .

The situation is resumed in the following diagram (A0 denotes an
abelian surface):

A0

}} %%

Y

  yy
A0/i X = Km(A0)oo // Y/ι
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We have TY ∼= TA0 by [Mo, Theorem 6.3].

Let Y be a K3 surface and ι be a Nikulin involution on Y . By [Mo,
Theorem 5.7 and 6.3] we conclude that

Corollary 2.15. A pair (Y, ι) is a Shioda–Inose structure if and only
if ι is a Morrison–Nikulin involution.

For the next result see [OS, Lemma 2].

Proposition 2.16. Every Kummer surface is the desingularization of
the quotient of a K3 surface by a Morrison–Nikulin involution, i.e. it
is associated to a Shioda–Inose structure.

Remark 2.17. In [OS, Lemma 5] it is proved that if X is a K3
surface with ρ(X) = 20, then each Shioda–Inose structure is induced
by the same Abelian surface. This means that if (X, ι1) and (X, ι2)
are Shioda–Inose structures and Yi = Km(Bi) is the Kummer surface
minimal resolution of Xi/ιi, i = 1, 2 then B1 = B2, and so Y1 = Y2.

By Proposition 2.16 it follows that Kummer surfaces can be defined
also as K3 surfaces which are desingularizations of the quotients of K3
surfaces by Morrison–Nikulin involutions. This definition leads to a
different description of the Néron–Severi group of a Kummer surface,
which we give in the following:

Theorem 2.18. Let Y be a K3 surface admitting a Morrison–Nikulin
involution ι, then ρ(Y ) ≥ 17 and NS(Y ) ' R⊕E8(−1)2 where R is an
even lattice with signature (1, ρ(Y )−17). Let X be the desingularization
of Y/ι, then NS(X) is an overlattice of index 2(rank(R)) of R(2)⊕N ⊕
E8(−1).

In particular, if ρ(Y ) = 17, then: NS(Y ) ' 〈2d〉 ⊕ E8(−1)2,
the surface X is the Kummer surface of the (1, d)-polarized Abelian
surface and the Néron–Severi group of X is an overlattice of index 2
of 〈4d〉 ⊕N ⊕ E8(−1).

Proof. By [Mo, Theorem 6.3] and the fact that E8(−1) is unimod-
ular one can write NS(Y ) = R ⊕ E8(−1)⊕2, with R even of signature
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(1, ρ(Y )− 17). In [Mo, Theorem 5.7] it is proved that N ⊕ E8(−1) is
primitively embedded in NS(X). Thus, arguing on the discriminant of
the transcendental lattices of Y and X and on the lattice R as in Propo-
sition 2.6, one concludes the first part of the proof. For the last part
of the assertion observe that the lattices NS(Y ) and TY are uniquely
determined by their signature and discriminant form ([Mo, Theorem
2.2]), so TY = 〈−2d〉 ⊕ U2. By construction TY (2) = TX = TA0(2) so
TA0 = TY . This determines uniquely NS(A0), which is isometric to
〈2d〉. Hence A0 is a (1, d)-polarized abelian surface. �

The overlattices N ′2d of index 2 of 〈2d〉⊕N are described in [GSa1]
and, by Theorem 2.18, we conclude that if ρ(Y ) = 17 then NS(X) '
N ′4d ⊕ E8(−1).

Remark 2.19. Examples of Shioda–Inose structures on K3 surfaces
with Picard number 17 are given e.g. in the appendix of [GaLo], in
[Kum1], [vGS], [Koi] and in [Sc]. In all these papers the Morrison–
Nikulin involutions of the Shioda–Inose structures are induced by a
translation by a 2-torsion section on an elliptic fibration. In particular,
in [Koi] all the Morrison–Nikulin involutions induced in such a way on
elliptic fibrations with a finite Mordell–Weil group are classified.

Remark 2.20. Proposition 2.6 and Theorem 2.18 give two different
descriptions of the same lattice (the Néron–Severi group of a Kum-
mer surface of Picard number 17): the first one is associated to the
construction of the Kummer surface as quotient of an Abelian surface;
the second one is associated to the construction of the same surface
as quotient of another K3 surface. In general it is an open problem
to pass from one description to the other, and hence to find the re-
lation among these two constructions of a Kummer surface. However
in certain cases this relation is known. In [Na] Naruki describes the
Néron–Severi group of the Kummer surface of the Jacobian of a curve
of genus 2 as in our Proposition 2.6 and he determines a nef divisor that
gives a 2 : 1 map to P2 (we describe this map in Section 5.1). Then, 16
curves on P2 are constructed and it is proved that their pull backs on
the Kummer surface generate the lattice N ⊕ E8(−1). Similarly this
relation is known if the Abelian surface is E × E′, the product of two
non isogenous elliptic curves E, E′. In [O] the Néron–Severi group
of Km(E × E′) is described as in Proposition 2.6. Then the elliptic
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fibrations on this K3 surface are classified. In particular there exists an
elliptic fibration with a fiber of type II∗ and two fibers of type I∗0 . The
components of II∗ which do not intersect the zero section generate a
lattice isometric to E8(−1) and are orthogonal to the components of I∗0 .
The components with multiplicity 1 of the two fibers of type I∗0 gener-
ate a lattice isometric to N and orthogonal to the copy of E8(−1) that
we have described before. Thus, one has an explicit relation between
the two descriptions of the Néron–Severi group.

3. Automorphisms on Kummer surfaces. It is in general a
difficult problem to describe the full automorphisms group of a given K3
surface. However for certain Kummer surfaces it is known. For example
the group of automorphisms of the Kummer surface of the Jacobian of
a curve of genus 2 is described in [Ke1] and [Kon]. Similarly the group
Aut(Km(E×F )) is determined in [KK] in the cases: E and F generic
and non isogenous, E and F generic and isogenous, E and F isogenous
and with complex multiplication.

A different approach to the study of the automorphisms of K3 sur-
faces is to fix a particular group of automorphisms and to describe the
families of K3 surfaces admitting such (sub)group of automorphisms.
For this point of view the following two known results (Propositions 3.1
and 3.3), which assure that every Kummer surface admits some partic-
ular automorphisms are important. Moreover, we prove also a result
(Proposition 3.5) which limits the list of the admissible finite group of
symplectic automorphisms on a generic Kummer surface.

3.1. Enriques involutions on Kummer surfaces. We recall that
an Enriques involution is a fixed point free involution on a K3 surface.

Proposition 3.1. ([Ke2, Theorem 2]) Every Kummer surface admits
an Enriques involution.

To prove the proposition, in [Ke2] the following is shown first (see
[Ni2] and [Ho]).

Proposition 3.2. ([Ke2, Theorem 1]) A K3 surface admits an En-
riques involution if and only if there exists a primitive embedding of the
transcendental lattice of the surface in U ⊕U(2)⊕E8(−2) such that its
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orthogonal complement does not contain classes with self–intersection
equal to −2.

In [Ke2], the author applies the proposition to the transcendental
lattice of any Kummer surface. We observe that this does not give an
explicit geometric description of the Enriques involution.

3.2. Finite groups of symplectic automorphisms on Kummer
surfaces.

Proposition 3.3. (see e.g.[G2]) The group G = (Z/2Z)4 acts sym-
plectically on every Kummer surface Km(A). The elements of G are
induced by the translation by points of order two on the Abelian sur-
face A and the desingularization of Km(A)/G is isomorphic to Km(A)
(thus every Kummer surface is also the desingularization of the quotient
of a Kummer surface by (Z/2Z)4).

Proof. Let A[2] be the group generated by 2-torsion points. This is
isomorphic with (Z/2Z)4, it operates on A by translation and commutes
with the involution ι. Hence it induces an action of G = (Z/2Z)4

on Km(A), and so on H2(Km(A),Z). Observe that G leaves the
lattice U(2)⊕3 ' 〈ωij〉 invariant, in fact G, as a group generated
by translations on A, does not change the real two forms dxi ∧ dxj .
Since TKm(A) ⊂ U(2)⊕3 the automorphisms induced on Km(A) by G
are symplectic. Moreover since ι and G commute we obtain that the

surface Km(A/A[2]) and ˜Km(A)/G are isomorphic. Finally from the

exact sequence 0 → A[2] → A
·2→ A → 0 we have A/A[2] ∼= A and so

˜Km(A)/G ' Km(A/A[2]) ' Km(A). �

Remark 3.4. One can also consider the quotient of Km(A) by sub-
groups of G = (Z/2Z)4, for example by one involution. Such an in-
volution is induced by the translation by a point of order two. Take
the Abelian surface A ∼= R4/Λ, where Λ = 〈2e1, e2, e3, e4〉 and con-
sider the translation te1 by e1. Thus, A/〈te1〉 is the Abelian surface
B := R4/〈e1, e2, e3, e4〉. So the desingularization of the quotient of
Km(A) by the automorphism induced by te1 is again a Kummer sur-
face and more precisely it is Km(B). In particular if NS(A) = 〈2d〉,
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then NS(B) = 〈4d〉, [BL]. This implies that if NS(Km(A)) ' K′4d,
then NS(Km(B)) ' K′8d. Analogously one can consider the sub-
groups Gn = (Z/2Z)n ⊂ G (generated by translations), n = 1, 2, 3:
if NS(Km(A)) ' K′4d, then NS(Km(A/Gn)) ' K′4·2n·d.

Proposition 3.5. Let G be a finite group of symplectic automorphisms
of a Kummer surface Km(A), where A is a (1, d)-polarized Abelian
surface and ρ(A) = 1. Then G is either a subgroup of (Z/2Z)4, or
Z/3Z or Z/4Z.

Proof. Let G be a finite group acting symplectically on a K3 surface
and denote by ΩG the orthogonal complement of the G-invariant
sublattice of the K3 lattice ΛK3. An algebraic K3 surface admits the
group G of symplectic automorphisms if and only if ΩG is primitively
embedded in the Néron–Severi group of the K3 surface (cf. [Ni3],
[Ha]), hence the Picard number is greater than or equal to rank(ΩG)+
1. The list of the finite groups acting symplectically on a K3 surface
and the values of rank(ΩG) can be found in [X, Table 2] (observe
that Xiao considers the lattice generated by the exceptional curves
in the minimal resolution of the quotient, he denotes its rank by c.
This is the same as rank(ΩG) by [I, Corollary 1.2]). Since we are
considering Kummer surfaces such that ρ(Km(A)) = 17, if G acts
symplectically, then rank(ΩG) ≤ 16. This gives the following list of
admissible groups G: (Z/2Z)i for i = 1, 2, 3, 4, Z/nZ for n = 3, 4, 5, 6,
Dm for m = 3, 4, 5, 6, where Dm is the dihedral group of order 2m,
Z/2Z×Z/4Z, (Z/3Z)2, Z/2Z×D4, A3,3 (see [Mu] for the definition),
A4. We can exclude that G acts symplectically on a Kummer surface
for all the listed cases except (Z/2Z)i, i = 1, 2, 3, 4, Z/3Z and Z/4Z
by considering the rank and the length of the lattice ΩG, which is
the minimal number of generators of the discriminant group. For
example, let us consider the case G = D3. The lattice ΩD3

is an
even negative definite lattice of rank 14. Since the group D3 can be
generated by two involutions, ΩD3 is the sum of two (non orthognal)
copies of ΩZ/2Z ' E8(−2) and admits D3 as group of isometries (cf.
[G3, Remark 7.9]). In fact ΩD3

' DIH6(14) where DIH6(14) is
the lattice described in [GrLa, Section 6]. The discriminant group
of ΩD3 ' DIH6(14) is (Z/3Z)3× (Z/6Z)2, [GrLa, Table 8]. If D3 acts
symplectically on Km(A), NS(Km(A)) is an overlattice of finite index
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of ΩD3
⊕R where R is a lattice of rank 3. But there are no overlattices

of finite index of ΩD3 ⊕ R with discriminant group (Z/2Z)4 × Z/2dZ,
which is the discriminant group of NS(Km(A)). Indeed, for every
overlattice of finite index of ΩD3

⊕ R , since the rank of R is 3, the
discriminant group contains at least two copies of Z/3Z.

In order to exclude all the other groups G listed before, one has to
know the rank and the discriminant group of ΩG: this can be found in
[GSa2, Proposition 5.1] if G is abelian; in [G3, Propositions 7.6 and
8.1] if G = Dm, m = 4, 5, 6, G = Z/2Z × D4 and G = A3,3; in [BG,
Section 4.1.1] if G = A4. �

Remark 3.6. We can not exclude the presence of symplectic auto-
morphisms of order 3 or 4 on a Kummer surface with Picard number
17, but we have no explicit examples of such an automorphism. It is
known that there are no automorphisms of such type on Km(A), if A
is principally polarized, cf. [Ke1], [Kon]. If Km(A) admits a sym-
plectic action of Z/3Z, then d ≡ 0 mod 3 (this follows comparing the
length of ΩZ/3Z and of NS(Km(A)) as in the proof of Proposition 3.5).
Moreover, the automorphism of order 3 generates an infinite group of
automorphisms with any symplectic involution on Km(A). Otherwise,
if they generate a finite group, it has to be one of the groups listed in
Proposition 3.5, but there are no groups in this list containing both an
element of order 2 and one of order 3.

