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ABSTRACT. We introduce a family of solutions to a linear delay dif-
ferential equation with continuous and piecewise constant arguments,
depending on four parameters, and we give an asymptotic expansion of
any solution of this equation with respect to this family. The funda-
mental solutions are given by the zeros, counting multiplicities, and, for
particular values of the parameters, by the poles of a function meromor-
phic in the complex plane. This function generalizes the characteristic
equation which was known to characterize the oscillatory behaviour of
the differential equation for certain values of the parameters. The proof
uses the Laplace transform, Fourier series, and the adjoint equation.
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1. INTRODUCTION

In this paper we study the linear delay differential equation
f'@) +pflz—7)+qf([z—0]) =0 (1.1)

on (0,00), where [-] denotes the greatest integer function, and 6, 7,p,q
satisfy

0 >0, T >0, peC and q e C. (1.2)

By definition, a solution of (1.1) is a continuous function f : R — C
for which the derivative exists on the open set {z > 0: z # 6 [1]}, and
which satisfies the differential equation (1.1) on that set, or equivalently,
a continuous function f : R — C which satisfies (1.1) in the sense of
distributions on (0, 00).

It is well known (see [1, 4] for instance) that for every 6,7, p,q which
satisfy (1.2) and every continuous function 1 : (—00,0] — C, there exists
a unique solution f to (1.1) such that f =1 on (—oc, 0]. Moreover,

[f(@)] < Ce™ (2 20), (1.3)

for some constants C' > 0 and r € R independent of z. The solution
f is real-valued if the parameters p and ¢ are real numbers and if ¢ is

real-valued.
1
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When ¢ = 0, equation (1.1) reduces to
f'(@) +pf(z—1)=0, (1.4)

which has been extensively studied [1]. In particular, a function z +— e**
satisfies (1.4) if and only if
¢(z) =0, (1.5)

where

d(2) =z+pe ™* (z € C). (1.6)
Equation (1.5) is called the characteristic equation of (1.4) and its roots,
the characteristics roots. Using a Laplace transform, any solution f of (1.4)
can easily be expressed in terms of its initial values over (—7,0] and ¢ by
means of a contour integral. Under suitable assumptions [1], f can then
be expanded in the form of a infinite series,

f(z) = Zes’mpT(ac) (xz > 0), (1.7)

where the sum is over all characteristic roots s,, and where p,(z) is a
polynomial in z of degree less than the multiplicity of s,.
When p=0and 0 € N, (1.1) reduces to

7'(x) + af (1e] - 0) = 0, (18)
whose study is straighforward. Indeed, every solution f is affine on every
interval [n,n + 1], n € N, and thus completely defined by the sequence
{f(n)}nen, which satisfies a linear difference equation of order 6 + 1. In
this case, the characteristic equation, obtained by letting f(n) = A", n € N,
is

A—1+gr?=0. (1.9)
Of course, any solution f of (1.8) is a finite sum

fn) = _Ap(n)  (n>0), (1.10)

where the sum is over the roots A, of the polynomial (1.9), and where p,(n)
a polynomial in n of degree less than the multiplicity of A\.. When p =0
and 6 € R\ N, a similar analysis holds, using the values f(6 + n), n € N.

In view of (1.7), (1.10), it is natural to try and find an expansion of any
solution of (1.1) in terms of the roots of a ‘characteristic equation’. The
results obtained so far on equation (1.1) relate its oscillatory behaviour
to a ‘characteristic equation’. Recall that when p,q € R, a real-valued
solution of (1.1) is called oscillatory if it has arbitrarily large zeros. By ex-
tension, the differential equation is oscillatory if every real-valued solution
is oscillatory. For instance, equation (1.4) is oscillatory if and only if its
characteristic equation (1.5) has no real root [4]. Similarly, (1.8) oscillates
if and only if (1.9) has no root in the interval (0,+o00) [4].

In 1989, K. Gopalsamy, I. Gyori and G. Ladas [2] give algebraic con-
ditions involving p, ¢, 7 and the root zo € [—1/7,0] of (1.5) such that
equation (1.1) oscillates (see also [3]). In 1991, I. Gyori and G. Ladas [4]
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ask the following problem: find a ‘characteristic equation’ of (1.1) which
reduces to (1.5) when ¢ = 0, and to (1.9) when p = 0 and 6 € N. Notice
that, in order to answer such a question, one has to choose between z or
A = €? for the unknown. In 1998, Y. Wang and J. Yan [7] give the following
answer to this problem, for numbers

feN, TeN, p€EeR and g€ R (1.11)
By letting f(x) = A#lg(x — [z]), g : [0,1) — R, they first prove that

1
Aexp (p)FT) -1+ q/\o/ exp (p/\’Tt)dt =0 (1.12)
0

is a characteristic equation of (1.1). Then, using an improved Z-transform,
they show that a necessary and sufficient condition for the oscillation
of (1.1) is that (1.12) has no real root in (0, c0).

In this paper, by introducing a new family of complex functions depend-
ing on a complex parameter z, we first find in section 2 a characteristic
equation of (1.1) for numbers 6,7, p,q which satifie (1.2); this equation
reduces to (1.12) for numbers (1.11), by letting A = e*. In section 3, we
compute the Laplace transform of any solution f of (1.1), using the ad-
joint equation of (1.1) defined by duality (see for instance [1, 5, 8]). By an
inversion formula, we obtain an integral representation of f in terms of the
values of f over (—oo, 0] and the numbers 60, 7, p, g. In section 4, we extend
the family of solutions of (1.1) found in section 2 to the general case; this
allows us, in the last section, to obtain an asymptotic expansion of any
solution of (1.1) as a linear combination of these ‘fundamental solutions’.

Notations. In the remainder of this paper, we assume that the numbers
6,7, p, q satifie (1.2).

When necessary, we shall use the shortcut » wu, in place of lim Uy,
% N—oo —N<Zn<N

for any sequence {uy,}necz of complex numbers (or functions, or distribu-
tions), whenever the limit exists (in a space to be specified).

We shall use the notations f < g and f = O(g) interchangeably to mean
that | f| < Cg holds for some constant C' in the range under consideration.

It will be useful to consider the derivative with respect to = in the sense
of distributions. For any open interval I C R, D(I) will denote the space
of smooth complex functions with compact support in I, D'(R) the space
of complex distributions on R, that is the dual space of D(R), and (-, -) the
duality product. In particular,

() = / f@p@)ds  (f €CR), ¢ € DR)),

where C(R) is the space of complex continuous functions on R. As usual,
L} .(R) will be the space of complex locally integrable functions on R.
It will also be useful, because we deal somewhat with Fourier series, to

denote H(R) the space of functions g : R — C such that g is continuous
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in R\ Z, and for every n € Z, g has a limit g(n™) to the left and g(n™) to
the right which satisfie
9(n”) +g9(n™)

g(n) = 5 . (1.13)

2. CHARACTERISTIC EQUATION

Because we shall make a constant use of the entire function ¢ defined
by (1.6), it is important to recall a few facts concerning its set of zeros in
C, Z(¢).

Ifp=0or7=0, ¢(z2) = z+pand Z(¢) = {—p}. Now assume p # 0 and
7>0.Ifz=a+1ib (a €R, b €R) is a zero of ¢, then a+ ib = —pe~7(@+1)
and taking the modulus in each member,

2,—2 2
Va2 +b% = [ple " = {|p| e e 20,

b= +./|pPe"?70 — 2. (2.1)

This implies that for a given a € R there exist at most two zeros of ¢ whose
real part is a. If such two distinct zeros exist, then they are conjugate.

Of course, Z(¢) is discrete and closed in C, and it is possible to prove
that Z(¢) is infinite [1], but we shall not use this fact. The zeros of ¢ lie
along the curve defined by (2.1) which is symmetric with respect to the
real axis and lies entirely in a left half-plane; as |z| — oo along the curve,
the curve becomes more and more nearly parallel to the imaginary axis,
and Rez — —o0.

In this section, our aim is to generalize equation (1.12), but we choose
the variable z instead of the variable A = e*. Since e is unchanged if z
is changed into z + 277, it is natural to recover this translation invariance.

