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Abstract. We determine the automorphism group of the Hilbert scheme of

two points on a generic projective K3 surface of any polarization. We obtain in
particular new examples of Hilbert schemes of points having non-natural non-

symplectic automorphisms. The existence of these automorphisms depends on

solutions of Pell’s equation.

1. Introduction

A classical result in the theory of surfaces is that any complex K3 surface S which
contains an ample divisor D with D2 = 2 is a double cover of the plane ramified
over a smooth sextic curve (see [26]); in particular, the covering involution is an
anti-symplectic automorphism whose induced action on H2(S,Z) is the reflection
in the span of D. O’Grady [23, 24] has given conjectural generalizations of this
statement to higher dimensional holomorphic symplectic manifolds X which are
deformations of the Hilbert scheme of n points S[n] on a K3 surface S and which
are polarized by an ample divisor D of square 2 with respect to the Beauville–
Bogomolov quadratic form on H2(X,Z). There is a moduli space parametrizing
degree 2 polarized irreducible holomorphic symplectic manifolds (X,D) with X
deformation of S[n]. The “L Conjecture” of O’Grady [23] states that there is an
open dense subset of this moduli space which parametrizes pairs (X,D) such that
the linear system |D| is base-point-free and induces a regular map X → |D|∗ which
is of degree 2 onto its image Y . In particular, the covering involution is non-
symplectic and its action on H2(X,Z) is the reflection in the span of D. This
conjecture is particularly interesting in the case n = 2 where O’Grady [24] proves
that up to deformation there are two possibilities: either X is a double cover of
an EPW sextic or X is birational to a hypersurface of degree at most 12. It is
conjectured that the second case can not happen.

The non-symplectic involutions on deformations of S[2] have been classified by
Beauville [4] by means of some numerical invariants of the fixed surface and by
Ohashi–Wandel [25], Boissière–Camere–Sarti [9] and Mongardi–Wandel [21] by
means of the properties of the invariant lattice and its orthogonal complement.
New examples of non-symplectic involutions on deformations of S[2] have thus been
obtained, but not on S[2] itself.

In this paper, we answer the original question without deformation: what are
the automorphisms of S[2] itself? We study the generic case where S[2] has Picard
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number 2, which is the mimimal possible rank. The surface S is a generic algebraic
K3 surface of Picard number one, its Néron–Severi group is generated by an ample
divisor H of self-intersection H2 = 2t with t ≥ 1. If t = 1 then S is the double cover
of P2 branched along a smooth sextic curve and we show in Proposition 5.1 that
in fact Aut(S[2]) is isomorphic to Z/2Z and it is generated by the non-symplectic
involution on S[2] induced by the covering involution on S. The main result of the
paper (see Section 5.2) gives a complete description of the group of automorphisms
of S[2] when t ≥ 2:

Theorem 1.1. Let S be an algebraic K3 surface such that Pic(S) = ZH with
H2 = 2t, t ≥ 2. Then S[2] admits a non-trivial automorphism if and only if one of
the following equivalent conditions is satisfied:

(1) t is not a square, Pell’s equation x2 − 4ty2 = 5 has no solution and Pell’s
equation x2 − ty2 = −1 has a solution;

(2) there exists an ample class D ∈ NS(S[2]) such that D2 = 2.

Moreover, if this is the case the class D is unique, the automorphism is unique and
it is a non-symplectic involution whose action on H2(S[2],Z) is the reflection in the
span of D.

The case t = 2 corresponds to the situation where S is a generic quartic in
P3 and the non-symplectic involution is Beauville’s one [2]. The next cases are
t = 10, 13 or 17 and our result shows the existence of a non-symplectic involution
on the Hilbert scheme of two points on a generic K3 surface polarized by a class of
square 20, 26 or 34.

Acknowledgements. We thank Kieran O’Grady, Brendan Hassett and Emanuele
Macr̀ı for very helpful explanations. The second author was partially supported
by the Italian-French Research Network Program GDRE-GRIFGA and thanks the
hospitality of the University of Poitiers where most of the work was done.

2. Preliminary results

In this paper, S denotes an algebraic complex K3 surface with Pic(S) = ZH.
Since H2 > 0, H or −H is effective so we can assume that H is effective. By Nakai’s
criterion H is ample and S is projective. We have H2 = 2t with t ≥ 1 and H is
very ample if t ≥ 2 (see [26, p.623] or [17]).