3.3. Morrison-Nikulin involutions on Kummer surfaces. Ex-
amples of certain symplectic automorphisms on a Kummer surface (the
Morrison-Nikulin involutions) come from the Shioda–Inose structure.
We recall that every K3 surface with Picard number at least 19 admits a
Morrison–Nikulin involution. In particular this holds true for Kummer
surfaces of Picard number at least 19. This is false for Kummer sur-
faces with lower Picard number. In fact since a Kummer surface with
a Morrison–Nikulin involution admits also a Shioda–Inose structure as
shown in Section 2.3 it suffices to prove:

Corollary 3.7. Let Y ∼= Km(B) be a Kummer surface of Picard
number 17 or 18, then Y does not admit a Shioda–Inose structure.
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Proof. If a K3 surface Y admits a Shioda–Inose structure, then
by Theorem 2.18 we can write NS(Y ) = R ⊕ E8(−1)2 with R an
even lattice of rank 1 or 2, hence the length of NS(Y ) satisfies
l(ANS(Y )) ≤ 2. It follows immediately that we have also l(ATY

) ≤ 2.
Let e1, . . . , ei, i = 5 respectively 4, be the generators of TY . Since
Y ∼= Km(B) we have that TY = TB(2) and so the classes ei/2 are
independent elements of T∨Y /TY thus we have 2 ≥ l(ATY

) ≥ 4, which
is a contradiction. �

In the case the Picard number is 19 we can give a more precise
description of the Shioda–Inose structure:

Proposition 3.8. Let Y ' Km(B) be a Kummer surface, ρ(Y ) = 19
(so Y admits a Morrison–Nikulin involution ι). Let Km(A0) be the
Kummer surface which is the desingularization of Y/ι. Then A0 is not
a product of two elliptic curves.

Proof. If A0 = E1 × E2, Ei, i = 1, 2 an elliptic curve, then the
classes of E1 and E2 in NS(A0) span a lattice isometric to U . To
prove that A0 is not such a product it suffices to prove that there is
not a primitive embedding of U in NS(A0). Assume the contrary,
then NS(A0) = U ⊕ Zh, so `(NS(A0)) = 1. Since Y ' Km(B) is a
Kummer surface, TY ' TB(2) and thus TA0 ' TB(2), this implies that
1 = `(NS(A0)) = `(TA0) = 3 which is a contradiction. �

4. Ampleness of divisors on Kummer surfaces. In this section
we consider projective models of Kummer surfaces with Picard number
17. The main idea is that we can check if a divisor is ample, nef, or
big and nef (which is equivalent to pseudo ample) because we have a
complete description of the Néron–Severi group and so of the (−2)-
curves. Hence we can apply the following criterion (see [BHPV,
Proposition 3.7]):

Let L be a divisor on a K3 surface such that L2 ≥ 0, then it is nef
if and only if L ·D ≥ 0 for all effective divisors D such that D2 = −2.

This idea was used in [GSa1, Proposition 3.2], where one proves
that if there exists a divisor with a negative intersection with L then
this divisor has self-intersection strictly less than −2. We refer to the
description of the Néron–Severi group given in Proposition 2.6, where
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the Néron–Severi group is generated, over Q, by an ample class and by
16 disjoint rational curves, which form an even set over Z. Since the
proofs of the next propositions are very similar to the ones given in
[GSa1, Section 3] (where the Néron–Severi groups of the K3 surfaces
considered are generated over Q by an ample class and by 8 disjoint
rational curves forming an even set) we omit them. We denote by φL
the map induced by the ample (or nef, or big and nef) divisor L on
Km(A).

Proposition 4.1. (cf. [GSa1, Proposition 3.1]) Let Km(A) be a
Kummer surface such that NS(Km(A)) ' K′4d. Let H be as in
Theorem 2.7. Then we may assume that H is pseudo ample and |H|
has no fixed components.

Remark 4.2. The divisor H is orthogonal to all the curves of the Kum-
mer lattice, so φH contracts them. The projective model associated to
this divisor is an algebraic K3 surface with sixteen nodes forming an
even set. More precisely φH(Km(A)) is a model of A/ι.

Proposition 4.3. (cf. [GSa1, Propositions 3.2 and 3.3]) Let Km(A)
be a Kummer surface such that NS(Km(A)) ' K′4d.

• If d ≥ 3, i.e. H2 ≥ 12, then the class H − 1
2 (
∑
p∈(Z/2Z)4 Kp) ⊂

NS(Km(A)) is an ample class. For m ∈ Z>0 the classes
m(H − 1

2 (
∑
p∈(Z/2Z)4 Kp)) and mH − 1

2 (
∑
p∈(Z/2Z)4 Kp) are

ample.
• If d = 2, i.e. (H − 1

2 (
∑
p∈(Z/2Z)4 Kp))

2 = 0, then m(H −
1
2 (
∑
p∈(Z/2Z)4 Kp)) is nef for m ≥ 1 and mH− 1

2 (
∑
p∈(Z/2Z)4 Kp)

is ample for m ≥ 2.

Proposition 4.4. (cf. [GSa1, Proposition 3.4]) The divisors H −
1
2 (
∑
p∈(Z/2Z)4 Kp), mH− 1

2 (
∑
p∈(Z/2Z)4 Kp) and m(H− 1

2 (
∑
p∈(Z/2Z)4 Kp)),

m ∈ Z>0, do not have fixed components for d ≥ 2.

Lemma 4.5. (cf. [GSa1, Lemma 3.1]) The map φH− 1
2 (

∑
p∈(Z/2Z)4 Kp)

is an embedding if H2 ≥ 12.

Proposition 4.6. (cf. [GSa1, Proposition 3.5])
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1) Let D be the divisor D = H−(K1+. . .+Kr) (up to relabelling of
the indices), 1 ≤ r ≤ 16. Then D is pseudo ample for 2d > r.

2) Let D̄ = (H−K1− . . .−Kr)/2 with r = 4, 8, 12 if d ≡ 0 mod 2
and r = 6, 10 if d ≡ 1 mod 2. Then:
• the divisor D̄ is pseudo ample whenever it has positive

self-intersection,
• if D̄ is pseudo ample then it does not have fixed compo-

nents,
• if D̄2 = 0 then the generic element in |D̄| is an elliptic

curve.

Remark 4.7. In the assumptions of Lemma 4.5 the divisor H −
1
2 (
∑
p∈(Z/2Z)4 Kp) defines an embedding of the surface Km(A) into

a projective space which sends the curves of the Kummer lattice to
lines. A divisor D as in Proposition 4.6 defines a map from the surface
Km(A) to a projective space which contracts some rational curves of
the even set and sends the others to conics on the image. Similarly,
D̄ defines a map from the surface Km(A) to a projective space which
contracts some rational curves of the even set and sends the others to
lines on the image.

5. Projective models of Kummer surfaces with Picard num-
ber 17. Here we consider certain Kummer surfaces with Picard num-
ber 17 and we describe projective models determined by the divisors
presented in the previous section. Some of these models (but not all)
are very classical.

5.1. Kummer of the Jacobian of a genus 2 curve. Let C be a
general curve of genus 2. It is well known that the Jacobian J(C)
is an Abelian surface such that NS(J(C)) = ZL, with L2 = 2
and TJ(C) ' 〈−2〉 ⊕ U ⊕ U . Hence NS(Km(J(C))) ' K′4 and
TKm(J(C)) ' 〈−4〉 ⊕ U(2) ⊕ U(2) (see Proposition 2.6 and Theorem
2.7).

Here we want to reconsider some known projective models of
Km(J(C)) (see [GH, Chapter 6]) using the description of the classes
in the Néron–Severi group introduced in the previous section.

The singular quotient surface J(C)/ι is a quartic in P3 with sixteen
nodes. For each of these nodes there exist six planes which pass through
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that node and each plane contains five nodes more. Each plane cuts
the singular quartic surface in a conic with multiplicity 2. In this way
we obtain 16 hyperplane sections which are double conics. These 16
conics are called tropes. They are the image, under the quotient map
J(C) → J(C)/ι, of different embeddings of C in J(C). We saw that
every Kummer surface admits an Enriques involution (cf. Proposition
3.1). If the Kummer surface is associated to the Jacobian of a curve a
genus 2, an explicit equation of this involution on the singular model
of Km(J(C)) in P3 is given in [Ke2, Section 3.3].

The polarization H. The map φH contracts all the curves in the
Kummer lattices and hence φH(Km(J(C))) is the singular quotient
J(C)/ι in P3. The class H is the image in NS(Km(J(C))) of the class
generating NS(J(C)) (Proposition 2.6). The classes corresponding
to the tropes are the 16 classes (described in Remark 2.10, case
4d ≡ 4 mod 8) of the form uJ6 := 1

2 (H −
∑
p∈J6 Kp). Indeed

2uJ6 +
∑
p∈J6 Kp = H so they correspond to a curve in a hyperplane

section with multiplicity 2; u2J6 = −2, so they are rational curves;
uJ6 ·H = 2, so they have degree 2. In particular the trope corresponding
to the class uJ6 passes through the nodes obtained by contracting
the six curves Kp, where p ∈ J6. It is a classical result (cf. [Hud,
Ch. I, §3]) that the rational curves of the Kummer lattice and the
rational curves corresponding to the tropes in this projective models
form a 166 configuration of rational curves on Km(J(C)). This can
directly checked considering the intersections between the curves Kp,
p ∈ (Z/2Z)4 and the classes uJ6 .

The polarization H − K0,0,0,0. Another well known model is
obtained projecting the quartic surface in P3 from a node. This gives
a 2 : 1 cover of P2 branched along six lines which are the image of the
tropes passing through the node from which we are projecting. The
lines are all tangent to a conic (cf. [Na, §1]). Take the node associated
to the contraction of the curve K0,0,0,0 then the linear system associated
to the projection of J(C)/ι from this node is |H−K0,0,0,0|. The classes
uJ6 such that (0, 0, 0, 0) ∈ J6 are sent to lines and the curve K0,0,0,0 is
sent to a conic by the map φH−K0,0,0,0

: Km(J(C))→ P2. This conic is
tangent to the lines which are the images of the tropes uJ6 . So the map
φH−K0,0,0,0 : Km(J(C)) → P2 exhibits Km(A) as double cover of P2

branched along six lines tangent to the conic C := φH−K0,0,0,0(K0,0,0,0).
The singular points of the quartic J(C)/ι which are not the center of



22 ALICE GARBAGNATI AND ALESSANDRA SARTI

this projection are singular points of the double cover of P2. So the
classes Ka1,a2,a3,a4 of the Kummer lattice such that (a1, a2, a3, a4) 6=
(0, 0, 0, 0) are singular points for φH−K0,0,0,0(Km(J(C))) and in fact
correspond to the fifteen intersection points of the six lines in the
branch locus. Observe that if one fixes three of the six lines, the
conic C is tangent to the edges of this triangle. The remaining three
lines form a triangle too and the edges are tangent to the conic C.
By a classical theorem of projective plane geometry (a consequence
of Steiner’s theorem on generation of conics) the six vertices of the
triangles are contained in another conic D, and in fact this conic
is the image of one of the tropes which do not pass through the
singular point corresponding to K0,0,0,0. This can be checked directly
on NS(Km(J(C))). Observe that we have in total 10 such conics.

Deformation. We observe that this model of Km(J(C)) exhibits
the surface as a special member of the 4-dimensional family of K3
surfaces which are 2 : 1 cover of P2 branched along six lines in general
position. The covering involution induces a non-symplectic involution
on Km(J(C)) which fixes 6 rational curves. By Nikulin’s classification
of non-symplectic involutions (cf. e.g. [AN, Section 2.3]) the general
member of the family has Néron–Severi group isometric to 〈2〉 ⊕ A1 ⊕
D4⊕D10 and transcendental lattice isometric to U(2)⊕2⊕〈−2〉⊕2 which
clearly contains TKm(J(C)) ' U(2)⊕2 ⊕ 〈−2〉. This is a particular case
of Proposition 7.13.

The polarization 2H − 1
2

∑
p∈(Z/2Z)4 Kp. We denote by D this

polarization. The divisor D is ample by Proposition 4.3. Since
D2 = 8 the map φD gives a smooth projective model of Km(J(C))
as intersection of 3 quadrics in P5. Using suitable coordinates, we can
write C as

y2 =

5∏
i=0

(x− si)

with si ∈ C, si 6= sj for i 6= j (it is the double cover of P1 ramified on
six points). Then by [Sh2, Theorem 2.5], φD(Km(J(C))) has equation z20 + z21 + z22 + z23 + z24 + z25 = 0

s0z
2
0 + s1z

2
1 + s2z

2
2 + s3z

2
3 + s4z

2
4 + s5z

2
5 = 0

s20z
2
0 + s21z

2
1 + s22z

2
2 + s23z

2
3 + s24z

2
4 + s25z

2
5 = 0

(2)

in P5. The curves of the Kummer lattice are sent to lines by the map
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φD, indeed D ·Kp = 1 for each p ∈ (Z/2Z)4. The image of the rational
curves associated to a divisor of type uJ6 (i.e. the curves which are
tropes on the surface φH(Km(J(C)))) are lines: in fact one computes
D · uJ6 = 1. So on the surface φD(Km(J(C))) we have 32 lines
which admits a 166 configuration. Keum [Ke1, Lemma 3.1] proves
that the set of the tropes and the curves Kp, p ∈ (Z/2Z)4, generate
the Néron–Severi group (over Z). Here we find the same result as a
trivial application of Theorem 2.7. Moreover we can give a geometric
interpretation of this fact, indeed this implies that the Néron–Severi
group of the surface φD(Km(J(C))) is generated by lines (other results
about the Néron–Severi group of K3 surfaces generated by lines can be
found e.g. in [BS]). More precisely the following hold:

Proposition 5.1. The Néron–Severi group of the K3 surfaces which
are smooth complete intersections of the three quadrics in P5 defined by
(2) is generated by lines.