We define
Q2 := {z € C such that ¢(z + 2min) #0 Vn € Z}. (2.2)

In other words, Q¢ := C\ 2 is the set of zeros of ¢ in C and their images
by the translations z — z + 27win, n € Z. By (2.1), for every a € R the set

{z€C : Rez>a}NZ(p)
is finite. Hence, 2¢N K is finite for every compact K C C. In other words,
Q¢ is a discrete and closed subset of C.

Recall that when ¢ = 0, the characteristic equation of (1.1) is obtained by
letting f(z) = e**. In the following lemma, whose easy proof is postponed
at the end of this section, we introduce a family of functions which play a
role similar when ¢ # 0.

Lemma 2.1. For all (z,z) € R x , the series
(1 _ e—z) e(z—H)(z—f—Qm'n)

F(z,z) = nze% (z + 2min) ¢(z + 2min)

(2.3)
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converges absolutely, and the convergence is uniform on every compact sub-
set of R x 2.

As a consequence, the function F' is continuous in R x €2, and for every
z € R z+— F(z,2) is holomorphic in 2. Moreover, seeing F' as a function
of x, we have, for every z € (),

F(z,z) =@ % F,  (z—0) (z € R), (2.4)

where FP,T;Z is a 1-periodic function of the variable u = z — f, defined by
its Fourier series. By Lemma 2.1, this Fourier series converges uniformly
on [0, 1]; it is also easily seen that the Fourier coefficients are not all equal
to zero; hence, F), ., is continuous and not identically zero on R.

Now we focus on equation (1.1). It is useful to introduce the linear
operator 7 : C(R) — D'(R) given by
Tf=F+0Tf+q)  fM)psonory  (f €CR)), (2.5)
neZ
where, for any f € C(R),
Lf(z)=flz—7) (2 €R),
and 17 is the characteristic function of the set I (1;(z) =1ifxz € I and 0
otherwise). The sum in the right side of (2.5) is locally finite and thus well

defined as a distribution. As pointed out in the introduction, a function
f € C(R) is a solution to (1.1) if and only

(Tfe)=0  (peD((0,+)))-

Define
1—e" 0(z+27rm)

=1
* qzz + 2min qﬁ z+ 2min)’

Since P(z) = 1+ ¢F(0, 2), Lemma 2.1 implies that P is well defined and
holomorphic in 2. The following theorem shows that the equation

P(z)=0 (2.7)
can be considered as a characteristic equation of (1.1).

Theorem 2.2. For all z € QQ,
T (z — F(z,2) 2) Y € Npipniosn) in D'(R). (2.8)

nez
In particular x — F(z,2) is a solution to (1.1) if and only if P(z) = 0.

(2.6)

Proof. Let z € Q. By Lemma 2.1, the function f : z — F(z, 2) is defined
and continuous on R, and the derivative of f in the sense of distributions
is

e(ac—H)(z+27rm

N, 1—e*
Je) = ax%z + 2min ¢(z + 2min)

b

i 1=e™ (@0)(t2mim)
(2 + 2min)
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where the limit exists in D'(R). Thus,

— 1 — e ? ) — 1 —e*? e(w—@—r)(z—l—Zm’n)
— = (z—8)(z+2min)
Ta) nze% 8(z + 2min)” TP nze% 2+ 2min (2 + 2min)
+qF ([z - 0], 2),
— 1l—¢e7* ,
—  2(z-9) 2min(z—0) + —0).
e % o) qf ([z —0])
Now, by Fourier-Parseval’s Theorem, we know that
N 1o’ o ful -
TNy — Zlu|—2u 29
Z (z 4 2min) ¢ ¢ (2:9)

neZ

in L%((0,1)) ~ L?*(R/Z). Indeed, (1 — e *)/(z + 2min) is the n'* Fourier
coefficient of the 1-periodic function u + e?l"/=**. Equality (2.9) holds in
the sense of distributions on R, so

Tf(z) =+ qf (z—6)  inD(R).

In other words,

Tf(z Z " Nntonto+1)(2) + ¢ Z F(n, 2)ljpnion+041)(7)

nez nez
in D'(R). Now we notice that
e"* 4+ qF(n,z) = P(z)e"* (nez),
and this concludes the proof. O

For numbers which satisfie (1.11), the series in (2.3) can be computed
explicitely, using (2.9). Here, we shall only compute P(z), in order to
understand the relation between (2.7) and (1.12). First notice that by
Dirichlet’s theorem, equality (2.9) at the discontinuity point v = 0 yields

> (;;2‘;;) _1 +2"’Z (z € C). (2.10)

Now assume that 6, 7 € N and p, ¢ € C*. Then, by (2.10)

1—e” e %?
Plz) = 1+ (JZZ +2min ¢(z) + 2min’
l-e®e?” (&= 1 — 1
=1 A - - _ - -
+4a &(2) — 2 nezzz + 27min %qf)(z) + 2min |’
(l—e®e® ((14e*  14e
&(z) — z 2(1—e7%)  2(1 —e¢()

e—ez e~% — e—¢(z)
=1 . 2.11
+‘-’¢(z)—z< 1= o0 ) -
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On the other hand, letting A\ = e*, the left side E()) of (1.12) becomes

#e-z _ 1]
E(e®) = e?®) — 1 4 ge e 1)
) O
Now, multiplying (2.11) by e?®) — 1 yields
(e?® —1)P(z) = E(¢?). (2.12)

The computation in (2.11) is valid for every z € € such that e #() —
1 # 0, that is for all z € C with the exception of a countable set. By
analycity, (2.12) is valid for every z € Q. The continuity of the right side
gives a meaning to the left side for every z € C. When p=0and # € N, a
similar computation shows that (2.12) is still satisfied (or use continuity of
both sides with respect to p). When ¢ = 0, P = 1 and (2.12) is obviously
satisfied.
Now we turn to the proof of Lemma 2.1.

Proof of Lemma 2.1. Let K C R x ) be a compact subset. The assertion
will be proved by the following estimate:
e ?—1 e(:cfe)(z+27rin) 1
; — <
(z42min) ¢(z+2min)  n2+1
Let K'={2€Q : Jz € R, (z,2) € K} denote the projection of K on C;
in particular, K’ is bounded.

First notice that for every n € Z, the function z — (e * —1)/(z + 2min)
is holomorphic in C \ {—27in}, and extends to a continuous (and thus
holomorphic) function in C. In particular, for every N € N,

e —1

(z + 2min)

((x,2) e K,n€Z). (2.13)

<1 (z€K', |n|<N).

On the other hand, |z + 2win| > 27|n| — |z|, so for some N large enough
which depends on K,

1 1
— <
|z + 2min| n2 +1

(= € K', n| = N).

Since K' is bounded, we also have
e ?—1 < 1
(z + 2min) n2+1

(z € K, |n| > N).

Similarly, since
|6(2 + 2min)| = |2 + 2min + pe” "M > 27 |n| — (|2] + [pe~")),
for some N large which depends on K,

1 1

—_— K z€ K', |n] > N),
#(z + 2min) n? +1 ( i )
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and since K is compact, we also have
o(@—0)(z-+2in) 1
é(z + 2min) < n? +1
Now, for fixed n € Z, the continuous function z — |¢(z + 27min)| has no
root in K’ by definition (2.2) of Q, so

((z,2) € K, |n| > N).

m<<1 (ZEK’).

Hence for every N € N,
e(w—@)(z+27rz'n)
&(z + 2min)

Summing up, we have prove (2.13). The proof shows also that for every
n € Z, the function

<1 ((z,2) € K, |n|] < N).

e % —1 e(w—ﬁ)(z+2m'n)

(z + 2min) ¢(z + 2min)

is continuous on R x €2, and holomorphic in 2 as a function of z for fixed
r€R O

(x,2) —

With a little more work, it is easy to prove the following

Lemma 2.3. For all x € R, the function z — F(z,z) is meromorphic in

C.

