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Abstract. In the paper we classify complex K3 surfaces with non-symplectic

automorphism of order 16 in full generality. We show that the fixed locus
contains only rational curves and points and we completely classify the seven

possible configurations. If the Picard group has rank 6, there are two possibil-

ities and if its rank is 14, there are five possibilities. In particular if the action
of the automorphism is trivial on the Picard group, then we show that its rank

is six.

Introduction

Automorphisms of complex K3 surfaces were widely studied in the last years, in
particular also for the recent relation with the Bloch conjecture, see e.g. [10], [9].
Here we study (purely) non-symplectic automorphisms of order d, i.e. automor-
phisms that multiply the non-degenerate holomorphic two form by a primitive dth
root of unity. The study of non-symplectic automorphisms of prime order was com-
pleted by Nikulin in [17] in the case of involutions, and more recently by Artebani,
Sarti and Taki in several papers [2, 4, 21] for the other prime orders. The study
of non-symplectic automorphisms of nonprime order turns out to be more compli-
cated, indeed in this situation the ”generic” case does not imply that the action of
the automorphism is trivial on the Picard group [8, Section 11]. In the paper [22]
Taki completely describes the case when the automorphism is a prime power and
the action is trivial on the Picard group. If we consider non-symplectic automor-
phisms that are of order 2t, then by results of Nikulin we have 0 ≤ t ≤ 5, and by
a recent paper by Taki [23] there is only one K3 surface that admits an order 32
non-symplectic automorphism. Some further results in this direction are contained
in a paper by Schütt [19] in the case of automorphisms of a 2-power order and in
a paper by Artebani and Sarti [3], in the case of the order 4. In this last paper the
hypothesis of trivial action on the Picard group is left out. Here we consider the
case of the order 16 in full generality, which together with the order 8 remained
quite unexplored.

Since Euler’s totient function value of 16 must divide the rank of the transcen-
dental lattice (see [15, Theorem 3.1]) the rank of the Picard group can only be
equal to 6 or 14. More precisely let X be a K3 surface, ωX a generator of H2,0(X),

Date: July 13, 2016.
2010 Mathematics Subject Classification. Primary 14J28; Secondary 14J50, 14J10.

Key words and phrases. non-symplectic automorphisms, K3 surfaces.
The third-named author was partially supported by Research Institute for Science and Tech-

nology of Tokyo Denki University Grant Number Q14K-06/Japan and Grant-in-Aid for Young
Scientists (B) 15K17520 from JSPS.

1



2 DIMA AL TABBAA, ALESSANDRA SARTI, AND SHINGO TAKI

σ an order 16 automorphism such that σ∗ωX = ζ16ωX , where ζ16 denotes a prim-
itive 16th root of unity. We assume everywhere that σ8 acts as the identity on
Pic(X) that corresponds to the generic case in the moduli space (observe that if
rk Pic(X) = 6 the condition is automatically satisfied, see Remark 5.3 and Propo-
sition 5.4). We first show that if the fixed locus of σ contains a curve then its genus
is zero (Proposition 2.9). We show also that the fixed locus of σ4 contains always
at least a curve of genus 0 or 1 (Proposition 2.10).
In the case that rk Pic(X) = 6 and so σ8 acts trivially on Pic(X) we have the fol-
lowing number of isolated fixed points N and fixed rational curves k for σ (Theorem
4.1):

(Pic(X), N, k) = (U ⊕D4, 6, 1), or (U(2)⊕D4, 4, 0).

In the first case the action of σ is trivial on Pic(X) but not in the second case.
If σ8 acts trivially on Pic(X), rk Pic(X) = 14 and σ4 fixes an elliptic curve C,
then σ leaves C invariant (but C is not point wise fixed by σ by Proposition 2.9)
and the induced σ-invariant elliptic fibration has a reducible fiber of type IV ∗ (see
Theorem 6.1). The number of isolated σ-fixed points and σ-fixed rational curves
are as follows: (N, k) = (8, 1) or (6, 0). In the first case σ preserves each component
of the fiber of type IV ∗ and in the second case it acts as a reflection on it. In any
case the action of σ is nontrivial on Pic(X) (see Theorem 3.1). Finally if σ8 acts
trivially on Pic(X), rk Pic(X) = 14, Fix(σ4) contains at least a curve and its genus
is at most zero, we have three cases with (Pic(X), N, k) equal to:

(U ⊕D4 ⊕ E8, 12, 1), (U(2)⊕D4 ⊕ E8, 4, 0) or (U(2)⊕D4 ⊕ E8, 10, 1).

In these three cases the action of σ is not trivial on Pic(X), (Theorem 5.1). This
in particular shows that there does not exist a K3 surface X with Picard number 14
with an automorphism of order 16 acting non-symplectically on it and trivially on
Pic(X). This corrects a small mistake in the paper [22, Main Theorem (3)], where
the author claims that such a K3 surface exists.

We construct the K3 surfaces in the Examples 3.2, 4.2, 5.2 (some of the examples
are described in [22] and [7]). For the proofs of the Theorems 3.1, 4.1, 5.1, we use
Lefschetz formulas, results on non-symplectic involutions, results on non-symplectic
order four automorphisms, that are contained in [3], [22]. We recall these results in
Appendix 6 for convenience of the reader. We use also and prove some results on
non-symplectic automorphisms of order eight.

The results of this paper are partially contained in the PhD thesis of the first
author under the supervision of the second author. The results on order eight
non-symplectic automorphisms as well as a classification of K3 surfaces with non-
symplectic automorphism of order eight is contained in the PhD thesis of Al Tabbaa,
[1] too.

Acknowledgments: We warmly thank Michela Artebani, Samuel Boissière and
Alice Garbagnati for several interesting discussions. We are also grateful to the
anonymous referee for carefully reading of the paper and for the many useful com-
ments that improved the first version of the paper.

1. Basic facts

Let X be a K3 surface and σ a non-symplectic automorphism of order 16 acting
on it, this means that the action of σ∗ on the vector space H2,0(X) = CωX of
holomorphic two-forms is not trivial. More precisely we assume that σ∗ωX = ζ16ωX ,
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where ζ16 is a primitive 16th root of unity. This action is called sometimes in the
literature purely non-symplectic, in this paper for simplicity we omit ”purely”. We
denote by ζ := ζ16, ξ := ζ216 a primitive 8th root of unity, i := ζ416 a primitive 4th
root of unity.

We denote furthermore by rσj , lσj ,mσj , m1
σj , m2

σj , j = 1, 2, 4, 8 the rank of the

eigenspaces of (σj)∗ in H2(X,C) relative to the eigenvalues 1,−1, i, ξ and ζ (we
follow the notation of [3, Section 1]). For simplicity for j = 1 we just write rσ,
lσ, . . . or even r, l, . . .. The following easy relations hold:

rσ2 = rσ + lσ, lσ2 = 2mσ, mσ2 = 2m1
σ, m1

σ2 = 2m2
σ,

rσ4 = rσ + lσ + 2mσ, lσ4 = 4m1
σ, mσ4 = 4m2

σ,
rσ8 = rσ + lσ + 2mσ + 4m1

σ, lσ8 = 8m2
σ,

rσ + lσ + 2mσ + 4m1
σ + 8m2

σ = 22.

(1)

Let

S(σj) = {x ∈ H2(X,Z) | (σj)∗(x) = x},

T (σj) = S(σj)⊥ ∩H2(X,Z),

clearly rkS(σj) = rσj . An easy computation shows that S(σj) ⊂ Pic(X), j =
1, 2, 4, 8 so that the transcendental lattice TX = (Pic(X))⊥ ∩ H2(X,Z) satisfies
TX ⊂ T (σj).

The moduli space of K3 surfaces carrying a non-symplectic automorphism of
order 16 with a given action on the K3 lattice is known to be a complex ball
quotient of dimension m2

σ − 1, see [8, §11]. The complex ball is given by:

B = {[w] ∈ P(V ) : (w, w̄) > 0},

where V is the ζ-eigenspace of σ∗ in T (σ8) ⊗ C. This implies that the Picard
group of a K3 surface corresponding to the generic point of such space equals S(σ8)
(see [8, Theorem 11.2]).