2.1. Basic results on Pell’s equation. For any t ∈ N that is not a square and
m ∈ Z we consider Pell’s equation

Pt(m) : x2 − ty2 = m,

for x, y integers. A solution (x, y) of this equation is called positive if x > 0, y > 0
and the positive solution with minimal x is called the minimal one. Consider the
real quadratic field Q[

√
t]. The norm of any z := x + y

√
t ∈ Q[

√
t] is defined by

N(z) := x2− ty2. Using the identity (x+ y
√
t)(x− y

√
t) = N(z) it is easy to check

that a solution (x, y) of Pt(±1) is positive if and only if z = x+ y
√
t > 1. It follows

that the minimal solution of Pt(±1) is the minimal real number z ∈ R satisfying
z > 1, z ∈ Z[

√
t] and N(z) = ±1.
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By a theorem of Lagrange, the continued fraction expansion

√
t = a0 +

1

a1 + 1
a2+ 1

...

,

has the property that the sequence of positive integers (ai)i≥1 is periodic [27, The-

orem VII.3]; we denote by s its period. We define the k-th convergent of
√
t as the

rational number

Ck = a0 +
1

a1 + 1

. . .+ 1
ak

.

We denote by xk (resp. yk) the numerator (resp. denominator) of Ck.
Pell’s equation Pt(1) has a solution for any value of t. If the period s is even,

the positive solutions are the pairs (xns−1, yns−1) for n ≥ 1; if s is odd, the positive
solutions are the pairs (x2ns−1, y2ns−1) for n ≥ 1 [27, Theorems VIII.7 & VII.8].

Pell’s equation Pt(−1) has a solution if and only if the period s is odd, in which
case the positive solutions are the pairs (x(2n−1)s−1, y(2n−1)s−1) for n ≥ 1 [27,
Theorem VIII.9].

The following lemma is certainly well-known, we include it for convenience:

Lemma 2.1. Let (α, β) be the minimal solution of the equation Pt(1). If the
equation Pt(−1) has a solution, then its minimal solution (a, b) satisfies:

α = 2a2 + 1, β = 2ab.

Proof. Put Z := α+β
√
t and z := a+b

√
t. We have Z > 1, z > 1 and z

Z < z. Since
z
Z ∈ Z[

√
t] has norm −1, by minimality of z this implies that z

Z < 1, so 1 < z < Z

and 1 < z2 < Z2 with N(z2) = 1. It is easy to see that all positive solutions of
Pt(1) are of the form Zn for some n ≥ 1 (see for instance [27, Theorem II.15]).
Since 1 < Z < Z2 < · · · we get z2 = Z, hence α = 2a2 + 1, β = 2ab. �

Remark 2.2. With the same notation, putting Z = A + B
√
t, we see that the

integer solutions of Pt(1) are (1, 0) and ±Zn with z ∈ Z. Putting z = a+ b
√
t, the

integer solutions of Pt(−1) are ±z2n+1 with n ∈ Z.

2.2. Basic facts on the Hilbert scheme S[2]. We denote by S2 the product of
two copies of S and by pi : S

2 → S the projection onto the i-th factor, i = 1, 2.
Consider the symmetric quotient S(2) := S2/S2 where the symmetric group S2 acts
by permutation of the two factors and denote by π : S2 → S(2) the quotient map.
The variety S(2) is singular on the locus ∆ which is the image of the diagonal of S2

by π. We denote by S[2] the Hilbert scheme of two points on S which parametrizes
the length two zero dimensional subschemes of S. The Hilbert–Chow morphim
ρ : S[2] → S(2) is projective and birational, it is a resolution of the singularities. We
denote by E := ρ−1(∆) the exceptional divisor, which is irreducible.

Recall that by a result of Beauville–Fujiki [3] the variety S[2] is hyperkähler
and the space H2(S[2],Z) is a lattice for the Beauville–Bogomolov–Fujiki quadratic
form, isometric to H2(S,Z) ⊕ Zδ where [E] = 2δ. We have δ2 = −2 and thus the
lattice H2(S[2],Z) is isometric to U⊕3 ⊕ E⊕2

8 ⊕ 〈−2〉 where U is the unique even
unimodular hyperbolic lattice of rank 2 and E8 is the even negative definite lattice
of rank 8 associated to the Dynkin diagram E8.