Proof. By Lemma 2.1, for every x € R, the function z — F(z, 2) is holo-
morphic in Q. Let (x,2) € Rx Q¢ and define I, = {n € Z : ¢(z+2min) =
0}. By definition of , |I,| > 1, and by (2.1), |I,| < 2. Since Q¢ is discrete,
there exists € > 0 such that B(z,&) C QU {z}, where

B(z,e) ={w e C : |lw—2z|<e}and B(z,e) ={w e C : |w—z| <¢e}.
The same argument as in the proof of Lemma 2.1 shows that the series
(1 _ efw) e(:cfe)(w+27rin)

Z (w+ 2min) ¢(w + 2min)

neZ, n¢l,

converges uniformly for w € B(z,¢). Hence, its sum is holomorphic in
B(z,¢e). Writing
1 — e W (z—0)(w+2min)
F(x,w)zz( e.) ° .
(w + 2min) ¢(w + 2mwin)

nel,

Z (1—ev) el@=0)(wt2min)
nez, ngl, (w + 2min) ¢(w + 2min)
(2.14)

we see that w — F(x,w) is the sum of one or two meromorphic functions

and one holomorphic function in B(z,¢), and therefore a meromorphic
function in B(z,¢), and the proof is complete. O

We end this section with the following interesting
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Proposition 2.4. The zeros of P lie in a left half-plane {z € C : Rez <
r}.
Proof. The proposition will proved by the following assertion:

1— e ? e—H(z—l—Qm'n)

sup (2.15)

Rez>r |4 2+ 2min ¢(z + 2mwin)

as r — +00.
First, by 2mi-periodicity, the supremum in (2.15) is the same as the
supremum of the same expression over the band

B(r)={2z€C : Rez>r, -7 <Imz <7}.
Let 7o > |p|. Then, for every r > 1o, z € B(r) and n € Z*,

|1 - efz| <2, |679(z+27rin)| — efORez <1,

|z + 27min| = v/(Re2)? + (2mn +Im 2)2 > \/r2 + (27|n| — 7)2,

|6(z + 2min)| > |z + 2min| — [p| > /r2+ (27|n| — )2 — |p|,
> /r2+ (2x[n| — 7)2(1 = [p|/ro).

Hence,
1—e? e—e(z+27rin)

sup (r>ro, n€Z),

o |2t 2nin 6(z + 2min)| S 2+ @ajn] —n)?
(2.16)

This bound is also valid for n = 0, r > ry. Hence, if we denote N, (r) the
left side of (2.16), the convergence of }_ _, Ny,(r) is uniform on [rg, +-00);
interverting limits, we obtain lim, o D, ez Nn(7) = 0. Now the left side
of (2.15) is < ZnGZN (r), and this concludes the proof. O

3. LAPLACE TRANSFORM

This section is devoted to the computation of the Laplace transform
of any solution of (1.1). Recall that if f is a function which is locally
integrable in (0, 00), and which satisfies

fz) < e™ (z > 0) (3.1)
for some r € R, the Laplace transform of f is defined by

/ f@)e “dz (2 €C, Rez>r). (3.2)

The integral in (3.2) is absolutely convergent, and Lf is holomorphic in
{z € C : Rez >r}. If f is absolutely continuous in the neighborhood of
xo > 0, the following inversion formula holds, for ' > r [1]:

flzg) = L /T - Lf(z)e"™*dz, (3.3)

27TZ ' —i0o
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where

1 ! +ico 1 T .
_ ToZ — Ti o ! -1\ fZo(r +it)
omi ) Lf(z)e"™*dz : Th_)rrolO o /T Lf(r'+it)e dt.
We shall need the following lemma, which is analogous to Lemma 2.1 for

the adjoint equation of (1.1) (see remark below).

Lemma 3.1. For all (y,z) € R x Q, the limit
efy(z+27rin)

Gy, 2) = 2 50+ 2nin) (3.4)

erists in C. The function (y,z) — G(y, 2) is bounded on every compact
subset of Rx €2, holomorphic in 2 as a function of z, for everyy € R, and
belongs to H(R) as a function of y, for every z € €.

Proof. Define
e ¥

9o(y,2) = yeR 2 €Q), 3.5
and for n > 1, let g, : R x 2 — C be defined by
efy(z—|—27rin) efy(2727rin) sin(27my)
= e Y 4 g,(y, 2), 3.6
&(z + 2min) * &(z — 2min) o +on(y:2) (3.6)
where y € R, z € ). Then, for every N > 1, summing on —N <n < N,
e~ y(zt2min) sin(27ny)
- T ey w(y,z). (3.7
Z &(z + 2min) Z m * Z gn(y,2). (3.7)

—N<n<N 1<n<N 0<n<N
Obviously, for every n € N, g, is continuous on R x €2, holomorphic in 2
as a function of z, for every y € R, and meromorphic in C as a function of

z, for every y € R. We shall prove that for every compact K C R x {2,

an(y, 2) < (neN, (y,2) € K). (3.8)

n?+1
As a consequence, the series ) . . g, (y, z) will converge uniformly on every
compact subset of R x  and its sum will be continuous on R x , and
holomorphic in €2 as a function of z, for every y € R. The lemma will then
follow by letting N — 400 in (3.7) and using Lemma 3.2 below.

Now let us prove estimate (3.8). Let K be a compact subset of R x 2,
and denote K' = {z € Q : Jy € R, (y,2) € K} the projection of K on .
By definition, ¢(z + 2min) = z + 2min + pe "2 5o for some N large
enough which depends on K,

1 1 1
é(z+2min)  2min < +1
Multiplying by e ¥(>*27) which is bounded on K,
e—y(z+27rin) e—y(z—|—27rm) 1

(In| > N, z € K').

- >N € K).
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Adding this estimate for n > N and —n yields
e—y(z+27rin) e—y(z—27rin) sin(27n
— 0 sinCmy) e
&(z 4+ 2min)  ¢(z — 2min) ™m n?+1
forn > N, (y,z) € K. On the other hand, by continuity,
wm(y,z2) <1 (n<N, (y,2) € K).

These last two estimates give (3.8), and conclude the proof. O
Lemma 3.2. For ally € R,
N
) sin(2mny)
B (3.9)

where ( is the unique 1-periodic function in H(R) such that

B(y)=%—y (0<y<1).

Moreover, there exists a constant C > 0 independent of N such that

N sin(2mn
Z ( y)

< 1
T <c (3.10)

sup
yeR

n=1

Proof. These results are well known. For (3.9), apply Dirichlet’s Theorem
to the function §. The uniform bound (3.10), which will only be needed
later on, is more tricky: for every 0 < ¢ < 1/2, the limit in (3.9) is uniform
on [e,1 — €| by the Dini-Lipschitz test; near the discontinuity point y = 0,
the bound (3.10) is a consequence of Gibbs’s phenomenon. We refer the

reader to [9] for more details. O
Remark. For every f,g € D(R), (T f,q9) = (f, T*g), where
n+6+1
Tg=—g +pT_.g+ qZ/ g(t)dt 6, in D'(R) (3.11)
nez v nto

(6 € D'(R) denotes the unit mass concentrated at n € Z). We can consider
the adjoint equation of (1.1),
n+6+1
(W oty +aY [ gk =0  G1)
nez v nto

on (—o00,0), and it is natural to see T*, the adjoint operator of T, as
mapping H(R) into D'(R). With these definitions, we can prove, as in
Theorem 2.2, that

Ty~ Gy,2) =P(z) > e™5 D[R  (313)

for all z € Q. In particular, y — G(y, z) is a solution to (3.12) if and only
if P(z) = 0.
U
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Similarly to Lemma 2.3, we have

Lemma 3.3. For all y € R, the function z — G(y,z) is meromorphic in
C.

Proof. Let (y,z) € R x Q°. We already know that w — G(y,w) is holo-
morphic in 2. Define

J,={neN : ¢(z+2min) =0 or ¢(z — 2min) = 0},
and let B(z,¢) be as in the proof of Lemma 2.3. Using (3.7), we find

) sin(2mny)\ _.
G(y,w)z—(]vlggoz (ﬁ y) P gaw)+ Y galy,w)

n=1 ned, neZ,ngJ,
(3.14)

for w € B(z,¢). The first term on the right side of (3.14) is an entire
function; the second term is holomorphic in B(z,¢) \ {#} and meromorphic
in B(z,¢) by the definition (3.6) of g,. By the proof of Lemma 3.1, the
third sum in holomorphic in B(z,¢), and this concludes the proof. O

In the next lemma, we compute the Laplace transform of any solution
of (1.1). As a useful shortcut, we introduce the bilinear form [-, -], defined

for (f,9) € C(R) x H(R) by
0+1
[f,9] == f(0) (g(O) — %/9 g(t)dt)

T [
— — dt — -0 dt. (3.15
p [ £e=r)adr=q [ 7= aoa (.15
Notice that [f, g] depends only on the values of f over (—7, 0]U{—[f], —[0]+
1,...,0} and of g over [0, max(7, 6)).