By [15, Theorem 3.1] the eigenvalues of the action of σ on TX are primitive 16th
roots of unity so rk(TX) = 8m2

σ. Since 0 < rk(TX) ≤ 21 we have in fact only
two possibilities which are m2

σ = 1 or 2 so that rk Pic(X) = 14 respectively 6. As
remarked above in the generic case this is also the rank of S(σ8) = Pic(X) and we
have by orthogonality TX = T (σ8). Observe moreover that rσ > 0 since there is
always an ample σ-invariant class on X (see [15, Theorem 3.1], [3, Lemma 1]).

2. The fixed locus

We start by recalling the following result about non-symplectic involutions (see
[17, Theorem 4.2.2] and also [14, §4]).

Theorem 2.1. Let τ be a non-symplectic involution on a K3 surface X. The fixed
locus of τ is either empty, the disjoint union of two elliptic curves or the disjoint
union of a smooth curve of genus g ≥ 0 and k smooth rational curves.

Moreover, its fixed lattice S(τ) ⊂ Pic(X) is a 2-elementary lattice with determi-
nant 2a such that:

• S(τ) ∼= U(2)⊕ E8(2) iff the fixed locus of τ is empty;
• S(τ) ∼= U ⊕ E8(2) iff τ fixes two elliptic curves;
• 2g = 22− rkS(τ)− a and 2k = rkS(τ)− a otherwise.
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Since S(τ) is 2-elementary its discriminant groupAS(τ) = S(τ)∨/S(τ) ' (Z/2Z)⊕a.

We introduce the invariant δS(τ) of S(τ) by putting δS(τ) = 0 if x2 ∈ Z for any
x ∈ AS(τ) and δS(τ) = 1 otherwise. By [16, Theorem 3.6.2] and [18, §1] S(τ) is
uniquely determined by the invariant δS(τ), rank, signature and the invariant a.
The situation is resumed in Figure 1 from [14, §4].

• δS(τ) = 1
∗ δS(τ) = 0

10

*

9
*

8
7

6

*

*

5
4

3
2

*

*

*

*

*

1
*

0
1

2

*

*

*

3
4

5
6

*

*

7
* 8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
7
8
9

10
11

rk(S(τ))

a

g k

Figure 1. Order 2

At a fixed point for σj the action can be linearized (see e.g. [15, §5]) and is given
by a matrix

Ajt,s =

(
ζt(16/j) 0

0 ζs(16/j)

)
with t + s = 1 mod (16/j), 0 ≤ t < s < 16/j. This means that the fixed locus
of σj is the disjoint union of smooth curves and isolated points (see [17, Section 4,
§2] and [15, §5]). In the sequel of the paper when we consider curves in the fixed
locus of some σj we always mean smooth curves. By Hodge index theorem Fix(σj)
contains at most only one curve of genus g > 1. We denote by kσj the number
of fixed rational curves, by Nσj the number of isolated fixed points in Fix(σj).

Moreover by nσ
j

t,s we denote the number of isolated fixed points of type (t, s) by σj .
In several cases when it is clear which automorphism we are considering we just
write k, N , nt,s, and so on.

Lemma 2.2. Let σ be a non-symplectic automorphism of order 16 acting on a K3
surface X and let A be the number of pairs of rational curves interchanged by σ4

and fixed by σ8, then A ∈ 4Z.

Proof. A curve as in the statement has stabilizer group in 〈σ〉 of order 2. Hence its
σ-orbit has length 8, so we get that A is a multiple of 4. �

We formulate now Proposition 2.3 that we need to prove Proposition 2.7. We
show then in Proposition 2.9 that the case g(C) = 1 is not possible.

Proposition 2.3. Let σ be a non-symplectic automorphism of order 16 acting on
a K3 surface X, with Pic(X) = S(σ8). If C ⊂ Fix(σ) then g(C) = 0, 1, and we can
not have two curves of genus one in the fixed locus.
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Proof. If C ⊂ Fix(σ) then this is also fixed by σ4 which is non-symplectic of order 4.
If g(C) ≥ 2 by the relations (1) we have that lσ4 and mσ4 are multiples of 4, checking
in Theorem 6.2 the only possible case is (mσ4 , rσ4 , lσ4) = (4, 6, 8) and Nσ4 = 2,
kσ4 = 0, g(C) = 2. By the classification of Nikulin (see [14, §4]) the involution σ8

fixes five rational curves other than the curve of genus 2. Since kσ4 = 0, four of the
rational curves are interchanged two by two by σ4, one rational curve is preserved
and contains the two fixed points. In this case A = 2 contradicting Lemma 2.2. If
g(C) = 1 and there exists another genus one curve C ′ ⊂ Fix(σ), then by Theorem
2.1 we have rkS(σ8) = 10 but this is not possible, since the rank can be only equal
to 6 or 14 as explained in Section 1. �

Remark 2.4. More in general by the same reason as in Proposition 2.3 if Fix(σ8)
contains an elliptic curve then this is the only one. We exclude also the case of
Fix(σ8) = ∅ (here again is rkS(σ8) = 10 and this is not possible). The fact
that Fix(σj) 6= ∅, j = 1, 2, 4 follows immediately from the holomorphic Lefschetz
formula, indeed the Lefschetz number is not zero (see Proposition 2.7, Proposition
2.11 and [3, Proposition 1]).

Recall the following useful Lemma and Remark, see e.g. [3, Lemma 4]:

Lemma 2.5. Let T =
∑
hRh be a tree of smooth rational curves on a K3 surface X

such that each Rh is invariant under the action of a non-symplectic automorphism
η of order j. Then, the points of intersection of the rational curves Rh are fixed by
η and the action at one fixed point determines the action on the whole tree.

Remark 2.6. In the case of an automorphism of order 16, with the assumption
of Lemma 2.5, the local actions at the intersection points of the curves Rh appear
in the following order (we give only the exponents of ζ in the matrix of the local
action):

. . . , (0, 1), (15, 2), (14, 3), (13, 4), (12, 5), (11, 6), (10, 7), (9, 8),

(8, 9), (7, 10), (6, 11), (5, 12), (4, 13), (3, 14), (2, 15), (1, 0), . . .

This remark will be particularly useful when we study elliptic fibrations on X.

Proposition 2.7. Let σ be a non-symplectic automorphism of order 16 acting on
a K3 surface X, Pic(X) = S(σ8). Then the fixed locus is non-empty and

Fix(σ) = C ∪ E1 ∪ · · · ∪ Ek ∪ {p1, · · · , pN}

or

Fix(σ) = E1 ∪ · · · ∪ Ek ∪ {p1, · · · , pN},

where C is a curve of genus g = 1, the Ei’s are rational fixed curves, k = kσ and
the pi’s are isolated fixed points, N = Nσ. Moreover N is even, 4 ≤ N ≤ 16 and
the following relations hold :

(I) N = n3,14 + n4,13 + n5,12 + n6,11 + 2n7,10 + 2k + 1.

(II) N = 2n3,14 + 2n5,12 + 2n7,10 + 2k.

(III) N = 2 + rσ − lσ − 2k.
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Proof. By Proposition 2.3 we know that the fixed locus may contain at most one
curve of genus one. We use first the topological Lefschetz fixed point formula for
σ. We write r = rσ and l = lσ. We have

N+
∑

K⊂Fix(σ)

(2−2g(K)) = χ(Fix(σ)) =

4∑
h=0

(−1)h tr(σ∗|Hh(X,R)) = 2+tr(σ∗|H2(X,R)).

This gives N+2k = χ(Fix(σ)) = r−l+2 so that r−l = N+2k−2 (this gives (III)).
Since rkS(σ) = 14 or 6 in any case we have N ≤ 16. We use now holomorphic
Lefschetz formula (see [5, Theorem 4.6]). The Lefschetz number is

L(σ) =

2∑
h=0

(−1)h tr(σ∗|Hh(X,OX)) = 1 + ζ−116 = 1 + ζ1516 ,(2)

on the other hand

L(σ) =
∑
t,s

nt,s
det(I − σ∗|Tx)

+
1 + ζ

(1− ζ)2

∑
K⊂Fix(σ)

(1− g(K))(3)

where Tx denotes the tangent space at an isolated fixed point x. The action of σ
on Tx is given by a matrix A1

t,s that we have introduced at the beginning of this
section. Since the fixed locus contains at most one curve of genus one, this gives
zero contribute for the Lefschetz number so we have∑

K⊂Fix(σ)

(1− g(K)) = k.