4 BOISSIÈRE, CATTANEO, NIEPER-WISSKIRCHEN, SARTI

There exists a natural morphism of groups Pic(S) → Pic(S[2]), L 7→ L2, con-
structed as follows: for any line bundle L ∈ Pic(S), the line bundle p∗1L ⊗ p∗2L
projects to a line bundle L on Pic(S(2)) with π∗L ∼= p∗1L ⊗ p∗2L and one defines
L2 := ρ∗L. Denoting by Pic(S)2 the set of isomorphism classes of line bundles of
the form L2 one has

Pic(S[2]) = Pic(S)2 ⊗ ZD

where D2 ∼= O(−E) and c1(D) = −δ. In particular, putting h := H2, in our
situation the sequence (h,−δ) is a basis of the Néron–Severi lattice NS(S[2]) whose
bilinear form is: (

2t 0
0 −2

)

2.3. Basic results on the group Aut(S[2]). We denote by Aut(S[2]) the group of
biholomorphic automorphisms of S[2], which is a discrete group (see [8]). Every au-
tomorphism f ∈ Aut(S) induces an automorphism denoted f [2] on S[2], such auto-
morphisms are called natural. Associating to each automorphism ϕ of S[2] the isom-
etry (ϕ−1)∗ of H2(S[2],Z) we get a morphism of groups Aut(S[2])→ O(H2(S[2],Z));
Beauville [2, Proposition 10] proved that this morphism injective. We consider the
morphism obtained by restriction to the Néron–Severi group:

Ψ: Aut(S[2])→ O(NS(S[2])), ϕ 7→ (ϕ−1)∗
∣∣
NS(S[2])

.

The following result is well-known (see for instance [15, Corollary 15.2.12]):

Lemma 2.3. Let S be an algebraic K3 surface such that Pic(S) = ZH, H2 = 2t,
t ≥ 1.

(1) If t ≥ 2 then Aut(S) = {idS}.
(2) If t = 1 then S is the double cover of P2 branched along a smooth sextic

curve and Aut(S) = {idS , ι} where ι is the covering involution.

Lemma 2.4. Let S be an algebraic K3 surface such that Pic(S) = ZH, H2 = 2t,
t ≥ 2. Then Ker(Ψ) ∼= Aut(S). In particular if t ≥ 2 the morphism Ψ is injective.

Proof. If (ϕ−1)∗
∣∣
NS(S[2])

is the identity, then in particular it leaves invariant the

class δ. By Boissière–Sarti [10, Theorem 1] this implies that ϕ is a natural auto-
morphism: ϕ = f [2] for some f ∈ Aut(S). By Lemma 2.3, if t ≥ 2 one has f = idS
so Ψ is injective. �

3. The ample cone of S[2]

In this section we determine the ample cone AS[2] ⊂ NS(S[2]) in the basis (h,−δ).
We first recall a classical method due to Beltrametti–Sommese [5] and Catanese–
Göttsche [12] to construct ample classes and then we give a full description of the
ample cone using recent results of Bayer–Macr̀ı [1]. Both points of views will be
needed in the sequel. Earlier related results were obtained by Hassett–Tschinkel [13,
14] and Markman [19].
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3.1. The map to the Grassmannian. Let L = aH, a > 0, be an ample line bun-
dle on S and consider the Grassmannian G := Grass

(
2, H0(S,L)∗

)
of 2-dimensional

subspaces of H0(S,L)∗. If Z ⊂ S is any 0-cycle, the exact sequence

0 −→ L⊗ IZ −→ L −→ L⊗OZ −→ 0

induces an exact cohomology sequence:

0 −→ H0(S,L⊗ IZ) −→ H0(S,L)
rZ−→ H0(S,L⊗OZ) −→ · · ·

Following [5, 12] the line bundle L is called 2-very ample if the restriction map rZ
is onto for any 0-cycle Z of length less than or equal to 3. If L is very ample it
defines a morphism

φ : S[2] −→ G, [Z] 7→ H0(S,L⊗ IZ).