Lemma 3.4. Let f € C(R) be a solution of (1.1). Then its Laplace trans-
form Lf has a (unique) meromorphic extension on C defined by

Mhtoet] L (oG]
£ie) = Lo q/e e (2 € Q). (3.16)

Proof. Let r be large enough such that f satisfies (3.1) (recall (1.3)). Then,
Lf(z) is well defined for Re z > r. Let us first prove the identity

d(2)Lf(2) =[f,t e ] — q/a ! e "dt a(z) (Rez>r), (3.17)
where

10) | Zf e  (Rez>r). (3.18)

Notice that these series converges absolutely by (3.1). Let z € C such that
Re z > r. By definition of a solution, f has a derivative in O = {z > 0 :
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x # 60 [1]} which satisfies (1.1), and from (3.1) we deduce
fl(z) < €™ (x € O). (3.19)
Multiplying (1.1) by x +— e~®* and integrating on (0, +00) yields

* ! —z2( = _ | - —0])e **dx = 0.
/0 fl(x)e m+p/0 flx—1)e x+q/0 f([x ])e x

(3.20)
For the first integral, an integration by parts gives

/000 f(z)e™™*dz = —f(0) + 2L f(2).

Splitting the second integral in (3.20) into an integral over [0,7] and an
integral over [7,+00), we find

p/ooo flz —71)e™™dx = p/OT flx —T1)e dz + pe * L f(2).

Similarly, the third integral in (3.20) becomes

q wﬂh—@€wm=qafm—ﬂWWm+q 5mmgmwﬁ
/

Summing these three integrals, equation (3.20) becomes
6()Lf(2) = /ft—T_“&— /fu—m Je~t=dt
/ ([t]) *(t+9 Zdt

0
By definition of a(z),

” gy = SO [T AR
/Of([t])e dt 2/0 e dt+/9 e “dt a(z),

and this, together with the definition (3.15) of [-, -], yields equation (3.17).
Let us now prove the following assertion:

= Zﬁf(z + 2min) (Rez > r). (3.21)
nez
Let z € C such that Rez > r and define
=) fm+z)e ™ (0<z<1). (3.22)
m>0

By (3.1), the series in (3.22) converges uniformly on [0, 1], and by continuity
of f, A, is continuous on [0, 1]. In fact A, is of class C' on I_ = [0,60 — [6]]
and I™ = [#—[6],1]. Indeed, for every m € N, the function z — f(z+m) is
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of class C! on I_ and I, and by (3.1) again and (3.19), the series obtained
by differentiating (3.22) with respect to z,

z (f'(m+ ) — 2f(m + z))e” (Mo
m>0
converges uniformly on 7_ and on I,. By definition of a(z),

a(z) = A,(0) —;- Az(l)’

and applying Dirichlet’s theorem to the unique 1-periodic function on R
whose restriction to [0,1) is A,,

-5 [ o @39

neL

For every n € Z, integrating term by term in (3.22) yields

1
/ Az(m)ef%rimcdx = E / f m+$ (m-HC)Z 27rm:cdx
0

m>0

and setting t = m + «x,

1 m+1
/ A, (z)e ™ dy = Z / f)e e = Lf (2 + 2min).
0

m>0Y ™

The last term comes from the definition (3.2) of £f. Replacing in (3.23),
we obtain (3.21).
Thirdly, let us prove

P(z)a(z) = [f,t — G(t,2)] (Rez > ). (3.24)
Let z € C such that Rez > r. We may assume r > |p| in which case, since
720, |¢(2)] = |z] — [p| > 0. By (3.17),
0+1 etz I[f’ t = eftz]l

e =T

The function @ is 2mi-periodic (see (3.18)), so changing z into z + 27win
yields

Lf(z)+q

—t(z+2min) Ilf’ t e—t(z—|—27rin)]]

. 0+1 e
,Cf(z-l—?ﬂ'l’l"&)-i-q/0v mdt CL(Z) = ¢(z + 27rin)

(nez).

(3.25)
An easy computation yields

[ 0+1 —(z+27in)t
P ————dt,
(2) / é(z + 2min)

neZ
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so summing (3.25) on n € Z and using (3.21), we obtain

- |[f’ = e—t(z—|—27rin)]l

P(z)a(z) = ZneZ #(z + 2min)

The definition of G yields (3.24) (recall that the series in (3.4) converges
in L, (R)).
So far we have proved

P(2)p(2)Lf(z) = P(2)[f,t — e_tz]]—q/e ' e dt [f,t — G(t,2)] (3.26)

on {z : Rez > r}. By continuity of f and the classical Lemma 5.3, the
function z — [f,¢ — e7*] is holomorphic in C. Similarly, by Lemma 3.4,
z = [f,z — G(z,2z)] is holomorphic in Q. If z € Q°, then, by the proof
of Lemma 3.3, w — [f,x — (w — 2)*G(z,w)] is holomorphic in a neigh-
bourhood of z for some integer «, independent of x. Hence, the right side
of (3.26) is a meromorphic function of z in C, which is holomorphic in €.
Dividing both sides by ¢(2z)P(z) # 0, the right side defines a meromorphic
function in C which is equal to Lf on {z € C : Rez > r, P(z) # 0}, and

this concludes the proof. 0
Define
Z(P)={z€Q : P(z)=0} and U=Q\Z(P). (3.27)

Of course, Z(P) is discrete and closed in Q. In fact, Z(P) U Q¢ is discrete
and closed in C, becauses P is meromorphic in C. By 27i-periodicity of P,
U is an open subset of C which is invariant by the translation z — z + 2ms.
By Proposition 2.4, U contains a right half-plane. The above proof shows
that L£f is holomorphic in /. We have:

Theorem 3.5. Let f € C(R) be a solution of (1.1), let r > |p| be large
enough such that (3.1) holds, and let k € C such that

Rek>r, k+iIRCU, and k+RCU. (3.28)
Then,
1 K+2mi G(t, Z)
f(x)—Q—m/'C [[f,tHG(t—x,z)—q P F(a:,z)]]dz (z > 0).
(3.29)

Proof. A number x which satisfies (3.28) does exist. Indeed, by Proposi-
tion 2.4, kK + 1R C U if Rek is large enough; the last condition on « is
equivalent to Kk ¢ (Qc uz (P)) + R, and the latter is a countable number
of horizontal lines in C. Notice also that by 2mi-invariance,

k+2min+RCU (n€Z).

The solution f of (1.1) is absolutely continuous on [0,+00), because
J' is locally bounded on [0,+00) and f(z) = f(0) + [; f'(s)ds for all
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z € [0, +00). Hence, we can apply the inversion formula (3.3):

fz) = i/n i w)erdw (2> 0).

270 J—ico

Letting w = z + 27in, we have for every n € Z,

Kk+27mi(n+1) K+2mi )
/ Lf(w)e™dw = / Lf(z+ 2min)e®@H2™ ™, (x> 0),

+2min
SO
1 ) K+27i ' (e 2min)
f(z) = 5 ]\}1_1)%0 : ( Z Lf(z+2min)e )dz (z > 0).
—N<n<N
(3.30)
On the other hand, by Lemma 3.4,
[f,t = e ] /9“ ey, [t = G(t,2)]
Lf(z)=——————¢q e Adt z€eU).
=" : sope) Y
A direct computation gives
b+t 1—e7
/ e dt = e (2€0),
9 z
so Lf satisfies
—tz 1—e % —6z
Ef(Z):[[f’tHe ]] [[f,ti—)G(t,Z)]] e-e (ZEZ/{)

oz 1 P@ . 4
By bilinearity,

elz—t)z G(t,z) 1 —e #ele0)z
o) PR = 6
Summing on 7 and using the 27i-periodicity of the functions z — P(z),
zr+ e *and z — G(t, z), we obtain for every N > 1,z € U, and z € R,

Zﬁf(z + 27rm)e$(z+2”i") = [[f,t — Gyt —x,2) — qG(t’ 2) Fy(z, z)ﬂ,

—N<n<N P(z)

Lf(z)e™ = [[f,tn—> ﬂ (z €R, 2 €U).

where
e—y(z+27rin)

Gn(y:2) = ) 30z & 2min) (y € R),

—N<n<N
and
(1 _ e*Z) e(wfﬂ)(z+27rin)

Fy(z,2) = Z (z + 2min) ¢(z + 2min)

—N<n<N
Replacing in (3.30),

(z € R).

