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Abstract. We study the cohomological properties of the fixed locus XG of an

automorphism group G of prime order p acting on a variety X whose integral
cohomology is torsion-free. We obtain a precise relation between the mod p
cohomology of XG and natural invariants for the action of G on the integral

cohomology of X. We apply these results to irreducible holomorphic symplec-
tic manifolds of deformation type of the Hilbert scheme of two points on a K3
surface: the main result of this paper is a formula relating the dimension of the
mod p cohomology of XG with the rank and the discriminant of the invariant

lattice in the second cohomology space with integer coefficients of X.

Introduction

Smith theory is the study of the cohomological properties of a group G of prime
order p acting on a topological space X. The first important results were obtained
by Smith in the late 1930’s by the introduction of the so-called Smith cohomology
groups and sequences (see Bredon [10]). The use of equivariant cohomology to
reformulate Smith theory was begun by Borel [8] in the 1950’s and further formal-
ized as the “localisation theorem” of Borel–Atiyah–Segal–Quillen in the 1960’s (see
Dwyer–Wilkerson [14]).

In this paper, we use these ideas to relate the dimension of the mod p cohomology
of the fixed point set XG to natural invariants for the action of G on the integral
cohomology H∗(X,Z) for 2 ≤ p ≤ 19 (see Corollaries 4.11 & 4.12). This applies
nicely to the study of prime order automorphisms on some holomorphic symplectic
varieties, particularly those in the deformation class of the Hilbert scheme S[2] of
two points on a K3 surface S. The first main result of this paper is a degeneracy
condition for the spectral sequence of equivariant cohomology

(1) Er,s
2 := Hr(G;Hs(X,Fp)) =⇒ Hr+s

G (X,Fp).

Theorem 1. Let G be a group of prime order p acting by automorphisms on an
irreducible holomorphic symplectic variety X. The spectral sequence (1) degenerate
at the E2-term in the following cases:

(1) X is deformation equivalent to the Hilbert scheme S[2] of two points on a
K3 surface S and p /∈ {2, 5, 23}.

(2) X = S[2], G acts by natural automorphisms (induced by automorphisms of
the surface S) and p 6= 2.
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This result is proven in Proposition 5.12 as a consequence of Deligne’s criterium
(see Section 3.3) applied to specific geometrical objects in the cohomology of S[2]

(Lemmas 5.9, 5.10 & 5.11).
For X deformation equivalent to S[2], denote by TG(X) := H2(X,Z)G the

invariant lattice and by SG(X) := TG(X)⊥ its orthogonal complement for the
Beauville–Bogomolov bilinear form. We define (see Definitions 4.5 & 4.9) two inte-
gers aG(X),mG(X) ∈ N with the property that

H2(X,Z)
TG(X)⊕ SG(X)

∼=
(

Z
pZ

)aG(X)

, rank SG(X) = mG(X)(p− 1).

The second main result of this paper is the following formula:

Theorem 2. Let X be deformation equivalent to S[2] and G be a group of auto-
morphisms of prime order p on X with 3 ≤ p ≤ 19, p 6= 5. Then:

dimH∗(XG,Fp) = 324− 2aG(X) (25− aG(X))− (p− 2)mG(X) (25− 2aG(X))

+
1

2
mG(X)

(
(p− 2)2mG(X)− p

)
with

2 ≤ (p− 1)mG(X) < 23,

0 ≤ aG(X) ≤ min{(p− 1)mG(X), 23− (p− 1)mG(X)}.

This formula is proven in Theorem 5.15. The proof uses first the localisation theo-
rem as presented in Allday–Puppe [1] (see Proposition 3.2), secondly the degeneracy
conditions for the spectral sequence (1) (Proposition 5.12), then the determination
of the Z[G]-module structure of the cohomology space H∗(X,Z) (Proposition 4.1),
and finally the computation of the quotient H4(X,Z)/ Sym2 H2(X,Z):

Proposition 3. If X is deformation equivalent to S[2], then:

H4(X,Z)
Sym2 H2(X,Z)

∼=
(

Z
2Z

)⊕23

⊕
(

Z
5Z

)
.

This result is proven in Proposition 5.6. The 2-torsion was expected, but the
5-torsion is quite surprising. The relation with the discriminant of the invariant
lattice and its orthogonal is given in Lemma 5.5.

As an application of our results, we prove the following statement:

Proposition 4. Let X be deformation equivalent to S[2] and G be a group of
automorphisms of prime order on X. Then the fixed locus XG is not empty.

This result is proven in Proposition 5.17. We also study an order eleven automor-
phism on a Fano variety of lines of a cubic fourfold constructed by Mongardi [31].

Aknowledgements. We thank Olivier Debarre, Alexandru Dimca, William G.
Dwyer, Viacheslav Kharlamov, Giovanni Mongardi, Kieran O’Grady and Volker
Puppe for useful discussions and helpful comments.

1. Terminology and notation

Let p be a prime number and G a finite cyclic group of order p. We fix a
generator g of G. Put τ := g − 1 ∈ Z[G] and σ := 1 + g + · · ·+ gp−1 ∈ Z[G].

Let M be a finite-dimensional Fp-vector space equipped with a linear action of
G (a Fp[G]-module for short). The minimal polynomial of g, as an endomorphism
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of M , divides the polynomial Xp − 1 = (X − 1)p ∈ Fp[X] hence g admits a Jordan
normal form. We can thus decompose M as a direct sum of some G-modules Nq of
dimension q for 1 ≤ q ≤ p, where g acts on Nq by a matrix (in a suitable basis) of
the following form: 

1

<<
<<

<<
<<

<<
1

<<
<<

< 0

1

0 1


Observe that Np is isomorphic to Fp[G] as a G-module. Throughout this paper,
the notation Nq will always denote the Fp[G]-module defined by the Jordan matrix
of dimension q above. We define the integer `q(M) as the number of blocks of
length q in the Jordan decomposition of the G-module M , in such a way that

M ∼=
⊕p

q=1 N
⊕`q(M)
q .

Let H :=
⊕

k≥0 H
k be a finite-dimensional graded Fp-vector space, where each

graded component Hk is equipped with a linear action of G. We define similarly,
for any k ≥ 0 and 1 ≤ q ≤ p, the integer `kq (H) as the number of blocks of length q

in the Jordan decomposition of the G-module Hk.
For any topological space Y with the homotopy type of a finite CW-complex and

any field K, we set hk(Y,K) := dimK Hk(Y,K) and h∗(Y,K) :=
∑

k≥0 h
k(Y,K).

LetX be a smooth connected orientable compact real even-dimensional manifold,
with a smooth orientation-preserving action of G. Denote by XG ⊂ X the fixed
locus of X for the action of G; then XG is a smooth submanifold of X. We define
the integers `kq (X) for 1 ≤ q ≤ p and 0 ≤ k ≤ dimR X as the number of blocks

of length q in the Jordan decomposition of the G-modules Hk(X,Fp) and we set
`∗q(X) :=

∑
k≥0 `

k
q (X).

2. Some useful computations in group cohomology

There is a projective resolution F∗
ε−→ Z of Z considered as a trivial G-module,

given by:

· · · −→ Z[G]
τ−→ Z[G]

σ−→ Z[G]
τ−→ Z[G]

ε−→ Z −→ 0(2)

where ε is the summation map: ε(
∑p−1

j=0 αjg
j) =

∑p−1
j=0 αj and τ , σ act by multi-

plication. The cohomology groups Hi(G;Fp) of G with coefficients in Fp (with a
trivial G-action) are the cohomology groups of the complex:

0 → HomG(Z[G],Fp)
τ∗

→ HomG(Z[G],Fp)
σ∗

→ HomG(Z[G],Fp)
τ∗

→ · · ·

Observe that HomG(Z[G],Fp) ∼= Fp by identifying a G-homomorphism c with its
image c(1) ∈ Fp, so τ∗ and σ∗ are identically zero and we get Hi(G;Fp) ∼= Fp for
all i ≥ 0.

Let now M be as before a Fp[G]-module of finite dimension over Fp. The co-
homology of G with coefficients in M can be computed in a similar way as the
cohomology of the complex:

0 → M
τ̄→ M

σ̄→ M
τ̄→ · · ·
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where τ̄ , σ̄ ∈ Fp[G] denote the reduction modulo p of τ and σ. Observe that
σ̄ = (τ̄)p−1. To compute H∗(G;M) as a Fp-vector space it is enough to compute
the groups H∗(G;Nq).

Lemma 2.1.

(1) If q < p then Hi(G;Nq) = Fp for all i ≥ 0.
(2) H0(G;Np) = Fp and Hi(G;Np) = 0 for all i ≥ 1.

Proof. The case q = 1 is clear since N1
∼= Fp as a trivial G-module. Assume now

that q ≥ 2. Let v1, . . . , vq be a basis of Nq such that gv1 = v1 and gvi = vi−1+vi for
all i ≥ 2. It is easy to compute that, as endomorphisms of Nq, one has ker(τ̄) = 〈v1〉
and Im(τ̄) = 〈v1, . . . , vq−1〉 for all q ≤ p. Using that σ̄ = (τ̄)p−1 we get:

ker σ̄ =

{
Nq if q < p,

〈v1, . . . , vp−1〉 if q = p,
Im(σ̄) =

{
0 if q < p,

〈v1〉 if q = p.

If p = q the result is clear. If q < p it follows from:

ker(τ̄)

Im(σ̄)
∼= 〈v1〉,

ker(σ̄)

Im(τ̄)
∼= 〈vq〉.

�
Recall (see [11, Ch. V]) that the cohomology cross-product:

Hr(G;Fp)⊗Z Hs(G;M) −→ Hr+s(G×G;Fp ⊗Z M)

followed by a diagonal approximation:

Hr+s(G×G;Fp ⊗Z M)
∆∗

−−→ Hr+s(G;Fp ⊗Z M) ∼= Hr+s(G;M)

defines a cup-product and a graded H∗(G;Fp)-module structure on H∗(G;M),
where Fp ⊗Z M is considered as a G-module for the diagonal action (and is iso-
morphic to M as a G-module since G acts trivially on Fp). Here the diagonal
approximation ∆∗ is induced by the maps ∆r,s : Fr+s −→ Fr ⊗ Fs given by:

∆r,s(1) =


1⊗ 1 for r even

1⊗ g for r odd, s even∑
0≤i<j≤p−1 g

i ⊗ gj for r odd, s odd

Let α ∈ Hr(G;Fp) and β ∈ Hs(G;M). Using again the natural identifications
HomG(Fr,Fp) ∼= Fp and HomG(Fs,M) ∼= M one computes easily the cup-product
α ∪ β as follows:

(i) If r is even, α ∪ β = αβ.
(ii) If r is odd and s is even, one has τ̄(β) = 0 (see the proof of Lemma 2.1) so

gβ = β and α ∪ β = αβ.
(iii) If r is odd and s is odd,

α ∪ β = α ·
(
(g + 2g2 + · · ·+ (p− 1)gp−1)β

)
.

We study the action of g + 2g2 + · · ·+ (p− 1)gp−1 on Nq for 1 ≤ q ≤ p.

Lemma 2.2. As an endomorphism of Nq, with 1 ≤ q ≤ p, one has:

g + 2g2 + · · ·+ (p− 1)gp−1 =


0 if q ≤ p− 2,

−τ̄ q−1 if q = p− 1,

−τ̄ q−1 − τ̄ q−2 if q = p.
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Proof. One computes with g = τ̄ + 1:

p−1∑
i=1

igi =

p−1∑
i=1

i∑
j=0

i

(
i

j

)
τ̄ j =

p−1∑
j=0

p−1∑
i=j

i

(
i

j

) τ̄ j =

p−1∑
j=0

(
p−1−j∑
k=0

(j + k)

(
j

j + k

))
τ̄ j

=

p−1∑
j=0

(
j

(
p

j + 1

)
+ (j + 1)

(
p

j + 2

))
τ̄ j

where the last equality follows from an easy induction on p (for any integer p). By
reduction modulo p, all binomial coefficients

(
p
`

)
vanish for 1 ≤ ` ≤ p− 1 so:

p−1∑
i=1

igi = −τ̄p−1 − τ̄p−2.

