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The Allen-Cahn equation

ut −∆u + f ′(u) = 0, in Ω× (0,+∞),

with f ′(u) = u3 − u and Dirichlet or no-flux boundary condition
Ω is a bounded domain of RN , 1 ≤ N ≤ 3.
The AC equation is L2 gradient flow for the functional

E(u) =

∫

Ω

1

2
|∇u|2 + f (u)dx ,

where f (u) = (u2 − 1)2/4. In particular,

dE(u(t))

dt
= −

∫

Ω
|ut(t)|

2dx ≤ 0.

Convergence to a single equilibrium was proved by Simon’83 using
a generalization of the Lojasiewicz inequality (+ Lasalle’s
invariance principle and regularizing property)



The modified Allen-Cahn equation

βutt + ut −∆u + f ′(u) = 0, in Ω× (0,+∞),

with β > 0, f ′(u) = u3 − u and no-flux or Dirichlet boundary
condition.
Ω is a bounded domain of RN , 1 ≤ N ≤ 3.
On multiplying scalarly by ut , we see that

dE(u(t))

dt
= −

∫

Ω
|ut(t)|

2dx ≤ 0,

where

E(u) =

∫

Ω

1

2
|∇u|2 + f (u) +

β

2
|ut |

2dx .

Jendoubi’98 proved convergence to an equilibrium by generalizing
Simon’s approach.



Convergence to a single equilibrium for such PDEs is
well-understood (gradient-like structure, precompactness of
trajectories, Lojasiewicz-Simon inequality).
Contributors: Haraux, Chill, Jendoubi, Bolte;
Huang, Takac, Grasselli, Schimperna, Gatti, Miranville, Rougirel,
Wu, Zhang, Abels, Wilke, . . .
see the review book of [Haraux & Jendoubi’15].
Question: what happens for a time and/or space discretization of
the PDE ?
We focus on the time discretization (in finite or infinite
dimension).



The Cahn-Hilliard equation

ut = −α∆2u +∆f ′(u), in Ω× (0,+∞),

with f ′(u) = u3 − u and Neumann boundary condition

Simulation on the “unit disc” for α = 0.05

P1-P1 finite elements (splitting method for the bilaplacian)

Backward Euler

∆t = 0.015 and 600 iterations.

(FreeFem++ software)
Rk: H−1 gradient flow for the functional

E(u) =

∫

Ω

α

2
|∇u|2 + f (u)dx .



Initial state



Iteration n = 100



Iteration n = 400



A steady state for the Cahn-Hilliard equation



Phase-field crystal equation

ut = ∆(u + 2∆u +∆2u + f ′(u)) in Ω× R+,

with periodic boundary conditions and f ′(u) = u3 + ru (r < 0).

Finite difference (FFT) in space : 256 × 256 grid

linearly implicit Euler scheme in time: δt = 0.01

r = −0.9,
∫

Ω u0 = 0.54|Ω|, 15000 iterations

Matlab software

Rk: H−1 gradient flow for the Swift-Hohenberg functional

E(u) =

∫

Ω

1

2

(

u2 − 2|∇u|2 + |∆u|2
)

+ f (u)dx .



PFC, iteration n = 100



PFC, iteration n = 2800



PFC, iteration n = 4000



PFC, iteration n = 6000



PFC, iteration n = 15000
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Examples and counter-examples
Proof of convergence : the Lojasiewicz inequality

A general convergence result

Theorem ( Absil, Mahony & Andrews’05)

Let Φ : Rd → R be real analytic and U ∈ C 1(R+,R
d ). Assume

that there exists δ > 0 and τ ≥ 0 such that for all t > τ ,

−
dΦ(U(t))

dt
= −∇Φ(U(t)) · U ′(t) ≥ δ‖∇Φ(U(t))‖ ‖U ′(t)‖,

(angle condition), and

dΦ(U(t))

dt
= 0 ⇒ U ′(t) = 0.

(weak decrease condition).
Then either ‖U(t)‖ → +∞ or there exists U⋆ ∈ Rd such that
U(t) → U⋆.

Morgan PIERRE About discretized Allen-Cahn equations. . .
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NB : no reference to the dynamical system (but in general U
satisfies an ODE and Φ is a Lyapunov function associated to
the ODE) : an optimization approach

4 assumptions : analycity, angle condition, weak decrease
condition, and ‖U(t)‖ 6→ +∞ (compactness)

See also Barta-Chill-Fasangova’10
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Example 1 : gradient-flow
Consider the gradient flow

U ′(t) = −∇F (U(t)) t ≥ 0, (1)

where U = (u1, . . . , ud )
t , F ∈ C 1,1

loc
(Rd ,R).

We choose Φ = F and we have

−
dΦ(U(t))

dt
= −∇F (U(t))·U ′(t) = ‖U ′(t)‖2 = ‖∇F (U(t))‖ ‖U ′(t)‖

so that the angle condition is satisfied (with δ = 1), and the
weak decrease condition also.
Thus : if F is real analytic and if U is bounded, then U(t) → U⋆

as t → +∞, where ∇F (U⋆) = 0. (Lojasiewicz’65)

Morgan PIERRE About discretized Allen-Cahn equations. . .
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Example 2 : Second-order gradient-like system

U ′′(t) + U ′(t) +∇F (U(t)) = 0, t ≥ 0, (2)

where F ∈ C 2(Rd ,R).
The energy estimate is obtained on multiplying (2) by U ′(t) :

‖U ′(t)‖2 +
d

dt

(

1

2
‖U ′(t)‖2 + F (U(t))

)

= 0, ∀t ≥ 0.

