CAPLP. Mathématiques. Feuille 9

 $\frac{2003/2004}{\text{rougirel@math.univ-poitiers.fr}}$

Intégrales impropres

Ex 1. Déterminer si les intégrales suivantes sont convergentes ou divergentes.

$$\int_0^1 \ln x dx, \qquad \int_1^\infty \ln x dx, \qquad \int_{-\infty}^\infty \sin x dx,$$

$$\int_0^\infty \frac{e^{-x}}{x^2} dx, \qquad \int_0^\infty \frac{e^{-x}}{\sqrt{x}} dx, \qquad \int_1^\infty \frac{dx}{x^{1+\frac{1}{x}}}.$$

Ex 2. Prouver le théorème de convergence des intégrales de Riemann.

Ex 3. Montrer que les intégrales impropres suivantes convergent et calculer leur valeur.

$$\int_0^{\pi/2} \frac{\cos t}{\sqrt{\sin t}} dt, \qquad \int_{-\infty}^{+\infty} \frac{dt}{t^2 + 1}, \qquad \int_2^{+\infty} \frac{dt}{t^2 - t},$$
$$\int_0^{\infty} e^{-x} \cos(\alpha x) dx \quad (\alpha \in \mathbb{R}), \qquad \int_0^{\infty} \frac{\ln t}{1 + t^2} dt.$$

Indication : montrer que cette dernière intégrale est égale à son opposée.

Ex 4. (D'après le concours PLPA2 2003) Soit $\alpha > -1$ et $f_{\alpha} :]0, \infty[\to \mathbb{R}, \ x \mapsto x^{\alpha}e^{-x}]$.

- (1) Etudier les fonctions f_{α} .
- (2) En distinguant les cas $\alpha \geq 0$ et $-1 < \alpha < 0$, montrer que pour tout $x \geq 0$, l'intégrale $\int_0^x t^{\alpha} e^{-t} dt$ existe.
- (3) Montrer qu'il existe un réel x_0 tel que, pour tout $t \geq x_0$,

$$t^{\alpha}e^{-t} < e^{-t/2}.$$

- (4) Montrer que l'intégrale $\int_0^\infty t^\alpha e^{-t} dt$ est convergente.
- (5) Pour tout $\alpha > -1$, on pose $\Gamma(\alpha) = \int_0^\infty t^{\alpha} e^{-t} dt$.
 - (a) Montrer que $\Gamma(\alpha+1) = (\alpha+1)\Gamma(\alpha)$ pour tout $\alpha > -1$. Pour tout $n \in \mathbb{N}$, calculer $\Gamma(n)$ en fonction de n.
 - (b) Montrer que pour tout $\alpha > -1$,

$$\int_0^1 t^{\alpha} e^{-t} dt \ge \frac{1}{e(\alpha+1)}.$$

- (c) Etudier les limites de $\Gamma(\alpha)$ lorsque α tend vers -1, puis lorsque α tend vers $+\infty$.
- (6) Pour tout $n \in \mathbb{N}$, on définit la fonction $F_n : [0, \infty[\to \mathbb{R}, x \mapsto \int_0^x t^n e^{-t} dt$. Soit x > 0.
 - (a) Calculer $F_0(x)$ et $F_1(x)$.
 - (b) Montrer que pour tout $n \in \mathbb{N}$,

$$\frac{1}{n!}F_n(x) = 1 - e^{-x} \sum_{k=0}^n \frac{x^k}{k!}$$
 et $\frac{1}{n!}F_n(x) \le \frac{x^n}{n!}$.

- (c) Soit (u_n) la suite définie par $u_n = \frac{x^n}{n!}$. A l'aide de l'égalité $u_{n+1} = \frac{x}{n+1}u_n$, montrer que la suite (u_n) converge et a pour limite 0.
- (d) Montrer que la série $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ converge (c'est à dire que la suite de terme

général $\sum_{k=0}^{n} \frac{x^k}{k!}$ a une limite lorsque $n \to \infty$) et calculer sa limite.

http://www-math.univ-poitiers.fr/enseignement/caplp/frame2.html