Since τ̄ q = 0 on Nq, the result follows. �

In the special case M = Fp, in case (iii) one obtains α ∪ β = αβ if p = 2 and
α ∪ β = 0 if p ≥ 3. It follows that, as a graded commutative algebra:

H∗(G;Fp) ∼=

{
Fp[u] if p = 2,

Λ∗(s)⊗Fp Fp[t] if p ≥ 3,

where deg(u) = 1, deg(s) = 1, deg(t) = 2 and Λ∗(s) denotes the exterior algebra
over Fp generated by s (see [1, Proposition 1.4.2]).

Proposition 2.3. H∗(G;Np) ∼= NG
p

∼= Fp is a trivial H∗(G;Fp)-module. For q < p,

H∗(G;Nq) is a free H∗(G;Fp)-module generated by H0(G;Nq) ∼= Fp.

Proof. This follows from Lemma 2.1 and the discussion above. The cases q = p or
p = 2 are clear. In the case p ≥ 3 and q < p, for α ∈ Hr(G;Fp) and β ∈ Hs(G;M)
with r odd and s odd, following the notation used in the proof of Lemma 2.1, β can
be represented by a class vq with σ̄vq = 0. Since σ̄ = τ̄p−1, using Lemma 2.2 one
gets α ∪ β = 0 in case (iii). The result follows. �

We denote by R the polynomial part of H∗(G;Fp) (that is: R = Fp[u] for p = 2
and R = Fp[t] for p ≥ 3). We consider Fp as a R-module by evaluating at zero
(setting u = 0 for p = 2 and t = 0 for p ≥ 3). For any 1 ≤ q ≤ p, we consider
H∗(G;Nq) as a R-module by the inclusion R ↪→ H∗(G;Fp).

Corollary 2.4.

(1) For p = 2 and q < p, one has dimFp Tor
R
0 (H

∗(G;Nq),Fp) = 1 and for

i > 0, TorRi (H
∗(G;Nq),Fp) = 0.

(2) For p ≥ 3 and q < p, one has dimFp Tor
R
0 (H

∗(G;Nq),Fp) = 2 and for

i > 0, TorRi (H
∗(G;Nq),Fp) = 0.

(3) For p ≥ 2, one has:

dimFp Tor
R
0 (H

∗(G;Np),Fp) = 1 = dimFp Tor
R
1 (H

∗(G;Np),Fp) = 1,

and for i ≥ 2, TorRi (H
∗(G;Np),Fp) = 0.

Proof. There is a length 2 projective resolution of Fp as a R-module given by:

0 −→ R
φ−→ R −→ Fp −→ 0
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where φ : R → R is the multiplication by u for p = 2 and by t for p ≥ 3, so
TorRi (H

∗(G;Nq),Fp) = 0 for i ≥ 2 and q ≤ p.
(a) Assume that q < p. By Proposition 2.3, H∗(G;Nq) is a free R-module so

TorRi (H
∗(G;Nq),Fp) = {0} for i ≥ 1. Recall that:

TorR0 (H
∗(G;Nq),Fp) ∼= H∗(G;Nq)⊗R Fp.

For p = 2, H∗(G;Nq) is generated by any non zero element v ∈ H0(G;Nq) as a
R-module so dimFp H

∗(G;Nq)⊗R Fp = 1; for p ≥ 3, H∗(G;Nq) is again generated
by any non zero v ∈ H∗(G;Nq) as a H∗(G;Fp)-module, so is generated by v and sv
as a R-module: this gives dimFp H

∗(G;Nq)⊗R Fp = 2.
(b) Take q = p. From the length 2 resolution of Fp as a R-module, using Proposi-
tion 2.3 one gets:

TorR1 (H
∗(G;Np),Fp) ∼= ker(φ : H∗(G;Np) → H∗(G;Np)) = H∗(G;Np).

By Lemma 2.1 this space is one-dimensional, so:

TorR0 (H
∗(G;Np),Fp) ∼= H∗(G;Np)⊗R Fp

∼= Fp.

�

3. Equivariant cohomology

3.1. Basic facts on equivariant cohomology. Let EG → BG be a universal
G-bundle in the category of CW-complexes. Denote by XG := EG×G X the orbit
space for the diagonal action of G on the product EG×X and by f : XG → BG the
map induced by the projection onto the first factor. The map f is a locally trivial fi-
bre bundle with typical fibre X and structure group G. The equivariant cohomology
of the pair (X,G) with coefficients in Fp is defined by H∗

G(X,Fp) := H∗(XG,Fp),
naturally endowed with a graded H∗(BG,Fp)-module structure. Note that there
is an isomorphism of graded algebras H∗(BG,Fp) ∼= H∗(G;Fp). The Leray–Serre
spectral sequence associated to the map f gives a spectral sequence converging to
the equivariant cohomology with coefficients in Fp:

(1) Er,s
2 := Hr(G;Hs(X,Fp)) =⇒ Hr+s

G (X,Fp).

Remark 3.1. By assumption X has the homotopy type of a finite G-CW-complex.
Denote by C∗(X) the cellular cochain complex of X with coefficients in Fp. The
spaces Cs(X) are finitely dimensional Fp-vector spaces. Recall that ε : F∗ → Z
denotes the above projective resolution of Z as a trivial Z[G]-module, and define
the double complex βr,s

G (X) := HomG(Fr, C
s(X)). As C∗(X) is quasi-isomorphic

to RΓ(X,Fp) in the derived category of G-modules, the cohomology of the total
complex TotβG(X) computes the equivariant cohomology (see Allday–Puppe [1,
Theorem 1.2.8]): H∗

G(X,Fp) ∼= H∗(TotβG(X)). This yields a concrete description
of the first quadrant spectral sequence converging to the equivariant cohomology.

3.2. Cohomology of the fixed locus. Recall that R denotes the polynomial part
of H∗(G;Fp). We prove the following formula (see Allday–Puppe [1] for related
results):

Proposition 3.2. For p ≥ 2 one has:

h∗(XG,Fp) = ν ·
(
dimFp Tor

R
0 (H

∗
G(X,Fp),Fp)− dimFp Tor

R
1 (H

∗
G(X,Fp),Fp)

)
with ν = 1 for p = 2 and ν = 1

2 for p ≥ 3.
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Proof. The graded R-module H∗
G(X,Fp) is of finite type so it admits a minimal

free resolution [1, Proposition A.4.12]:

0 −→ L1 −→ L0 −→ H∗
G(X,Fp) −→ 0

such that rankR Li = dimFp Tor
R
i (H

∗
G(X,Fp),Fp). Write R = Fp[T ] (with T = u

of degree one if p = 2 and T = t of degree two if p ≥ 3). For α ∈ Fp, define
Fp,α := R/(T − α). This is consistent with the previous description Fp

∼= Fp,0 as a
R-module. For α 6= 0, the functor −⊗R Fp,α is exact [1, Lemma A.7.2] so:

dimFp H
∗
G(X,Fp)⊗R Fp,α = dimFp L0 ⊗R Fp,α − dimFp L1 ⊗R Fp,α

= rankR L0 − rankR L1

= dimFp Tor
R
0 (H

∗
G(X,Fp),Fp)

− dimFp Tor
R
1 (H

∗
G(X,Fp),Fp).

For α 6= 0, one has H∗
G(X,Fp)⊗R Fp,α

∼= H∗(βG(X)⊗R Fp,α) (this cohomology is
computed with the total differential). We now use the following analogue of the
localisation theorem in equivariant cohomology [1, Theorem 1.3.5, Theorem 1.4.5]:
for α 6= 0, one has

H∗(βG(X)⊗R Fp,α) ∼=

{
H∗(XG,Fp) if p = 2

H∗(XG,Fp)⊗Fp Λ(s) if p ≥ 3.

The result follows. �
If the spectral sequence (1) degenerates at the E2-term, it induces an isomor-

phism of graded H∗(G;Fp)-modules:

H∗(G;H∗(X,Fp)) ∼= H∗
G(X,Fp).

Using Corollary 2.4, Proposition 3.2 gives immediately:

Corollary 3.3. If the spectral sequence (1) degenerates at the E2-term, then for
p ≥ 2 one has:

h∗(XG,Fp) =
∑

1≤q<p

`∗q(X).

This formula can be stated differently, using only the parameter `∗p(X), that will
appear to be the most important in the sequel:

Corollary 3.4. If the spectral sequence (1) degenerates at the E2-term, then for
p ≥ 2 one has:

h∗(XG,Fp) = dimFp H
∗(X,Fp)

G − `∗p(X).

Proof. Since each Jordan block of H∗(X,Fp) contains a one-dimensional invariant
subspace, one gets dimFp

H∗(X,Fp)
G =

∑
1≤q≤p `

∗
q(X). One conludes by using

Corollary 3.3. �
3.3. Degeneracy condition of the spectral sequence. Even under very nice
conditions, one can not expect the collapsing of the spectral sequence (1) in gen-
eral. For instance, take X a non-singular, real projective algebraic variety and
g : X(C) → X(C) the involution of complex conjugation, G = {1, g} the order two
group acting on X(C). Then X is called a GM-variety if the spectral sequence of
equivariant cohomology with Er,s

2 = Hr(G;Hs(X(C),F2)) degenerates (see Kras-
nov [22, 23] for some examples of GM and non-GM varieties). In this section,
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we prove some degeneracy conditions that will be useful for certain holomorphic
symplectic varieties.

Proposition 3.5. Assume that dimR X = 4 and Hodd(X,Fp) = 0. If X has a fixed
point for the action of G, then the spectral sequence (1) degenerates at the E2-term.

Proof. Let x ∈ X be a fixed point for G. It induces a section s : BG → XG of the
projection f : XG → BG. Denote by

u := s∗1 ∈ H4(XG,Fp)

the proper push-forward of the unit in H∗(BG,Fp). We can view u as a morphism
u : Fp → Fp[4] in the derived category of sheaves of Fp-vector spaces over XG.
Pushing down yields a morphism

q := Rf∗u : Rf∗Fp → Rf∗Fp[4]

in the corresponding derived category of sheaves over BG. From Deligne [13, Propo-
sition 2.1] modified by the arguments of [13, Remarque (1.9), s = 2] (where we use
the assumption Hodd(X,Fp) = 0) we get that if q : R0f∗Fp → R4f∗Fp is an isomor-
phism, then Fp satisfies the Lefschetz condition relative to u, that is:

Rf∗Fp
∼=
⊕
i

Rif∗Fp[−i]

and the spectral sequence (1) degenerates at the E2-term.
In order to show that q is an isomorphism, note that its source and target,

being higher direct images of a constant sheaf along a locally trivial fibration, are
locally constant sheaves. Thus it is enough to show that q is an isomorphism fibre-
wise. This follows from base change, as the fibre of Rif∗Fp at a point t ∈ BG is
just Hi(X,Fp) and the fibre of the morphism q at t is the multiplication by the
fundamental class [x] ∈ H4(X,Fp) of the fixed point x. �

Let F be a vector bundle on X. Recall that a G-linearisation of F is given
by the data of homomorphisms φg : g

∗F → F for all g ∈ G such that the cocycle
condition φh ◦h∗(φg) = φhg : g

∗h∗F → F is fulfilled for all g, h ∈ G. A G-linearised
vector bundle is a vector bundle together with the data of a G-linearisation. Note
that G-equivariant resolutions exist (see Elagin [15]). Natural examples are the
(co)tangent bundle on X (where the G-linearization is given by pullback along the
action of G) or the sheaf of section O(D) for any divisor D on X that is globally
invariant for the action of G.