G(t, 2)
Pl

2T, N—oo

1 K+27i
f(z) = — lim [[f,tHGN(t—x,z)— FN(x,z)]]dz

(3.31)
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for every x > 0. By the definitions of F' and G,
A}i—l}goFN(t’ z) = F(t, z) and A}i_I)I;OGN(t, z) = G(t, z) (teR z € Q).
Moreover, for every compact K C R x €2,
Fn(t,z) < 1and Gy(t,2) < 1 ((t,2) € K, N € N), (3.32)

by Lemma 2.1 for F' and equation (3.7) and estimates (3.8), (3.10) for G.
Hence, by Lebesgue’s dominated convergence theorem, for every (z,z) €
R xU,

G(t, 2)
_z,2)— F
[[f,t = Gy(t—2,2) — g P02 N(a:,z)]]
tends to
G(t, z)
—a,z) — F
1.5 66— 00— o)
as N — oo. Using (3.32) again, for every compact K € R x U,
G(t,
[[f,t — Gn(t—2,2) — ¢ Ig(;)FN(aj,z)ﬂ <1 ((z,2) € K, N e N*).
Thus, the dominated convergence theorem applies to (3.31), and yields (3.29).
u

Remark. There are analogues of Lemma 3.4 and Theorem 3.5 for the ad-
joint equation (3.12). We leave the computation to the reader. g

4. FUNDAMENTAL SOLUTIONS

In section 2, we related every root of P to a solution of (1.1). Now, if
z € Q is a root of P with multiplicity v, > 2, then differentiating (2.8)
v, times with respect to z, we obtain similarly n, solutions of (1.1) (at
least formally). When z € Q°, it is also sometimes possible to associate to
z a solution of (1.1). In this section, we build these additional solutions
of (1.1), which will be named {F,;}i<k<n.. As it will be made clear in
the next section, the existence of those solutions depends in fact on the
residues of the integrand in (3.29).

We begin by some preliminary results.

Lemma 4.1. Every zero of ¢ has multiplicity 1 except, when tpe = 1, the
real number —pe which has multiplicity 2.

Proof. For every s € C,
= O TS — O TS — O = —
o(s) L + pe L + pe ol pe,
¢’(8)=0 1—71pe ™ =0 1+7s=0 Tpe = 1.

If p=0or7=0, ¢(z) = z+ p has a unique root in C which is simple. If
p#0and 7#0, ¢"(z) = pre™™ # 0 on C, and the lemma is proved. [
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For every z € C let
E,={s€z+2mZ : ¢(s) =0} =Z(¢) N ({z} + 2miZ). (4.1)

By the definition of Q, E, = ifand only if z € Q. If 2 € Q°, |E,| =1 or 2
by (2.1). When |E,| = 2, E, = {s, §} for some root s of ¢. In the following
lemma, we characterize the cases for which |E,| = 2.

Lemma 4.2. For all s € C and n € Z*,

nt & 7,
¢(s) =0 s )s=—n cot(mnr) + imn,
¢(s —2min) =0 ™
= mexp[—wnT cot(mnT)].

In particular, when 7 € N or p € C\ R, we have |E,| <1 for all z € C.
Proof. Let s € C and n € Z*. Then

o(s) =0 p= —se’s
é(s — 2min) =0 s(1 — e?™n7) = 2min.
Since n # 0, the last equation is never satisfied if nT € Z, so the last

equation is equivalent to
2min .
S = m = —TN COt(’]TnT) + mn,
—e

with the additional condition n7 ¢ Z. Now compute

p = (mncot(nnt) — inn) exp[r(—wncot(rnt) + iwn)],
= % (cos(mnt) — isin(wnt)) exp(imnt) exp[—mnT cot(mnT)],
(s exp[—mnr cot ()]
= ———— exp[—mn7 cot(mnT
sin(7nT) P ’
and the lemma is complete. O

Let v(x,z) denote the valuation of w — F(z,w) at w = z. In other
words, v(z, z) is —m,, if z is a pole of order m, > 1, and the multiplicity
(possibly 0) of z as a zero of w — F(z,w) if z is a removable singularity.
In the next lemma, we compute this number.

Lemma 4.3. Assume p # 0 and let (z,2) € R x Q°¢. Then,
(1) if z € 2miZ and E, = {s}, v(z, z) > 0; more precisely,

. F( ) 1 e(wfﬂ)s
mr(r,w)=—=-+ .
w2 ¢(0) ~ s¢'(s)
(2) if z € 2miZ and E, = {s, 8}, v(z, z) > 0; more precisely,
1 (z—0)s (z—0)3
lim F(z,w) = ¢ °

w—2 (b(O) + 5¢’(5) * §¢I(‘§) .
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(3) if Tpe =1 and z € —pe + 2miZ, v(x, z) = —2; more precisely,

1 — e 2l 0

lim (w — 2)*F(z,w) =

o TN
(4) if z ¢ 2miZ, E, = {s}, and the previous case does not hold,
v(x, z) = —1; more precisely,

1—e e(:cfe)s

ii_rflz(w — 2)F(z,w) = . o)

(5) if z € 2miZ and E, = {s,5}, v(z, 2) > —1; more precisely,
1—e$ e(m—ﬂ)s 1—e° e($—9)§

li —2)F = .
S AF @) = T et T )
Proof. For every x € R, 2 € C and n € Z,
(=€) @-o)r2nin) : :
— = eWT)ETAmN) — 2mili \ {—2 . 4.2
(2 5 2min) e 0 < z€2miZ\ {—2min} (4.2)

Notice also that ¢(0) # 0. In the first case, compute the limit as w — z of
each term in the series (2.3) defining F', using Lemma 4.1 and Lemma 4.2.
The result is then obtained by interverting the limits, which is valid because
of the uniform convergence, by a proof similar to the one of Lemma 2.3.
For the other cases, the proof is similar. Il

In the remainder of this paper, we shall assume p # 0 and ¢ # 0. ‘

We need a few more notations. First define
0 ifzeQorzeQ°N2miZ,
a, =42 if rpe =1 and z € —pe + 27iZ, (4.3)
1 otherwise.

For every z € C, we denote {f,,}32, the sequence of functions uniquely
determined by

F(z,w)(w— 2)* = Zfzn(x)(w — )"t (x € R,w near z). (4.4)
n>1
By Lemma 4.3, the family {f,,}>>, is well defined, and if z € Q°, f,1 Z 0
because the family {x — 1,z — %, x + e} is linearly independent for
every s € C\R. If z € Q, f,1 #0 by (2.4).
For all z € C, v, € Z will denote the valuation of P(w) (2.6) at w = z.
We denote {c, , }nen the sequence of complex numbers defined by

: —OOC w—z)" w near z
_P(w)(w— z)—vz - ; 27"( ) ( ) (45)

By definition of v,, ¢, o # 0.
For every z € C, let

n, =v, +|E,| € {~1,0,1,2,3,...}. (4.6)
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The case n, = —1 happens if and only if 7pe = 1 and z € pe + 27iZ. In
general, n, = 0. Otherwise, n, > 1 is the number of fundamental solutions
associated to z. By Lemma 4.3, n, > 1 if and only if either one of the
following condition is satisfied:

i) z €  and z is a root of P of multiplicity n, = v, > 1;

i) z € Q° N 2miZ;

iii)z € Q¢ \ 2miZ and |E,| = 2.