We can then expand equation (3) and collect the coefficients of the powers of ζ16.
Comparing with equation (2), we get the equations (one can do the computation
by hand or using a computer algebra system as MAPLE):

(4) n2,15 − n7,10 + n8,9 = 1 + 2k.

(5) n2,15 − n3,14 + n4,13 − n5,12 + n6,11 − n7,10 + n8,9 = 2k.

(6) n4,13 + n5,12 − 2n6,11 + 2n7,10 − n8,9 = 2k.

(7) 2n3,14 − 2n4,13 + 2n6,11 − n8,9 = 2k.

Combining (4) and (5) we get

(8) n3,14 − n4,13 + n5,12 − n6,11 = 1.

From (4) and (5) and the fact that N =
∑
nt,s we obtain the relations (I) and

(II) in the statement respectively. By (I) we get that N ≥ 1 and by (II) we find that
N is an even number, thus N ≥ 2. If N = 2 then by (I) we obtain k = n7,10 = 0 and
either n3,14 or n5,12 is equal to 1 by relations (I) and (II) , thus n4,13 = n6,11 = 0
by (I) and either n2,15 or n8,9 is equal to one by (4). By (7) we obtain n8,9 = 2n3,14
so n8,9 = n3,14 = 0. By using (6) we obtain n5,12 = 0 which is impossible. So
N ≥ 4. �

Remark 2.8. 1) As a direct consequence of formulas in Proposition 2.7, and
also of formulas (4),. . .,(8), we find (one can compute by hand or use e.g.
MAPLE to find the solutions):

– if N = 4 we have only the possibility with (n3,14, n7,10, n8,9, k) =
(1, 1, 2, 0) (the other nt,s are zero) so that r − l = 2.
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– The case (N, k) = (8, 0) is not possible.
– If (N, k) = (6, 0) then (n5,12, n6,11, n7,10, n8,9) = (2, 1, 1, 2), the other
nt,s are zero and r − l = 4.

– If (N, k) = (6, 1) then (n2,15, n3,14, n7,10) = (4, 1, 1), the other nt,s are
zero and r − l = 6.

2) The fixed points for σ with local action (2, 15), (7, 10), (3, 14), (6, 11) are
isolated fixed points for σ4, whence the points of type (8, 9), (4, 13) and
(5, 12) are contained in a fixed curve for σ4. The points of type (8, 9) are
contained in a fixed curve for σ2.

Proposition 2.9. Let σ be a non-symplectic automorphism of order 16 acting on
a K3 surface X, Pic(X) = S(σ8). If C ⊂ Fix(σ) then C is rational.

Proof. By Theorem 6.1 if g(C) = 1 and since by formulas (1) we have lσ4 ,mσ4 ∈ 4Z,
we get (mσ4 , rσ4 , lσ4) = (4, 10, 4) and the fixed locus of σ4 contains 1 rational fixed
curve and 6 isolated fixed points (here A = 0). Since C ⊂ Fix(σ) we have that also
σ preserves the elliptic fibration determined by C. The automorphism σ4 acts with
order four on the base of the fibration by Theorem 6.1 so σ acts with order 16 on
it and fixes two points. One point corresponds to the smooth elliptic curve C the
other point to the fiber of type IV ∗ (as explained in Theorem 6.1). The component
of multiplicity 3 in the fiber of type IV ∗ is clearly σ-invariant. If it is fixed by σ
then each other component is preserved, so that k = 1 and N = 6. More precisely
by Remark 2.6 we have n2,15 = n3,14 = 3 which contradicts Remark 2.8. If the
component of multiplicity 3 is σ-invariant then it contains 2 isolated fixed points.
Two branches of the fiber are exchanged and we have N = 4. By Remark 2.8 we
have n8,9 = 2, n7,10 = 1, n3,14 = 1 but this is not possible by using the Remark
2.6. �

Proposition 2.10. Let σ be a non-symplectic automorphism of order 16 acting on
a K3 surface X, Pic(X) = S(σ8). The fixed locus Fix(σ4) contains at least one
fixed curve C of genus 0 or 1 (and no curves of higher genus).

Proof. If Fix(σ4) contains only isolated fixed points then by Remark 2.8 we have
n4,13 = n5,12 = n8,9 = k = 0. By equation (7) we obtain n3,14 + n6,11 = 0 so they
are both equal to 0. We get a contradiction to equation (8). Finally if g(C) > 1
we have (mσ4 , rσ4 , lσ4) = (4, 6, 8) by Theorem 6.2. So by the same argument as in
Proposition 2.3 this case is not possible, since A = 2. �

Proposition 2.11. Let σ be a non-symplectic automorphism of order 16 on a K3
surface X, Pic(X) = S(σ8) and C ⊂ Fix(σ2). Then g(C) ≤ 1 and the following
relations for the number of fixed points and curves by σ2 hold:

n2,7 + n3,6 = 2 + 4kσ2 ,
n4,5 + n2,7 − n3,6 = 2 + 2kσ2 ,
Nσ2 = 2 + rσ2 − lσ2 − 2kσ2 ,

where nt,s denote the number of fixed points of type (t, s) for the action of σ2.

Proof. Observe that by Proposition 2.10 we have g(C) ≤ 1 moreover an isolated

fixed point for σ2 is given by the local action

(
ξt 0
0 ξs

)
, t + s = 1 mod (8),

0 ≤ t < s < 8. We obtain the relations in the statement by applying holomorphic
and topological Lefschetz’s formulas. �
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Remark 2.12. By Lemma 2.5, and with the same notation there, the local action
of σ2 at the intersection points of the curves Rh appear in the following order:

. . . , (0, 1), (7, 2), (6, 3), (5, 4), (4, 5), (3, 6), (2, 7), (1, 0), . . .

moreover the σ-fixed points of type (5, 12) and (4, 13) give σ2-fixed points of type
(4, 5), the σ-fixed points of type (2, 15) and (7, 10) give σ2-fixed points of type (2, 7)
(up to the order). The σ-fixed points of type (3, 14) and (6, 11) give σ2-fixed points
of type (3, 6) (up to the order).

3. Elliptic Fibrations

Theorem 3.1. Let σ be a non-symplectic automorphism of order 16 on a K3
surface X and assume that Pic(X) = S(σ8), let C ⊂ Fix(σ4). If g(C) = 1 then σ
acts as an automorphism of order four on C and we have the following cases

m2
σ m1

σ mσ lσ rσ Nσ kσ type of C
′

1 1 0 1 9 8 1 IV∗

1 1 0 3 7 6 0 IV∗

Here C ′ denotes the invariant reducible fiber in the fibration determined by C. In
particular in this case rk Pic(X) = 14.

Proof. If g(C) = 1 we are in the case (mσ4 , rσ4 , lσ4) = (4, 10, 4) by Theorem 6.1
and equations (1). In particular there is only one elliptic curve in the fixed locus
of σ4 so the curve C must be σ-invariant and the elliptic fibration induced by C is
preserved. By Theorem 6.1 the automorphism σ4 has order 4 on the base of the
fibration, so that σ has order 16 on it. It fixes two points corresponding to the
elliptic curve C and a singular fiber C ′ of type IV ∗. The latter corresponds to the
other fixed point for the action of σ on the base P1. By Proposition 2.9 the curve
C can not be fixed by σ, hence σ has order 2 or 4 on it or it acts as a translation.
By basic results on automorphisms on elliptic curves, in the first two cases σ fixes
four, respectively two points on C. There are two possible actions on C ′ that we
explain below.

First case: the singular fiber of type IV ∗ contains a fixed rational curve, which
is necessarily the component of multiplicity 3. Then by using the Lemma 2.5 and
the formulas in Proposition 2.7 we find k = 1, N = 8 with n2,15 = n3,14 = 3 and
n4,13 = 2 the other nt,s are zero. In particular σ must have two fixed points on C
this means that it acts as an automorphism of order four on C.