By Catanese–Göttsche [12, Main Theorem] φ is an embedding if and only if L is
2-very ample.

Proposition 3.1. Let S be an algebraic K3 surface such that Pic(S) = ZH with
H2 = 2t, t ≥ 1.

(1) If t ≥ 4 then ah− δ is ample on S[2] if a ≥ 1.
(2) If t ∈ {2, 3} then ah− δ is ample on S[2] if a ≥ 2.
(3) If t = 1 then ah− δ is ample on S[2] if a ≥ 3.

Proof. If L = aH is 2-very ample then φ is an embedding so φ∗OG(1) is ample
on S[2]. As explained in [6, Section 2] (see also [23, Proof of Proposition 4.1]) its
first Chern class is equal to c1(L2) − δ = ah − δ, so the class ah − δ ∈ NS(S[2]) is
ample.

By Knutsen [16, Theorem 1.1], L is 2-very ample if and only if L2 ≥ 8 and there
exists no effective divisor D satisfying the following conditions:

(1) 2D2
(i)

≤ L ·D
(ii)

≤ D2 + 3
(iii)

≤ 6;
(2) condition (i) is an equality if and only if L ∼ 2D and L2 ≤ 12;
(3) condition (iii) is an equality if and only if L ∼ 2D and L2 = 12.

Since L2 = 2ta2 we get immediately

L2 ≥ 8⇔

{
a ≥ 2 if t = 1, 2, 3

a ≥ 1 if t ≥ 4.

Let D = nH be an effective divisor (n > 0) satisfying condition (iii). We get
2tn2 ≤ 3 so this case happens only when t = 1, with D = H. As a consequence,
the line bundle L = aH is 2-very ample for any a ≥ 2 if t = 2, 3 and for any a ≥ 1 if
t ≥ 4. Assume now that t = 1 and D = H satisfies condition (ii). We get a ∈ {1, 2}.
Condition (i) is not satisfied if a = 1 but all conditions are satisfied if a = 2. Hence
if t = 1 the line bundle L = aH is 2-very ample for any a ≥ 3. �

We denote by (x, y) the coordinates in NS(S[2])⊗Z R corresponding to the class
xh− yδ. Observe that: h is a nef and non-ample class; −δ is not ample; 3h− δ is
ample by Proposition 3.1. Hence we have AS[2] ⊆ {xh− yδ |x > 0, y > 0}.
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3.2. The ample cone and Pell’s equation. Bayer–Macr̀ı [1] use wall-crossing
with respect to Bridgeland stability conditions to determine the movable cone of
moduli spaces of sheaves on K3 surfaces. In the particular case of the Hilbert scheme
of two points on a generic K3 surface, a direct application of [1, Proposition 13.1,
Lemma 13.3] gives a full description of the ample cone AS[2] depending on solutions
of Pell’s equation.

Proposition 3.2. Let S be an algebraic K3 surface such that Pic(S) = ZH with
H2 = 2t, t ≥ 1.

(1) If t is a square, t = k2 with k ≥ 1, then AS[2] is the interior of the cone
generated by h and h− kδ.

(2) If t is not a square and Pell’s equation P4t(5) has a solution, then AS[2] is
the interior of the cone generated by h and xh − 2tyδ where (x, y) is the
minimal solution of P4t(5).

(3) If t is not a square and Pell’s equation P4t(5) has no solution, then AS[2]

is the interior of the cone generated by h and xh − tyδ where (x, y) is the
minimal solution of Pell’s equation Pt(1).

Remark 3.3. If t is not a square, the knowledge of the ample cone of S[2] deter-
mines in which of the cases of Proposition 3.2 we are, and in particular whether
Pell’s equation P4t(5) admits a solution, since Pt(1) and P4t(5) have no common
solution.

4. The isometry group of NS(S[2])

Recall that in the basis (h,−δ) of the Néron–Severi lattice NS(S[2]) the bilinear
form is represented by the matrix (

2t 0
0 −2

)
.