Proof. With the help of Theorem 2.7 we find here a set of classes
generating NS(Km(J(C))) which correspond to lines in the pro-
jective model of the Kummer surface φD(Km(J(C))). This set
of classes is S := { e1 := 1

2 (H − v4), e2 := 1
2 (H − K0,0,0,0 −

K1,0,0,0 − K0,1,0,1 − K0,1,1,0 − K1,1,0,0 − K0,1,1,1), e3 := 1
2 (H −

K0,0,0,0 − K0,1,0,0 − K1,1,0,0 − K1,0,1,0 − K1,0,0,1 − K1,0,1,1), e4 :=
1
2 (H − K0,0,0,0 − K0,0,1,0 − K0,0,1,1 − K1,0,0,1 − K0,1,0,1 − K1,1,0,1),

e5 := 1
2 (H−K0,0,0,0−K0,0,0,1−K0,0,1,1−K1,0,1,0−K1,1,1,0−K0,1,1,0),

e6 := 1
2 (H−K0,0,0,0−K1,0,0,0−K0,1,0,0−K1,1,0,1−K1,1,1,0−K1,1,1,1),

K0,0,0,0, K1,0,0,0, K0,1,0,0, K0,0,1,0, K0,0,0,1, K0,0,1,1, K0,1,0,1, K1,0,0,1,
K0,1,1,0, K1,0,1,0, K1,1,0,0}. Indeed, by Theorem 2.7, a set of generators
of NS(Km(J(C))) is given by e1 and a set of generators of the Kummer
lattice K (a set of generators of K is described in Remark 2.10). Since
for j = 2, 3, 4, 5 ej − e1 ≡ (1/2)

∑
p∈Wj−1

Kp mod (⊕p∈(Z/2Z)4ZKp)

and e1 − e2 + e3 − e6 ≡ 1
2

∑
p∈(Z/2Z)4 Kp mod (⊕p∈(Z/2Z)4ZKp), S is

a Z-basis of NS(Km(J(C))). It is immediate to check that every ele-
ment of this basis has intersection 1 with D and thus is sent to a line
by φD. �

The nef class H − 1
2 (H −

∑
p∈Wi

Kp). Without loss of generality

we consider i = 1 and we call this class D̄. By Proposition 4.6, it
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defines an elliptic fibration on Km(J(C)) and the eight (−2)-classes
contained in D̄ are sections of the Mordell–Weil group, the others eight
(−2)-classes are components of the reducible fibers. Observe that the
class 1

2 (H −K1,0,0,0−K1,1,0,0−K0,1,0,1−K0,1,1,0−K0,1,1,1−K0,0,0,0)

has self intersection −2, has intersection 0 with D̄ and meets the classes
K1,0,0,0 and K1,1,0,0 in one point. One can find easily 3 classes more as
the previous one, so that the fibration contains 4 fibers I4. Checking
in [Kum2, Table p. 9] one sees that this is the fibration number 7 so
it has no more reducible fibers and the rank of the Mordell–Weil group
is 3.

Shioda–Inose structure. We now describe the 3-dimensional fam-
ily of K3 surfaces which admit a Shioda–Inose structure associated to
Km(J(C)) as described in Theorem 2.18. It is obtained by consider-
ing K3 surfaces X with ρ(X) = 17 and with an elliptic fibration with
reducible fibers I∗10 + I2 and Mordell-Weil group equal to Z/2Z (see
Shimada’s list of elliptic K3 surfaces [Shim, Table 1, nr. 1343] on
the arXiv version of the paper). By using the Shioda-Tate formula
(cf e.g. [Sh1, Corollary 1.7]) the discriminant of the Néron–Severi
group of such a surface is (22 · 2)/22. The translation t by the section
of order 2 on X is a Morrison–Nikulin involution, indeed it switches
two orthogonal copies of E8(−1) ⊂ NS(X). Thus, the Néron–Severi
group is 〈2d〉 ⊕ E8(−1) ⊕ E8(−1), and d = 1 because the discrimi-
nant is 2. Hence X has a Shioda–Inose structure associated to the
Abelian surface J(C). The desingularization of the quotient X/t is the
Kummer surface Km(J(C)) and has an elliptic fibration induced by
the one on X, with reducible fibers I∗5 + 6I2 (this is the number 23 of
[Kum2]) and Z/2Z as Mordell-Weil group. This Shioda–Inose struc-
ture was described in [Kum1, Section 5.3]. In Theorem 2.18 we gave
a description of the Néron–Severi group of Km(J(C)) related to the
Shioda–Inose structure. In particular we showed that NS(Km(J(C))
is an overlattice of index 2 of 〈4〉 ⊕ N ⊕ E8(−1). We denote by Q
the generator of 〈4〉, by Ni i = 1, . . . , 8 the classes of the rational
curves in the Nikulin lattice N and by Ej , j = 1, . . . , 8 the gener-
ators of E8(−1) (we assume that Ej , j = 1, . . . , 7 generate a copy
of A7(−1) and E3 · E8 = 1). Then a Z-basis of NS(Km(J(C)))
is {(Q+N1 +N2) /2, N1, . . . , N7,

∑
8
i=1

Ni/2, E1, . . . , E8}. It is easy

to identify a copy of N and an orthogonal copy of E8(−1) in the
previous elliptic fibration (the one with reducible fibers I∗5 + 6I2);
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in particular one remarks that the curves Ni and Ej , j = 2, . . . , 8
are components of the reducible fibers and the curve E1 can be
chosen to be the zero section. This immediately gives the class of
the fiber in terms of the previous basis of the Néron–Severi group:
F := Q− 4E1 − 7E2 − 10E3 − 8E4 − 6E5 − 4E6 − 2E7 − 5E8.

5.2. Kummer surface of a (1, 2)-polarized Abelian surface. In
this section A will denote always a (1, 2) polarized Abelian surface, and
NS(A) = ZL where L2 = 4.

The polarization H. By Proposition 4.1 the divisor H is pseudo-
ample and the singular model φH(Km(A)) has sixteen singular points
(it is in fact A/ι). Since H2 = 8 and since by [SD, Theorem 5.2] H is
not hyperelliptic, the K3 surface φH(Km(A)) is a complete intersection
of three quadrics in P5. This model is described by Barth in [Ba1]:

Proposition 5.2. [Ba1, Proposition 4.6] Let us consider the following
quadrics:

Q1 = {(µ2
1 + λ21)(x21 + x22)− 2µ1λ1(x23 + x24) + (µ2

1 − λ21)(x25 + x26) = 0}
Q2 = {(µ2

2 + λ22)(x21 − x22)− 2µ2λ2(x23 − x24) + (µ2
2 − λ22)(x25 − x26) = 0}

Q3 = {(µ2
3 + λ23)x1x2 − 2µ3λ3x3x4 + (µ2

3 − λ23)x5x6 = 0}.

Let r = r1,2r2,3r3,1 where rk,j = (λ2jµ
2
k − λ2kµ2

j )(λ
2
jλ

2
k − µ2

kµ
2
j ). If r 6= 0

the quadrics Q1, Q2, Q3, generate the ideal of an irreducible surface
Q1 ∩Q2 ∩Q3 ⊂ P5 of degree 8, which is smooth except for 16 ordinary
double points and which is isomorphic to A/ι.

The surface A/ι is then contained in each quadric of the net:
α1Q1+α2Q2+α3Q3, αi ∈ C. We observe that the matrix M associated
to this net of quadrics is a block matrix

M =

 B1 0 0
0 B2 0
0 0 B3

 , where

B1 =

[
α1(µ

2
1 + λ2

1) + α2(µ
2
2 + λ2

2) α3(µ
2
3 + λ2

3)
α3(µ

2
3 + λ2

3) α1(µ
2
1 + λ2

1)− α2(µ
2
2 + λ2

2)

]
B2 =

[
−2α1µ1λ1 − 2α2µ2λ2 −2α3µ3λ3

−2α3µ3λ3 −2α1µ1λ1 + 2α2µ2λ2

]
,

B3 =

[
α1(µ

2
1 − λ2

1) + α2(µ
2
2 − λ2

2) α3(µ
2
3 − λ2

3)
α3(µ

2
3 − λ2

3) α1(µ
2
1 − λ2

1)− α2(µ
2
2 − λ2

2)

]
.
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A singular quadric of the net is such that

det(M) = det(B1) det(B2) det(B3) = 0.

One can easily check that det(B1) = det(B2) + det(B3). So, if α1, α2,
α3 are such that det(Bi) = det(Bj) = 0 i 6= j, then also for the third
block Bh, h 6= i, h 6= j one has det(Bh) = 0. Hence such a choice
corresponds to a quadric of rank 3. There are exactly four possible
choices of (α1, α2, α3) ∈ C3 which satisfy the condition det(Bi) = 0 for
i = 1, 2, 3. Putting λi = 1, i = 1, 2, 3 and

w1 =
√

(µ2
2 − µ2

3)(µ2
2µ

2
3 − 1), w2 =

√
(µ2

1 − µ2
3)(µ2

1µ
2
3 − 1),

w3 =
√

(µ2
2 − µ2

1)(µ2
1µ

2
2 − 1)

the rank 3 quadrics Si correspond to the following choices of (α1, α2, α3) ∈
C3:

S1 : (α1, α2, α3) = (w1, w2, w3) S2 : (α1, α2, α3) = (w1, w2,−w3)

S3 : (α1, α2, α3) = (w1,−w2, w3) S4 : (α1, α2, α3) = (w1,−w2,−w3)

Since for these choices det(Bi) = 0 for i = 1, 2, 3, the quadrics S1, S2,
S3, S4 are of type (β1x1+β2x2)2+(β3x3+β4x4)2+(β5x5+β6x6)2 = 0,
the singular locus of such a quadric is the plane of P5: β1x1 + β2x2 = 0

β3x3 + β4x4 = 0
β5x5 + β6x6 = 0.

We observe that the singular planes of S1 and S2 are complementary
planes in P5 and the same is true for the singular planes of S3 and S4.
Then, up to a change of coordinates, we can assume that:

S1 = y21 + y22 + y23 ,
S2 = z21 + z22 + z23 ,

S3 = (l1y1 +m1z1)2 + (l2y2 +m2z2)2 + (l3y3 +m3z3)2

A/ι = S1 ∩ S2 ∩ S3.

The intersection between Sing(S1) and S2 is a conic C2. The intersec-
tion of this conic with the hypersurface S3 is made up of four points.
So Sing(S1) ∩ (A/ι) = Sing(S1) ∩ (S1 ∩ S2 ∩ S3) = Sing(S1) ∩ S2 ∩ S3

is made up of four points which must be singular on A/ι (as A/ι is
the complete intersection between S1, S2 and S3 and the points are in
Sing(S1)). These four points are four nodes of the surface A/ι. There
is a complete symmetry between the four quadrics S1, S2, S3, S4, so
we have:
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Lemma 5.3. On each plane Sing(Si) there are exactly four singular
points of the surface A/ι.

Let us now consider the classes of Remark 2.10 described by the
set J8 ⊂ (Z/2Z)4. We call any of them uJ8 . These classes have
self intersection −2 and they are effective. Since uJ8 · H = 4, they
correspond to rational quartics on A/ι passing through eight nodes of
the surface. Moreover, they correspond to curves with multiplicity 2,
indeed 2uJ8 +

∑
∈J8 Kp is linearly equivalent to H, which is the class

of the hyperplane section. The classes of these rational curves and
the classes in the Kummer lattice generate the Néron–Severi group of
Km(A). These curves are in a certain sense the analogue of the tropes
of Km(J(C)): like the tropes of Km(J(C)) they are rational curves
obtained as special hyperplane sections of Km(A) and they generate
the Néron–Severi group of the Kummer surface together with the curves
of the Kummer lattice.

The polarization H − Kp1 − Kp2 − Kp3 . Let us choose three
singular points pi, i = 1, 2, 3 such that p1, p2 are contained in Sing(S1)
and p3 /∈ Sing(S1). These three points generate a plane in P5. The
projection of φH(Km(A)) from this planes is associated to the linear
system H −Kp1 −Kp2 −Kp3 . The map φH−Kp1−Kp2−Kp3

: Km(A)→
P2 is a 2 : 1 cover of P2 ramified along the union of two conics and
two lines. The lines are the images of two of the rational curves with
classes of type uJ8 , where J8 contains p1, p2, p3 ∈ J8. This description
of Km(A) was presented in [G1].

Deformation. This model exhibits Km(A) as a special member
of the 6-dimensional family of K3 surfaces which are double cover of
P2 branched along two conics and two lines. The covering involution
is a non-symplectic involution fixing four rational curves. By Nikulin’s
classification of non-symplectic involutions (see e.g. [AN, Section 2.3])
it turns out that the generic member of this family of K3 surfaces has
Néron–Severi group isometric to 〈2〉 ⊕ A1 ⊕ D⊕34 and transcendental
lattice U(2)⊕2 ⊕ 〈−2〉⊕4 (this family is studied in details in [KSTT]).
The transcendental lattice U(2)⊕2⊕ 〈−8〉 of Km(A) clearly embeds in
the previous lattice.

The polarization 2H − 1
2

∑
p∈(Z/2Z)4 Kp. We call this divisor D.

It is ample by Proposition 4.3. The projective model φD(Km(A))
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is a smooth K3 surface in P13. The curves of the Kummer lattice
and the ones associated to classes of type uJ8 are sent to lines and
hence the Néron–Severi group of φD(Km(A)) is generated by lines (cf.
Proposition 5.1).