Second case: the singular fiber of type IV ∗ has a reflection of order 2. Then
the curve of multiplicity 3 is preserved and contains two isolated fixed points with
action (8, 9). In fact this curve must be fixed by σ2 otherwise it would contain
too many isolated fixed points for the action of σ2. Combining Remark 2.8 and
Proposition 2.7 we find (N, k) = (6, 0), with n8,9 = 2 = n5,12, n7,10 = 1 = n6,11,
the other nt,s are zero. We observe that also in this case σ must have two fixed
points on C, this means that it acts as an automorphism of order four on C.

Using the fact that (mσ4 , rσ4 , lσ4) = (4, 10, 4) we get immediately that in both
cases m2

σ = m1
σ = 1. Moreover we have that rσ + lσ + 2mσ = 10 and in the first

case we have r− l = 8, in the second case r− l = 4. In both cases we have Nσ2 = 10
and kσ2 = 1 so using Proposition 2.11 we obtain the values of r, l,m given in the
table.

�
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Example 3.2. Consider the elliptic fibration in Weierstrass form given by :

y2 = x3 + ax+ bt8

where a, b ∈ C and the automorphism σ(x, y, t) = (−x, iy, ζ1316 t) (recall that i = ζ416).
By making the coordinate transformation that replace x by λ4x and y by λ6y for
a suitable λ ∈ C we can assume that a = 1. Moreover since b 6= 0 we can apply a
coordinate tranformation to t and so assume that b = 1 too. Our equation becomes:

y2 = x3 + x+ t8.

The fibers preserved by σ are over 0,∞ and the action at infinity is (see [11, §3]):

(x/t4, y/t6, 1/t) 7−→ (−ix/t4, ζ616y/t6, ζ3161/t).

The discriminant of the fibration is

∆(t) = 4 + 27t16.

We have that t = ∞ is an order eight zero of ∆(t), and ∆(t) has 16 simple zeros.
Looking in the classification of singular fibers of elliptic fibrations on surfaces (e.g.
[13, Section 3]) we see that the fiber over t = ∞ is of type IV∗ and the fibration
has 16 fibers of type I1. In particular the fiber over t = 0 is smooth. By [11,
§3] a holomorphic two form is given by (dt ∧ dx)/2y and so the action of σ on
it is a multiplication by ζ16. In fact we can understand the local action of the
automorphism σ at the fixed points on C. If we look at the elliptic fibration locally
around the fiber over t = 0 the equation in P2 × C is given by:

G(x, y, z, t) := zy2 − (x3 + z2x+ z3t8) = 0

where (x : y : z) are the homogeneous coordinates of P2 and the two fixed points
for the automorphism σ on the fiber t = 0 are p0 := (0 : 1 : 0) and p1 := (0 : 0 : 1).
In the chart z = 1 and on the open subset ∂G(x, y, 1, 0)/∂x 6= 0 that contains the
fixed point p1 = (0 : 0 : 1), a one form for the elliptic curve over t = 0 is:

dy/(∂G(x, y, 1, 0)/∂x) = dy/(−3x2 − 1).

Here the action of σ is a multiplication by i so that the action on the holomorphic
two form

dt ∧ (dy/(−3x2 − 1))

is a multiplication by ζ16 as expected, and we see that the local action is of type
(4, 13). Doing a similar computation in an open subset of the chart y = 1 that
contains the fixed point p0 we find again the same local action. So we are in the
first case of Theorem 3.1 with N = 8. On the other hand the fibration admits also
the automorphism γ(x, y, t) = (−x,−iy, ζ516t). This acts also by multiplication by
ζ16 on the holomorphic two form. Since σ acts also by multiplication by ζ16 on
the holomorphic two form, then γ can not be a power of σ. In this case a similar
discussion as above shows that the local action at the fixed points on the fiber C
is of type (5, 12), so we are in the second case of the Theorem 3.1.

Proposition 3.3. Let σ be a non-symplectic automorphism of order 16 on a K3
surface X such that Pic(X) = S(σ8) ∼= U ⊕ L where L is isomorphic to a direct
sum of root lattices of types A1, D4+n, E7 or E8 and σ8 fixes a curve of genus
g > 1. Then X carries a jacobian elliptic fibration π : X −→ P1 whose fibers
are σ8−invariant and it has reducible fibers described by L and a unique section
E ⊂ Fix(σ8). Moreover, if g > 4 then π is σ−invariant .
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Proof. Since Pic(X) = S(σ8) ∼= U⊕L the first half of the statement follows from [11,
Lemma 2.1, 2.2]. On other hand, since σ8 fixes a curve C of genus g > 1, then C
intersects each fiber of π in at least two points. This implies that σ8 preserves each
fiber of π and acts on it as an involution with four fixed points. By [20, Theorem 6.3]
we have that the Mordell-Weil group of π is MW (π) ∼= Pic(X)/T where T denote
the subgroup of Pic(X) generated by the zero section and fiber components. Since
L is a root lattice and Pic(X) ∼= U ⊕L we have that MW (π) is trivial, hence π has
a unique section E. Since σ8 preserves each fiber of π and E is invariant, we have
that E is fixed by σ8. This implies that C intersects each fiber in three points and
one fixed point for the action of σ8 is contained in the section E.

Now we will prove that π is σ−invariant if g > 4 . Let f be the class of a fiber
of π. The automorphism σ preserves the curve C, and we have that CE = 0 (the
fixed curves for σ8 can not intersect). Assume that f 6= σ∗(f) then they intersect
in at least 2 points. Indeed if f · σ∗(f) = 1 then this is a fixed point of σ on f and
so either C is fixed by σ which is not possible by Proposition 2.3, or E is fixed by σ.
This is not possible too, since otherwise the action of σ on the base of the fibration
would be the identity and so f = σ∗(f), a contradiction. Now applying [3, Lemma
5] we find that:

2g − 2 = C2 ≤ 2(C · f)2

f · σ∗(f) + 1
≤ 2 · 9

3
= 6

This implies g = g(C) ≤ 4. �

4. The rank six case

Theorem 4.1. Let σ be an automorphism of order 16 acting non-symplectically on
a K3 surface X and assume that Pic(X) = S(σ8) has rank 6. Then σ fixes at most
one rational curve.

The corresponding invariants of σ are given in the Table below. In any case
n4,13 = n5,12 = n6,11 = 0 and we have (n2,15, n3,14, n7,10, n8,9) = (4, 1, 1, 0) in the
first case and (n2,15, n3,14, n7,10, n8,9) = (0, 1, 1, 2) in the second case.

m2
σ m1

σ mσ lσ rσ Nσ kσ N ′ g(C) Pic(X)
2 0 0 0 6 6 1 4 7 U ⊕D4

2 0 0 2 4 4 0 2 6 U(2)⊕D4

Here C denotes the σ8-fixed curve of genus > 1 and N ′ denotes the number of fixed
points that are contained in C.

Proof. By the classification theorem for non-symplectic involutions on K3 surfaces
given by Nikulin in [17, §4] we have that (g(C), kσ8) is either equal to (5, 0), (6, 1)
or (7, 2) . Observe that the case g(C) = 5 is not possible. Indeed in this case since
kσ8 = 0 then kσ4 = 0 too and since C is not fixed by σ4 by Proposition 2.10, we
get a contradiction with Proposition 2.10 again. Observe that we have m2

σ = 2 so
that mσ4 = 8 by formulas (1). This means that the automorphism σ4 can not have
lσ4 > 0 by Theorem 6.5. This implies that lσ4 = 0 and by Theorem 6.4 or [22, Main
Theorem 1] we have two possible cases that we recall below, both have m1

σ = 0.
The case (g(C), kσ8) = (6, 1). The automorphism σ4 of order 4 fixes one rational

curve and six points on C by Theorem 6.4, [22, Proposition 4.3]. By Riemann-
Hurwitz formula applied to the automorphism σ on C we find that either σ ex-
changes two fixed points and permutes the other four or σ fixes two points and
the other four are exchanged two by two. The first case is not possible since then
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N = 2 and by Proposition 2.7 we know that N ≥ 4. So we are in the second case.
Since again N ≥ 4 then the rational curve is invariant but not fixed and so N = 4
and by Remark 2.8 we have (n3,14, n7,10, n8,9) = (1, 1, 2) the others nt,s are zero.
We have moreover that kσ2 = 1 and Nσ2 = 6 so combining the Lefschetz formulas
we have r + l + 2m = 6, 4 = 2 + r − l, 6 = 2 + r + l − 2m − 2. That gives m = 0
and r = 4, l = 2. This is the second case in the table.