A G-linearisation on a vector bundle F induces an ordinary G-action on the étale
space of F , which we denote by F again, such that the natural projection F → X
becomes a G-equivariant map. We can then form the space FG := F×GEG, which
has a natural map to XG, making it canonically into a vector bundle over XG. If
we restrict FG to a fibre of f : XG → BG (all of which are isomorphic to X), it
becomes the vector bundle F over X again.

If F has the additional structure of a complex vector bundle and the G-linearisa-
tion of F is compatible with this structure, the induced bundle FG inherits this
structure as a complex vector bundle. Given two G-linearised (complex) vector
bundles F and F ′ over X, there is the obvious notion of a G-equivariant homomor-
phism between F and F ′. It induces naturally an ordinary homomorphism between
FG and F ′

G. This construction is compatible with the notion of exact sequences, so
we get in fact a group homomorphism from the G-equivariant Grothendieck group
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K0
G(X) of X to the ordinary Grothendieck group K0(XG) of (complex) vector bun-

dles. By forgetting the G-linearisations, one defines another group homomorphism
from K0

G(X) → K0(X).
This allows one to construct classes in the equivariant cohomology. Let α be a

characteristic class of complex K-theory with values in Fp (in the sequel, we will use
reductions modulo p of integral characteristic classes like integral linear combina-
tions of Chern classes). Let F be a G-equivariant vector bundle, or more generally a
class in the G-equivariant Grothendieck groupK0

G(X). Then α(FG) ∈ H∗(XG,Fp).
By the naturality of characteristic classes, the restriction of α(FG) to a fibre of
f : XG → BG is just α(F).

Proposition 3.6. Assume that dimR X = 8 and Hodd(X,Fp) = 0. Let F ∈ K0
G(X)

be a class in the equivariant complex K-theory of X and c := α2(F) ∈ H4(X,Fp)
a characteristic class. Assume that the multiplication maps

H2(X,Fp) → H6(X,Fp), β 7→ c ∪ β

H0(X,Fp) → H8(X,Fp), β 7→ c2 ∪ β

are isomorphisms. Then the spectral sequence (1) degenerates at the E2-term.

Proof. The proof is virtually the same as for proposition 3.5. Denoting as above
u := α(FG) ∈ H4(XG,Fp) and q := Rf∗u : Rf∗Fp → Rf∗Fp[4], we use again Deligne
[13, Proposition (2.1)] modified by the arguments of [13, Remarque (1.9), s = 2]:
if q : R2f∗Fp → R6f∗Fp and q2 : R0f∗Fp → R8f∗Fp are isomorphisms, then Fp sat-
isfies the Lefschetz condition relative to u and the spectral sequence degenerates
at the E2-term. Again this can be checked fibrewise, where these maps are the
multiplications by c and c2 respectively. �
Remark 3.7. As an example, assume that X is a smooth complex algebraic variety
of complex dimension two that possesses a G-fixed point x. The skyscraper sheaf
to this point defines a class [x] in K0

G(X) (after a finite G-equivariant resolution).
For α take the second Chern class c2. It follows that u := c2([x]) ∈ H4(XG,Fp) is
a class whose restriction to each fibre X of p : XG → BG is just the fundamental
class of the point x since dimR X = 4. This is the class used in Proposition 3.5.

Remark 3.8. The preceding two propositions are valid for any finite group G acting
on X, not only Z/pZ.

4. Two integral parameters

Assume that H∗(X,Z) is torsion-free. By the universal coefficient theorem, one
has H∗(X,Fp) ∼= H∗(X,Z)⊗Z Fp and the homomorphisms of reduction modulo p,
denoted by

κk : H
k(X,Z) −→ Hk(X,Fp)

are surjective for all k.
Let ξp be a primitive p-th root of unity, K := Q(ξp) and OK := Z[ξp] the ring of

algebraic integers of K. By a classical theorem of Masley–Montgomery [30], OK is
a PID if and only if p ≤ 19. The G-module structure of OK is defined by g ·x = ξpx
for x ∈ OK . For any a ∈ OK , we denote by (OK , a) the module OK ⊕ Z whose
G-module structure is defined by g · (x, k) = (ξpx+ ka, k).

Proposition 4.1. Assume that H∗(X,Z) is torsion-free and 3 ≤ p ≤ 19. Then for
0 ≤ k ≤ dimR X one has:
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(1) `ki (X) = 0 for 2 ≤ i ≤ p− 2.
(2) rankZ H

k(X,Z) = p`kp(X) + (p− 1)`kp−1(X) + `k1(X).

(3) dimFp H
k(X,Fp)

G = `kp(X) + `kp−1(X) + `k1(X).

(4) rankZ H
k(X,Z)G = `kp(X) + `k1(X).

Proof. By a theorem of Diederichsen and Reiner [12, Theorem 74.3], Hk(X,Z) is
isomorphic as a Z[G]-module to a direct sum:

(A1, a1)⊕ · · · ⊕ (Ar, ar)⊕Ar+1 ⊕ · · · ⊕Ar+s ⊕ Y

where the Ai are fractional ideals in K, ai ∈ Ai are such that ai /∈ (ξp−1)Ai and Y
is a free Z-module of finite rank on which G acts trivially. The G-module structure
on Ai is defined by g ·x = ξpx for all x ∈ Ai, and (Ai, ai) denotes the module Ai⊕Z
whose G-module structure is defined by g · (x, k) = (ξpx + kai, k). Since OK is a
PID, there is only one ideal class in K so we have an isomorphism of Z[G]-modules:

Hk(X,Z) ∼= ⊕r
i=1(OK , ai)⊕O⊕s

K ⊕ Z⊕t

for some ai /∈ (ξp − 1)OK . The matrix of the action of g acting on OK is:
0

88
88

88 0 −1

1

88
88

88

0

0 1 −1


so its minimal polynomial over Q is the cyclotomic polynomial Φp, hence OK has
no G-invariant element over Z. Over Fp, the minimal polynomial of OK ⊗Z Fp is
Φp(X) = (X − 1)p−1, so OK ⊗Z Fp is isomorphic to Np−1 as a Fp[G]-module. The
matrix of the action of g on (OK , a) is:

0

88
88

88 0 −1 ?

1

88
88

88

0

0 1 −1 ?

0 0 1


so its minimal polynomial over Q is (X − 1)Φp(X) = Xp − 1, hence the subspace
of invariants (OK , a)G is one-dimensional. Over Fp, the minimal polynomial of
(OK , a) ⊗Z Fp is (X − 1)p, so (OK , a) ⊗Z Fp is isomorphic to Np

∼= Fp[G] as a
Fp[G]-module. By reduction modulo p, the universal coefficient theorem implies:

Hk(X,Fp) ∼= N⊕r
p ⊕N⊕s

p−1 ⊕N⊕t
1

as Fp[G]-modules, so `kp(X) = r, `kp−1(X) = s, `k1(X) = t and `ki (X) = 0 for
2 ≤ i ≤ p− 2, this proves (1) and (2). Since each block contains a one-dimensional
G-invariant subspace, this implies also that:

dimFp H
k(X,Fp)

G = `kp(X) + `kp−1(X) + `k1(X),
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this proves (3). Over Z, only the trivial G-module in Hk(X;Z) and the G-modules
(OK , a) contain a G-invariant subspace, of dimension 1, so:

rankZ H
k(X,Z)G = r + t = `kp(X) + `k1(X),

this proves (4). �

Remark 4.2. Assume that H∗(X,Z) is torsion-free and p = 2. The above argument
is much more basic and one gets easily, with the same notation, that `k1(X) = s+ t,
`k2(X) = r, rankZ H

k(X,Z)G = r + t, dimF2 H
k(X,F2)

G = `k1(X) + `k2(X).

Recall that G = 〈g〉, τ = g − 1 ∈ Z[G] and σ = 1 + g + · · · + gp−1 ∈ Z[G]. We
denote also by g, τ, σ their actions on any Z[G]-module. For 1 ≤ k ≤ dimR X − 1
we define:

Tk
G(X) := ker(τ) ∩Hk(X,Z),

SkG(X) := ker(σ) ∩Hk(X,Z).

As kernels these modules are primitive in Hk(X,Z).

Lemma 4.3. Assume that H∗(X,Z) is torsion-free and 2 ≤ p ≤ 19. Then for

all k, Hk(X,Z)
Tk

G(X)⊕Sk
G(X)

is a p-torsion module.

Proof. First observe that Tk
G(X) ∩ SkG(X) = {0} since Hk(X,Z) has no p-torsion.

As in the proof of Proposition 4.1, for each k one has a Z[G]-module decomposition:

Hk(X,Z) ∼= ⊕r
i=1(OK , ai)⊕O⊕s

K ⊕ Z⊕t.

It is clear that Z⊕t ⊂ Tk
G(X) and O⊕s

K ⊂ SkG(X). In any term (OK , a) = OK ⊕ Z,
denoting v := (0, 1) in this decomposition, we show that pv ∈ Tk

G(X) ⊕ SkG(X).
For this, observe that the quotient of OK by its maximal ideal (ξp − 1) is Z/pZ,
so for any x ∈ OK there exists z ∈ OK such that px = (ξp − 1)z. One has
τ(v) = (a, 0) hence there exists z ∈ OK such that τ(pv) = (pa, 0) = ((ξp − 1)z, 0).
Now τ((z, 0)) = ((ξp − 1)z, 0) hence τ(pv − (z, 0)) = 0 and σ(z, 0) = 0 so finally

pv = (pv − (z, 0)) + (z, 0) ∈ TG(X)⊕ SG(X).

This shows that Hk(X,Z)
Tk

G(X)⊕Sk
G(X)

is a torsion module, and that it has only p-torsion. �

Remark 4.4. As a consequence of the proof of Lemma 4.3, observe that Hk(X,Z)
Tk

G(X)⊕Sk
G(X)

is a trivial G-module: it is generated by the vectors v = (0, 1) of each factor (OK , a)
appearing in the decomposition above, and the action of G is

g · v = a+ v ≡ v mod Tk
G(X)⊕ SkG(X).

Definition 4.5. Assume that H∗(X,Z) is torsion-free and 2 ≤ p ≤ 19. For
1 ≤ k ≤ dimR X − 1 we define akG(X) ∈ N such that:

Hk(X,Z)
Tk

G(X)⊕ SkG(X)
∼=
(

Z
pZ

)akG(X)

.

Lemma 4.6. Assume that H∗(X,Z) is torsion-free. For 1 ≤ k ≤ dimR X − 1, one
has:

κk

(
Tk

G(X)⊕ SkG(X)
)
= ker(σ̄) ∩Hk(X,Fp).
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Proof. It is clear that κk(S
k
G(X)) ⊂ ker(σ̄). Similarly, since Tk

G(X) = ker(τ)

and σ̄ = τ̄p−1, one has κk(T
k
G(X)) ⊂ ker(σ̄). Take x ∈ Hk(X,Z) such that

κ(x) ∈ ker(σ̄). By Lemma 4.3 one can write px = u + v for some u ∈ Tk
G(X),

v ∈ SkG(X). Now 0 = σ̄κ(x) = κσ(x) and σ(x) = u. This shows that u = pu′ for

some u′ ∈ Tk
G(X). Hence px = pu′ + v, giving v = pv′ for some v′ ∈ SkG(X), so

finally x ∈ Tk
G(X)⊕ SkG(X). �

Corollary 4.7. Assume that H∗(X,Z) is torsion-free. For 1 ≤ k ≤ dimR X − 1
there is an isomorphism of Fp-vector spaces:

Hk(X,Z)
Tk

G(X)⊕ SkG(X)
∼=

Hk(X,Fp)

ker(σ̄) ∩Hk(X,Fp)

Corollary 4.8. Assume that H∗(X,Z) is torsion-free. For 1 ≤ k ≤ dimR X − 1
and 2 ≤ p ≤ 19 one has:

akG(X) = `kp(X).