The nef class 1
2 (H−

∑
p∈J4 Kp). We call it F . By Proposition 4.6,

it defines a map φF : Km(A) → P1 which exhibits Km(A) as elliptic
fibration with 12 fibers of type I2 and Mordell-Weil group isomorphic to
Z3 ⊕ (Z/2Z)2. Indeed the zero section and three independent sections
of infinite order are the curves Ka,b,c,d such that F · Ka,b,c,d = 1.
The non trivial components of the 12 fibers of type I2 are Ke,f,g,h,
such that F ·Ke,f,g,h = 0. The curves F + 2K0,0,0,0 − (

∑
p∈W3

Kp)/2

and F + 2K0,0,0,0 − (
∑
p∈W4

Kp)/2 are two 2-torsion sections. This

description of an elliptic fibration on Km(A) follows immediately by
the properties of the divisors of the Néron–Severi group. However a
geometrical construction giving the same result is obtained considering
the projection of the model of φH(Km(A)) ⊂ P5 from the plane
Sing(S1). The image of this projection lies in the complementary plane
Sing(S2) and is a conic C. Let p be a point of C and let P3

p be the

space generated by Sing(S1) and by p. The fiber over p is S2 ∩S3 ∩P3
p.

The fiber over a generic point of C is an elliptic curve (the intersection
of two quadric in P3). There are 12 points in C, corresponding to the
12 singular points of φH(Km(A)) which are not on the plane Sing(S1),
such that the fibers over these points are singular and in fact of type
I2. A geometrical description of this elliptic fibration is provided also
in [Me], where it is obtained as double cover of an elliptic fibration on
Km(J(C)).

Shioda–Inose structure. We now describe the 3-dimensional
family of K3 surfaces which admit a Shioda–Inose structure associated
to Km(A) as described in Theorem 2.18. It is obtained using results
of [vGS, Section 4.6]: consider the K3 surface X with ρ(X) = 17 and
admitting an elliptic fibration with fibers I16 + 8I1 and Mordell-Weil
group isometric to Z/2Z. By [vGS, Proposition 4.7] the discriminant of
NS(X) is 4 and the translation t by the 2-torsion section is a Morrison–
Nikulin involution. Thus, the desingularization of X/t is a Kummer
surface, which is in fact Km(A) by Theorem 2.18. The elliptic fibration
induced on Km(A) has I8+8I2 singular fibers and Mordell–Weil group
(Z/2Z)2. Using the curves contained in the elliptic fibration one can
easily identify the sublattice N ⊕ E8(−1) of NS(Km(A)): the lattice
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N contains the 8 non trivial components of the 8 fibers of type I2 and
the lattice E8(−1) is generated by 7 components of the fiber of type I8
and by the zero section.

As in the case of the Jacobian of a curve of genus 2, we give a
Z-basis of the Néron–Severi group of Km(A) related to the Shioda–
Inose structure and we identify the class of the fiber of this fibration:
with the previous notation a Z-basis is given by {〈(Q + N1 + N2 +
N3 + N4〉)/2, N1, . . . , N7,

∑
8
i=1

Ni/2, E1, . . . , E8}, where Q2 = 8 and

Q is orthogonal to N ⊕ E8(−1); the class of the fiber in terms of the
previous basis of the Néron–Severi group is F := Q − 5E1 − 10E2 −
15E3 − 12E4 − 9E5 − 6E6 − 3E7 − 8E8.

5.3. Kummer surface of a (1, 3) polarized Abelian surface. Let
A be a (1, 3) polarized Abelian surface, then NS(A) = ZL, L2 = 6.

The polarization H. The model of the singular quotient A/ι
is associated to the divisor H in NS(Km(A)) with H2 = 12. By
Proposition 4.1 and [SD, Theorem 5.2] this model is a singular K3
surface in P7. Let us now consider the 16 classes of Remark 2.10
associated to the set J10 ⊂ (Z/2Z)4. We call any of them uJ10 . They
are (−2)-classes (see Remark 2.10) and are sent to rational curves of
degree 6 on φH(Km(A)).

The polarization H− 1
2 (
∑
p∈(Z/2Z)4 Kp). We call it D. It is ample

by Proposition 4.3 and since D2 = 4, the surface φD(Km(A)) is a
smooth quartic in P3. The curves of the Kummer lattice and the curves
associated to uJ10 are sent to lines. Since the classes of the curves in the
Kummer lattice and the classes uJ10 generate the Néron–Severi group
of Km(A), the Néron–Severi group of φD(Km(A)) is generated by lines
(cf. Proposition 5.1).

The polarization H − K0,0,1,0 − K0,0,1,1 − K1,0,0,0 − K0,1,0,0 −
K0,0,1,1. It defines a 2 : 1 map from Km(A) to P2, since 11 curves Kp

are contracted the branch locus is a reducible sextic with 11 nodes.

Deformation. The generic K3 surface double cover of P2 branched
on a reducible sextic with 11 nodes lies in a 8-dimensional family
and has transcendental lattice equal to U(2)⊕2 ⊕ 〈−2〉⊕6, see [AN,
Section 2.3]. Clearly the transcendental lattice U(2)⊕2 ⊕ 〈−12〉 can be
primitively embedded in U(2)⊕2 ⊕ 〈−2〉⊕6, so the family of Kummer
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surfaces of a (1, 3)-polarized Abelian surface is a special 3-dimensional
subfamily.

The nef class 1
2 (H−

∑
p∈J6 Kp). We call it F . By Proposition 4.6 it

defines an elliptic fibration Km(A)→ P1 with 10 fibers of type I2: the
components of these fibers not meeting the zero section are the curves
Ka,b,c,d of the Kummer lattice such that F ·Ka,b,c,d = 0. The Mordell–
Weil group is Z5 and the curves Ke,f,g,h such that F ·Ke,f,g,h = 1 are
the zero section and 5 sections of infinite order (but they are not the
Z-generators of the Mordell–Weil group).

Shioda–Inose structure.We now describe the 3-dimensional fam-
ily of K3 surfaces which admit a Shioda–Inose structure associated to
Km(A) as described in Theorem 2.18. It was already described inde-
pendently in [G1, Remark 3.3.1 (Section 3.3)] and [Koi, Section 3.1].
Let us consider the K3 surfaces X with ρ(X) = 17 and with an elliptic
fibration with reducible fibers I∗6 + I6 and Mordell–Weil group Z/2Z
(as in the arXiv version of the paper [Shim, Table 1, nr. 1357]). The
translation t by the 2-torsion section is a Morrison–Nikulin involution
(in fact it is immediate to check that it switches two orthogonal copies of
E8(−1) ⊂ NS(X)) and hence the desingularization of the quotient X/t
is a Kummer surface. The latter admits an elliptic fibration induced
by the one on X, with reducible fibers I∗3 + I3 + 6I2 and a 2-torsion
section. By the Shioda-Tate formula (see e.g. [Sh1, Corollary 1.7])
the discriminant of the Néron–Severi group of such an elliptic fibration
is (4 · 3 · 26)/22 and thus this Kummer surface is the Kummer surface
of a (1, 3)-polarized Abelian surface. As in the case of the Jacobian
of a curve of genus 2, we give a Z-basis of the Néron–Severi group of
Km(A) related to the Shioda–Inose structure and we can identify the
class of the fiber of this fibration: the 8 curves Ni are the 6 non trivial
components of each fiber of type I2 and 2 non trivial components of
I∗3 with multiplicity 1; the curves Ei are the zero section, two compo-
nents of I3 and five components of I∗3 . With the previous notation a Z-
basis is given by {〈(Q+N1+N2〉)/2, N1, . . . N7,

∑
8
i=1

Ni/2, E1, . . . , E8},
where Q2 = 12 and Q is orthogonal to N ⊕ E8(−1); the class of
the fiber in terms of this basis of the Néron–Severi group is F :=
Q− 6E1 − 12E2 − 18E3 − 15E4 − 12E5 − 8E6 − 4E7 − 9E8.

6. K3 surfaces with symplectic action of the group (Z/2Z)4

and their quotients. In the following sections we study two 4-
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dimensional families of K3 surfaces that contain subfamilies of Kummer
surfaces. Indeed, we have seen that every Kummer surface admits a
symplectic action of the group (Z/2Z)4 (Proposition 3.3), but the mod-
uli space of K3 surfaces with symplectic action by (Z/2Z)4 has dimen-
sion 4 and thus the Kummer surfaces are a 3-dimensional subfamily.
We will also study the family of K3 surfaces obtained as desingular-
ization of the quotient of a K3 surface by the group (Z/2Z)4 acting
symplectically on it. By Proposition 3.3 this family also contains the
3-dimensional family of Kummer surfaces.

Let G = (Z/2Z)4 be a group of symplectic automorphisms on a
K3 surface X. We observe that G contains (24 − 1) = 15 symplectic
involutions so we have 8 · 15 = 120 distinct points with non trivial
stabilizer group on X, and these are all the points with a non trivial
stabilizer on X (cf. [Ni3, Section 5]). Moreover we have a commutative
diagram:

X̃
β−→ X

π ↓ ↓ π′

Y
β̃−→ Ȳ ,

(3)

where Ȳ is the quotient of X by G, X̃ is the blow up of X at the 120
points with non trivial stabilizer (hence it contains 120 (−1)-curves)
and Y is the minimal resolution of the quotient Ȳ and simultaneously

the quotient of X̃ by the induced action. Observe that Y contains 15
(−2)-curves coming from the resolution of the singularities. In fact
each fixed point on X has a G-orbit of length 8. In particular the
rank of the Néron–Severi group of Y is at least 15 and in fact 16 if
X, and so Y , is algebraic. In particular, since by [I, Corollary 1.2]
rankNS(X)=rankNS(Y ), a K3 surface with a symplectic action of
(Z/2Z)4 has at least Picard number 15 (16 if it is algebraic). Finally π
is 16 : 1 outside the branch locus.

7. K3 surfaces with symplectic action of (Z/2Z)4. In this
section we analyze the K3 surface X admitting a symplectic action
of (Z/2Z)4, in particular we identify the possible Néron–Severi groups
of such a K3 surface if the Picard number is 16, which is the minimum
possible for an algebraic K3 surface with this property. This allows us
to describe the families of such K3 surfaces (cf. Corollary 7.11) and to
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prove that every K3 surfaces admitting (Z/2Z)4 as group of symplectic
automorphisms also admits an Enriques involution: this generalizes the
similar result for Kummer surfaces given in Proposition 3.1.

7.1. The Néron–Severi group of X.

Theorem 7.1. (cf. [G1]) Let X be an algebraic K3 surface with a
symplectic action of (Z/2Z)4 and let Ω⊥(Z/2Z)4 = 〈−8〉 ⊕ U(2)⊕3 be

the invariant lattice H2(X,Z)(Z/2Z)
4

. We have ρ(X) ≥ 16 and if
ρ(X) = 16, denote by L a generator of (Ω(Z/2Z)4)⊥ ∩ NS(X) with

L2 = 2d > 0. Let

L2d
(Z/2Z)4 := ZL⊕ Ω(Z/2Z)4 ⊂ NS(X).

Denote by L′2d(Z/2Z)4,r an overlattice of L2d
(Z/2Z)4 of index r. Then there

are the following possibilities for d, r and L.

1) If d ≡ 0 mod 2 and d 6≡ 4 mod 8, then r = 2, L = w1 :=
(0, 1, t, 0, 0, 0, 0) ∈ Ω⊥(Z/2Z)4 and L2 = w2

1 = 4t.

2) If d ≡ 4 mod 8 and d 6≡ −4 mod 32, then:
either r = 2, L = w1 := (0, 1, t, 0, 0, 0, 0) ∈ Ω⊥(Z/2Z)4 and

L2 = w2
1 = 4t,

or r = 4, L = w2 := (1, 2, 2s, 0, 0, 0, 0) ∈ Ω⊥(Z/2Z)4 and

L2 = w2
2 = 8(2s− 1).

3) If d ≡ −4 mod 32 then:
either r = 2, L = w1 := (0, 1, t, 0, 0, 0, 0) ∈ Ω⊥(Z/2Z)4 and

L2 = w2
1 = 4t,

or r = 4, L = w2 := (1, 2, 2s, 0, 0, 0, 0) ∈ Ω⊥(Z/2Z)4 and

L2 = w2
2 = 8(2s− 1),

or r = 8, L = w3 := (1, 4, 4u, 0, 0, 0, 0) ∈ Ω⊥(Z/2Z)4 and

L2 = w2
3 = 8(8u− 1).

If NS(X) is an overlattice of Zw1⊕Ω(Z/2Z)4 , then TX ' 〈−8〉⊕〈−4t〉⊕
U(2)⊕2;

If NS(X) is an overlattice of Zw2⊕Ω(Z/2Z)4 , then TX '
[
−8 4

4 −4s

]
⊕

U(2)⊕2;
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If NS(X) is an overlattice of Zw3⊕Ω(Z/2Z)4 , then TX '
[
−8 2

2 −4u

]
⊕

U(2)⊕2.

Proof. Since Ω(Z/2Z)4 ⊂ NS(X) and X is algebraic we have ρ(X) ≥
16. The proof of the unicity of the possible overlattices of L2d

(Z/2Z)4 is

based on the following idea. Let us consider the lattice orthogonal to
Ω(Z/2Z)4 in ΛK3. For each element s(= L) ∈ Ω⊥(Z/2Z)4 in a different

orbit under isometries of Ω⊥(Z/2Z)4 , we can consider the lattice Zs ⊕
Ω(Z/2Z)4 . To compute the index of the the overlattice R(= NS(X))
of Zs ⊕ Ω(Z/2Z)4 which is primitively embedded in ΛK3, we consider

the lattice R⊥ = s⊥ ∩ Ω⊥(Z/2Z)4 = (Zs ⊕ Ω(Z/2Z)4))
⊥ ⊂ ΛK3 (which is

isometric to TX). We compute then the discriminant group of R⊥ to get
the discriminant group of R and so we get the index r of Zs⊕Ω(Z/2Z)4

in R(= NS(X)). Recall that

Ω⊥(Z/2Z)4 ' 〈−8〉 ⊕ U(2)3 ' (〈−4〉 ⊕ U3)(2).