The case (g(C), kσ8) = (7, 2). The automorphism σ4 of order 4 fixes one rational
curve, four points on C and two points on the other rational curve, see Theorem 6.4,
[22, Proposition 4.3]. By Riemann-Hurwitz formula applied to the automorphism
σ on C we find that either σ exchanges two by two the four points or it fixes each
of the four points. In the first case since N ≥ 4 we have that the two rational
curves are invariant and they contain 2 fixed points each, so that N = 4 by Remark
2.8. Then (n3,14, n7,10, n8,9) = (1, 1, 2). Now by using Remark 2.6 this case is not
possible. In fact clearly the two points of type (8, 9) are contained on the same
rational curve that is then fixed by σ8, then on a σ-invariant (not pointwise fixed)
rational curve we can not have a point of type (3, 14) and of type (7, 10).

So the action of σ on C fixes the four points. Observe that then the number
of fixed points for σ2 satisfies n2,7 + n3,6 ≥ 4 so that kσ2 = 1 by Proposition 2.11
(recall that kσ2 ≤ 1 since kσ4 = 1). This again gives n2,7 +n3,6 = 6 and so n4,5 = 0
and n2,7 = 5, n3,6 = 1. So either (N, k) = (8, 0) or (N, k) = (6, 1). Observe
that the case (N, k) = (8, 0) is not possible for σ by Remark 2.8 and so we have
(N, k) = (6, 1). Again by Remark 2.8 we have (n2,15, n3,14, n7,10) = (4, 1, 1). In this
case we have r+ l+ 2m = 6, r− l = 6, r+ l− 2m = 6. We find m = 0, r = 6, l = 0
and m1

σ = 0. So σ acts trivially on Pic(X) and this is the first case in the table.
�

Example 4.2. 1) The case g(C) = 7, (rσ, lσ) = (6, 0), Pic(X) = U ⊕D4.

Consider as in [19, Section 3.4] the elliptic fibration:

y2 = x3 + t2x+ (bt3 + t11)

with b ∈ C and with the automorphism σ(x, y, t) = (ζ216x, ζ
3
16y, ζ

2
16t) (we write here

the fibration in a slightly different way as given in [19]). On t = 0 the fibration has
a fiber of type I∗0 and on t = ∞ the fibration has a fiber of type II. The action
on the holomorphic two form (dx ∧ dt)/2y is a multiplication by ζ16. This is a one
dimensional family and for generic b the action is trivial on Pic(X). So we are in the
first case of Theorem 4.1. Observe that the fiber of type I∗0 contains the four fixed
points with local action of type (2, 15) and the invariant elliptic cuspidal curve over
t = ∞ contains the fixed point with local action (14, 3) (which is also contained
on the section of the fibration) and the point of type (7, 10). In particular observe
that the curve C of genus 7 meets the fiber of type II at the singular point with
multiplicity 3.
Observe that if b = 0 we get the elliptic fibration with the order 32 automorphism

σ32(x, y, t) = (ζ1832x, ζ
11
32y, ζ

2
32t)

as described e.g. in [23]. The automorphism σ is the square of the automorphism
σ25
32 .

2) The case g(C) = 6, (rσ, lσ) = (4, 2), Pic(X) = U(2)⊕D4.

The surfaces of this kind are described in the paper [12] and they are double
covers of P2 ramified on a reducible sextic which is the product of a smooth quintic
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and a line. We consider the special family with equation in P(3, 1, 1, 1):

z2 = x0(α0x
4
0x2 + β0x

5
1 + β1x

3
1x

2
2 + β2x1x

4
2).

Observe that the quintic curve is smooth and the K3 surface has five A1 singularities
over the points of intersection of the quintic curve and the line. The K3 surface
carries the order 16 non-symplectic automorphism

σ(z : x0 : x1 : x2) 7→ (ζ316z : x0 : ζ78x1 : ζ38x2).

This acts by multiplication by ζ16 on the holomorphic two form:

(dx ∧ dy)/
√
f

where f(x, y) = 0 is the equation of the ramification sextic in the local coordinates
x and y. An easy computation shows that the automorphism fixes the points:

(0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1).

Observe that the point (0 : 0 : 0 : 1) is in fact one of the five A1 singularities on the
K3 surface. If we resolve it we find a fixed point on the strict transform of C which
is the quintic curve on P2 (that have genus six) and one fixed point on the strict
transform of L which denotes the curve {x0 = 0}. The other two fixed points are
contained respectively in C and L (and their respective strict transforms). Observe
that the automorphism σ exchanges two by two the other points of intersection of
C with L.

5. The rank fourteen case

Theorem 5.1. Let σ be an automorphism of order 16 acting non symplectically on
a K3 surface X and assume that S(σ8) = Pic(X) has rank 14. Then the surface X
is one of the surfaces described in Theorem 3.1 with a σ4-fixed elliptic curve or it
has:

m2
σ m1

σ mσ lσ rσ Nσ kσ N ′ g(C) Pic(X)
1 0 0 1 13 12 1 2 3 U ⊕D4 ⊕ E8

1 0 1 1 11 10 1 2 2 U(2)⊕D4 ⊕ E8

1 0 1 5 7 4 0 2 2 U(2)⊕D4 ⊕ E8

Here C denotes the σ8-fixed curve of genus > 1 and N ′ denotes the number of fixed
points that are contained in C.

Proof. By the results of [17, §4] the possible values for the genus g of the σ8-fixed
curve C and the number kσ8 of σ8-fixed rational curves (different from C) are

(g, kσ8) = (0, 3), (1, 4), (2, 5), (3, 6)

The case g(C) = 0. The automorphism σ4 satisfies the assumptions of Theorem
6.3 so that we have (rσ4 , lσ4 ,mσ4) = (10, 4, 4). Since Nσ4 = 6 and kσ8 = 3, we have
Nσ ∈ {4, 6, 8} by Proposition 2.7. Moreover since kσ4 = 1 then kσ2 ∈ {0, 1} and
also kσ ∈ {0, 1}.

Assume first kσ2 = 0. The automorphism σ4 fixes one rational curve and two
points on each of the other three rational curves, this implies that the action of σ
preserves each of the four rational curves. In fact if σ would permute the four curves
or it would exchange them two by two, in any case one would find at least two fixed
curves for σ4, which is not possible. This implies that also σ2 preserves the four
curves. Now since σ4 fixes exactly one curve we get n4,5 = 2, n2,7 = 3 = n3,6 by
Remark 2.12. This contradicts Proposition 2.11.
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If kσ2 = 1 then n4,5 = 0 and n2,7 = 3 = n3,6. This again contradicts Proposition
2.11.

The case g(C) = 1. We can assume C 6⊂ Fix(σ4) otherwise we have discussed
this case already in Theorem 3.1. Since C is fixed by σ8 then C is also σ-invariant.
Hence σ acts as (a composition of an automorphism and) a translation on the
elliptic curve C (otherwise C would admits an automorphism of 2-power order
bigger than 4, which is not possible). So that C does not contain fixed points for
σ. By [3, Theorem 8.4] we get that Nσ = 4, 6, 8 and kσ = 1 or 0. Studying the
action of σ2 on the four rational curves fixed by σ8 and using the same argument
as before, one shows easily that this case is not possible.