Proof. By Corollary 4.7 one has dimFp ker
(
σ̄|Hk(X,Fp)

)
= hk(X,Fp)−akG(X) and by

Lemma 2.1 and its proof, dimFp ker
(
σ̄|Hk(X,Fp)

)
= hk(X,Fp) − `kp(X). The result

follows. �
Assume now that 3 ≤ p ≤ 19. There is an exact sequence:

0 −→ (σ) −→ Z[G] −→ Z[ξp] −→ 0

given by g 7→ ξp. Since the p-th cyclotomic polynomial Φp(X) ∈ Q[X] is irreducible

and σ = Φp(g), one deduces that SkG(X) is a free OK-module. Since OK is a free
Z-module of rank p− 1, we introduce the following definition:

Definition 4.9. Assume that 2 ≤ p ≤ 19. For 1 ≤ k ≤ dimR X − 1 we define
mk

G(X) ∈ N such that:

rankZ S
k
G(X) = mk

G(X)(p− 1).

Corollary 4.10. Assume that H∗(X,Z) is torsion-free. For 1 ≤ k ≤ dimR X − 1
and 3 ≤ p ≤ 19 one has:

mk
G(X) = `kp(X) + `kp−1(X).

Proof. By Proposition 4.1(4) one has:

rankZ T
k
G(X) = `k1(X) + `kp(X)

and by Lemma 4.3, rankZ T
k
G(X) + rankZ S

k
G(X) = hk(X,Z) = hk(X,Fp) one gets:

hk(X,Fp) = `k1(X) + `kp(X) + mk
G(X)(p− 1).

Since hk(X,Fp) = p`kp(X) + (p− 1)`kp−1(X) + `k1(X), one gets the result. �
As a consequence of Corollary 3.3 and Proposition 4.1, using Corollaries 4.8 & 4.10

we get the following explicit relation between the cohomology of the fixed locus and
the parameters aG,mG.

Corollary 4.11. Assume that p = 2, H∗(X,Z) is torsion-free and the spectral
sequence (1) degenerates at the E2-term. Then:

h∗(XG,F2) = h∗(X,F2)− 2

dimR X−1∑
k=1

akG(X).
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Corollary 4.12. Assume that 3 ≤ p ≤ 19, H∗(X,Z) is torsion-free and the spectral
sequence (1) degenerates at the E2-term. Then:

h∗(XG,Fp) = h∗(X,Fp)− 2

dimR X−1∑
k=1

akG(X)− (p− 2)

dimR X−1∑
k=1

mk
G(X).

Proposition 4.13. The following inequalities hold for all k:

0 ≤ mk
G(X)(p− 1) ≤ hk(X,Fp),

0 ≤ akG(X) ≤ min{mk
G(X)(p− 1), hk(X,Fp)−mk

G(X)(p− 1)}.

Proof. One has Hk(X,Z)
Tk

G(X)⊕Sk
G(X)

∼=
(

Z
pZ

)akG(X)

: since Tk
G(X) and SkG(X) are primitive,

the divisible classes are of the form 1
p (u + v) with u ∈ Tk

G(X) and v ∈ SkG(X).

The integer akG(X) is the maximal number of divisible classes independant modulo

Tk
G(X)⊕ SkG(X) and is thus smaller than rank(Tk

G(X)) and rank(SkG(X)). �

5. Automorphisms of irreducible holomorphic symplectic manifolds

5.1. Basic facts on lattices. Let (Λ, 〈·, ·〉) be a lattice (a free Z-module with an
integral, bilinear symmetric, non-degenerate two-form). If Γ ⊂ Λ is a sublattice,
the dual lattice is by definition Γ∗ := HomZ(Γ,Z). Recall that:

Γ∗ ∼= {x ∈ Γ⊗Q | 〈x, y〉 ∈ Z for all y ∈ Γ}.

Then Γ ⊂ Γ∗ is a sublattice of the same rank, so the quotient AΓ := Γ∗/Γ is a finite
abelian group, called the discriminant group. Its order is denoted by disc(Γ) := |AΓ|
and called the discriminant of Γ.

A lattice Λ is called unimodular if Λ∗ = Λ, that is AΛ = 0. In a basis (ei)i of Λ,
for the matrix M = (〈ei, ej〉)i,j one has disc(Λ) = det(M) = 1.

A sublattice Γ ⊂ Λ is called primitive if Λ/Γ is a free Z-module. If Λ is unimod-
ular and Γ ⊂ Λ is primitive, then AΓ

∼= AΓ⊥ .
Let p be a prime number. A lattice Γ is called p-elementary if AΓ

∼= (Z/pZ)a(Γ)
for some integer a(Γ). In particular, disc(Γ) = pa(Γ). If Γ is primitively embedded
in a unimodular lattice Λ, then Γ⊥ is also p-elementary and disc(Γ) = disc(Γ⊥).

A lattice Γ is called even if 〈x, x〉 ≡ 0 mod 2 for all x ∈ Γ. Equivalently, the
diagonal elements of the matrix M are even.

5.2. Basic facts on irreducible holomorphic symplectic manifolds. A com-
pact Kähler manifold X is called irreducible symplectic if X is simply connected
and H0(X,Ω2

X) is spanned by an everywhere non-degenerate closed two-form, de-
noted ωX . We have a Hodge decomposition:

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X)

and we put H1,1(X)R := H1,1(X) ∩ H2(X,R). The second cohomology group
H2(X,Z) is torsion-free and equipped with a bilinear symmetric non-degenerate
even two-form of signature (3, b2(X)−3), called the Beauville–Bogomolov form [4],
such that — after scalar extension — H1,1(X) is orthogonal to H2,0(X)⊕H0,2(X).
We denote by 〈·, ·〉 the bilinear form and by q the associated quadratic form. The
Néron–Severi group of X is defined by:

NS(X) := H1,1(X)R ∩H2(X,Z) =
{
x ∈ H2(X,Z) | 〈x, ωX〉 = 0

}
.
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We set ρ(X) := rank(NS(X)) the Picard number of X and T(X) := NS(X)⊥ the
orthogonal complement of NS(X) in H2(X,Z) for the quadratic form, called the
transcendental lattice. Note that NS(X) and T(X) are primitively embedded in
H2(X,Z). We denote the signature of a lattice by (n1, n2, n3) where n1 is the
number of positive eigenvalues, n2 of the zero eigenvalues and n3 of the negative
eigenvalues of the associated real quadratic form. There are three possibilities:

hyperbolic type: NS(X) is non–degenerate, of signature (1, 0, ρ(X)−1) and
T(X) has signature (2, 0, b2(X)− ρ(X)− 2),

parabolic type: NS(X) ∩ T(X) is of dimension 1, NS(X) has signature
(0, 1, ρ(X)− 1) and T(X) has signature (2, 1, b2(X)− ρ(X)− 3),

elliptic type: NS(X) is negative definite, of signature (0, 0, ρ(X)) and T(X)
has signature (3, 0, b2(X)− ρ(X)− 3).

By Huybrechts [20, Theorem 3.11], X is projective if and only if NS(X) is hyper-
bolic.

Let G ⊂ Aut(X) be a finite group of automorphisms of prime order p and fix
a generator g ∈ G. If g∗ωX = ωX then G is called symplectic. Otherwise, there
exists a primitive p-th root of unity ξp such that g∗ωX = ξpωX and G is called
non-symplectic. For simplicity we put:

TG(X) := T2
G(X), SG(X) := S2G(X), aG(X) := a2G(X), mG(X) := m2

G(X).

Lemma 5.1. If p ≤ 19 then SG(X) = TG(X)⊥ and TG(X) is non-degenerate.

Proof. We already know that TG(X)∩SG(X) = {0} since H2(X,Z) is torsion-free.
Take x ∈ TG(X) and y ∈ SG(X). Using the G-invariance of the bilinear form one
gets 〈x, y〉 = 〈x, giy〉 for all i, hence p〈x, y〉 = 〈x, σ(y)〉 = 0 so SG(X) ⊂ TG(X)⊥.
By Lemma 4.3 one has rankTG(X) + rank SG(X) = b2(X). Since the lattice
H2(X,Z) is non-degenerate, we also have rankTG(X) + rankTG(X)⊥ = b2(X). It
follows that SG(X) = TG(X)⊥ and that the lattice TG(X) is non-degenerate. �

Assume that G is non-symplectic. Then X is algebraic [3]. If 1 is an eigenvalue
of g on T(X)⊗ C and t ∈ T(X) is an eigenvector, one computes:

〈ωX , t〉 = 〈g∗ωX , g∗t〉 = ξp〈ωX , t〉
so t ∈ T(X) ∩ NS(X) = {0}, contradiction. One deduces that the eigenvalues of
the action of g on T(X) are primitive p-th roots of the unity, so T(X) ⊂ SG(X).
The minimal polynomial of g on T(X) is the cyclotomic polynomial Φp hence
ϕ(p) ≤ b2(X)− ρ(X).

Assume now that G is symplectic and X is algebraic or of elliptic type. If
t ∈ T(X), one gets:

〈ωX , t〉 = 〈ωX , g∗t〉
so g∗t − t ∈ ω⊥

X . Since T(X) ∩ NS(X) = {0} we have g∗t = t. Then g acts
trivially on T(X), hence SG(X) ⊂ NS(X) and ϕ(p) ≤ ρ(X). This property remains
true for the parabolic type if X is isomorphic to the Hilbert scheme S[n] of n
points on a K3 surface S with the following argument. There exists an injective
morphism ι : H2(S,C) → H2(S[n],C) such that H2(S[n],Z) = ι

(
H2(S,Z)

)
⊕ Zδ,

where 2δ is the class of the exceptional divisor of S[n]. After normalisation, the
form q satisfies q(ι(α)) = α2 for α ∈ H2(S,Z), q(δ) = −2(n−1) and δ is orthogonal
to ι

(
H2(S,Z)

)
(see [3, Proposition 6]). Observe that NS(S[n]) = ι (NS(S))⊕Zδ and

T(S[n]) = ι (T(S)). Setting F := T(S[n]) ∩ NS(S[n]) ∼= Z, the previous argument
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shows that G acts trivially on T(S[n])/F . Let c be a generator of F . Then c is
of the form c = ι(c0) with c0 ∈ T(S) ∩ NS(S) and q(c) = c20 = 0 hence by the
Riemann–Roch theorem, c0 or −c0 is an effective divisor. Changing c to −c if
necessary, one can assume that c0 is effective. Then c is also an effective divisor
hence g∗c = c. So g∗ acts trivially on F and T(S[n])/F hence all its eigenvalues on
T(S[n]) are equal to one. Since g is of finite order, g∗ is diagonalisable hence finally
g∗ acts as the identity on T(S[n]).

5.3. K3 surfaces. In this section, we assume that X is a K3 surface. If G is
non-symplectic, since ρ(X) ≤ 20 one has p ≤ 19. Nikulin [35] proved that for a
symplectic action, one has in fact p ≤ 7. The lattice Λ := H2(X,Z) is unimodular,
isometric to E8(−1)⊕2⊕U⊕3, where U denotes the rank 2 hyperbolic lattice, hence
the lattices TG(X) and SG(X) are p-elementary. Indeed, the generator g of G acts
trivially on the discriminant groups ATG(X)

∼= ASG(X) but σ is zero on ASG(X)

hence for all x ∈ ASG(X) one has px = 0, so these discriminant groups are p-torsion
groups. It follows that the integer aG(X) has an important characterization:

disc(TG(X)) = disc(SG(X)) = paG(X),

so aG(X) = a (TG(X)).