The orbits of elements by isometries of this lattice are determined
by the orbits of elements by isometries of the lattice 〈−4〉 ⊕ U3. In
the next sections we investigate them, then the proof of the theorem
follows from the results of Section 7.2. We remark moreover that
under our assumptions two overlattices Ri ⊃ Zwi ⊕ Ω(Z/2Z)4 and
Rj ⊃ Zwj ⊕ Ω(Z/2Z)4 , i 6= j, cannot be isometric in ΛK3 since

their orthogonal complements R⊥i and R⊥j are different. These are
determined in Proposition 7.8 below and they are the transcendental
lattices TX in our statement. �

7.2. The lattice 〈−2d〉 ⊕ U ⊕ U .

Lemma 7.2. Let (a1, a2, a3, a4) be a vector in the lattice U ⊕ U .
There exists an isometry which sends the vector (a1, a2, a3, a4) to the
vector (d, de, 0, 0). In particular the vector (a1, a2, 0, 0) can be sent to
(d, de, 0, 0) where d = gcd(a1, a2) and d2e = a1a2.

Proof. The lattice U ⊕ U is isometric to the lattice {M(2,Z), 2 det}
of the square matrices of dimension two with bilinear form induced by
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the quadratic form given by the determinant multiplied by 2. Explicitly
the isometry can be written as

U ⊕ U −→M(2,Z),

((
a1
a2

)
,

(
a3
a4

))
7→
[
a1 −a3
a4 a2

]
.

It is well known that under the action of the orthogonal group
O(M(2,Z)) each matrix of M(2,Z) can be sent in a diagonal matrix
with diagonal (d1, d2), d1|d2 (this is the Smith Normal Form). Thus
the lemma follows. �

Lemma 7.3. There exists an isometry which sends the primitive vector
(a0, a1, a2, a3, a4) ∈ T2d := 〈−2d〉 ⊕ U ⊕ U , to a primitive vector
(a, d, de, 0, 0) ∈ 〈−2d〉 ⊕ U ⊕ U .

Proof. The primitive vector (a0, a1, a2, a3, a4) is sent to a primitive
vector by any isometry. By Lemma 7.2 there exists an isometry sending
(a1, a2, a3, a4) ∈ U ⊕ U to (d, de, 0, 0) ∈ U ⊕ U , thus there exists an
isometry sending (a0, a1, a2, a3, a4) to (a0, d, de, 0, 0) and (a0, d, de, 0, 0)
is primitive. �

The previous lemma allows us to restrict our attention to the vectors
in the lattice A2d := 〈−2d〉 ⊕ U .

Lemma 7.4. There exists an isometry of A2d which sends the vector
(a, 1, c), to the vector (0, 1, r), where 2c− 2da2 = 2r.

Proof. First we observe that (a, 1, c)·(a, 1, c) = (0, 1, r)·(0, 1, r) = 2r.
Let Rv denote the reflection with respect to v = (1, 0, d), then for
w = (x, y, z) we have

Rv(w) = w − 2
w · v
v · v

v =

 −x+ y
y

−2dx+ dy + z

 .

If a > 0 we apply the reflection Rv to (a, 1, c), (v = (1, 0, d)):

Rv

 a
1
c

 =

 1− a
1

−2da+ d+ c

 .
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Let D be the isometry of A2d,

D =

 −1 0 0
0 1 0
0 0 1

 .
Then

D ◦Rv

 a
1
c

 =

 a− 1
1

−2da+ d+ c

 .

Applying a times the isometry D ◦Rv we obtain

(D ◦Rv)a
 a

1
c

 =

 0
1
2r

 .

�

Lemma 7.5. There exists an isometry of A2d which sends a vector
q2 := (wh ± j, w,wt), with t, h ∈ Z, w, j ∈ N, 0 < j ≤ xd/2y to the
vector p2 := (j, w, s), where s = −dwh2 ∓ 2dhj + wt.

Proof. Without lost of generality we can assume h > 0 (if h ≤ 0,
it is sufficient to consider the action of D). Let us apply the isometry
D ◦Rv to the vector q2:

(D ◦Rv)

 wh± j
w
wt

 =

 w(h− 1)± j
w

−2d(wh± j) + dw + wt

 .

As in the previous proof, applying D◦Rv decreases the first component
and the second remains the same. Applying h-times the isometry to
q2, we obtain that the first component is j or −j. In the second case
we apply again the isometry D, and so in both situations we obtain p2.
�

Lemma 7.6. Let p be a prime number. Let us consider the lattice
T2p = 〈−2p〉 ⊕U ⊕U . There exists an isometry of T2p which sends the
vector q := (n, b, bf, 0, 0), b ∈ Z>0, n ∈ N, gcd(n, b) = 1 to one of the
following vectors:
• v1 = (0, 1, r, 0, 0) where 2b2f − 2pn2 = 2r;
• v2 = (1, 2, 2s, 0, 0), where 2b2f − 2pn2 = 8s− 2p;
• vp = (l, p, pt, 0, 0), where 2b2f − 2pn2 = 2pt− 2pl2, 0 < l ≤ xp/2y;



36 ALICE GARBAGNATI AND ALESSANDRA SARTI

• v2p = (j, 2p, 2pu, 0, 0), where 2b2f − 2pn2 = 8p2u− 2pj2, 0 < j < p,
j ≡ 1 mod 2.

Proof. We can assume n ∈ N and b > 0 (if it is not the case it suffices
to consider the action of − id and of D). Let us consider the reflection
Rv, associated to the vector v = (1, 0, p, 0, 0). We have

Rv


n
b
bf
0
0

 =


−n+ b
b

−2pn+ pb+ bf
0
0

 .

Again we can change the sign of the first component and we obtain
(b − n, b,−2pn + pb + bf, 0, 0). By Lemma 7.2 this vector can be
transformed in (b − n, b1, b1f1, 0, 0), where gcd(b,−2pn + pb + bf) =
b1. Then b1 ≤ b := b0. We apply now Lemma 7.2 to the vector
(n1, b1, b1f1, 0, 0) with n1 := |b − n| > 0 (eventually change the sign
of bn by using the matrix D). The second component of the vector b1
is a positive number, so after a finite number of transformations there
exists η such that bη = bη+1 and gcd(nη, bη) = 1. Since bη|(pbη + bηf)
and gcd(nη, bη) = 1 (recall that the image of a primitive vector by an
isometry is again primitive) bη = bη+1 if and only if bη divides 2p, i.e.
if bη = 1, 2, p, 2p. Moreover gcd(bη−nη, bη) = 1. So by Lemma 7.3 and
applying eventually the transformation D to get the first component of
the vector positive, after a finite number of transformations we obtain
that q is isometric to one of the vectors (a, 1, f ′, 0, 0), (2k+1, 2, 2f ′, 0, 0),
(ph±l, p, pf ′, 0, 0), (2pk±j, 2p, 2pf ′, 0, 0). Applying Lemma 7.4 and 7.5
we obtain that these vectors are isometric respectively to (0, 1, r, 0, 0),
(1, 2, 2s, 0, 0), (l, p, pt, 0, 0) (j, 2p, 2pu, 0, 0). �

Remark 7.7. The vector (ts, t, f, 0, 0) is isometric to (0, t, ∗, 0, 0) by
applying s-times Rv ◦D.

Proposition 7.8. Let p be a prime number. The orbits of the following
vectors of T2p under isometries of T2p are all disjoint:
• v0 = (1, 0, 0, 0, 0);
• v1 = (0, 1, r, 0, 0);
• v2 = (1, 2, 2s, 0, 0);
• vp = (l, p, pt, 0, 0), where 0 < l ≤ xp/2y;
• v2p = (j, 2p, 2pu, 0, 0), where 0 < j < p, j ≡ 1 mod 2.
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Proof. If two vectors x, y of T2p are isometric, then x2 = y2 and
the discriminants of the lattices orthogonal to x and y are equal:
d(x⊥) = d(y⊥). We resume the properties of the vectors vi in the
following table:

v v0 v1 v2 vp v2p
v2 −2p 2r −2p+ 8s −2pl2 + 2p2t −2pj2 + 8p2u

v⊥ U ⊕ U 〈−2p〉 ⊕ 〈−2r〉 ⊕ U
[
−2p p
p −2s

]
⊕ U

[
−2p 2l
2l −2t

]
⊕ U

[
−2p j
j −2u

]
⊕ U

d(v⊥) 1 −4pr −p(4s− p) −4(pt− l2) −4pu+ j2

For each copy of vectors x and y chosen from v0, v1, v2, vp, v2p the
conditions x2 = y2 and d(x⊥) = d(y⊥) are incompatible. For example
let us analyze the case of vp and v2p, the other cases are similar. We
have:

−2pl2 + 2p2t = −2pj2 + 8p2u and 4(pt− l2) = −4pu+ j2.

By the first equation −l2 + pt = −j2 + 4pu. Substituting in the second
equation we obtain 5(pt− l2) = 0 and so pt = l2. This implies p|l2 and
so p|l. Since l ≤ xp/2y this is impossible. �

The previous results imply the following proposition:

Proposition 7.9. A primitive vector (a0, a1, a2, a3, a4) of the lattice
〈−2p〉 ⊕ U ⊕ U is isometric to exactly one of the vectors:
• v0 = (1, 0, 0, 0, 0);
• v1 = (0, 1, r, 0, 0) where 2a1a2 + 2a3a4 − 2pa20 = 2r;
• v2 = (1, 2, 2s, 0, 0) where 2a1a2 + 2a3a4 − 2pa20 = −2p+ 8s;
• vp = (l, p, pt, 0, 0), where 0 < l ≤ xp/2y and 2a1a2 + 2a3a4 − 2pa20 =
−2pl2 + 2p2t;
• v2p = (j, 2p, 2pu, 0, 0), where 0 < j ≤ p and 2a1a2 + 2a3a4 − 2pa20 =
−2pj2 + 8p2u.

Remark 7.10. In particular in the case p = 2 the only possibilities are
the vectors (1, 0, 0, 0, 0), (0, 1, r, 0, 0), (1, 2, 2s, 0, 0) and (1, 4, 4u, 0, 0).

7.3. The family. Let us denote by L2d
r,wi

the overlattice of index r

of Zwi ⊕ Ω(Z/2Z)4 , with w2
i = 2d described in Theorem 7.1. If X is

a K3 surface such that NS(X) ' L2d
r,wi

for a certain r = 2, 4, 8 and
i = 1, 2, 3, then Ω(Z/2Z)4 is clearly primitively embedded in NS(X)

and thus X admits (Z/2Z)4 as group of symplectic automorphisms (cf.
[Ni3, Theorem 4.15]). Hence, the lattices L2d

r,wi
determine the family of
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algebraic K3 surfaces admitting a symplectic action of (Z/2Z)4. More
precisely:

Corollary 7.11. The families of algebraic K3 surfaces admitting a
symplectic action of (Z/2Z)4 are the families of

(
L2d
r,wi

)
-polarized K3

surfaces, for a certain r = 2, 4, 8, i = 1, 2, 3, d ∈ 2N>0. In particular
the moduli space has a countable numbers of connected irreducible
components of dimension 4.

Remark 7.12. If one fixes the value of d, then there is a finite number
of possibilities for r and wi: for example if d = 2, then r = 2 and i = 1,
w1 = (0, 1, 1, 0, 0, 0, 0). This implies that the family of quartic surfaces
in P3 admitting a symplectic action of (Z/2Z)4 has only one connected
irreducible component of dimension 4. In [E] the family of quartics
invariant for the Heisenberg group(' (Z/2Z)4) is described and since
it is a 4-dimensional family of K3 surfaces admitting (Z/2Z)4 as group
of symplectic automorphisms we conclude that the family presented
in [E] is the family of the (L4

2,w1
)-polarized K3 surfaces. The Néron–

Severi group of such a K3 surfaces are generated by conics as proved
in [E, Corollary 7.4].

7.4. The subfamily of Kummer surfaces. By Corollary 2.9, for
every non negative integer d there exists a connected irreducible com-
ponent of the moduli space of Kummer surfaces, which we called Fd
and is the family of the K′4d-polarized K3 surfaces. For every d the com-
ponent Fd is 3-dimensional and by Proposition 3.3 it is contained in a
connected component of the moduli space of K3 surfaces X admitting
G as group of symplectic automorphisms. The following proposition
identifies the components of the moduli space of K3 surfaces with a
symplectic action of G which contain Fd:

Proposition 7.13. The family of the K′4d-polarized Kummer sur-
faces is a codimension one subfamily of the following families: the(
L4d
2,w1

)
-polarized K3 surfaces; the

(
L8(2d−1)
4,w2

)
-polarized K3 surfaces;

the
(
L8(8d−1)
8,w3

)
-polarized K3 surfaces.

Proof. It suffices to show that there exists a primitive embedding

Lhi,wj
⊂ K′4d or equivalently a primitive embedding (K′4d)

⊥ ⊂
(
Lhi,wj

)⊥
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for (i, j, h) = (2, 1, 4d), (4, 2, 8(2d− 1)), (8, 3, 8(8d− 1)). We recall that

(K′4d)
⊥ ' 〈−4d〉⊕U(2)⊕U(2) and

(
Lhi,wj

)⊥
is the transcendental lat-

tice of the generic K3 surface X described in Theorem 7.1. With the no-
tation of Theorem 7.1 sending a basis of 〈−4d〉⊕U(2)⊕U(2) to the ba-
sis vectors (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 1) of
(
Lhi,wj

)⊥
with t = d, s = d, u = d if i = 2, 4, 8

respectively, we obtain an explicit primitive embedding of (K′4d)
⊥

in(
Lhi,wj

)⊥
. �

We observe that the sublattice of NS(Km(A)) invariant for the
action induced by the translation by the two torsion points on A, i.e.,
invariant for the action of G defined in Proposition 3.3, is generated by
H and 1

2 (
∑
p∈(Z/2Z)4 Kp). Indeed H is the image of the generator of

NS(A) by the map πA∗, with the notation of diagram (1). Thus, the
lattice Ω(Z/2Z)4 is isometric to 〈H, 12 (

∑
p∈(Z/2Z)4Kp

)〉⊥ ∩ NS(Km(A))

and in fact the lattice L2d
2,w1

(which contains Ω(Z/2Z)4 and an ample

class) is isometric to 〈 12 (
∑
p∈(Z/2Z)4 Kp)〉⊥ ∩NS(Km(A)).