At last, for every z € C such that n, > 1, we define the finite sequence
of functions {F, s }1<k<n, as follows, for all z € R:

F,x(z) = f,x(2) 1<k<v,+a,), (4.7)
and, if £, = {s} C 2niZ,

IS

Fon (@) = Fop (2) + (18)
if £, = {s,s} C 2miZ,
xs ewg
Fz,nzfl(x) = fz,vz+1(x) + 0, Fz,n; (iL') = fz,v;+1(x) + c 0; (49)
it £, = {s,5} ¢ 2miZ and v, = —1,
Fon, (2) = €™ — ™ (4.10)

if £, ={s,5} ¢ 2miZ and v, > 0,
ews _|_e:c§
Fzynz ('/'C) = fzanz + Y (4.11)
202,0

Remarks. Notice that if F, = {s} ¢ 2miZ, then using Lemma 4.3, we find

e.’ES

fzal(x) + = 0'
Cz,O

Similarly, if E, = {s,5} ¢ 2miZ and v, = —1, we find
e%s g B (ews _ ewg) efﬂs e79§
, C T _(1-e - .
Janl@) + = = (=) <s¢f(s) 50/ (3)
ems s
Thus, f,1(z) + ——— is a solution of (1.1), by Theorem 4.4. However,

QCZ,()
since Im s # 0, there exists # € R such that

. efﬂs 6703 6703 0

m = — =0,
sd'(s))  sd'(s)  5¢'(5)

so this solution is not convenient as a ‘fundamental solution’. O
We have

Theorem 4.4. For every z € C such thatn, > 1, and every k € {1,...,n,},
the function F,y is a solution of (1.1).
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Proof. First, we prove that for all z € C,

0 if0<k<wv,+a,,
Tlhrsl = g (4.12)

— nz . _
Cao Yonez Mg nrorry if k=0, +a,.
z

)

Let z € C and consider the functions
F(z,w) = F(z,w)(w—2)* (zeRw e ), (4.13)
Pw) = Pw)(w—z)* (w e Q). (4.14)

By (2.1), there exists ¢ > 0 such that {fw € C : 0 < |w— 2| < e} C Q.
Multiplying (2.8) by (w — 2)** yields

T[fv = F(xa w)] = f’(w) Zenwﬂ[n+e,n+a+1)($) (0 <|w-—z[ < 6)-
neL

(4.15)
If z € , (4.15) is also satisfied at w = z and we obtain

T(z— Fz,w)) = P(w) > e Lpigniosn(z) (w2 <e). (4.16)

neZ

If not, recall that P is continuous at w = z by Lemma 4.3, so the right side
of (4.15) tends to

]5(2) Z " Lntonto+1)(T)

neZ

in D'(R), as w — z. On the other hand, by imitating the proofs of lem-
mas 4.3 and 2.1, it is easy to see that (z,w) — F(z,w) is continuous on
R x {w € C : |w-—z| <¢e}. Hence, the function z — F(z,w) tends to
z+— F(z,2) in D'(R) as w — z. As a consequence,

lim 7 [z — F(z,w)] =T [z~ F(z,2)] in D'(R).

w—r2

Thus, we can pass to the limit in (4.15) and we obtain (4.16) again.
Let now ¢ € D(R). We have

85(7-[:5 — F(z, z)] ) = (T[m — OFF(x, z)] , ) (ke N). (4.17)

Indeed, by definition (2.5),

(T[mHF’(x,z)],go) = —/Rﬁ’(x,z)go'(:r) x—i—p/l*:’(x—T,z)(p(x)dx
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Differentiating this equation k£ times with respect to z, which is legal by
the classical Lemma 5.3, we obtain

(T [z — F(z,2)], /8’“ T,2)p —i—p/ak z—T,2)p(x)dz

+q /R O F(z — 6], 2)dx

that is (4.17). Notice also that for every k& € N*, 9*F(-,z) : R — C is
continuous, by the Cauchy formula.
Now, by (4.4) and (4.13), we know that

fepi1(z) = k,af (z,z) (keNz eR),
so, by (4.17), for all ¢ € D(R)
Thus, by (4.16) and by Lemma 5.3, for every k € N,

1/ . (k)
T[fz,k+1] = E (P(Z) Z enz]l[n+9’n+9+1)) (z) in DI(R)

nez
Applying Leibniz’ formula,

k
1 k! s .
Tl = 1 2 56 2 W Unsomsorn - in D'R),
j=0 nez

for every k£ € N. From (4.5) and (4.14), we have

§ :Czn n ('uz—}-az)

neN
and thus
PU)(2) B 0 (0<)<v, +ay),
j! ~ L G=v.+a),
Cz,O

which in turn implies (4.12).
The second equality we shall need is obvious:

T[.T |_> em] = ¢(S)ezs + QZ ensﬂ[n+9’n+9+1) (8 E C) (4.18)
nez

Now assume n, > 1.
If £, =0, then n, = v, = v, + o, > 1, and the proof is complete
by (4.12).
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If £, = {s}, then z € Q°N2miZ and n, = v, +1 = v, + 1+ «a, by
Lemma 4.3. For every 1 < k < v,, T[F,x] = 0 by (4.12) and (4.7). For
F, ., defined by (4.8), we have, by (4.12),

Tz — e** Tz — e*s q e
T[Fz,nz] = [ ] + T[fz,nz] = [ ] - E € ]1[n+9,n+6+1)-
C2,0 Cz,0 Cz,0 neZ

Using (4.18), we find (recall that z,s € 2miZ):
¢(s)e™

Cz,0

TFon.] = =0 in D'(R),

and this concludes the case |E,| = 1.

If £, ={s,5} C 2miZ, then n, = v, +2 = v, + 2+ a, > 2. For every
1 <k <w, T[F,x] =0 by (4.12) and (4.7). By the same computation as
in the previous case,

T[:r%,oe] + Tfoper1] = 7'[3:%’0(%]
If B, ={s,5} ¢ 2miZ and v, = —1, by (4.18),

Tz — (* —e™)] =Tz — ] — T[z — *°] = 0.
If £, ={s,5} ¢ 2miZ and v, > 0, then n, = v, + 2 = v, + a, + 1. For

every 1 <k <w,+a,, T[F,x] =0 by (4.12) and (4.7). From (4.11), (4.18)
and (4.12),

T[Fz,nz—l] = + T[fz,vz—l—l] =0.

Tz — ™)+ Tlz — e

FZ n Z,Mz |
T[ ) z] QCZ’O +T[f; Z]
¢(S)e$s + ¢(§)e$§ ens +en§
= — —e¥ ]]-n n )
20 + CI% ( 9 e ) [n+6,n+0+1)
= 0.
For the last equality we used s,5 € Z(¢) and s,5 € {z} + 27iZ. O

Similar results apply if we replace F' by G and 7 by 7*. We shall need
them in the next section.

Lemma 4.5. Assume p # 0 and let (y,z) € R x Q°. Then,
(1) if Tpe = 1 and z € —pe + 2miZ, the valuation of G(y,w) at w = z
1s —2; more precisely,
lim G 29"
wl_rg (y’ w) (w - Z) - ¢”(S) ‘
(2) if E, = {s} and the previous case does not hold, the valuation of
G(y,w) at w = z is —1; more precisely,

e Y

ii_rg Gy, w)(w—2) = o0
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(3) if E, = {s,5} with s ¢ R, the valuation of G(y,w) at w = z
1s > —1; more precisely,

e s e ¥
+

lim G(y, w)(w — 2)

wz S s HB)
Proof. The proof is straightforward, using the definition (3.4) of G and the
proof of Lemma 3.3. O
The analogue of «, is the number
0 if |E,| =0,
B,=<2 iftpe=1 and z € —pe + 27iZ, (4.19)

1 if |E,| > 1 and the previous case does not hold.