Corollary 5.2. Let X be a K3 surface and G a group of automorphisms of prime
order p. Then one has:

h∗(XG,Fp) =

{
24− 2aG(X) if p = 2 and XG 6= ∅,
24− (p− 2)mG(X)− 2aG(X) if p ≥ 3.

Proof. For p = 2, if the group G acts symplectically on X, by the holomorphic
Lefschetz fixed point formula there are 8 isolated fixed points. By Proposition 3.5,
the spectral sequence (1) degenerates, so the formula is a consequence of Corol-
lary 3.3, Remark 4.2 and Corollary 4.8. If G acts non-symplectically and has fixed
points, the same argument as above applies. Alternatively, one can observe that
since G acts locally at fixed points by quasi-reflections, by a result of Chevalley the
quotient X/G is smooth, so Hodd(X/G,Fp) = 0 and Proposition 6.6 (see below)
gives the result. For p ≥ 3, by the holomorphic Lefschetz fixed point formula the
fixed locus is never empty so as above the spectral sequence degenerates and the
result follows. �

Remark 5.3. This formula does not apply for p = 2 when XG = ∅: in this case, the
quotient X/G is an Enriques surface and it is well-known that aG(X) = 10.

Remark 5.4. This formula due is to Kharlamov [21] for p = 2 and Artebani–Sarti–
Taki [2] for p ≥ 3. In both papers, it is obtained by using the classical theory of
Smith sequences, under the assumption that G acts non-symplectically. However,
there is a small gap in the argument of Artebani–Sarti–Taki [2]: if the fixed locus
contains no isolated fixed points, then as above the quotient X/G is smooth so
Hodd(X/G,Fp) = 0 and as in [2] Proposition 6.8 below gives an equality. Otherwise
the cohomology of the quotient may have p-torsion: for example, if the fixed locus
contains only isolated fixed points, the long cohomology exact sequence of the pair
(X/G,XG) gives H3(X/G,Fp) ∼= Fp, so Proposition 6.8 gives only an inequality.
Our argument using the degeneracy of the spectral sequence solves this problem.
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5.4. Hilbert scheme of two points. Let S be a K3 surface and assume that
X is deformation equivalent to the Hilbert scheme S[2] of two points on S. Then
1 ≤ ρ(X) ≤ 21 so p ≤ 23. Note that since ρ(S[n]) ≥ 2, one has p ≤ 19 if
X = S[n]. If X is deformation equivalent to S[n] and ρ(X) = 1 then the existence
of non-symplectic automorphisms of order p = 23 is not excluded. For a symplectic
action on a deformation of S[2], Mongardi [31] shows that p ≤ 11 so higher order
automorphisms on deformations of S[2] are always non-symplectic.

The following lemma is a direct generalisation of Nikulin’s results [35], very close
to those stated in Mongardi [32].

Lemma 5.5. Assume that X is deformation equivalent to S[2] and that G is an
order p group of automorphisms of X with 3 ≤ p ≤ 19. Then the lattice SG(X) has

discriminant ASG(X)
∼=
(

Z
pZ

)aG(X)

and in the symplectic case it contains no (−2)-

classes. The invariant lattice TG(X) has discriminant ATG(X)
∼=
( Z
2Z
)
⊕
(

Z
pZ

)aG(X)

.

Moreover,

• If G acts symplectically then SG(X) is negative definite of rank (p− 1)mG(X)
and TG(X) has signature (3, 20− (p− 1)mG(X)).

• If G acts non-symplectically, then SG(X) has signature (2, (p−1)mG(X)−2)
and TG(X) has signature (1, 22− (p− 1)mG(X).

Proof. For the fact SG(X) contains no (−2) classes when the action is symplectic,
see Mongardi [32]. By Lemma 4.3, from the relation

[H2(X,Z) : TG(X)⊕ SG(X)]2 = disc(TG(X)) · disc(SG(X)) · disc(H2(X,Z))−1

we get the formula disc(TG(X))·disc(SG(X)) = 2 p2aG(X), hence disc(SG(X)) = 2εpα

and disc(TG(X)) = 21−εpβ with ε ∈ {0, 1} since p is odd, with α + β = 2aG(X).
Since the inclusion TG(X) ⊂ H2(X,Z) is primitive, as explained in Nikulin [36, §5]
the inclusion

M :=
H2(X,Z)

TG(X)⊕ SG(X)
⊂ ATG(X) ⊕ASG(X)

is such that the projections p : M → ATG(X) and q : M → ASG(X) are G-equivariant
monomorphisms. We deduce that aG(X) ≤ α and aG(X) ≤ β. This shows that
α = β = aG(X).

We show now that G acts trivially on ASG(X). There are two possibilities:

(1) M ∼= ATG(X) and ASG(X)/M ∼= Z/2Z,
(2) M ∼= ASG(X) and ATG(X)/M ∼= Z/2Z.

By Remark 4.4, M ∼=
(

Z
pZ

)aG(X)

is a trivial G-module so in case (2) the result is

clear. In case (1) one has a G-equivariant inclusion

M =

(
Z
pZ

)aG(X)

→
(

Z
2Z

)
⊕
(

Z
pZ

)aG(X)

= ASG(X).

Since p is odd, this map is trivial on the first factor. Since M is a trivial G-module
this shows that G acts trivially on ASG(X).

Since SG(X) = Ker(σ) and G acts trivially on ASG(X) it follows that SG(X)
is p-elementary so ε = 0. This shows that case (1) cannot occur so we have

M ∼= ASG(X)
∼=
(

Z
pZ

)aG(X)

and ATG(X)
∼=
( Z
2Z
)
⊕
(

Z
pZ

)aG(X)

.
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If G acts symplectically, the invariant lattice TG(X)⊗Z C contains the symplec-
tic form ωX , its conjugate ωX and an invariant Kähler class. Since H2(X,Z) has
signature (3, 20), this implies that TG(X) has signature (3, 20 − (p − 1)mG(X))
and SG(X) has signature (0, (p − 1)mG(X)). If G acts non symplectically, then
ωX , ωX ∈ SG(X)⊗ C and TG(X) contains an invariant Kähler class, hence SG(X)
has signature (2, (p−1)mG(X)−2) and TG(X) has signature (1, 22− (p− 1)mG(X)).

�

Markman [27] proved that Hodd(X,Z) = 0 and Heven(X,Z) is torsion-free, and
Verbitsky [40] proved that the cup product map Sym2 H2(X,Q) → H4(X,Q) is an
isomorphism. We first study the embedding Sym2 H2(X,Z) ↪→ H4(X,Z).

Proposition 5.6. If X is deformation equivalent to S[2], then:

H4(X,Z)
Sym2 H2(X,Z)

∼=
(

Z
2Z

)⊕23

⊕
(

Z
5Z

)
.

Proof. It is enough to do the computation for X = S[2]. Following an observation
of O’Grady [37], we define on Sym2 H2(X,Z) a bilinear symmetric pairing by

⟪α1 � α2, α3 � α4⟫ := 〈α1, α2〉〈α3, α4〉+ 〈α1, α3〉〈α2, α4〉+ 〈α1, α4〉〈α2, α3〉
for α1, α2, α3α4 ∈ H2(X,Z). Note that for any α ∈ H2(X,Z) one has

⟪α� α, α� α⟫ = 3〈α, α〉 =
∫
X

α4.

It follows that (Sym2 H2(X,Z), ⟪·, ·⟫) is a sublattice of H4(X,Z) equipped with
the Poincaré pairing. Since this lattice is unimodular, one has

[H4(X,Z),Sym2 H2(X,Z)]2 = disc(Sym2 H2(X,Z)).
Using that H2(X,Z) is isometric to U⊕3 ⊕E8(−1)⊕2 ⊕ 〈−2〉 it is easy to compute
that Sym2 H2(X,Z) has discriminant disc(Sym2 H2(X,Z)) = 246 · 52. The result
follows. �

Remark 5.7. In order to understand the (somehow surprising) 5-torsion class, one
can perform an explicit computation as follows. For α ∈ H∗(S,Z) and i ∈ Z, we de-
note by qi(α) ∈ End(H∗(X,Z)) the Nakajima operators [33] and by |0〉 ∈ H0(S[0],Z)
the unit. Let (αi)i=1,...,22 be an integral basis of H2(S,Z), denote by 1 ∈ H0(S,Z)
the unit and by x ∈ H4(S,Z) the class of a point. The results of Qin–Wang [39,
Theorem 5.4, Remark 5.6] give the following integral basis:

• integral basis of H2(X,Z): 1
2q2(1)|0〉, q1(1)q1(αi)|0〉,

• integral basis of H4(X,Z):
q1(1)q1(x)|0〉, q2(αi)|0〉, q1(αi)q1(αj)|0〉 with i < j,

m1,1(αi)|0〉 =
1

2

(
q1(αi)

2 − q2(αi)
)
|0〉.

The cup product map Sym2 H2(X,Q) → H4(X,Q) can be computed explicitly by
using the algebraic model constructed by Lehn–Sorger [24]:

• for α ∈ H2(S,Z): 1
2q2(1)|0〉 ∪ q1(1)q1(α)|0〉 = q2(α)|0〉,

• for α, β ∈ H2(S,Z):

q1(1)q1(α)|0〉 ∪ q1(1)q1(β)|0〉 =
(∫

S

αβ

)
q1(1)q1(x)|0〉+ q1(α)q1(β)|0〉,
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• denote by δ : S → S×S the diagonal embedding. We denote the push-forward
map followed by the Künneth isomorphism by δ∗ : H

∗(S,Z) → H∗(S,Z)⊗H∗(S,Z).
Writing δ∗1 =

∑
i,j µi,jαi ⊗ αj + 1⊗ x+ x⊗ 1 for some µi,j ∈ Z with the property

that µi,j = µj,i, one has:

1

2
q2(1)|0〉∪

1

2
q2(1)|0〉 =

∑
i<j

µi,jq1(αi)q1(αj)|0〉+
1

2

∑
i

µi,iq1(αi)
2|0〉+q1(1)q1(x)|0〉.

An elementary computation (with the help of a computer) allows to determine
the 253 coefficients µi,j (use the intersection matrix of H2(S,Z) ∼= U⊕3 ⊕ E8(−1)⊕2

and note that δ∗ is the adjoint of the cup-product). One can then express the basis
of Sym2 H2(X,Z) in terms of the given integral basis of H4(X,Z) and compute the

Smith normal form of the quotient H4(X,Z)
Sym2 H2(X,Z) . One finds

( Z
2Z
)⊕22 ⊕

( Z
10Z
)
.

A precise look at the computation of the Smith normal form shows that the
2-torsion classes in Sym2 H2(X,Z) are the six vectors m1,1(αi)|0〉 for the basis
elements αi ∈ U⊕3 and the 16 vectors m1,1(αi)|0〉 − q1(1)q1(x)|0〉 for the basis
elements αi ∈ E8(−1)⊕2. Finally the 10-torsion class is q1(1)q1(x)|0〉.
Remark 5.8. If X is deformation equivalent to S[n] with n ≥ 4, Markman [28,

Theorem 1.10] (see also [26, Theorem 9.3]) proved that the quotient H4(S[n],Z)
Sym2 H2(S[n],Z)

is free of rank 24. The case n = 3 remains to be computed.

Let S be a K3 surface and G a finite group of automorphisms of prime order p
on S[2]. We give some degeneracy results of the spectral sequence (1).

Lemma 5.9. Denote by e := 2δ the class of the exceptional divisor of S[2]. Then∫
S[2] e

4 = 26 · 3 and the map H2(S[2],Z) → H6(S[2],Z), β 7→ e2β has discrimi-

nant 270 · 3.
Proof. By Beauville [4] and Fujiki [17] there exists a constant cS[2] such that∫

S[2]

e4 = cS[2] q(e)2.