Remark 7.14. The previous proposition implies that the family of the
Kummer surfaces of a (1, d)-polarized Abelian surface is contained in
at least three distinct connected irreducible components of the family
of K3 surfaces admitting a symplectic action of G. In particular, the
intersection among the connected irreducible components of such family
of K3 surfaces is non empty and of dimension 3.

7.5. Enriques involution. In Section 3 we have seen the result of
Keum, [Ke2]: Every Kummer surface admits an Enriques involution.
We now prove that this property holds more in general for the K3
surfaces admitting (Z/2Z)4 as group of symplectic automorphisms and
minimal Picard number.

Theorem 7.15. Let X be a K3 surface admitting (Z/2Z)4 as group of
symplectic automorphisms and such that ρ(X) = 16, then X admits an
Enriques involution.

Proof. By Proposition 3.2 it suffices to prove that the transcendental
lattice of X admits a primitive embedding in U⊕U(2)⊕E8(−2) whose
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orthogonal does not contain vectors of length −2. The existence of this
embedding can be proved as in [Ke2]. We briefly sketch the proof.

Let Q be one of the following lattices: 〈−4〉 ⊕ 〈−2t〉,
[
−4 2

2 −2s

]
,[

−4 1
1 −2u

]
. The transcendental lattice of X is (U2 ⊕ Q)(2). It

suffices to prove that there exists a primitive embedding of U(2)⊕Q(2)
in U ⊕ E8(−2). The lattice 〈−2〉 ⊕Q is an even lattice with signature
(0, 3). By [Ni2, Theorem 14.4], there exists a primitive embedding of
〈−2〉⊕Q in E8(−1), which induces a primitive embedding of 〈−4〉⊕Q(2)
in E8(−2). Let b1, b2, b3 be the basis of 〈−4〉 ⊕Q(2) in E8(−2). Let e
and f be a standard basis of U (i.e. e2 = f2 = 0, ef = 1). Then the
vectors e, e+ 2f + b1, b2, b3 give a primitive embedding of U(2)⊕Q(2)
in U ⊕E8(−2) whose orthogonal complement does not contain vectors
of length −2 (cf. [Ke2, §2, Proof of Theorem 2]). �

8. The quotient K3 surface. The surface Y obtained as desin-
gularization of the quotient X/(Z/2Z)4 contains 15 rational curves
Mi, which are the resolution of the 15 singular points of type A1 on
X/(Z/2Z)4. The minimal primitive sublattice of NS(Y ) containing
these curves is denoted by M(Z/2Z)4 . It is described in [Ni3, Section 7]

as an overlattice of the lattice 〈Mi〉i=1,...,15 of index 24.

Proposition 8.1. Let Y be a K3 surface such that there exists a
projective K3 surface X and a symplectic action of (Z/2Z)4 on X with

Y = ˜X/(Z/2Z)4. Then ρ(Y ) ≥ 16.

Moreover if ρ(Y ) = 16, let L = M
⊥NS(Y )

(Z/2Z)4 . Then NS(Y ) is an

overlattice of index 2 of ZL⊕M(Z/2Z)4 , where L2 = 2d > 0. In partic-
ular, NS(Y ) is generated by ZL⊕M(Z/2Z)4 and by a class (L/2, v/2),
v/2 ∈ M∨(Z/2Z)4/M(Z/2Z)4 (that is not trivial in M∨(Z/2Z)4/M(Z/2Z)4),

L2 ≡ −v2 mod 8.

Proof. A K3 surface Y obtained as desingularization of the quotient
of a K3 surface X by the symplectic group of automorphisms (Z/2Z)4,
has M(Z/2Z)4 ⊂ NS(Y ). Since M(Z/2Z)4 is negative definite and Y
is projective (it is the quotient of X, which is projective), there is
at least one class in NS(Y ) which is not in M(Z/2Z)4 so ρ(Y ) ≥
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1+rankM(Z/2Z)4 = 16. In particular if ρ(Y ) = 16, then the orthogonal
complement of M(Z/2Z)4 in NS(Y ) is generated by a class with a
positive self intersection, hence NS(Y ) is either ZL ⊕M(Z/2Z)4 or an
overlattice of ZL⊕M(Z/2Z)4 with a finite index. The discriminant group

of M(Z/2Z)4 is (Z/2Z)7 by [Ni3, Section 7] and so the discriminant

group of the lattice ZL⊕M(Z/2Z)4 is (Z/2dZ)× (Z/2Z)7. It has eight
generators. If the lattice ZL ⊕ M(Z/2Z)4 is the Néron–Severi group
of a K3 surface Y , then also the discriminant group of TY has eight
generators, but TY has rank 22−ρ(Y ) = 6, so this is impossible. Hence
NS(Y ) is an overlattice of ZL ⊕M(Z/2Z)4 . The index of the inclusion
and the costruction of the overlattice can be computed as in [GSa1,
Proposition 2.1] or as in Theorem 2.7. �

The Kummer surfaces are also examples of K3 surfaces obtained as
desingularization of the quotient of K3 surfaces by the action of (Z/2Z)4

as group of symplectic automorphisms, see Proposition 3.3.

In [G2, Sections 4.2, 4.3] the action of G on the Kummer lat-

tice and the construction of the surface ˜Km(A)/G are described.
The images of the curves Ka,b,c,d, (a, b, c, d) ∈ (Z/2Z)4 on Km(A)
under the quotient map Km(A) −→ Km(A)/G is a single curve.
This curve can be naturally identified with the curve K0,0,0,0 on the

minimal resolution ˜Km(A)/G ∼= Km(A) (see [G2]). The minimal
resolution contains also fifteen (−2)-curves coming from the blow-
ing up of the nodes on Km(A)/G, which can be identified with
Ke,f,g,h, (e, f, g, h) ∈ (Z/2Z)4\{(0, 0, 0, 0)}. These are the fifteen (−2)-
curves in M(Z/2Z)4 , hence M(Z/2Z)4 = K⊥(0,0,0,0) ∩ K. This identifica-

tion allows us to identify the curves of M(Z/2Z)4 with the points of

the space (Z/2Z)4\{(0, 0, 0, 0)}, hence we denote them by Ma,b,c,d,
(a, b, c, d) ∈ (Z/2Z)4\{(0, 0, 0, 0)}. More explicitly, we are identify-
ing the curve Ka,b,c,d with the curve Ma,b,c,d for any (a, b, c, d) ∈
(Z/2Z)4\{(0, 0, 0, 0)}. By [Ni3] the lattice M(Z/2Z)4 contains the 15

curves Ma,b,c,d, (a, b, c, d) ∈ (Z/2Z)4\{(0, 0, 0, 0)}, it is generated by 11
of these curves and by 4 other classes which are linear combination of
these curves with rational coefficients. These 4 classes have to be con-
tained also in K (because M(Z/2Z)4 ⊂ K) and hence they correspond

to hyperplanes in (Z/2Z)4 which do not contains the point (0, 0, 0, 0)
(because K(0,0,0,0) 6∈M(Z/2Z)4).
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From now on K̄W (resp. M̄W ) denotes 1
2

∑
p∈W Kp (resp. 1

2

∑
p∈W Mp)

for a subset W of (Z/2Z)4 (resp. W a subset of (Z/2Z)4\{(0, 0, 0, 0)}).
We determine the orbits of elements in the discriminant group of
M(Z/2Z)4 and its isometries using the ones of K.

Proposition 8.2. With respect to the group of isometries of M(Z/2Z)4

there are exactly six distinct orbits in the discriminant group M∨(Z/2Z)4/M(Z/2Z)4 .

Proof. Let W be one of the following subspaces:

1) W = (Z/2Z)4;
2) W is a hyperplane in (Z/2Z)4;
3) W is a 2-dimensional plane in (Z/2Z)4;
4) W = V ∗ V ′ where V and V ′ are 2-dimensional planes and

V ∩ V ′ is a point.

By Remark 2.3 the classes K̄W are in K∨ and if W is as in 1) or 2)
the classes K̄W ∈ K, and thus they are trivial in K∨/K. If W is
such that (0, 0, 0, 0) /∈ W , then the class M̄W = K̄W is contained in
M∨(Z/2Z)4 . Indeed it is a linear combination with rational coefficients of

the curves M(a,b,c,d) with (a, b, c, d) ∈ (Z/2Z)4\{(0, 0, 0, 0)}, i.e. it is
in M(Z/2Z)4 ⊗ Q. Moreover it has an integer intersection with all the
classes in K and so in particular with all the classes in M(Z/2Z)4 ⊂ K,
i.e. it is in M∨(Z/2Z)4 . We observe that if W is a hyperplane (as in case

2)) and it is such that (0, 0, 0, 0) /∈ W , then the class M̄W is a class
in M(Z/2Z)4 (and hence trivial in the discriminant group, see Remark
2.3).

If (0, 0, 0, 0) ∈W , let W ′ be W ′ = W −{(0, 0, 0, 0)}. The class M̄W ′

is a class in M∨(Z/2Z)4 . Indeed it is clear that M̄W ′ ∈ M(Z/2Z)4 ⊗ Q
has an integer intersection with all the classes M(a,b,c,d) ∈ M(Z/2Z)4 ,

(a, b, c, d) ∈ (Z/2Z)4\{(0, 0, 0, 0)}. Let Z be a hyperplane of (Z/2Z)4

which does not contain (0, 0, 0, 0). Since M̄Z ∈ M(Z/2Z)4 we have to

check that M̄W ′ · M̄Z ∈ Z. We recall that K̄W is in K∨ and so it
has an integer intersection with all the classes K̄Z . This means that
W ∩ Z is made up of an even number of points. Since (0, 0, 0, 0) /∈ Z,
(0, 0, 0, 0) /∈W ∩Z and hence W ′∩Z is an even number of points. This
implies that M̄W ′ · M̄Z ∈ Z.

If M̄W ∈ M∨(Z/2Z)4 , hence either K̄W or K̄W∪{(0,0,0,0)} is in K∨.

Indeed by Remark 2.3 the Kummer lattice is generated by the curves
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K(a,b,c,d), (a, b, c, d) ∈ (Z/2Z)4, by 4 classes of type K̄Wi
where Wi is

the hyperplane ai = 0, i = 0, 1, 2, 3 (see the notation of Remark 2.3)
and by the class K̄(Z/2Z)4 . This is clearly equivalent to say that K is

generated by the curves K(a,b,c,d), by 4 classes of type K̄W ′i
where W ′i

is the hyperplane ai = 1 and by the class K̄(Z/2Z)4 . If M̄W ∈M∨(Z/2Z)4 ,

then M̄W · M̄W ′i
= K̄W · K̄W ′i

∈ Z. Moreover, since (0, 0, 0, 0) /∈ W ′i ,
we have also K̄W∪{(0,0,0,0)} · K̄W ′i

∈ Z. To conclude that either K̄W or

K̄W∪{(0,0,0,0)} is in K∨, it suffices to prove either that K̄W ·K̄(Z/2Z)4 ∈ Z
or K̄W∪{(0,0,0,0)} ·K̄(Z/2Z)4 ∈ Z. This is clear, indeed K̄W ·K̄(Z/2Z)4 ∈ Z
if and only if W consists of an even number of points. If it is not,
clearly W ∪ {(0, 0, 0, 0)} consists of an even number of points. Thus,
the classes M̄W are in M∨(Z/2Z)4 for the following subspaces:

1) W = (Z/2Z)4\{(0, 0, 0, 0)};
2a) W is an hyperplane in (Z/2Z)4, (0, 0, 0, 0) /∈W ;
2b) W\{(0, 0, 0, 0)} whereW is a hyperplane in (Z/2Z)4, (0, 0, 0, 0) ∈

W ;
3a) W is a 2-dimensional plane in (Z/2Z)4 and (0, 0, 0, 0) /∈W ;
3b) W\{(0, 0, 0, 0)} where W is a 2-dimensional plane in (Z/2Z)4

and (0, 0, 0, 0) ∈W ;
4a) W = V ∗ V ′ where V and V ′ are 2-dimensional planes and

V ∩ V ′ is a point, (0, 0, 0, 0) /∈ V ∗ V ′;
4b) W\{(0, 0, 0, 0)} where W = V ∗V ′, V and V ′ are 2-dimensional

planes and V ∩ V ′ is a point, (0, 0, 0, 0) ∈ V ∗ V ′.