For every z € C, let {g,,}22, be the sequence of functions uniquely defined
by
Gly,w)(w—2)" =) g.a)(w—2""  (y€R, wnearz). (4.20)
n>1

By Lemma 4.5, the family {g,,}32, is well defined and g, # 0.
For every z € C such that n, > 1, we define the finite sequence of

functions {G, k }1<k<n, as follows, for all y € R:
if E,=0or E, = {s} C 2wiZ,

Gz,k(y) = Z Cz,m gz,n—l—l(y)a k= 1; EN(7T (421)

mtn=n,—k

it £, = {s,5} C 2wiZ,

GZ,k(y) = Z Cz,m gz,n—i-l(y)a k=1,... v,
m4n=v,+1—k
e Y8 e_yg
Gz Ty— = C 0,7 Gz n =Cz,0 ;7\ 4.22
3Tz 1(y) ¢ 50¢[(8) B} z(y) ¢ ’0¢I(3) ( )

if £, ={s,5} ¢ 2miZ and v, = —1,
G Se(e_y)s — ge(e—y)g
W) = g (s 1 s )

if £, ={s,5} ¢ 2miZ and v, > 0,

Sew*y)s + §e(0*y)§

Gz,l (y) - 2(1 — e*z) + Z Cz,m gz,n—l—l(y)a

m4n=n,—1
Gor) = Y. Com Gemni(®),  k=2,...m.  (424)
m4n=n,—k
Starting from (3.13), and imitating the proof of Theorem 4.4, it is possible
to show that for every z € C such that n, > 1, and every k € {1,...,n,},
T*G,x] = 0.
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5. ASYMPTOTIC EXPANSION

Now, we are ready to compute the residues of the integrand in (3.29) in
every situation. This will allow us to find an asymptotic expansion of any
solution of (1.1).

Lemma 5.1. For every (z,y) € R?, let A, be the meromorphic function
Gy, w)F(z, w)

Agy(w) =Gy —z,w) — ¢ Pw)

(weC). (5.1)
Then, for every z € C,
Res.(Ay) = 3 Fr(@)Gosly) (w€RyeR)  (52)
1<k<n,
if n, > 1; otherwise, Res,(A;,) = 0.
The symbol Res, denotes the residue at z.

Proof. Let (z,y) € R%, 2 € C and consider the functions

Qw) = Pw)(w—-2"" (we),

R(w) = F(z,w)(w— z)* (w € Q),

Sw) = Gly,w)(w—2)>*  (weQ),
where «, and 3, are defined by (4.3) and (4.19) respectively. In particular,

@, R and S are holomorphic in a neighbourhood of z, and Q(z) # 0. We
have

Apy(w) =Gy —z,w) — q(w — z)iﬁaﬁﬂz R(ggigw) (w near z),
Res, (Azy) = Res, (G(y — z,w)) — qRes, ((w - z)iz+az+5z R(ngjgw) )
(5.3)

The function RS/Q is holomorphic near z. If v, + a, + 8, = 0,

1 R(w)S(w)
—qRes, =0; 5.4
q es <(w — z)’Uz'f'Oéz‘f',Bz Q(w) ( )
otherwise, v, + o, + B, > 1 and by Taylor expansion,

e, (o S )

(w — z)v=to=t8: Q(w)
_ q RS (vztaz+B:-1)
“m+%+@-n(aﬂ (2),

_ ™ R®(2) (=¢/Q)™(2) S™(2)

k! m/! n!

. (5.5)

k+m4n=v+o,+8.—1

- Z fz,k+1($) Czm gz,n+1(y)- (56)

k+m4n=vz+a,+B:—1
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In (5.5) we used Leibniz’ formula, and in (5.6) we used definitions (4.4), (4.5)
and (4.20). Let Z(P) be the set of zeros of P in €.

1st case: z € Q\ Z(P). Then v, = a, = 5, =0 and w — G(y — z,w)
is holomorphic at z so Res, (Amy) = 0.

2nd case: z € QNZ(P). Then v,4+a,+5, = v, > land w — G(y—=z, w)
is holomorphic at z. By (5.3) and (5.6)

Resz (Aw,y) = Z fz,k—}—l(x) Cz,m gz,n—}—l(y)

k+m+n=v,—1

= Z fer(2) Z Ceom Jzn+1(Y),

1<k<v, m+n=v,—k

= Z Fz,k(-T)Gz,k(y)'

1<k<v,

3rd case: E, = {s} ¢ 2miZ (this case includes the only situation where
v, = —2). We use (5.2) for the computation. By 2mi-periodicity of A, ,,

Res, (Aw,y) = Res; (Awy)
By definition of F' and P,

B 1—eWw e(z—@)w

F(z,w) = W ow) +0(1) (w — s)
and
P = =" 00)  (w—s),

w  p(w)

S0)
qFngE;UI;]) =™ + O(p(w)) (w — s).
On the other hand, by definition of GG,
e~ YW el@—y)w

G(y,w) = 5w +0(1) and Gy—=z,w)= 5w +0(1) (w — s).
Hence,

Agy(w) =0(1) (w — s),

and we find (as expected, since n, = 0) Res, (Aw,y) = 0.
4th case: FE, = {s} C 2miZ. Then, v, > 0, a, = 0 and 3, = 1.
By (5.3), (5.6) and Lemma 4.5,

e(z_y)s

Resz(Aw’y) = 505)

+ Z fZ,k'}‘l("‘E)cZ,m gz,n—|—1(y)-

k+m+n=v,
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e Y8
Using ¢,.1(y) = pT ( i we find that Res, (Aw) equals
Z fz,k(l') Z Czm gz,n+1(y) + <fz’1,z_|_1 (.T) =+ >Cz,0.gz,1 (y),
1<k<v, m+n=v,+1—k Cz,0
Thus,

Res, (A;,) = Z F,(z (y),

1<k<n,
and this concludes the 4th case.
5th case: E, = {s,5} C 2miZ. Then, v, > 0, o, = 0 and §, = 1
By (5.3), (5.6) and Lemma 4.5,
el@y)s  olz—y)s

d),(s) + ¢,(§) + Z fz,k—l—l(l')cz,m gz,n—|—1(y)a

k+m+n=v,

Res,(Ay) =

eys e ys

Using g,.1(y) = ¢( ) ¢,( 5 we find that Res, (Aw,y) equals

e®s e ¥
1;% fZ,k(x) m+n:zv;+1_k Cz,m gz,n+1(y) + (fz,vz—l-l(x) + Z,O) Cz,0 #(s)
ez§ e—y§
+ (fz,vz+1(x) + a) CZ,OW}
Thus,
Resz (Aw’y) = Z Fz,k (x)GZ,k (y):

1<k<n,

and this case is complete.
6th case: E, = {s,5} ¢ 2miZ and v, = —1. Then, a, =1 and 3, = 1.
By (5.3), (5.6) and Lemma 4.5,

e(w_y)s e(z_y)g

RGSZ(ALy) ¢I(8) + ¢,(§) +fz,1(l')Cz,ng,1(y)
with
e Y8 e Y8
%00 = 55" o) >0
By Lemma 4.3,
(z—0)s (
for(@) = (1—e)( & : (5.8)
and
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Thus, Res, (Awy) /cz0(1 —e™%) equals

(owrsom) v+ om) - (55 ) (o i)

Expanding this expression, we find that Res, (A;,) equals

C, 0(1 _ e—z) (e(w—e)s—yE e(w—0)§—ys e(w—y)s—&& e(z—y)g—as)

5(5)9 ) " B -

S S S S
that is

Cz,O(l - e—z) (e—ﬂs—yE 670§—ys

S ()€
0s+03

Finally, multiplying numerator and denominator by sse , and using (5.9),

we find as expected

Se(g_y)'s _ ge(g_y)g

Res; (Agy) = se?s¢/(s) + 5e%5¢'(5)

(" —e”) =F,1(2)G,1(y).