One has q(e) = −8 and by Markushevich [29, Proposition 1.2] we have cS[2] = 3,
so
∫
S[2] e

4 = 26 · 3. The multiplication map H2(S[2],Z) → H6(S[2],Z), β 7→ e2β is

equivalent by Poincaré duality to the bilinear form H2(S[2],Z)×H2(S[2],Z) → Z,
(α, β) 7→

∫
S[2] αe

2β. From the formal relation in Z[x, y, z]∫
S[2]

(αx+ ey + βz)4 = 3 q(αx+ ey + βz)2,

and by extracting the coefficient of xy2z we get the formula∫
S[2]

αe2β = −8 〈α, β〉+ 2 〈α, e〉 〈e, β〉.

Recall that Λ = E8(−1)⊕2 ⊕ U⊕3 denotes the K3 lattice (the lattice H2(S,Z) for
the intersection product). The lattice H2(S[2],Z) ∼= H2(S,Z) ⊕ Zδ equipped with
this bilinear form is then isometric to Λ(−8)⊕〈48〉, so its discriminant is 270 ·3. �

Lemma 5.10. Denote by c2(S
[2]) the second Chern class of the tangent bundle

on S[2]. Then
∫
S[2] c2(S

[2])2 = 22 · 32 · 23 and the multiplication map

H2(S[2],Z) → H6(S[2],Z), β 7→ c2(S
[2])β

has discriminant 224 · 323 · 523.
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Proof. The Chern number
∫
S[2] c2(S

[2])2 = 828 = 22 · 32 · 23 is well-known (see
Ellingsrud–Göttsche-Lehn [16] or Nieper-Wisskirchen [34, Remark 4.13]). To com-
pute the discriminant of the multiplication map, similarly as in the proof of the
previous lemma we consider the quadratic form H2(S[2],Z) → Z, α 7→ c2(S

[2])α2.
By Nieper-Wisskirchen [34, Corollary 3.8] one has∫

S[2]

c2(S
[2])α2 = 96λ(α) td

1
2 (S[2]),∫

S[2]

α4 = 24λ(α)2 td
1
2 (S[2]).

Recall that
∫
S[2] α

4 = 3 q(α)2 and that the square root of the Todd genus is here:

√
td(S[2]) = 1 +

1

24
c2(S

[2]) +
7

5760
c2(S

[2])2 − 1

1440
c4(S

[2]).

Using that c4(S
[2]) = 324 (see [34]) one gets td

1
2 (S[2]) :=

∫
S[2]

√
td(S[2]) = 25

32 .
Putting all together we get(∫

S[2]

c2(S
[2])α2

)2

= 900 q(α)2

so
∫
S[2] c2(S

[2])α2 = ±30q(α). For this quadratic form, the lattice H2(S[2],Z)
is then isometric to Λ(30) ⊕ 〈−60〉, so the multiplication map has discriminant
224 · 323 · 523. �

Let (ei)i be an orthonormal basis of H2(X,C) for q. The image of the class∑
i ei · ei ∈ Sym2 H2(X,C) in H4(X,C) is denoted q−1 and called the Beauville–

Bogomolov class. By Markman [25], for X deformation equivalent to S[n] there is
a decomposition

q−1 = c2(X) + 2κ2(Ex)

where x ∈ X is a point, Ex a rank 2n − 2 reflexive coherent twisted sheaf and

κ(Ex) := ch(Ex) exp
(

−c1(Ex)
2n−2

)
. Since κ2 =

c21
8 − c2, the class u := 4q−1 lives in

H4(S[2],Z). As noted by O’Grady [37] and Markman [25], for n = 2 the classes
q−1, c2(X) and κ2(Ex) span a 1-dimensional space and in fact q−1 = 5

6c2(X) in

H2(X,Q).

Lemma 5.11. Assume that X is deformation equivalent to S[2]. The map

H2(X,Z) → H6(X,Z), β 7→ uβ

has discriminant 247 · 546 and one has
∫
X
u2 = 24 · 52 · 23.

Proof. This is a direct consequence of the equality 3u = 10c2(X) in H2(X,Z).
Here is an alternative, more direct argument. Let (ei)i be an orthonormal basis of
H2(X,C) for q, v :=

∑
i xiei ∈ H2(X,C) and α ∈ H2(X,C). From the relation∫

X

(v + α)4 = 3q(v + α)2

and by extracting the quadratic part in α we get∫
X

v2α2 = q(v)q(α) + 2〈v, α〉2.



20 SAMUEL BOISSIÈRE, MARC NIEPER-WISSKIRCHEN, AND ALESSANDRA SARTI

By extracting the square coefficients in the variables xi and putting them to one
we get ∫

X

(∑
i

e2i

)
α2 = q

(∑
i

ei

)
q(α) + 2

∑
i

〈ei, α〉2∫
X

q−1α2 = b2(X)q(α) + 2q(α)

= 25q(α)

Since u = 4q−1 this implies that
∫
X
uα2 = 2252q(α). For this quadratic form, the

lattice H2(X,Z) is then isometric to Λ(2252)⊕ 〈−2352〉 so the multiplication map
has discriminant 247 · 546. Taking α =

∑
i xiei, we also have∫

X

u

(∑
i

xiei

)2

= 2252q

(∑
i

xiei

)
.

By extracting the square coefficients in xi we get similarly∫
X

u
∑
i

e2i = 2252
∑
i

q(ei)

hence
∫
X
u2 = 24 · 52 · 23.

�

Proposition 5.12. Let G be an order p group acting on X. The spectral se-
quence (1) degenerates at the E2-term in the following cases:

(1) X is deformation equivalent to S[2], 3 ≤ p ≤ 19 and p 6= 5.
(2) G acts by natural automorphisms on S[2] and p 6= 2.

Proof.
(1) If X is deformation equivalent to S[2], the class c2(TX) is G-equivariant and can
be used in Proposition 3.6. By Lemma 5.10 the degeneracy conditions are fullfilled
for p > 5. For p = 3, by Lemma 5.11 one can use the class u = 4q−1 since from
the definition of q−1 it is clear that this class is G-invariant (alternatively, u is
proportional to c2(X) in H2(X,Q) so it is G-equivariant).
(2) If G acts by natural automorphisms on S[2], the exceptional divisor is G-
invariant and it can be used in Proposition 3.6. By Lemma 5.9 the degeneracy
conditions are fullfilled if p > 3. In the case p = 3 the class u = 4q−1 can be used
again. �

Lemma 5.13. Assume that G = Z/2Z and let M be a finite-dimensional F2[G]-
module. Then:

`1(Sym
2 M) =

`1(M)(`1(M) + 1)

2
+ `2(M),

`2(Sym
2 M) = `2(M)(`2(M) + `1(M)).

Proof. The F2[G]-modules M and Sym2 M decompose as:

M ∼= N
⊕`2(M)
2 ⊕N

⊕`1(M)
1 ,

Sym2 M ∼= N
⊕`2(Sym

2 M)
2 ⊕N

⊕`1(Sym
2 M)

1 .
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By elementary matrix computations, one finds the following G-module decomposi-
tions:

Sym2 N2
∼= N2 ⊕N1, N2 ⊗N2

∼= N⊕2
2 , N2 ⊗N1

∼= N2

Sym2 N1
∼= N1, N1 ⊗N1

∼= N1.

The result follows. �

Lemma 5.14. Assume that 3 ≤ p ≤ 19, G = Z/pZ and let M be a finite-
dimensional Fp[G]-module. Then:

`1(Sym
2 M) =

`1(M) · (`1(M) + 1)

2
+

`p−1(M) · (`p−1(M)− 1)

2
,

`p−1(Sym
2 M) = `p−1(M) · `1(M),

`p(Sym
2 M) =

p+ 1

2
· `p(M) + p · `p(M) · (`p(M)− 1)

2
+

p− 1

2
· `p−1(M)

+ (p− 1) · `p(M) · `p−1(M) + `p(M) · `1(M)

+ (p− 2) · `p−1(M) · (`p−1(M)− 1)

2
,

and `i(Sym
2 M) = 0 for 2 ≤ i ≤ p− 2.

Proof. As before, we have the decompositions:

M ∼= N⊕`p(M)
p ⊕N

⊕`p−1(M)
p−1 ⊕N

⊕`1(M)
1 ,

Sym2 M ∼=
⊕

1≤q≤p

N⊕`q(Sym
2 M)

q .

By elementary matrix computations, one finds the following G-module decomposi-
tions:

Sym2 Np
∼= N

⊕ p+1
2

p , Np ⊗Np
∼= N⊕p

p , Np−1 ⊗Np−1
∼= N⊕p−2

p ⊕N1

Sym2 Np−1
∼= N

⊕ p−1
2

p , Np ⊗Np−1
∼= N⊕p−1

p , Np−1 ⊗N1
∼= Np−1

Sym2 N1
∼= N1, Np ⊗N1

∼= Np, N1 ⊗N1
∼= N1.

The result follows. �

Theorem 5.15. Let X be deformation equivalent to S[2] and G be a group of
automorphisms of prime order p on X with 3 ≤ p ≤ 19 and p 6= 5. Then:

h∗(XG,Fp) =324− 2aG(X) (25− aG(X))− (p− 2)mG(X) (25− 2 aG(X))

+
1

2
mG(X)

(
(p− 2)2mG(X)− p

)
with

2 ≤ (p− 1)mG(X) < 23,

0 ≤ aG(X) ≤ min{(p− 1)mG(X), 23− (p− 1)mG(X)}.

Proof. By Proposition 5.12 and Corollary 4.12, using Poincaré duality one has:

h∗(XG,Fp) = 324− 4aG(X)− 2a4G(X)− 2(p− 2)mG(X)− (p− 2)m4
G(X).

By Proposition 5.6 one has an isomorphism Sym2 H2(X,Fp) ∼= H4(X,Fp) so by
Lemma 5.14, using Corollaries 4.8 & 4.10 one can express the parameters a4G(X)
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and m4
G(X) in terms of aG(X) and mG(X). One gets easily the formula. The

estimates for the parameters aG(X),mG(X) come from Proposition 4.13, noting
that p is odd and that mG(X) cannot be zero, otherwise TG(X) = H2(X,Z) so G
acts trivially on H2(X,Z). By Beauville [3, Proposition 10] this is impossible since
G 6= {id}. �

Remark 5.16.

(1) IfG acts symplectically, the inclusions T(X) ⊂ TG(X) and SG(X) ⊂ NS(X)
give one more relation: (p − 1)mG(X) ≤ ρ(X). If instead G acts non
symplectically, the inclusions T(X) ⊂ SG(X) and TG(X) ⊂ NS(X) give
23− (p− 1)mG(X) ≤ ρ(X).

(2) Assume that G is an order p group of automorphisms of S. We denote
also by G the group of natural automorphisms induced on S[2]. Since the
exceptional divisor of S[2] is invariant by G, it is clear that aG(S

[2]) = aG(S)
and mG(S

[2]) = mG(S). For example, if G acts symplectically and p = 3, by
Nikulin [35] G has 6 isolated fixed points on S and by Garbagnati–Sarti [18,
Theorem 4.1] one has aG(S) = 6 and mG(S) = 6. By Theorem 5.15 we get
h∗(S[2],F5) = 27. In this case it is easy to see that the fixed locus (S[2])G

consists indeed in 27 isolated points [6, Exemple 2].
(3) If X is deformation equivalent to S[2] and p ∈ {17, 19}, it follows from

the inequalities given in Theorem 5.15 that mG(X) = 1. Then necessarily
aG(X) > 0. Otherwise, by Lemma 5.5 the lattice SG(X) would be even
unimodular of signature (2, 14) for p = 19 or (2, 14) for p = 17. By an
theorem of Milnor (see Nikulin [36, Theorem 1.1.1]) such lattices do not
exist.

5.5. Applications.

5.5.1. Existence of fixed points.

Proposition 5.17. Let X be deformation equivalent to S[2] and G be a group of
automorphisms of prime order on X. Then the fixed locus XG is not empty.