In this section, we describe the group O(NS(S[2])) of isometries of the Néron–Severi
lattice of S[2]. The matrix in the basis (h,−δ) of such an isometry is

M =

(
A B
C D

)
and the following conditions hold:

(1) detM = ±1, i.e. AD −BC = ±1;
(2) 2t = h2 = (Ah− Cδ)2, i.e. C2 = t(A2 − 1);
(3) −2 = (−δ)2 = (Bh−Dδ)2, i.e. D2 = tB2 + 1;
(4) 0 = −hδ = (Ah− Cδ)(Bh−Dδ), i.e. CD = tAB.

We deduce easily that M can be of one of the following two forms:(
A B
tB A

)
or

(
A B
−tB −A

)
, with A2 − tB2 = 1.

Consider the abelian group

N :=

{(
A B
tB A

) ∣∣∣A,B ∈ Z, A2 − tB2 = 1

}
⊂ O(NS(S[2]))
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and the element s :=

(
1 0
0 −1

)
∈ O(NS(S[2])). It is easy to see that O(NS(S[2]))

is the generalized dihedral group of N :

O(NS(S[2])) ∼= Dih(N) ∼= N o Z/2Z

where Z/2Z = 〈s〉 acts by conjugation on N .

Remark 4.1. If t is a square, the solutions of the equation A2 − tB2 = 1 are
A = ±1, B = 0 so O(NS(S[2])) is isomorphic to the dihedral group with four
elements {id,−id, s,−s}.

Remark 4.2. The isometries of the lattice 〈2t〉⊕〈−2〉 were computed in a different
context in [7], where Bini studies the automorphism group of a K3 surface of Picard
number two and Néron–Severi group isometric to 〈2nt〉 ⊕ 〈−2n〉, for n, t positive
integers.

The next proposition shows that the non-trivial isometries of NS(S[2]) induced
by automorphisms characterize the ample cone of S[2] and vice versa. This very
precise link will be the key to the full description of the automorphism group of S[2].

Proposition 4.3. Let S be an algebraic K3 surface such that Pic(S) = ZH with
H2 = 2t, t ≥ 1 and f ∈ Aut(S[2]). If the isometry on NS(S[2]) induced by f is not
the identity then it is the involution represented in the basis (h,−δ) by the matrix(

A B
−tB −A

)
with A2 − tB2 = 1, A > 0, B < 0

where A and B are uniquely determined by the ample cone of S[2], which is:

AS[2] = {xh− yδ | y > 0, Ay < −tBx} .

Proof. Recall that AS[2] ⊆ {xh− yδ |x > 0, y > 0}. As explained above, the isom-
etry ϕ induced by f on NS(S[2]) can be of two forms.

First case. Assume that ϕ =

(
A B
tB A

)
with A2 − tB2 = 1 and that ϕ 6= id. By

Proposition 3.1, the divisors of coordinates (a, 1) with a ≥ 3 are ample, their images
by ϕ have coordinates (aA + B, atB + A) and are ample since ϕ is induced by an
automorphism. This implies immediately A > 0, B > 0 and since ϕ(1, 0) = (A, tB)
is a non-ample class (h is not ample) we get

AS[2] ⊆ {xh− yδ | y > 0, Ay < tBx} .

The class ϕ(3, 1) = (3A + B, 3tB + A) is ample but it does not satisfy the second
inequality, contradiction.

Second case. Assume that ϕ =

(
A B
−tB −A

)
with A2 − tB2 = 1. Similarly, the

classes ϕ(a, 1) = (aA+B,−atB−A) for a ≥ 3 are ample so A > 0 and B < 0 (it is
obvious that B 6= 0). All the rays y = −atB−A

aA+B x are contained in AS[2] , their limit

for a big enough is the ray y = −tB
A x so

AS[2] ⊇ {xh− yδ | y > 0, Ay < −tBx} .

As above the class ϕ(1, 0) = (A,−tB) is non-ample so we get the result. �
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5. The automorphism group of S[2]

As a direct consequence of Proposition 4.3 we get a first result on the automor-
phism group of S[2].

Proposition 5.1. Let S be an algebraic K3 surface such that Pic(S) = ZH with
H2 = 2t, t ≥ 1.

(1) If t ≥ 2 then the group Aut(S[2]) is either trivial or isomorphic to Z/2Z,
in which case it is generated by a non-symplectic involution.

(2) If t = 1 then Aut(S[2]) = {idS[2] , ι[2]} ∼= Z/2Z.