7th case: E, = {s,5} ¢ 2miZ and v, > 0. Then, n, = v, +2, o, = 1
and 8, = 1. By (5.3), (5.6) and Lemma 4.5,

e(x_y)s e(w_y)g
z Aw = = z z;m Yzn .

k+m+tn=v,+1

In other words, Res, (Ax,y) equals

e(w*y)s e(5c*y)§

¢’(8) + ¢,(§) + fz,l(-T) m—H;z_H Czm gz,n+1(y)

+ Z fz,k(x) Z Cz,mgz,n+1(y) + fz,vz+2(x)cz,092,l(y)-

2<k<v,+1 m+n=v,+2—k

This last expression is equal to

(0-y)s 4 5a(0—y)s
se + se

Y Fa@)Gasl) + (ﬂ . (x))cz,ogz,l(y),

2c
2<k<v,+1 2,0
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as expected. Indeed, by (5.8) which is still valid,
(0—y)s se(0—y)s s T3
se + se e +e
fi (@) di-e7) T 2
e(zfﬂ)s e(a:fe)g Se(ny)s + ge(efy)g
=(1—e7) + — =
s¢'(s) ~ 5¢'(3) 2(1—e7?)
+<ews + ews) (e—ys N e—ys)
2 ¢'(s)  ¢(3))
Moreover, p € R by Lemma 4.2, so the right side of this equality is
e(wfy)s N e(xfy)g n R (e(:EG)Sge(ay)E) N R (ewseyg) (5 10)
— e —— el ——. (5.
#(s)  ¢'(3) s¢/(s) ¢'(5)
Now recall v, > 0, so by Lemma 4.3,
6—05 e—0§
=0
P ONEIC N
e(x_y)s e(z_y)g

56 96

gz,l (y)

and (5.10) is finally equal to

, and this concludes the proof.
O
We can now state our final

Theorem 5.2. Let f € C(R) be a solution of equation (1.1). Then, for
every o € R, the function Ry, defined by

f@)= ) [f.GoplFop(@) + Rpolz) (x> 0), (5.11)
125613’3(21
where
Plo)={2€C : Rez>0 and 0 <Imz < 27}, (5.12)

satisfies the estimate
Ry, (x) = o(e”®) (x > 0). (5.13)
As usual, the notation (5.13) means that e °*R;,(z) — 0 as © — +o0.

Proof. The idea is to apply the residue theorem to (3.29). Let o € R, let
r > |p| be large enough such that (3.1) holds, and choose k¥ € C which
satisfies (3.28) and Rek > 0. By Theorem 3.5,

(@) = / T AL (), (5.14)

where for all x € R,

Ag(z) = [[f,t+—> G(t—=x,2)—q

Notice that A, is 2mi-periodic.

G(t,z)
P(z)

Pz, z)]] . (5.15)
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Since U¢ = Z(P) U Q€ is discrete, closed in C, and 2mi-invariant, there
exists o' < o such that z + R C U for all o/ < z < 0. With these
choices, o is in the open rectangle R(o’,k) with vertices ¢’ + ilmk, k,
K + 2mi, o' + ilm Kk + 27i, whose boundary OR(o’, k) is included in Y. By
Lemma 2.1, Lemma 3.1 and Lemma 5.3, A, is holomorphic in /. Since
U := C\ U is discrete, the residue theorem yields

1
— Ag(z)dz = Res,(Ay).
2m1 AR(0’ k) zeR(GX’,;)ﬂUC

By 2mi-periodicity of A;, the horizontal contributions on the left side add
to nothing, and we are left with the vertical contributions:

K427 o' +ilmk
/ Au(2)dz + / Ad()dz=2mi 3 Res(A,)

’—|—’LIII1 K427 ZER(O" ,n)ﬁuc

By 2mi-periodicity, the contribution on the segment [0’ +4Im &, 0’ +Im k+
27i] is equal to the contribution on the segment [0, 0’ + 27], so

K+2mi o' +2mi
/ Ay(2)dz — / Az =2ri Y Res.(A,). (5.16)

z€R(o! ,k)NUC

In other words (recall (5.14)),

fl@)= )" Res,(A;)+rs(x) (z>0), (5.17)
z€R(0’ k)
where
1 o' +2mi
ro(x) = 37 /a’ Ay (z)dz. (5.18)

Let us now compute the right side of (5.16). Let z € R(o’, k) NU° and
let € > 0 be small enough such that {fw € C : 0 < |w— 2| <€} CU. We
have

Res,(A,) = if . Am(w)dw (z > 0).

2m1 w—z
Writing
Am(w) = [f’yHAw,y(w)]l (-’17 >0, ’UJEZ/{),
where A, , is defined by (5.1), and using bilinearity of [, -], we find
_ 1 Aw,y(w)
Res,(A;) = omi ]{wd:e |:|:fa Y= w— 2 :|:|dw (x > 0).

Now (w,y) = Ay y(w)/(w—2) is continuous on {w € C : |w—2z| =€} xR,
so we can apply Fubini’s Theorem, which yields
1 A,
Res,(A;) = [[f,y — —f %@dwﬂ (z > 0),
|w—z|=¢€ -

= [f,y— Res,(Azy)] (x > 0). (5.19)
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Consider Lemma 5.1. If n, < 0, the right side of (5.19) is 0. Now assume
n, > 1. In this case, (5.19) becomes

Resn(d) = [fm 3 a6 @0

1<k<n,

and by bilinearity,

Res,(Ag) = Y [f,GoplFop(z)  (z>0).

1<k<n,
Replacing in (5.17):
f@y= Y S I GeplFon(@) +10(x)  (z>0).

2€R(o’ ,k)NU 1<k<n,

Letting Re kK — +oco (recall Proposition 2.4) yields
=3 Y LGMPs@ +ro(@)  (@>0),
z 1<k<n,

where the first sum is over all z € U¢ such that Rez > ¢ and Imk <
Imz < Imk 4 27. By 2mi-periodicity, this sum is the same if we change
this latter set into P (o) (5.12):

Z Z If, Gkl Fop(x) + 100 () (z > 0).

z€P(0) 1<k<n,

This shows in particular that r,(z) = Ry (), where the latter is defined
by (5.13).
Now, let K :={z=0"+1ib : 0<b<27} CU. By (5.18),

ror () < sup |A,(x)| (z > 0). (5.20)
€K
The functions z — P(z) and z — [f,t — G(t—y, z)] (which do not depend
on z) are continuous on K and P has no zero in K, so
A, (z) < [[f,t — G(t — z,2)]| + |F(z, 2)| (x>0, ze K). (5.21)

Imitating the proof of Lemma 2.1, and using |e*¢+27")| = ¢'® for all 2 € K,
it is easy to see that

1—e? el 0)(z+2rin) o'
z 4+ 2min ¢(z + 2min) < n?+1
and consequently that
Flz,z) < e’® (x >0, z € K). (5.22)

Similarly, imitating the proof of Lemma 3.1, and using e ¥%)| = e 'Y for
all z € K, we find

—y(z+2min) e—y(z—Zm'n)

(x>0, z € K),

sin(2mny) _, . e~y
— + . eV < —
é(z + 2min)  ¢(z — 2min) ™m n?+1

(y €R, z € K),
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and consequently,

G(y,z) +e¥ Z

n=1

in(2 ,
sin(2mny) oty (WER zeK)
v

n
Using in addition Lemma 3.2,
Gt —x,2) €e”® 0<t<74+0, >0, z € K). (5.23)
Putting together (5.20), (5.21), (5.22) and (5.23), we obtain
o () < 7" (x > 0),
and this concludes the proof. 0

As previously, Theorem 5.2 has an analogue for equation (3.12). We
leave it to the reader to verify this. Theorem 5.2 raises (at least) two ques-
tions:

1) It is possible to obtain a series expansion rather than a asymtotic ex-
pansion, for every solution of (1.1) ?

2) Tt is possible to relate the characterictic equation (2.7) to the oscillatory
behaviour of the delay differential equation (1.1), as was done previously
for certain values of the parameters [7] ?
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APPENDIX

We recall here a classical lemma concerning the holomorphy of an inte-
gral. It was useful in sections 3 and 4 (for the proof, see [6] for instance).

Lemma 5.3. Let I C R be an interval, let Q be an open subset of C, and
assume that F : I x Q0 — C satisfies the following conditions:

i) for every x € I, the function F(z,-): Q — C is holomorphic;

ii) for every zo € Q, the function F(-, zy) : I — C is measurable, and there
exist a neighbourhood V,, of zy in £ and a measurable function | : I —
[0, +00) such that

/l(x)dx<oo and Vz eV, Vx e l, |F(z,z)| <l(x).

I

Then, the function f :Q — C defined by f(z) = /F(a:,z)dm, is holomor-
I

phic in Q. Moreover, for every k € N, the function 0¥F(x, z) satisfies the

conditions i) and ii), and we have f®(z) = /afF(a:,z)dm.
I
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