Proof. Denote by g a generator of G and by ξp a primitive p-th root of unity. If g
acts symplectically, its holomorphic Lefschetz number for the sheaf OX is three so
G has fixed points. If g acts non-symplectically, its holomorphic Lefschetz number
is 1 + ξp + ξ2p, so G has fixed points if p 6= 3. If p = 3 one can use Theorem 5.15

to check all possible values of h∗(XG,F3). One finds that it is never zero, so XG is
never empty. �

Corollary 5.18. Let X be deformation equivalent to S[2] and G be a finite group
of automorphisms of X. Then G does not act freely on X.

Remark 5.19. This result implies that it is not possible to construct Enriques vari-
eties of dimension four and index three, as defined in Boissière–Nieper-Wißkirchen–
Sarti [7] and Oguiso–Schroër [38], if one starts with deformations of Hilbert schemes
of two points on a K3 surface.

5.5.2. An automorphism of order eleven. Consider the cubic C in P5 given by the
equation

x3
0 + x2

1x5 + x2
2x4 + x2

3x2 + x2
4x1 + x2

5x3 = 0.
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Let ξ be a primitive eleventh root of unity and consider the order 11 automor-
phism ϕ of C given by

ϕ(x0, x1, x2, x3, x4, x5) = (x0, ξx1, ξ
3x2, ξ

4x3, ξ
5x4, ξ

9x5).

As explained in Mongardi [31], ϕ induces a symplectic automorphism of order 11
on the Fano variety of lines X of the cubic fourfold C, with 5 isolated fixed points.
Using our main formula given in Theorem 5.15, one finds that there is only one
possibility for the parameters aG(X),mG(X), that is:

aG(X) = 2, mG(X) = 2,

hence ρ(X) ∈ {20, 21}. Since X is algebraic, the inclusion SG(X) ⊂ NS(X)
(see §5.2) is strict since the Néron-Severi lattice is hyperbolic, so ρ(X) = 21 (see
also Mongardi [31] for a more general statement). It follows from Lemma 5.5

that SG(X) has signature (0, 20) and discriminant ASG(X)
∼=
(

Z
pZ

)2
and con-

tains no (−2)-classes. Furthermore, TG(X) has signature (3, 0) and discriminant

ATG(X)
∼= Z

2Z ⊕
(

Z
pZ

)2
. We can deduce the isometry class of the invariant lattice

as follows. From the classification of Brandt–Intrau [9] of positive definite ternary
quadratic forms we find that there are two possibilities for the invariant lattice
TG(X), given by the following Gram matrices:

A :=

2 1 0
1 6 0
0 0 22

 , B :=

6 2 2
2 8 −3
2 −3 8


(these two lattices have the same discriminant but different discriminant forms).

Denote by Z ⊂ X × C the universal family, with projections p, q on X and C.
By Beauville–Donagi [5], the Abel–Jacobi map

α := p∗q
∗ : H4(C,Z) → H2(X,Z)

is an isomorphism of Hodge structures. Denote by h ∈ H2(C,Z), resp. g ∈ H2(X,Z)
the hyperplane class of C, resp. of X for the Plücker embedding. Denote by
H4(C,Z)0 the primitive cohomology (the orthogonal of h for the intersection form
on C), and similarly H2(X,Z)0 the orthogonal of g for the Beauville–Bogomolov
form, denoted (−,−)X . By Beauville-Donagi [5], the Abel–Jacobi map induces
an isometry between H4(C,Z)0 and H2(X,Z)0. It follows from Hassett [19] that
disc(H2(X,Z)0) = 3. Note that (g, g)X = 6. By Mongardi [31], for the special
choice of the cubic C with a symplectic automorphism of order 11 constructed
above, one has

NS(X) ∼= (6)⊕ E8(−1)2 ⊕
(
−2 1
1 −6

)
hence disc(NS(X)) = 2 · 3 · 112. Since disc(H2(X,Z)) = 2, it follows, with the same
argument as above, that disc(T(X)) ∈ {22 · 3 · 112, 3 · 112}.

Let NS(X)0 := NS(X)∩ g⊥ ⊂ H2(X,Z)0. Observe that T(X) = T(X) ∩ g⊥ is a
subset of H2(X,Z)0. One has disc(NS(X)0) = 112 and disc(H2(X,Z)0) = 3 hence
disc(T(X)) ∈ {112, 3 · 112}. As a consequence, disc(T(X)) = 3 · 112. Now, observe
that since TG(X) has rank 3 and G acts symplectically, one has T(X) ⊂ TG(X)
and in fact T(X) = TG(X) ∩ g⊥. From the two Gram matrices A and B it is
easy to deduce all elements of square 6 (there are very few) and to compute their
orthogonal and its discriminant. One finds that the only possibility giving the right
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discriminant for T(X) is the choice of the matrix B (compare with Mongardi [31]
for a different argument).

6. Classical methods in Smith theory

In this section, we study the case when the spectral sequence (1) does not de-
generate. It happens that one gets bounds for h∗(XG,Fp) that are closely related
to the previous results, where we see that the defect is contained in the p-torsion
of the cohomology of the quotient X/G.

6.1. Smith exact sequences. Consider the chain complex C∗(X) of X with coef-
ficients in Fp and its subcomplexes τ̄ iC∗(X) for 1 ≤ i ≤ p−1 (with σ̄ = τ̄p−1). The
basic tools in Smith theory are the following results, valid for any prime number p:

Proposition 6.1.

(1) [10, Theorem 3.1] For 1 ≤ i ≤ p−1 there is an exact sequence of complexes:

0 −→ τ̄ iC∗(X)⊕ C∗(X
G)

ι−→ C∗(X)
τ̄p−i

−→ τ̄p−iC∗(X) −→ 0

where ι denotes the sum of the inclusions.
(2) [10, p.125] For 1 ≤ i ≤ p− 1 there is an exact sequence of complexes:

0 −→ σ̄C∗(X)
ι−→ τ̄ iC∗(X)

τ̄−→ τ̄ i+1C∗(X) −→ 0

where ι denotes the inclusion.
(3) [10, (3.4) p.124] There is an isomorphism of complexes:

σ̄C∗(X) ∼= C∗(X/G,XG),

where XG is identified with its image in X/G.

Proposition 6.2. [10, p.124 (3.7)] If p > 2 then for any k ∈ N there is a commu-
tative diagram of Fp-vector spaces with exact rows:

0 // σCk(X)⊕ Ck(X
G) //

ι⊕id

��

Ck(X) //

id

��

τCk(X) //

τp−2

��

0

0 // τCk(X)⊕ Ck(X
G) // Ck(X) // σCk(X) // 0

The Smith homology groups are defined by Hτ i

k (X) := Hk(τ̄
iC∗(X)), the corre-

sponding cohomology groups are Hk
τ i(X)), whose dimensions over Fp are denoted

by hk
τ i(X). We first give some direct consequences of these sequences.

Lemma 6.3.

(1) If XG 6= ∅ then h0
σ(X) = 0 and h0

τ (X) = 0.
(2) If XG = ∅ then h0

σ(X) = 1 and h0
τ (X) = 1.

Proof. We first compute for σ. By Proposition 6.1(3), H0
σ(X) ∼= H0(X/G,XG;Fp).

From the exact sequence of the pair (X/G,XG):

0 −→ C∗(X
G) −→ C∗(X/G) −→ C∗(X/G,XG) −→ 0

one gets the exact sequence in cohomology:

0 −→ H0(X/G,XG;Fp) −→ H0(X/G,Fp)
ι∗−→ H0(XG,Fp) −→ · · ·
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where ι∗ is induced by the inclusion ι : XG ↪→ X/G. Since X is connected, X/G
is also connected. If XG 6= ∅, one has that ι∗ 6= 0 and H0(X/G,Fp) ∼= Fp so
H0

σ(X) = 0. Otherwise H0(X/G,XG;Fp) ∼= Fp.
We now compute for τ . Assume that XG 6= ∅. By Proposition 6.1(2) one gets

for all 1 ≤ i ≤ p− 1 an isomorphism H0
τ i(X) ∼= H0

τ i+1(X) so H0
τ (X) = H0

σ(X) = 0.

If XG = ∅, by Proposition 6.1(1) one gets the exact sequence:

0 −→ H0
τ (X) −→ H0(X,Fp)

σ̄∗

−→ H0
σ(X) −→ · · ·

We show that σ̄∗ = 0. By Proposition 6.1(1) one has an exact sequence:

0 −→ H0
σ(X)

ι∗−→ H0(X,Fp)
τ̄∗

−→ H0
τ (X) −→ · · ·

so ι∗ is injective. The composition H0(X,Fp)
σ̄∗

−→ H0
σ(X)

ι∗−→ H0(X,Fp) is the
action of σ̄ ∈ Fp[G]. Observe that the action of g ∈ G on H0(X,Fp) ∼= Fp is
trivial since Fp has no order p automorphism, so σ̄ acts trivially on H0(X,Fp),
that is σ̄∗ ◦ ι∗ = 0. Since ι∗ is injective, this implies that σ̄∗ = 0. It follows that
H0

τ (X) ∼= H0(X,Fp) ∼= Fp. �

Lemma 6.4. Assume that X is even-dimensional, Hodd(X,Fp) = 0 and XG 6= ∅.
Set 2d := dimR X. Then:

(1) h1
τ (X) = h1

σ(X) = h0(XGFp)− 1.
(2) For 0 ≤ k ≤ d− 1, one has h2k+1

τ (X) = h2k+1
σ (X).

(3) If dimR XG ≤ dimR X − 2 then:

h2d−1
σ (X) = h2d−1

τ (X) = h2d
σ (X) = h2d

τ (X) = 1.

Proof.
(1) Proposition 6.1(1) for i = p− 1 and Lemma 6.3 give the exact sequence:

0 −→ H0(X,Fp) −→ H0
τ (X)⊕H0(XG,Fp) −→ H1

σ(X) −→ 0

that implies h1
σ(X) = h0(XG)− 1. By interchanging the roles of τ and σ one gets

the second equality.
(2) Similarly, one gets for 0 ≤ k ≤ d− 1 an exact sequence:

0 →
H2k−1

σ (X)
⊕

H2k−1(XG,Fp)
→ H2k

τ (X) → H2k(X,Fp) →
H2k

σ (X)
⊕

H2k(XG,Fp)
→ H2k+1

τ (X) → 0

that implies the equality:

h2k−1
σ (X)+h2k−1(XG,Fp)−h2k

τ (X)+h2k(X,Fp)−h2k
σ (X)−h2k(XG,Fp)+h2k+1

τ (X) = 0.

By interchanging the roles of τ and σ one gets a second equality on dimensions.
Substracting these equalities, one finally obtains:

h2k−1
σ (X)− h2k−1

τ (X) = h2k+1
σ (X)− h2k+1

τ (X).

Using (1) one concludes.
(3) Clearly hk

τ (X) = 0 = hk
σ(X) for k > 2d. Proposition 6.1(1) for i = p − 1

gives the exact sequence:

0 −→ H2d−1
σ (X) −→ H2d

τ (X) −→ H2d(X,Fp) −→ H2d
σ (X) −→ 0

yielding the equality h2d−1
σ (X)− h2d

τ (X) + 1− h2d
σ (X) = 0. Proposition 6.1(3) and

the exact sequence of the pair (X/G,XG) gives h2d
σ (X) = 1 so h2d−1

σ (X) = h2d
τ (X).