The case g(C) = 2. By Proposition 2.10 we have kσ4 ≥ 1 so that σ4 fixes
at least a rational curve. Moreover by formulas (1) we have rσ4 + lσ4 = 14 and
lσ4 ,mσ4 ∈ 4Z. Observe that mσ4 = 4m2

σ = 4. By Theorem 6.5 if lσ4 > 0 then
we have lσ4 + mσ4 = 4 or 8. The first case is not possible. If lσ4 + mσ4 = 8,
then lσ4 = 4 (recall that mσ4 = 4 and by Theorem 6.5 we have kσ4 = 1). By
Lemma 2.2 the automorphism σ4 can not exchange two by two the remaining 4
rational curves neither it can permute them cyclically (this would not match with
any action of σ on this set of four rational curves), so that the four rational curves
are each σ4-invariant. This gives Nσ4 ≥ 8. By [3, Proposition 1] we have Nσ4 = 6
which contradicts the previous inequality. Hence lσ4 = 0 and so σ4 acts trivially
on Pic(X). By Theorem 6.4 we have (mσ4 , rσ4 , n1, n2, kσ4) = (4, 14, 4, 6, 3) where
Nσ4 = n1 + n2 and n2 is the number of fixed points on C. So we have 4 points
contained in the two rational curves that are σ4-invariant but not fixed. We call
these curves R1 and R2. We study now the action of σ and σ2 on the 5 rational
curves, fixed by σ8, and on C.

The automorphism σ2. We have kσ2 ≤ 3 and at least one of the five curves is
preserved or fixed. By using Remark 2.12 we have: n4,5 ∈ 2Z (points of this type
can occur only on the rational curves) and n2,7 + n3,6 ≤ 10. This follows from the
fact that points of this type are contained in C or in the rational curves that are not
fixed by σ4. Since the number of σ4-fixed points on C is n2 = 6 and kσ4 = 3 we get
the previous inequality. By using now Proposition 2.11 we obtain that kσ2 ≤ 2. If
kσ2 = 0, since σ4 fixes only 3 of the five σ8-fixed curves, we obtain that σ exchanges
two of these three curves and preserves the third curve or σ preserves all the three
rational curves. In any case σ2 preserves all the three σ4-fixed rational curves and
so the only possibility is that in fact preserves all the five σ8-fixed rational curves.
In particular n4,5 = 6 and n2,7 ≥ 2 n3,6 ≥ 2. This contradicts Proposition 2.11.
We explain now the cases kσ2 = 1 and kσ2 = 2 below:

i) kσ2 = 2. By Proposition 2.11 we get n2,7 + n3,6 = 10. This means that
the curve C must contain six fixed points for σ2 and the other four fixed points
are contained in the two σ4-invariant curves R1 and R2 (recall that σ4 fixes the
other three rational curves that then can not contain fixed points of this type). In
particular we have n2,7 ≥ 2 and n3,6 ≥ 2, and n4,5 = 2. Since by Proposition 2.11
we have n4,5 = 2n3,6 − 4 we get n3,6 = 3, n2,7 = 7, Nσ2 = 12.

ii) kσ2 = 1. By Proposition 2.11 we have n2,7 + n3,6 = 6. Observe that for the
same reason as above the remaining rational curves can not be exchanged two by
two. So these are invariant. This gives n2,7 ≥ 2, n3,6 ≥ 2 and n4,5 = 4. Using
Proposition 2.11 we obtain that n2,7 = n3,6 = 3. And two fixed points are contained
in C. The other points on C fixed by σ4 form a σ-orbit of length four.
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The automorphism σ. First observe that by using Riemann-Hurwitz formula on
C we have two possibilities: the six points are exchanged two by two and so fixed
by σ2 (this is case i)) or C contains 2 fixed points and the other four points are
permuted by σ in one orbit (this is case ii)).

i) In this case σ exchanges two by two the points on C. We have n5,12 = n4,13 = 1
since these two points correspond to the two fixed points with local action (4, 5) for
σ2 and are contained in a rational curve (see Remark 2.6). Assume that R1 and
R2 are not exchanged. We have n2,15 + n7,10 + n3,14 + n6,11 = 4 and n2,15 = n3,14,
n7,10 = n6,11. But this contradicts equation (8) in Proposition 2.7. If R1 and R2

are exchanged we have n3,14 = n6,11 = 0, n2,15 = n7,10 = 0 and n5,12 = n4,13 = 1.
But this contradicts the equality n3,14 − n6,11 = 1 in Proposition 2.7.

ii) In this case C contains two fixed points for σ. We have n8,9 = 2w, with
w = 0, 1. Moreover by Remark 2.6 we have n5,12 = n4,13 = 2 or n5,12 = n4,13 = 0. If
n8,9 = 2 so that kσ = 0 an easy computation using the equations of Proposition 2.7
shows that the first case with n5,12 = n4,13 = 2 is not possible. If n5,12 = n4,13 = 0
again using Proposition 2.7 we find that n3,14 = n7,10 = 1 the other nt,s are zero.
One computes (rσ, lσ,mσ) = (7, 5, 1) and we have Pic(X) = U(2) ⊕ D4 ⊕ E8.
Observe that in this case the remaining σ8-fixed rational curves are exchanged two
by two by σ. If n8,9 = 0 so that kσ = 1 again one computes using Proposition 2.7
that :

(N, k, n8,9, n2,15, n3,14, n4,13, n5,12, n6,11, n7,10) = (10, 1, 0, 3, 2, 2, 2, 1, 0)

and (rσ, lσ,mσ) = (11, 1, 1). Moreover we have Pic(X) = U(2)⊕D4 ⊕ E8.
The case g(C) = 3. By Proposition 2.10 we have kσ4 ≥ 1 so that σ4 fixes at

least a rational curve. We have moreover by formulas (1) that rσ4 + lσ4 = 14 and
lσ4 ,mσ4 ∈ 4Z and observe that mσ4 = 4m2

σ = 4. By Theorem 6.5 if lσ4 > 0 then we
have lσ4 +mσ4 = 4 or 8. The first case is not possible, if lσ4 +mσ4 = 8 then lσ4 = 4
and by Theorem 6.5 we have kσ4 = 1. Observe that σ preserves or permutes some
of the five rational curves not fixed by σ4 so that in any case Nσ4 ≥ 10. By [3,
Proposition 1] we have Nσ4 = 6, which is not possible. Hence lσ4 = 0 and so σ4 acts
trivially on Pic(X). By Theorem 6.4 we have (mσ4 , rσ4 , n1, n2, kσ4) = (4, 14, 6, 4, 3)
where Nσ4 = n1 + n2 and n2 is the number of fixed points on C. We have hence
6 points contained in the three rational curves that are σ4-invariant but not fixed.
We call these curves Ti, i = 1, 2, 3. We study now the action of σ and σ2 on the 6
rational curves fixed by σ8 and on C.

The automorphism σ2. We have kσ2 ≤ 3. If σ would act as some permutation

on the four curves, then σ4 would fix more than three curves which is not possible
since kσ4 = 3. So each curve is preserved by σ and so by σ2. Moreover we have
n4,5 ∈ 2Z, and these are at most 6, in fact points of this type can occur only on
the rational curves, and n2,7 + n3,6 ≤ 10 (since n2 = 4 we have at most 4 σ2-fixed
points on C and points of this type are not contained in rational curves that are
fixed for σ4, but can be contained in the three rational curves that are only σ4-
invariant). Again by using Proposition 2.11 we find that kσ2 ≤ 2. If kσ2 = 0 then
n2,7 +n3,6 = 2 but since all the rational curves are preserved n4,5 = 6 and we get a
contradiction using Proposition 2.11. We explain now below the cases kσ2 = 1 and
kσ2 = 2:

i) kσ2 = 2. Here we get n2,7 + n3,6 = 10 this means that the curve C must
contain four fixed points for σ2 and the other six points are contained in the three
σ4-invariant curves T1, T2 and T3. In particular we have n2,7 ≥ 3 and n3,6 ≥ 3,
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n4,5 = 2, see Remark 2.12. Moreover n4,5 = 2n3,6 − 4 so we get n3,6 = 3, n2,7 = 7,
Nσ2 = 12 (by Proposition 2.11).

ii) kσ2 = 1: Here we get n2,7 + n3,6 = 6 by Proposition 2.11. Observe that for
the same reason as above the remaining rational curves can not be exchanged two
by two. So these are invariant. This gives n2,7 ≥ 3, n3,6 ≥ 3 and n4,5 = 4. We get
using Proposition 2.11 that n2,7 = n3,6 = 3, and so the four points on C fixed by
σ4 form a σ-orbit of length four.