Proof. If t ≥ 2, by Lemma 2.4 the map Ψ: Aut(S[2])→ O(NS(S[2])) is injective. It
follows from Proposition 4.3 that Aut(S[2]) is either trivial, or isomorphic to Z/2Z.
By [20, Theorem 4.1] symplectic involutions can exist only when rank NS(S[2]) ≥ 8,
so here the non-trivial involution is necessarily non-symplectic.

If t = 1, by Remark 4.1 and Proposition 4.3 we observe that the only isometry
of O(NS(S[2])) which is induced by an automorphism of S[2] is the identity so
the map Ψ is trivial. By Lemmas 2.3 & 2.4 we get that Aut(S[2]) is isomorphic
to Z/2Z, generated by the involution ι[2] that is clearly non-symplectic since ι is
non-symplectic. �

From now on we assume that t ≥ 2 since the case t = 1 is completely solved by
Proposition 5.1.

5.1. Classes of square two. Consider an isometry of NS(S[2]) of the form

ϕ =

(
A B
−tB −A

)
, with A2 − tB2 = 1, A > 0, B < 0. (1)

A direct computation shows that the invariant sublattice of NS(S[2]) for the action
of ϕ is generated by the vector (b, a) := 1

d (−B,A− 1) where d = gcd(B,A− 1) and
that ϕ is the reflection in the line generated by the vector (b, a).

If f ∈ Aut(S[2]) is a non-symplectic involution, the invariant lattice T (f) is a
primitive sublattice of NS(S[2]), hence its orthogonal complement T (f)⊥ inH2(S,Z)
contains the transcendental lattice Trans(S[2]). It follows that the isometry f∗ in-
duced by f on H2(S[2],Z) is such that f∗

∣∣
Trans(S[2]) = −idTrans(S[2]).

Lemma 5.2. Let ϕ be an involution on NS(S[2]), represented by a matrix of the
form (1). Then ϕ extends to an involution Φ on H2(S[2],Z) such that

Φ
∣∣
Trans(S[2]) = −idTrans(S[2])

if and only if ϕ is the reflection through a class of square 2.

Proof. By [22, Theorem 1.14.4] the lattice Pic(S) = ZH has a unique primitive
embedding in H2(S,Z) ∼= U⊕3 ⊕ E⊕2

8 up to isometry. Denoting by (e, f) a basis
of the first factor U we can thus assume that it is given by H 7→ e + tf . Since we
are working on S[2] and not on a deformation of it, we consider the embedding of
NS(S[2]) in H2(S[2],Z) given by h 7→ e+ tf .

Assume that ϕ extends to an isometry Φ of H2(S[2],Z) and look at the action
on the factor U ⊕ 〈−2〉 with basis (e + tf, f,−δ). Since the class w := e − tf is
orthogonal to NS(S[2]) we have Φ(w) = −w. Writing w = (e+ tf)− 2tf we get the
relation

2tΦ(f) = (A+ 1)(e+ tf) + tBδ − 2tf.
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Recall that ϕ is the reflection in the span of the primitive vector (b, a). An explicit

computation gives A =
tb2 + a2

tb2 − a2
and B =

−2ab

tb2 − a2
, hence

Φ(f) =
b2

tb2 − a2
(e+ tf)− ab

tb2 − a2
δ − f.

It follows that b2

tb2−a2 = k ∈ Z. We get (kt − 1)b2 = ka2 and since a and b are

coprime, b2 divides k. This implies tb2 − a2 = 1 (since A > 0) so (b, a) is a class of
square 2.

Conversely, if (b, a) is a class of square 2 the above computation shows that ϕ
extends to an isometry Φ of U⊕〈−2〉. We extend it as −id to the remaining factors
U⊕2 ⊕ E⊕2

8 and we get the result. �

Lemma 5.3. Let S be an algebraic K3 surface such that Pic(S) = ZH, H2 = 2t,
t ≥ 2. If f ∈ Aut(S[2]) is not the identity, then its action on NS(S[2]) is the
reflection in the span of a class of square 2.