In the quotient M∨(Z/2Z)4/M(Z/2Z)4 each of these cases corresponds to

a class of equivalence, here we study them. We will denote with H
an hyperplane of (Z/2Z)4 such that (0, 0, 0, 0) /∈ H. We observe that
M̄W∗H ≡ M̄W + M̄H mod ⊕p ZMp. Clearly the two classes M̄W and
M̄W∗H coincide in M∨(Z/2Z)4/M(Z/2Z)4 if M̄H ∈ M(Z/2Z)4 . Let n be the

cardinality of W ∩H, m be the number of curves M(a,b,c,d) appearing

in M̄W∗H with a rational, non integer coefficient. In the following table
we resume the classes of M∨(Z/2Z)4 which coincide modulo M(Z/2Z)4 and

for each of them we give the value discr of the discriminant form on it.
The first value of m in the table is the number of curves in M̄W and
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we put a 0 for n;

Case n m discr
1); 2b) 0; 0, 8; 3 15; 7, 7; 7 1

2

3a) 0, 4, 2, 0 4, 4, 8, 12 0
3b) 0, 0, 2 3, 7, 11 1

2

4a) 4, 2 6, 10 1
4b) 4, 2 5, 9 − 1

2

Indeed by Remark 2.3 the orbit of elements in the discriminant group
AK of K are three up to isometries. To prove that the orbit of
AM(Z/2Z)4

are six up to isometries, one considers the action of the

group GL(4,Z/2Z) on (Z/2Z)4, which in fact we can identify with
a subgroup of O(AK). Since GL(4,Z/2Z) fixes (0, 0, 0, 0), it acts also
on (Z/2Z)4\{(0, 0, 0, 0)} and so we can identify it with a subgroup of
O(AM(Z/2Z)4

). This means that under the action ofGL(4,Z/2Z) we have

at most six orbits, associated to the cases 1;2b), 2a), 3a), 3b), 4a), 4b).
We observe that the orbit of 2a) is the one of class 0 ∈ AM(Z/2Z)4

. We

show now that all these orbits are disjoint, so we have exactly 6 (5 non
trivial) orbits in M∨(Z/2Z)4/M(Z/2Z)4 . One can check by a direct compu-

tation that the classes of the cases 1) and 2b) coincide in the quotient.
The classes in M(Z/2Z)4 with self intersection −2 are only ±M(a,b,c,d),

(a, b, c, d) ∈ (Z/2Z)4\{(0, 0, 0, 0)}. Indeed each class in M(Z/2Z)4 is
a linear combination D =

∑
(a,b,c,d)∈(Z/2Z)4−{(0,0,0,0)} α(a,b,c,d)Ma,b,c,d

with α(a,b,c,d) ∈ 1
2Z. The condition −2 = D2 = −2

∑
(a,b,c,d) α

2
(a,b,c,d)

implies that either there is one α(a,b,c,d) = ±1 and the others are zero,

or there are four α(a,b,c,d) equal to ± 1
2 and the others are zero. Since

there are no classes in M(Z/2Z)4 which are linear combination with ra-
tional coefficients of only four classes, we have D = ±M(a,b,c,d) for

a certain (a, b, c, d) ∈ (Z/2Z)4\{(0, 0, 0, 0)}. Since the isometries of
M(Z/2Z)4 preserve the intersection product, they send the classes of the
curves M(a,b,c,d) either to the class of a curve or to the opposite of
the class of a curve. In particular, there are no isometries of M(Z/2Z)4

which identify classes associated to the six cases 1);2b), 2a), 3a), 3b),
4a), 4b), indeed in each class there is some linear combination with non
integer coefficients of a different number of curves M(a,b,c,d) . �
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Theorem 8.3. Let Y be a projective K3 surface such that there
exists a K3 surface X and a symplectic action of (Z/2Z)4 on X with

Y = ˜X/(Z/2Z)4 and let ρ(Y ) = 16.

Then NS(Y ) is generated by ZL⊕M(Z/2Z)4 with L2 = 2d > 0, and

by a class (L/2, v/2), 0 6= v/2 ∈ M∨(Z/2Z)4/M(Z/2Z)4 with L2 ≡ −v2
mod 8. Up to isometry there are only the following possibilities:

i) if d ≡ 1 mod 4, then v/2 = M̄W where

W = {(1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1), (1, 0, 0, 0), (0, 1, 0, 0)}

(case 4b) of proof of Proposition 8.2);
ii) if d ≡ 2 mod 4, then v/2 = M̄W where

W = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0)}

(case 4a) of proof of Proposition 8.2);
if d ≡ 3 mod 4, then: either
iii) v/2 = M̄W where

W = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)}

(case 3b) proof of Proposition 8.2), or
iv) v/2 = M̄W where

W = (Z/2Z)4 − {(0, 0, 0, 0)}

(case 1-2b)) proof of Proposition 8.2);
v) if d ≡ 0 mod 4, then v/2 = M̄W where

W = {(1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 0, 1), (1, 1, 1, 1)}

(case 3a) of proof of Proposition 8.2).

Moreover for each d ∈ N there exists a K3 surface S such that NS(S)
is an overlattice of index two of the lattice 〈2d〉 ⊕M(Z/2Z)4 .

In cases i), ii), iii), v), TY ' U(2) ⊕ U(2) ⊕ 〈−2〉 ⊕ 〈−2d〉. In case
iv) denote by q2 the discriminant form of U(2) then the discriminant
group of TY is (Z/2Z)5 × Z/2dZ with discriminant form q2 ⊕ q2 ⊕(

0 1/2
1/2 (−d− 1)/2d

)
.

Proof. In Proposition 8.1 we proved that the lattice NS(Y ) has to
be an overlattice of index 2 of ZL⊕M(Z/2Z)4 . The unicity of the choice



46 ALICE GARBAGNATI AND ALESSANDRA SARTI

of v up to isometry depends on the description of the orbit of the group
of the isometries of M∨(Z/2Z)4/M(Z/2Z)4 given in Proposition 8.2.

By an explicit computation one can show that the discriminant group
of the overlattices described in i), ii), iii), iv), v) is (Z/2Z)5 × (Z/2dZ)
and the discriminant form in all the cases except iv) is q2⊕q2⊕〈1/2〉⊕
〈1/2d〉. In the case iv) the discriminant form is those described in
the statement. In any case by [Ni2, Theorem 1.14.4 and Remark
1.14.5] the overlattices have a unique primitive embedding in the K3
lattice ΛK3, hence by the surjectivity of the period map there exists
a K3 surface S as in the statement of the theorem. Moreover by
[Ni2, Theorem 1.13.2 and 1.14.2] the transcendental lattice is uniquely
determined by signature and discriminant form. This concludes the
proof. �

Remark 8.4. The Kummer surfaces appear as specializations of the
surfaces Y as in Proposition 8.3 such that d ≡ 0 mod 2. Indeed,
let us consider the surface Y such that d = 2d′. The transcendental
lattice of a generic Kummer of a (1, d′)-polarized Abelian surface is
TKm(A) ' U(2)⊕U(2)⊕〈−4d′〉, and it is clearly primitively embedded
in TY ' U(2)⊕ U(2)⊕ 〈−2〉 ⊕ 〈−4d′〉.

8.1. Ampleness properties. As in Section 4, we can prove that
certain divisors on Y are ample (or nef or nef and big) using the
description of the Néron–Severi group of Y given in Theorem 8.3. The
ample (or nef or nef and big) divisors define projective models, which
can be described in the same way as in Section 5, where we described
projective models of the Kummer surfaces.

Proposition 8.5. With the notation of Theorem 8.3, the following
properties for divisors on Y hold:

• L is pseudo ample and it has no fixed components;
• the divisor D := L − (M1 + . . . + Mr), 1 ≤ r ≤ 15 is pseudo

ample if d > r;
• let D̄ := (L−M1 − . . .−Mr) /2 ∈ NS(Y )⊗Q; if D̄ ∈ NS(Y ),

then it is pseudo ample if d > r.
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8.2. K3 surfaces with 15 nodes. Here we show that a K3 surface
with 15 nodes (resp. with 15 disjoint irreducible rational curves) is in
fact the quotient (resp. the desigularization of the quotient) of a K3
surface by a symplectic action of (Z/2Z)4. This is in a certain sense
the generalization of a similar result for Kummer surfaces (cf. Section
2.2).

Theorem 8.6. Let Y be a projective K3 surface with 15 disjoint smooth
rational curves Mi, i = 1, . . . , 15 or equivalently a K3 surface admitting
a singular model with 15 nodes. Then:
1) NS(Y ) contains the lattice M(Z/2Z)4 .

2) There exists a K3 surface X with a G = (Z/2Z)4 symplectic action,
such that Y is the minimal resolution of the quotient X/G.

Proof. 1) Let Q be the orthogonal complement in NS(Y ) to
⊕15
i=1ZMi and R be the lattice Q⊕

(
⊕15
i=1ZMi

)
. Observe that NS(Y )

is an overlattice of finite index of R and R∨/R ∼= Q∨/Q ⊕ (Z/2Z)⊕15

so l(R) = l(Q) + 15. Let us denote by k the index of R in NS(Y ),
thus l(NS(Y )) = l(Q) + 15 − 2k. On the other hand the rank of
the transcendental lattice is 22 − rank(R) = 7 − rank(Q). Hence
l(Q) + 15 − 2k ≤ 7 − rank(Q). Thus k ≥ (8 + l(Q) + rank(Q)) /2.
We observe that k is the minimum number of divisible class we
have to add to R in order to obtain NS(Y ). By definition the lat-
tice Q is primitive in NS(Y ), thus the non trivial classes that we
can add to R in order to obtain overlattices are either classes in
(⊕iZMi)

∨/(⊕iZMi) or classes like v + v′, where v′ ∈ Q∨/Q and
v ∈ (⊕iZMi)

∨/(⊕iZMi) is non trivial. By construction the indepen-
dent classes of the second type are at most l(Q) and thus there are at
least ((8 + l(Q) + rank(Q)) /2)−l(Q) = (8 + rank(Q)− l(Q)) /2 classes
which are in (⊕iZMi)

∨/(⊕iZMi). We recall that rank(Q) − l(Q) ≥ 0
and hence there are at least 4 classes which are rational linear combi-
nations of the curves Mi. By [Ni1, Lemma 3] such a class in NS(Y )
can only contain 16 or 8 classes. Since 16 is not possible in this case,
all these classes contain eight (−2)-curves. Let uj , j = 1, 2, 3, 4 be 4

independent classes in (⊕iZMi)
∨
/ (⊕ZMi) such that the uj are con-

tained in NS(Y ). For each j 6= h, j, h = 1, 2, 3, 4, there are exactly
4 rational curves which are summands of both ui and uj , otherwise
the sum ui + uj ∈ NS(Y ) contains half the sum of k′ disjoint rational
curves for k′ 6= 8, which is absurd. It is now a trivial computation to
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show that there are at most 4 independent classes (and thus exactly
4) as required in (⊕iZMi)

∨
/ (⊕ZMi) and that for each choice of these

4 classes ui, the lattice obtained adding the classes ui, i = 1, 2, 3, 4 to
⊕iZMi is exactly M(Z/2Z)4 : indeed without loss of generality the first

class can be chosen to be u1 =
∑8
i=1(Mi/2), thus the second class can

be chosen to be u2 =
∑4
i=1(Mi/2) +

∑12
j=9(Mj/2). The third class has

4 curves in common with u1 and with u2 and thus can be chosen to be
u3 = (M1+M2+M5+M6+M9+M10+M13+M14)/2. Similarly, one de-
termines the class u4 = (M1+M3+M5+M7+M9+M11+M13+M15)/2.

2) We consider the double cover π1 : Z1 −→ Y ramified on 2u1.
Since 2u1 contains 8 disjoint rational curves, Z1 is smooth. Moreover
the pullback Ei of the curves Mi, i = 1, . . . , 8 have self intersection
−1, hence these can be contracted to smooth points on a variety
Y1, and the covering involution that determines π1 descends to a
symplectic involution ι1 on Y1 with 8 isolated fixed points (cf. [Mo,
§3]). The divisors 2ui, i = 2, 3, 4 contain each 4 curves which are
also in the support of 2u1. We study the pull back of 2u2, for the
other classes the study is similar. We have 2π∗1(u2) = π∗1(2u2) =
2(E1 + . . . + E4) + M1

5 + M2
5 + M1

6 + M2
6 + M1

7 + M2
7 + M1

8 + M2
8 ,

where π1(M i
j) = Mj for i = 1, 2 and j = 5, 6, 7, 8. Hence the divisor

M1
5 + M2

5 + M1
6 + M2

6 + M1
7 + M2

7 + M1
8 + M2

8 is divisible by 2 in
NS(Z1) and so its image is divisible by 2 on NS(Y1). Doing the same
construction as before, using this class we get a K3 surface Y2 with
an action by a symplectic involution ι2. Observe that ι1 preserves the
divisor M1

5 + M2
5 + M1

6 + M2
6 + M1

7 + M2
7 + M1

8 + M2
8 and so ι1 and

ι2 commute on NS(Y2). Considering now the pull-back of 2u3 and 2u4
on Y2 one can repeat the construction arriving at a K3 surface X := Y4
with an action by (Z/2Z)4 and such that the quotient is Y . We observe
that the smooth model of a K3 surface admitting a singular model with
15 nodes contains 15 disjoint rational curves and we proved that such
a K3 surface is a (Z/2Z)4 quotient of a K3 surface. �

Remark 8.7. Assume now that a K3 surface S either has a lattice
isometric to M(Z/2Z)4 primitively embedded in the Néron–Severi group

or its Néron–Severi group is an overlattice of Q⊕ 〈−2〉15 for a certain
lattice Q. Then the Theorems 8.3, 8.6 do not imply that S is a (Z/2Z)4

quotient of a K3 surface. Indeed in the proof of Theorem 8.6, part 2),
we used that the lattice 〈−2〉15 (contained with index 24 in M(Z/2Z)4) is
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generated by irreducible rational curves. In other words the description
of the Néron–Severi group from a lattice theoretic point of view is not
enough to obtain our geometric characterization. Thus we can not
conclude that the family of the K3 surfaces which are (Z/2Z)4 quotients
of K3 surfaces coincides with the family of the K3 surfaces polarized
with certain lattices.