The automorphism σ. By using Riemann-Hurwitz formula there are two possible
actions on C: the automorphism σ exchanges 2 points and fixes the other two (this
is case i) below) or the four points form a σ-orbit (this is case ii) below).

i) We have n8,9 = 2w and since kσ2 = 2 we have 0 ≤ w ≤ 2. Moreover
n5,12 = n4,13 = 1 (since these two points correspond to the two fixed points with
local action (4, 5) for σ2, see Remark 2.12). If w = 0 and k = 0, so that the two
σ2-fixed curves are exchanged by σ, then using Proposition 2.7 one sees that this
case is not possible. If w = 0 and k = 2 using Proposition 2.7 we get N = 14 which
is impossible by looking at the geometry (indeed in this case we have N ≤ 12).

If w = 1, then k = 1 and we find N = 12 with

(N, k, n8,9, n2,15, n3,14, n4,13, n5,12, n6,11, n7,10) = (12, 1, 2, 3, 2, 1, 1, 1, 2).

This is the case in the statement.
If w = 2 and k = 0 this is not possible by using the equations in Proposition 2.7.
ii) We have n8,9 = 2w and since kσ2 = 1 we have w = 0, 1. If w = 0 then k = 1

and n5,12 = n4,13 = 2 or n5,12 = n4,13 = 0. If n5,12 = n4,13 = 2 we obtain n6,11 = 1
and n7,10 = 0 which is impossible since the fixed points by σ are contained in the
rational curves that are fixed by σ8 (see Remark 2.6). If n5,12 = n4,13 = 0 then two
of the σ4-fixed curves are exchanged. By using Proposition 2.7 we get n7,10 = 1,
n2,15 = 4, n3,14 = 1 (the other nt,s are zero), but this is not possible since the
isolated points fixed by σ are contained in rational curves (see Remark 2.6).

If w = 1 then k = 0 then again n5,12 = n4,13 = 2 or n5,12 = n4,13 = 0. By using
Proposition 2.7 we see that the first case is not possible. If n5,12 = n4,13 = 0 then
two of the σ4-fixed curves are exchanged. By Proposition 2.7 we find N = 4. This
is not possible. Indeed if the curves Ti are preserved then N = 6, if two of them
are exchanged we get N = 2. In any case we get a contradiction.

�

Example 5.2. 1) The case g(C) = 3 (see [22]). Consider the elliptic fibration:

y2 = x3 + t2x+ t7

This carries the order 16 automorphism σ(x, y, t) = (ζ216x, ζ
11
16y, ζ

10
16 t). The discrim-

inant is t6(4 + 27t8) so over t = 0 the fibration has a fiber of type I∗0 and over
t = ∞ the fibration has a fiber of type II∗. The automorphism σ preserves the
fiber of type II∗ and fixes the component of multiplicity 6. The genus 3 curve cuts
the fiber of type II∗ in the external component of multiplicity 3 and cuts the I∗0
fiber in three components of multiplicity one. The automorphism σ exchanges two
curves in the fiber of type I∗0 (this corresponds to lσ = 1) and so the two intersection
points of this fiber with C. It leaves invariant the component of multiplicity two
and contains two fixed point on it. Using Remark 2.6 it is easy to find the local
action at the 12 fixed points. In this case we have Pic(X) = U ⊕D4 ⊕ E8.
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2) The case g(C) = 2 and kσ = 0. We consider the K3 surface double cover
of P2 ramified on a special reducible sextic as in Example 4.2, 2). We consider the
quintic with a special equation, more precisely we assume that the reducible sextic
(L = {x0 = 0}) ∪ C has the equation:

x0(x40x2 + x51 − 2x31x
2
2 + x42x1) = 0,

and recall that the automorphism is:

σ : (z : x0 : x1 : x2) 7→ (ζ316z : x0 : ζ78x1 : ζ38x2).

The line L = {x0 = 0} meets the quintic in the point (0 : 0 : 1) and two further
points (0 : 1 : 1) and (0 : −1 : 1), that are in fact exchanged by the automorphism
σ. By studying the partial derivatives of the equation of C one sees that these
two last points are singular. These are in fact A3 singularities. We explain the
computations in detail for the point (0 : 1 : 1). In the chart x2 = 1 the equation of
C becomes:

x40 + x51 − 2x31 + x1 = 0

We translate the point (0, 1) to the origin and we get an equation in new local
coordinates (here x0 = y):

x2(x3 + 5x2 + 8x+ 4) + y4 = 0

So we have a double point at (0, 0) and by making a coordinates transformation as
in [6, Ch. II, section 8] we obtain the local equation:

x2 + y4 = 0

which is an A3 singularity. Now as explained again in [6, Ch. II, section 8] or also
in [12, Lemma 3.15] this gives a D6 singularity of the reducible ramification sextic.
The same happens at the point (0 : −1 : 1) since the two points are exchanged by
σ. This means that the K3 surface defined by

z2 = x0(x40x2 + x51 − 2x31x
2
2 + x42x1)

has two D6 singularities and one A1 singularity (coming from the intersection point
(0 : 0 : 1)). Let X be the minimal desingularization of the double cover. The rank
of the Picard group is at least 14 but since the automorphism of order 16 acts
non-symplectically on it, the rank is exactly 14. The non-symplectic involution
fixes a curve of genus 2 (the line x2 = 0) and five rational curves: one is the strict
transform of the A1 singularity and the other four curves are contained in the two
D6 singularities. By looking in Figure 1 in Section 2 one finds that S(σ8) has rank
14. Since S(σ8) is primitively embedded in Pic(X) we get that Pic(X) = S(σ8).
By using Theorem 5.1 we conclude that Pic(X) = U(2) ⊕D4 ⊕ E8. Observe that
the (−2)-curve coming from the resolution of the A1 singularity can not be fixed,
because it intersects C and L on X (we call again in this way the strict transforms)
that are σ8-fixed. Moreover since the two D6 singularities are exchanged we have
k = 0. Observe that the induced automorphism on P2 fixes also the point (0 : 1 :
0) ∈ L and the point (1 : 0 : 0) ∈ C which together with the two intersection points
with L and C of the exceptional (−2)-curve on the A1 singularity gives N = 4.

3) The case g(C) = 2 and kσ = 1 (see [7]). We consider the elliptic fibration
in Weierstrass form with the non-symplectic automorphism of order 16 :

y2 = x3 + t3(t4 − 1)x, σ : (x, y, t) 7→ (ζ616x, ζ
9
16y, ζ

4
16t)
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This fibration has five fibers III (one over t = ∞) and one fiber III∗ over t = 0.
An easy computation using the local action at the fixed points shows that we have
kσ = 1 and 10 isolated fixed points.

Remark 5.3. If rkS(σ8) = 14 then the automorphism σ acts on S(σ8)⊥ ⊗ C by
the eight primitive roots of unity ζi16, i = 1, 3, . . . , 15. In particular each eigenspace
is one-dimensional, so by applying the construction for the moduli space of K3
surfaces with non-symplectic automorphisms as described in [8, §11], we see that in
fact this is zero dimensional. In particular in these cases Pic(X) = S(σ8), in fact
if S(σ8) would be strictly contained in Pic(X) then σ would admit the eigenvalues
ζi16, i = 1, 3, . . . , 15 on Pic(X) ⊗ C and this would imply rk Pic(X) > 21 which is
impossible for a K3 surface. This is the case in Theorem 3.1 and in Theorem 5.1. If
rkS(σ8) = 6 using the same construction as above one finds that the dimension of
the moduli space is one, and in this case we could have K3 surfaces in the moduli
spaces with S(σ8) strictly contained in Pic(X) so that we must have rk Pic(X) = 14.
We show in the Proposition 5.4 below that the fixed locus of σ remains however of
the same type as on the generic surface in the moduli space.

Proposition 5.4. Let X be a K3 surface and let σ be an automorphism of order
16 acting purely non–symplectically on X. If rk Pic(X) = 6 then Pic(X) = S(σ8)
and the fixed locus of σ is described in the Theorem 4.1. If rk Pic(X) = 14 then

i) if Pic(X) = S(σ8) then the fixed locus of σ is described in the Theorems
3.1 and 5.1.

ii) If S(σ8) ⊂ Pic(X) but S(σ8) 6= Pic(X) then X is a special member in the
families of K3 surfaces whose generic element is described in Theorem 4.1
and the fixed locus of the automorphism on X remains of the same type as
on the generic surface in the moduli space.