Proof. By Lemma 2.4 and Proposition 4.3 the isometry induced by f on NS(S[2])
has the form (1). By Proposition 5.1 the involution f is non-symplectic so the
invariant lattice T (f) ⊂ H2(S[2],Z) is a primitive sublattice of NS(S[2]), hence T (f)
is the lattice generated by (b, a). Moreover by [9, Lemma 8.1] the lattice T (f) is
2-elementary and contains a positive class. It follows that (b, a) has square 2. �

Remark 5.4. As a consequence of Lemma 5.2 and its proof, using the explicit
formula for A and B we get d = 2a, hence A = 2a2 + 1 and B = −2ab with
a2 − tb2 = −1, a > 0, b > 0. So the isometry of NS(S[2]) induced by a non-trivial
automorphism is (

2a2 + 1 −2ab
2tab −2a2 − 1

)
where (a, b) is a solution of Pell’s equation Pt(−1). This shows that non-trivial
automorphisms cannot exist when t is such that the equation Pt(−1) has no solu-
tion. This implies in particular that t is not a square and that the period of the
continued fraction expansion of

√
t is odd.

5.2. Main result. The main result of this section is the following theorem which,
together with Proposition 5.1, gives a complete description of the automorphism
group of S[2] for any value of t.

Theorem 5.5. Let S be an algebraic K3 surface such that Pic(S) = ZH with
H2 = 2t, t ≥ 2. Then S[2] admits a non-trivial automorphism if and only if one of
the following equivalent conditions is satisfied:

(1) t is not a square, Pell’s equation P4t(5) has no solution and Pell’s equation
Pt(−1) has a solution.

(2) There exists an ample class D ∈ NS(S[2]) such that D2 = 2.

Moreover, if this is the case the class D is unique, the automorphism is unique and
it is a non-symplectic involution.

Proof. If S[2] admits a non-trivial automorphism, by Lemma 5.3 its action ϕ on
NS(S[2]) is the reflection through a class (b, a) of square 2. By Remark 5.4 we have
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that t is not a square. By Proposition 4.3 we have that ϕ is given by the matrix(
A B
−tB −A

)
with A2 − tB2 = 1, A > 0, B < 0,

where A and B are determined by the ample cone AS[2] :

AS[2] = {xh− yδ | y > 0, Ay < −tBx} .

By Proposition 3.2 and Remark 3.3, Pell’s equation P4t(5) has no solution and
(A,−B) is the minimal solution of Pell’s equation Pt(1). Moreover, by Remark 5.4
(a, b) is a solution of Pell’s equation Pt(−1) and we have A = 2a2 + 1, B = −2ab.
It is easy to check that the class D = bh−aδ ∈ NS(S[2]) of square 2 lives inside the
ample cone AS[2] . This proves (1) and (2).

Assuming (1), by Proposition 3.2 the ample cone of S[2] is

AS[2] = {xh− yδ | y > 0, Ay < −tBx} ,

where (A,−B) is the minimal solution of Pt(1). Let (a, b) be the minimal solution
of Pt(−1). By Lemma 2.1 we have A = 2a2 + 1, B = −2ab, so again the class
D = bh−aδ ∈ NS(S[2]) of square 2 lives inside the ample coneAS[2] . This proves (2).

Assuming (2), write D = bh−aδ. By Lemma 5.2 the reflection on NS(S[2]) in the
span of D extends to an isometry Φ of H2(S[2],Z) such that Φ

∣∣
Trans(S[2]) = −id so

it induces a Hodge isometry ΦC on H2(S[2],C). Since Φ leaves invariant the ample
class D, this isometry maps the positive cone of NS(S[2]) to itself. By the global
Torelli theorem of Markman–Verbitsky [18, Theorem 1.3, Lemma 9.2] there exists
an automorphism f ∈ Aut(S[2]) such that f∗ = Φ, which is a non-symplectic invo-
lution by Proposition 5.1 and there is no other non-trivial automorphism on S[2].