Remark 8.8. In the proof of Theorem 8.6 we proved that if a K3
surface contains 15 disjoint rational curvesMi, then there are 15 subsets
Si, i = 1, . . . , 15 of 8 of these curves which form an even set. Similarly if
a K3 surface has 15 nodes there are 15 subsets of 8 of these nodes which
form an even set. In [Ba2] and [GSa1] some geometric properties of
the even set of curves and nodes on K3 surfaces are described. For
example if a quartic in P3 contains 8 nodes which form an even set,
then the eight nodes are contained in an elliptic curve and there are
three quadrics in P3 containing these nodes. Hence if a quartic in P3

has 15 nodes, each even set Si has the previous properties.

Corollary 8.9. Let Y be a projective K3 surface with 14 disjoint
smooth rational curves Mi, i = 1, . . . , 14. Then:

1) NS(Y ) contains the lattice M(Z/2Z)3 which is the minimal primi-
tive sublattice of the K3 lattice ΛK3 that contains the 14 rational curves.

2) There exists a K3 surface with a (Z/2Z)3 symplectic action, such
that Y is the minimal resolution of the quotient of X by this group.

Proof. The lattice M(Z/2Z)3 is described in [Ni3, Section 7]. The
proof of 1) and 2) is essentially the same as the proof of 1) and 2) of
Theorem 8.6. �

Remark 8.10. The result analogous to the one of Proposition 8.6 and
Corollary 8.9 does not hold considering 8 (resp. 12) disjoint rational
curves, i.e. considering the group Z/2Z (resp. (Z/2Z)2):

1) If a K3 surface is the minimal resolution of the quotient of a K3
surface by the group Z/2Z, then it admits a set of 8 disjoint rational
curves but if a K3 surface admits a set of 8 disjoint rational curves, then
it is not necessarily the quotient of a K3 surface by the group Z/2Z
acting symplectically. An example is given by the K3 surface with
an elliptic fibration with 8 fibers of type I2 and trivial Mordell–Weil
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group (cf. [Shim, Table 1, Case 99]): it contains 8 disjoint rational
curves (a component for each reducible fibers), which are not an even
set (otherwise the fibration admits a 2-torsion section).

2) If a K3 surface is the minimal resolution of the quotient of a
K3 surface by the group (Z/2Z)2, then it admits a set of 12 disjoint
rational curves but if a K3 surface admits a set of 12 disjoint rational
curves, then it is not necessarily the quotient of a K3 surface by a
group (Z/2Z)2 acting symplectically. Anyway it is surely the quotient
of a K3 surface by Z/2Z (the proof is again similar to the one of
Theorem 8.6). An example is given by the elliptic K3 surface with
singular fibers 2I∗0 + 4I2 which is the number 466 in Shimada’s list,
[Shim]. The components of multiplicity 1 of the fibers of type I∗0 and
a component for each fiber of type I2 are 12 disjoint rational curves.
There is exactly one set of 8 of these curves which is a 2-divisible class
(the sum of the components of the I∗0 fibers of multiplicity one). By
using the Shioda-Tate formula one can easily show that there are no
more divisible classes and hence the surface can not be the quotient of
a K3 surface by (Z/2Z)2.

9. The maps π∗ and π∗. In the previous two sections we de-
scribed the family of the K3 surfaces X admitting a symplectic action
of (Z/2Z)4 and the family of the K3 surfaces Y obtained as desingu-
larizations of the quotients of K3 surfaces by the group (Z/2Z)4. Here
we explicitly describe the relation among these two families. More pre-

cisely in Section 6, we described the quotient map π : X̃ → Y , which
of course induces the maps π∗ and π∗ among the cohomology groups of
the surfaces: here we describe these maps (similar results can be found
in [vGS] if the map π is the quotient map by a symplectic involution).
With the notation of diagram (3) we have:

Proposition 9.1. The map π∗ : H2(X̃,Z) −→ H2(Y,Z) is induced by
the map

〈−2〉⊕16 ⊕ U(2)⊕3 ⊕
(
〈−1〉⊕8

)⊕15 π∗−→ 〈−2〉 ⊕ U(32)⊕3 ⊕ 〈−2〉⊕15
(k1, . . . , k16, u, {n1j}1≤j≤8, . . . , {n15j}1≤j≤8) 7→ (k, u,m1, . . . ,m15)

where π∗(ki) = k, for all i = 1, . . . , 16; π∗(nij) = mi for all j =
1, . . . , 8, i = 1, . . . , 15.
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The map π∗ : H2(Y,Z) −→ H2(X̃,Z) is induced by the map

〈−2〉 ⊕ U(32)⊕3 ⊕ 〈−2〉⊕15 π∗

↪→ 〈−2〉⊕16 ⊕ U(2)⊕3 ⊕
(
〈−1〉⊕8

)⊕15
(k, u,m1, . . . ,m15) 7→ (k1 = k, . . . , k16 = k, 16u,

8∑
j=1

2n1j , . . . ,
8∑
j=1

2n15j)

Proof. By [Ni3, Theorem 4.7] the action of G on ΛK3 does not
depend on the K3 surface we have chosen, hence we can consider
X = Km(A) and G realized as in Section 3 (i.e. it is induced on Km(A)
by the translation by the 2-torsion points of the Abelian surface A).

1. π∗. We have seen that G leaves U(2)⊕3 invariant and in fact
H2(X,Z)G ⊃ U(2)⊕3, however the map π∗ multiply the intersection
form by 16. In fact for x1, x2 ∈ U(2)⊕3 we have:

π∗π∗(x1) = 16x1

so using the projection formula

(π∗x1, π∗x2)Y = (π∗π∗x1, x2)X̃ = 16(x1, x2).

Since by taking X = Km(A) the classes in 〈−2〉⊕16 correspond to
classes permuted by G their image by π∗ is a single (−2)-class in
H2(Y,Z). Finally, the 120 (−1)-classes which are the blow up of the
points with a non trivial stabilizer on X are divided in orbits of length
eight and mapped to the same curve mi on Y . By using the projection
formula and the fact that the stabilizer group of a curve nij has order
2, we have

(mi,mi)Y = (π∗(nij), π∗(nij))Y = (π∗π∗(nij), nij)X̃
= (2(ni1 + . . .+ ni8), nij)X̃ = −2.

2. π∗. Let x ∈ U(32)⊕3 and y ∈ U(2)⊕3 then

(π∗x, y)X̃ = (x, π∗y)Y = (x, y)Y = 16(x, y)X̃

so π∗(x) = 16x. Then we have π∗(u) = 16u since u is not a class in the
branch locus. Finally

(π∗(mi), nhj)X̃ = (mi, π∗(nhj))Y = (mi,mh)Y = −2δih

and (π∗(mi), k)X̃ = (π∗(mi), u)X̃ = 0 for u ∈ U(32)⊕3. Hence π∗(mi)
is given as in the statement. �
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Remark 9.2. The lattice R := 〈−2〉⊕16 ⊕ U(32)⊕3 (which is an
overlattice of index 25 of K ⊕ U(32)⊕3) has index 223 in ΛK3. Here
we want to consider the divisible classes that we have to add to
〈−2〉⊕16 ⊕ U(32)⊕3 to obtain the lattice ΛK3. Consider the Z basis
{ωij}i 6=j of U(2)3 in H2(Km(A),Z). Recall that we have an exact

sequance 0 → A[2] → A
·2→ A → 0, which corresponds to the

multiplication by 2 on each real coordinates of A. Thus, the copy
of U(32)⊕3 ⊂ H2(Km(A/A[2]),Z) is generated by 4ωij . Hence let
ei, fi, i = 1, 2, 3 be the standard basis of each copy of U(32), then the
elements:

ei/4, fi/4

are contained in H2(Y,Z). Adding these classes to R we find 〈−2〉⊕16⊕
U(2)3 as overlattice of index 212 of R.

In Remark 2.8 we describe the construction of the even unimodular
overlattice ΛK3 of 〈−2〉⊕16⊕U(2)⊕3 (we observe that the index is 211).
In conclusion we can construct explicitly the overlattice ΛK3 of R and
extend the maps, π∗, π

∗ to this lattice.

10. Some explicit examples. In this Section we provide geomet-
rical examples of K3 surfaces X with Picard number 16 admitting a
symplectic action of G = (Z/2Z)4 and of the quotient X/G, whose
desingularization is Y . We follow the notation of diagram (3) and we
denote by L the polarization on X orthogonal to the lattice Ω(Z/2Z)4

and by M the polarization on Y orthogonal to the lattice M(Z/2Z)4 .

10.1. The polarization L2 = 4, M2 = L2. We consider the projec-
tive space P3 and the group of transformations generated by:

(x0 : x1 : x2 : x3) 7→ (x0 : −x1 : x2 : −x3)
(x0 : x1 : x2 : x3) 7→ (x0 : −x1 : −x2 : x3)
(x0 : x1 : x2 : x3) 7→ (x1 : x0 : x3 : x2)
(x0 : x1 : x2 : x3) 7→ (x3 : x2 : x1 : x0)
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these transformations generate a group isomorphic to G = (Z/2Z)4.
The invariant polynomials are

p0 = x40 + x41 + x42 + x43
p1 = x20x

2
1 + x22x

2
3

p2 = x20x
2
2 + x21x

2
3

p3 = x20x
2
3 + x21x

2
2

p4 = x0x1x2x3

Hence the generic G-invariant quartic K3 surface is a linear combina-
tion:

a0(x40 + x41 + x42 + x43) + a1(x20x
2
1 + x22x

2
3) + a2(x20x

2
2 + x21x

2
3)

+a3(x20x
2
3 + x21x

2
2) + a4x0x1x2x3 = 0.

Since the only automorphism commuting with all the elements of the
group G is the identity, the number of parameters in the equation is 4,
which is also the dimension of the moduli space of the K3 surfaces with
symplectic automorphism group G and polarization L with L2 = 4.

We study now the quotient surface. Observe that the quotient of P3

by G is the Igusa quartic (cf. [Hun, Section 3.3]), which is an order
four relation between the pi’s, this is:

I4 : 16p44 + p20p
2
4 + p21p

2
2 + p21p

2
3 + p22p

2
3− 4(p21 + p22 + p23)p24− p0p1p2p3 = 0

Hence the quotient is a quartic K3 surface which is a section of the
Igusa quartic by the hyperplane:

a0p0 + a1p1 + a2p2 + a3p3 + a4p4 = 0.

The quartics in P3 admitting (Z/2Z)4 as symplectic group of auto-
morphisms are described in a very detailed way in [E] (cf. also Remark
7.12). We observe that the subfamily with a0 = 0 is also a subfamily
of the family of quartics considered by Keum in [Ke1, Example 3.3].
On this subfamily it is easy to identify an Enriques involution: this is
the standard Cremona transformation (x0 : x1 : x2 : x3) −→ (1/x0 :
1/x1 : 1/x2 : 1/x3).

10.2. The polarization L2 = 8, M2 = L2/4 = 2. Let X be a K3
surface with a symplectic action of G and L2 = 8. There are two
connected irreducible components of the moduli space of K3 surfaces
with these properties (cf. Theorem 7.1 and Corollary 7.11). One of
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them is realized as follows. Let us consider the complete intersection
of three quadrics in P5:

∑5
i=0 aix

2
i = 0∑5

i=0 bix
2
i = 0∑5

i=0 cix
2
i = 0.

with complex parameters ai, bi, ci, i = 0, . . . , 5. The group G is
realized as the transformations of P5 changing an even number of
signs in the coordinates. To compute the dimension of the moduli
space of these K3 surfaces we must choose three independent quadrics
in a six-dimensional space. Hence we must compute the dimension
of the Grassmannian of the subspaces of dimension three in a space
of dimension six. This is 3(6 − 3) = 9. Now the automorphisms of
P5 commuting with the automorphisms generating G are the diagonal
6×6-matrices, hence we find the dimension 9−(6−1) = 4 as expected.

To determine the quotient, one sees that the invariant polynomials
under the action of G are the polynomials z20 , z

2
1 , z

2
2 , z

2
3 , z

2
4 , z

2
5 and the

product z0z1z2z3z4z5. Denote them by y0, . . . , y5, t then there is a
relation

t2 =

5∏
i=0

yi,

and so we obtain a K3 surface which is the double cover of the plane
given by the intersection of the planes of P5:

∑5
i=0 aiyi = 0∑5
i=0 biyi = 0∑5
i=0 ciyi = 0.

The branch locus are six lines meeting at 15 points, whose preimages
under the double cover are the 15 nodes of the K3 surface.

We get a special subfamily of K3 surfaces considering as in Section
5.1 a curve Γ of genus 2 with equation:

y2 =

5∏
i=0

(x− si)
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with si ∈ C, si 6= sj for i 6= j. This determines a family of Kummer
surfaces with (Z/2Z)4 action and equations in P5: z20 + z21 + z22 + z23 + z24 + z25 = 0

s0z
2
0 + s1z

2
1 + s2z

2
2 + s3z

2
3 + s4z

2
4 + s5z

2
5 = 0

s20z
2
0 + s21z

2
1 + s22z

2
2 + s23z

2
3 + s24z

2
4 + s25z

2
5 = 0.

The quotient surface also specializes to the double cover t2 =
∏
i yi of

the plane obtained as the intersection of the planes of P5: y0 + y1 + y2 + y3 + y4 + y5 = 0
s0y0 + s1y1 + s2y2 + s3y3 + s4y4 + s5y5 = 0
s20y0 + s21y1 + s22y2 + s23y3 + s24y4 + s25y5 = 0.

As before the branch locus are 6 lines meeting at 15 points, but in this
case there is a conic tangent to the 6 lines.
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