Proof. Recall that the primitive 16-th root of the unity all have the same multi-
plicity for the action of σ on H2(X,Z). Since these are 8 and in the first case
rk Pic(X) = 6, σ can not have such an eigenvalue on Pic(X) ⊗ C so that σ8 acts
as the identity on Pic(X). If rank of Pic(X) is 14, then σ may act on Pic(X)⊗ C
with primitive 16-roots of the unity. If it is the case then they multiplicity is 1 and
S(σ8) is strictly contained in Pic(X). By the construction of the moduli space such
a K3 surface belongs to one of the two families whose generic element is described
in Theorem 4.1. We want to show that the fixed locus of σ on X is of the same
type as the fixed locus on the generic surface in the family. We follow several steps.
First remark that the fixed locus of σ8 does not change, since it is the same for all
the K3 surfaces that are S(σ8)-polarized (it depends only on the properties of the
lattice S(σ8) as we recall in Nikulin’s Theorem 2.1), so that only the two following
cases are possible (we keep the notations as in Theorem 4.1):

a) (g(C), kσ8) = (6, 1),
b) (g(C), kσ8) = (7, 2).

Recall that the topological Lefschetz theorem gives that (see proof of Proposition
2.7):

N +
∑

K⊂Fix(σ)

(2− 2g(K)) = 2 + tr(σ∗|H2(X,R)) = 2 + r − l.
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Case a). Here we have:

N +
∑

K⊂Fix(σ)

(2− 2g(K)) = 4.

If the curve C is fixed by σ then the previous formula becomes:

N − 10 + 2δ = 4

where δ = 0 if the rational curve is σ-invariant not fixed, and δ = 1 if the rational
curve is fixed. In the first case N = 2 and in the second case N = 0. Replacing
the values of δ and N in the equality one gets a contradiction. Hence C can not be
fixed by σ so that the genus of a curve in Fix(σ) does not exceed 0. We can then
use the relations in Proposition 2.7 in fact the hypothesis there on Pic(X) = S(σ8)
is used only in order to apply Proposition 2.3. So we have N ≥ 4 and the only
possibility is then to have 2 isolated fixed points on C and 2 isolated fixed points
on the rational curve, so that N ′ = 2 and kσ = 0, as described in the second case
in the table of Theorem 4.1.
Case b). Here we have:

N +
∑

K⊂Fix(σ)

(2− 2g(K)) = 8.

As in the previous case by a similar argument one shows that C can not be fixed
by σ, so that the genus of a curve in Fix(σ) does not exceed 0. As remarked before
we can use the relations in Proposition 2.7. We can write

8 = N ′ +NR + 2δ,

where N ′ is the number of σ-fixed points on C, NR is the number of σ-fixed points
on the two rational curves, δ ∈ {0, 1, 2} denotes the number of rational curves that
are σ-fixed.
If δ = 0 then either NR = 0 (the two curves are exchanged) and N ′ = 8 or each
rational curve is preserved and contains 2 fixed points so that NR = 4 and N ′ = 4.
Both cases are excluded by Remark 2.8 since (N, k) = (8, 0) is not possible.
If δ = 1 then NR = 2 since the other rational curve must be preserved and this
gives N ′ = 4. This corresponds to the description of the fixed locus in the first case
in the table of Theorem 4.1.
If δ = 2 then NR = 0 and N ′ = 4 = N but this is again not possible by Remark
2.8 since in this case we must have k = 0.

�

6. Appendix: order four non–symplectic automorphisms

In this Appendix we recall some results of [3] that we frequently use in the paper.
We denote (only in this section) by σ an automorphism of order four acting purely
non–symplectically on a K3 surface X. We denote by m, r, l the multiplicities of
the eigenvalues i, 1,−1 of σ on the complexified K3 lattice; by n, k the number
of isolated σ-fixed points and σ-fixed rational curves, by a the number of rational
curves that are exchanged two by two by σ and fixed by σ2; and finally by C the
curve fixed by σ2 of genus g ≥ 1.

Theorem 6.1. Let σ be a purely non-symplectic order four automorphism on a K3
surface X with Pic(X) = S(σ2) and πC : X → P1 be an elliptic fibration with a
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smooth fiber C ⊂ Fix(σ). Then σ preserves πC and acts on its base as an order
four automorphism with two fixed points corresponding to the fiber C and a fiber C ′

which is either smooth, of Kodaira type I4M or IV∗. The corresponding invariants
of σ are given in Table 1 and all the cases do exist.

m r l n k a type of C ′

6 6 4 4 0 0 I0
5 7 5 4 0 0 I4
4 10 4 6 1 0 IV∗

4 8 6 4 0 1 I8 or IV∗

3 9 7 4 0 2 I12
2 10 8 4 0 3 I16

Table 1. The case g = 1

Theorem 6.2. Let X be a K3 surface and σ be a purely non-symplectic automor-
phism of order four on it such that Pic(X) = S(σ2). If Fix(σ) contains a curve of
genus g > 1 then the invariants associated to σ are as in Table 2. All cases in the
Table do exist.

m r l n k a g
7 1 7 0 0 0 3
6 4 6 2 0 0 2

2 8 0 0 1 3
5 5 7 2 0 1 2
4 6 8 2 0 2 2

Table 2. The case g > 1

Theorem 6.3. Let X be a K3 surface and σ be a purely non-symplectic automor-
phism of order four on it with Pic(X) = S(σ2). If Fix(σ) contains a smooth rational
curve and all curves fixed by σ2 are rational, then the invariants associated to σ
are as in Table 3. All cases in the table do exist.

Theorem 6.4. Let σ be a purely non-symplectic automorphism on a K3 surface X
of order four, such that S(σ2) = S(σ) = Pic(X). Then the invariants of the fixed
locus of σ and the lattices S(σ2) and T (σ2) (up to isomorphism) appear in Table
4. Moreover, all cases in the table do exist. We denote here by n2 the number of
σ-fixed points on C and by n1 the σ-fixed points outside C, so that n1 + n2 = n).

Theorem 6.5. Let σ be a purely non-symplectic automorphism of order four on a
K3 surface X such that S(σ2) = Pic(X). Assume that the fixed locus of σ contains
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m r l n k a
4 10 4 6 1 0
3 13 3 8 2 0

11 5 6 1 1
2 16 2 10 3 0

14 4 8 2 1
12 6 6 1 2

1 19 1 12 4 0
13 7 6 1 3

Table 3. The case g = 0

m r n1 n2 k g S(σ2) T (σ2)

10 2 2 2 0 10 U U ⊕ U ⊕ E⊕28

2 0 4 0 9 U(2) U ⊕ U(2)⊕ E⊕28

8 6 2 4 1 7 U ⊕D4 U ⊕ U ⊕ E8 ⊕D4

6 0 6 1 6 U(2)⊕D4 U ⊕ U(2)⊕ E8 ⊕D4

6 10 6 2 2 6 U ⊕ E8 U ⊕ U ⊕ E8

10 4 4 2 5 U(2)⊕ E8 U ⊕ U(2)⊕ E8

10 2 6 2 4 U ⊕D⊕24 U ⊕ U ⊕D⊕24

10 0 8 2 3 U(2)⊕D⊕24 U ⊕ U(2)⊕D⊕24

4 14 6 4 3 3 U ⊕ E8 ⊕D4 U ⊕ U ⊕D4

14 4 6 3 2 U(2)⊕ E8 ⊕D4 U ⊕ U(2)⊕D4

2 18 10 2 4 2 U ⊕ E⊕28 U ⊕ U
18 8 4 4 1 U(2)⊕ E⊕28 U ⊕ U(2)

Table 4. The case l = 0

n isolated fixed points and k > 0 rational curves, that the curve C fixed by σ2 has
g = g(C) > 1 and that l > 0. Then g ≤ m and we are in one of the following cases:

m+ l k g ≤ a ≤
4 3 3 2
6 2 5 3
8 1 7 4
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