Let us show that the ample class D of square 2 is unique. Putting D = bh− aδ,
we know that (a, b) is the minimal solution of Pt(−1) and that the ample cone
of S[2] is characterized by A = 2a2 + 1, B = −2ab where (A,−B) is the minimal
solution of Pt(1). Assume that D′ = βh − αδ is another ample class of square 2.
Then α > 0, β > 0 and (α, β) is a positive solution of Pt(−1). Putting z = a+ b

√
t

and w = α + β
√
t, by Remark 2.2 we have w = z2n+1 with n ≥ 0. Assume that

n > 0. Since z0 = A+ B
√
t = z2 we have w = z2n−1z0. Writing z2n−1 = u+ v

√
t

we get

α = uA− tvB, β = vA− uB.
We deduce that Aα+ tBβ = u(A2− tB2) = u > 0 so Aα > −tBβ, this means that
D′ is not ample. So n = 0 and D′ = D. �

6. Examples

Using the results of Section 2.1 we find that Pell’s equation Pt(−1) has a solu-
tion for t = 2, 5, 10, 13, 17, . . . and using the software Magma [11] we find that Pell’s
equation P4t(5) has no solution for t = 2, 10, 13, 17, hence by Theorem 5.5 in these
cases only S[2] admits a non-trivial automorphism which is a non-symplectic invo-
lution whose action on H2(S,Z) is the reflection in the span of an ample class D
of square 2. By the Hirzebruch–Riemann–Roch theorem we have (see for instance
[24, Section 4]):

χ(nD) =
1

2
n4 +

5

2
n2 + 3.
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In particular by Kodaira vanishing theorem h0(S[2], D) = 6, so the linear system |D|
defines a rational map

ϕ|D| : S
[2] 99K P5.

The non-symplectic involution ι acts on H0(S[2], D) and ϕ|D| is ι-equivariant.

6.1. The case t = 2. Here S is polarized by an ample class H of square 4 which
is very ample and embeds S as a generic quartic in P3. The minimal solution of
Pell’s equation P2(−1) is (1, 1) so the non-trivial automorphism acts on NS(S[2])
as the isometry given by the matrix(

3 −2
4 −3

)
which is the reflection in the span of the ample class D = h−δ of square 2. Moreover
the ample cone of S[2] is given by A = 3, B = −2:

AS[2] = {xh− yδ | y > 0, 3y < 4x} .

By the embedding S ↪→ P(H0(S,H)∗) ∼= P3 we identify the map to the Grass-
mannian φ : S[2] → Grass

(
2, H0(S,H)∗

)
used in Section 3.1 with the map

φ : S[2] → Grass(1,P3), Z 7→ 〈Z〉

that maps Z ∈ S[2] to the one-dimensional span 〈Z〉 of Z in P3. Since S has Picard
number one, it contains no line. Any line in P3 intersects S in 4 points (with
multiplicity) so the map φ is generically 6 : 1. We denote by ψ : Grass(1,P3)→ P5

the Plücker embedding, its image Y is the Plücker quadric.
By Beauville [2] the rational map ι : S[2] → S[2] that sends Z to the length-two

subscheme Z ′ defined by 〈Z〉 ∩ S = Z
∐
Z ′ is everywhere defined and we have a

commutative diagram

S[2] φ //

ι

��

Grass(1,P3)
ψ // Y

S[2]

φ

99

Denoting by L := ψ∗OY (1) the very ample line bundle given by the Plücker embed-
ding we get ι∗φ∗L = φ∗L so φ∗L is a multiple of the invariant class D. As explained
for instance in [23, Section 4.1.2] it is φ∗L = D and ι∗ is indeed the non-symplectic
involution given by the matrix above. The composite map

f := ψ ◦ φ : S[2] → Y ⊂ P5

is such that f∗OP5(1) = D. Since H0(S[2], D) has dimension 6 and since Y is not
contained in any hyperplane of P5 we have f = ϕ|D|. In particular we see in this
case that the linear system |D| is base-point-free, the involution ι acts trivially on
H0(S[2], D) so ϕ|D| ◦ ι = ϕ|D|.

6.2. The case t = 10. Here S is polarized by an ample class of square 20. The
minimal solution of Pell’s equation P10(−1) is (3, 1) so the non-trivial automorphism
acts on NS(S[2]) as the isometry given by the matrix(

19 −6
60 −19

)
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which is the reflection in the span of the ample class D = h − 3δ of square 2.
Moreover the ample cone of S[2] is given by A = 19, B = −6:

AS[2] = {xh− yδ | y > 0, 19y < 60x} .

To our knowledge, there exists no geometric construction of this automorphism
in the literature. In particular, it is not known whether the linear system |D| is
base-point-free.
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