By interchanging the roles of σ and τ one gets an exact sequence:

0 −→ H2d−1
τ (X) −→ H2d

σ (X) −→ H2d(X,Fp) −→ H2d
τ (X) −→ 0
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that implies that h2d
τ (X) ≤ 1. Proposition 6.1(2) for i = 1 gives an exact sequence:

H2d−1
τ (X) −→ H2d−1

σ (X) −→ H2d
τ2 (X) −→ H2d

τ (X) −→ H2d
σ (X) −→ 0

that implies that h2d
τ (X) ≥ 1. Finally h2d

τ (X) = 1 and one conludes with (2). �

Using similar arguments, one can show the following result in the case where the
fixed locus is empty:

Lemma 6.5. Assume that X is even-dimensional (2d := dimR X), Hodd(X,Fp) = 0
and XG = ∅. Then:

(1) h1
τ (X) = h1

σ(X) = 1.
(2) For 0 ≤ k ≤ d− 1, one has h2k+1

τ (X) = h2k+1
σ (X) = h2k+1(X/G,Fp).

(3) h2d−1
σ (X) = h2d−1

τ (X) = h2d
σ (X) = h2d

τ (X) = 1.

6.2. A refinement of the Borel-Swan inequality.

Proposition 6.6. Assume that p = 2, X is even-dimensional (2d := dimR X),
Heven(X,Z) is torsion-free, Hodd(X,Z) = 0, XG 6= ∅ and dimR XG ≤ 2d − 2.
Then:

h∗(XG,F2) ≤ h∗(X)− 2
d−1∑
k=1

a2kG (X)

with equality if Hodd(X/G,F2) = 0.

Proof. For 1 ≤ k ≤ d− 1, Proposition 6.1(1) gives exact an sequence:

0 →
H2k−1

τ (X)
⊕

H2k−1(XG,F2)
→ H2k

τ (X)
α2k→ H2k(X,F2)

β2k→
H2k

τ (X)
⊕

H2k(XG,F2)

γ→ H2k+1
τ (X) → 0

Using Im(α2k) = Ker(β2k), this exact sequence cuts into two smaller exact se-
quences and taking the dimensions one gets the equations:{

h2k−1
τ (X) + h2k−1(XG,F2)− h2k

τ (X) + dim Im(α2k) = 0

dim Im(α2k)− h2k(X) + h2k
τ (X) + h2k(XG,F2)− h2k+1

τ (X) = 0

Summing up these equations, adding the contributions for 1 ≤ k ≤ d− 1 and using
Lemma 6.4(1) one gets:

h∗(XG,F2) = h∗(X)− 2

d−1∑
k=1

dim Im(α2k).

Denote the components by β2k = β′
2k ⊕ β′′

2k and γ = (γ′, γ′′). Observe that:

α2k ◦ β′
2k : H

2k(X,F2) → H2k(X,F2)

is the multiplication by τ̄ . For short, we put τ̄2k := τ̄|H2k(X,F2) and we have

Im(τ̄2k) ⊂ Im(α2k). By Corollary 4.7, dim Im(τ̄2k) = a2kG (X) so we get the ex-
pected inequality.

Take x ∈ Im(α2k) and write x = α2k(y) with y ∈ H2k
τ (X). Observe that

H∗(X/G,XG;F2) ∼= H∗
τ (X) by Proposition 6.1(3) since τ̄ = σ̄, so that γ′′ also

appears as the coboundary morphism of the exact sequence of the pair (X/G,XG):

· · · → H2k(XG,F2)
γ′′

→ H2k+1
τ (X)

η→ H2k+1(X/G,F2) → · · ·
Assume that H2k+1(X/G,F2) = 0. Then γ′′ is surjective, so there exists an

element y′ ∈ H2k(XG,F2) such that γ′′(y′) = γ(y). This gives γ(y−y′) = 0 so there
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exists z ∈ H2k(X,F2) such that β2k(z) = y − y′. In particular β′
2k(z) = y. Then

x = α2kβ
′
2k(z) = τ̄2k(z) giving the equality Im(τ̄2k) = Im(α2k) and we conclude as

before. �

Remark 6.7. If Hodd(X/G,F2) 6= 0, the defect in this inequality can be completely
understood by the second inequality:

h∗(X)− 2
d−1∑
k=1

a2kG (X)− 2
d−1∑
k=1

h2k+1(X/G,F2) ≤ h∗(XG,F2).

To prove this inequality, we keep the notation of the proof, assuming now that
H2k+1(X/G,F2) 6= 0. Consider the map:

ϕ : H2k
τ (X) −→ H2k+1(X/G,F2), y 7→ ηγ(y).

If ϕ(y) = 0, there exists y′ ∈ H2k(XG,F2) such that γ(y) = γ′′(y′) so γ(y− y′) = 0
and as above there exists z ∈ H2k(X,F2) such that β′

2k(z) = y. This shows that
α2k(y) ∈ Im(τ̄2k). Conversely, if y ∈ H2k

τ (X) is such that α2k(y) ∈ Im(τ̄2k), then
write α2k(y) = α2kβ

′
2k(z) with z ∈ H2k(X,F2). Setting y′ := β′

2k(z), one has
y − y′ ∈ Ker(α2k). Writting β2k(z) = β′

2k(z) + β′′
2k(z) and applying γ one gets:

γβ′
2k(z) = γ′β′

2k(z) = −γ′′β′′
2k(z)

so ηγ(y′) = 0. This shows that α−1
2k (Im(τ̄2k)) = Ker(ϕ) + Ker(α2k). In particular,

the map α2k induces a surjection:

H2k
τ (X)/Ker(ϕ) � Im(α2k)/ Im(τ̄2k).

Computing the dimensions, one gets:

dim Im(α2k)− dim Im(τ̄2k) ≤ dim
(
H2k

τ (X)/Ker(ϕ)
)
≤ h2k+1(X/G).

We thus proved the inequalities:

dim Im(τ̄2k) ≤ dim Im(α2k) ≤ dim Im(τ̄2k) + h2k+1(X/G).

and we conclude as above.

Proposition 6.8. Assume that 3 ≤ p ≤ 19, X is even-dimensional (2d := dimR X),
Heven(X,Z) is torsion-free, Hodd(X,Z) = 0, XG 6= ∅ and dimR XG ≤ 2d−2. Then:

h∗(XG,Fp) ≤ h∗(X)− 2
d−1∑
k=1

a2kG (X)− (p− 2)
d−1∑
k=1

m2k
G (X)

with equality if Hodd(X/G,Fp) = 0.

Proof. For 1 ≤ k ≤ d− 1, Proposition 6.1(1) with i = 1 gives exact an sequence:

0 →
H2k−1

τ (X)
⊕

H2k−1(XG,Fp)
→ H2k

σ (X)
α2k→ H2k(X,Fp)

β2k→
H2k

τ (X)
⊕

H2k(XG,Fp)

γ→ H2k+1
σ (X) → 0

Using Im(α2k) = Ker(β2k) one gets the equations:{
dim Im(α2k)− h2k

σ (X) + h2k−1
τ (X) + h2k−1(XG,Fp) = 0

dim Im(α2k)− h2k(X) + h2k
τ (X) + h2k(XG,Fp)− h2k+1

σ (X) = 0
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Summing up these equations, adding the contributions for 1 ≤ k ≤ d− 1 and using
Lemma 6.4 one gets:

h∗(XG,F2) = h∗(X) +
d−1∑
k=1

(h2k
σ (X)− h2k

τ (X))− 2
d−1∑
k=1

dim Im(α2k).

Exchanging the roles of τ and σ (Proposition 6.1(1) with i = p − 1) one gets a

similar exact sequence, where we denote by α̃, β̃ the corresponding maps. The
same computation gives:

dim Im(α̃2k)− h2k
τ (X) + h2k−1

σ (X) + h2k−1(XG,Fp) = 0

so we get the relation:

dim Im(α2k)− dim Im(α̃2k) = h2k
σ (X)− h2k

τ (X).

This gives:

h∗(XG,F2) = h∗(X)−
d−1∑
k=1

dim Im(α2k)−
d−1∑
k=1

dim Im(α̃2k).

Denote the components by β2k = β′
2k⊕β′′

2k and β̃2k = β̃′
2k⊕β̃′′

2k. Note that α2k ◦β̃′
2k

is the multiplication by σ̄ in H2k(X,Fp), denoted σ̄2k, whereas α̃2k ◦ β′
2k is the

multiplication by τ̄ inH2k(X,Fp), denoted τ̄2k. This shows that Im(σ̄2k) ⊂ Im(α2k)
and Im(τ̄2k) ⊂ Im(α̃2k). By Corollary 4.7, one has dim Im(σ̄2k) = a2kG (X), and by
Proposition 4.1 and Corollaries 4.7 & 4.10 one has:

dim Im(τ̄2k) = h2k(X)− dimH2k(X,Fp)
G

= (p− 1)`2kp (X) + (p− 2)`2kp−1(X)

= a2kG (X) + (p− 2)m2k
G (X),

hence the expected inequality.
Assume that Hodd(X/G,Fp) = 0. For 1 ≤ k ≤ d − 1, Proposition 6.2 gives a

commutative diagram with exact rows:

H2k
σ (X)

α2k //

τ̄p−2
2k

��

H2k(X,Fp)
β2k // H2k

τ (X)⊕H2k(XG,Fp)
γ //

ι∗⊕id

��

H2k+1
σ (X) //

τ̄p−2
2k+1

��

0

H2k
τ (X)

α̃2k // H2k(X,Fp)
β̃2k // H2k

σ (X)⊕H2k(XG,Fp)
δ // H2k+1

τ (X) // 0

We first show that τ̄p−2
2k+1 is injective by a diagram chasing. Denote by γ = (γ′, γ′′)

the components. As previously observed, since H2k+1(X/G,Fp) = 0 γ′′ is surjec-

tive. Let x ∈ H2k+1
σ (X) such that τ̄p−2

2k+1(x) = 0. There exists y ∈ H2k(XG,Fp)

such that γ(y) = γ′′(y) = x. Considering y ∈ H2k(XG,Fp) in the second row
of the diagram, one gets δ(y) = 0 hence there exists z ∈ H2k(X,Fp) such that

β̃2k(z) = β̃′′
2k(z) = y. Considering z in the first row, one gets β2k(z) = β′′

2k(z) = y.

Hence x = γ(y) = γβ2k(z) = 0. By Lemma 6.4(2), we deduce that τ̄p−2
2k+1 is an

isomorphism.
We deduce that the map denoted ι∗ in the diagram is surjective. Take x ∈ H2k

σ (X).

The element δ(x) admits a preimage y by τ̄p−2
2k+1. Since γ′′ is surjective, there ex-

ists z ∈ H2k(XG,Fp) such that γ′′(z) = y. Considering z in the second row, one

gets δ(z) = τ̄p−2
2k+1(y) = δ(x), hence x − z ∈ Ker(δ) = Im(β̃2k) so there exists y
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such that β̃′
2k(y) = x and β̃′′

2k(y) = −z. Considering y in the first row, one gets

ι∗β′
2k(y) = β̃′

2k(y) = x.
We deduce that Im(α2k) ⊂ Im(σ̄2k). Take y = α2k(x). Considering x ∈ H2k

σ (X)
in the second row, since ι∗ is surjective there exists w ∈ H2k

τ (X) such that ι∗(w) = x.
Since γ′′ is surjective, there exists t ∈ H2k(XG,Fp) with γ′′(t) = γ(w), hence
γ(w− t) = 0 so there exists z ∈ H2k(X,Fp) such that β′

2k(z) = w and β′′
2k(z) = −t.

Considering z in the second row, one gets β̃′
2k(z) = ι∗β′

2k(z) = ι∗(w) = x so

y = α2kβ̃
′
2k(z) = σ̄2k(z).

To conclude, we show that Im(α̃2k) ⊂ Im(τ̄2k). Take y = α̃2k(x). Considering x
in the first row, since γ′′ is surjective there exists w such that γ(x) = γ′′(w) = γ(w),
so there exists z with β′

2k(z) = x and β′′
2k(z) = −w, hence y = α̃2kβ

′
2k(z) = τ̄2k(z).

The expected equality follows.
�
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