Strong Lyapunov functional, obtained for ε > 0 small (and for U
bounded):

Φ(U,V ) =
1

2
‖V ‖2 + F (U) + ε〈∇F (U),V 〉.

Morgan PIERRE About discretized Allen-Cahn equations. . .
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We write (2) as a first order system

{

U ′ = V ,

V ′ = −V −∇F (U)
(3)

Since

Φ(U,V ) =
1

2
‖V ‖2 + F (U) + ε〈∇F (U),V 〉,

we have

∇Φ(U,V ) =

{

∂UΦ(U,V ) = ∇F (U) + ε∇2F (U)V

∂VΦ(U,V ) = V + ε∇F (U)

Morgan PIERRE About discretized Allen-Cahn equations. . .
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Assume that U is bounded. Then V is also bounded, by the energy
estimate. By computation, for ε > 0 small enough,

−∇Φ(U,V ) · (U ′,V ′) ≥ c1

(

‖V ‖2 + ‖∇F (U)‖2
)

Moreover,

‖∇Φ(U,V )‖ ≤ c2

(

‖V ‖2 + ‖∇F (U)‖2
)1/2

,

(
∥

∥U ′
∥

∥

2
+
∥

∥V ′
∥

∥

2
)1/2 ≤ c3

(

‖V ‖2 + ‖∇F (U)‖2
)1/2

,

so that the angle condition is satisfied (with δ = c1/(c2c3)), and
the weak decrease condition as well. Thus, if F is real analytic
on Rd , then (U(t),V (t)) → (U⋆, 0) as t → +∞, where
∇F (U⋆) = 0. (Haraux & Jendoubi’98).

Morgan PIERRE About discretized Allen-Cahn equations. . .
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Counter-example
The convergence result of Absil, Mahony and Andrews’05 can
fail if Φ ∈ C∞(Rd ) when d ≥ 2. “first” counterexample in Palis
and De Melo’82.
The following counter-example is given in Absil, Mahony and
Andrews’05 (“mexican hat function”):

F (r , θ) = e−1/(1−r2)

[

1−
4r4

4r4 + (1− r2)4
sin(θ −

1

1− r2
)

]

,

if r < 1 and F (r , θ) = 0 otherwise. We have F ∈ C∞, F (r , θ) > 0
for r < 1 so every point on the circle r = 1 is a global minimizer.
We can check that the curve defined by

θ = 1/(1 − r2)

is a trajectory of the gradient flow U ′(t) = −∇F (U(t)).
Morgan PIERRE About discretized Allen-Cahn equations. . .
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Definition

We say that Φ ∈ C 1(Rd ,R) satisfies the  Lojasiewicz inequality
near some point U⋆ ∈ Rd if there exist θ ∈ (0, 1/2], σ > 0 and
γ > 0 s.t. for all V ∈ Rd ,

‖V − U⋆‖ < σ ⇒ |Φ(V )− Φ(U⋆)|1−θ ≤ γ‖∇Φ(V )‖. (4)

θ is called a Lojasiewciz exponent of U⋆. If Φ is analytic near
U⋆, then Φ satisfies the Lojasiewicz inequality near U⋆

(Lojasiewicz’65).



Definition

We say that Φ ∈ C 1(Rd ,R) satisfies the  Lojasiewicz inequality
near some point U⋆ ∈ Rd if there exist θ ∈ (0, 1/2], σ > 0 and
γ > 0 s.t. for all V ∈ Rd ,

‖V − U⋆‖ < σ ⇒ |Φ(V )− Φ(U⋆)|1−θ ≤ γ‖∇Φ(V )‖. (4)

θ is called a Lojasiewciz exponent of U⋆. If Φ is analytic near
U⋆, then Φ satisfies the Lojasiewicz inequality near U⋆

(Lojasiewicz’65).
Example: for d = 1 and p ≥ 2, x 7→ |x |p satisfies (4) at x = 0
with θ = 1/p. (NB : also true for 1 < p ≤ 2 !).
In the “generic case” where ∇2Φ(U) invertible, θ = 1/2.
Counter-example: for d = 1, the C∞ function x 7→ exp(−1/x2)
satisfies (4) at x = 0 only for θ = 0 (too weak).
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A general convergence result (proof)

Theorem ( Absil, Mahony & Andrews’05)

Let Φ : Rd → R be real analytic and U ∈ C 1(R+,R
d ). Assume

that there exists δ > 0 and τ ≥ 0 such that for all t > τ ,

−
dΦ(U(t))

dt
= −∇Φ(U(t)) · U ′(t) ≥ δ‖∇Φ(U(t))‖ ‖U ′(t)‖,

(angle condition), and

dΦ(U(t))

dt
= 0 ⇒ U ′(t) = 0.

(weak decrease condition).
Then either ‖U(t)‖ → +∞ or there exists U⋆ ∈ Rd such that
U(t) → U⋆.

Morgan PIERRE About discretized Allen-Cahn equations. . .



A proof (convergence)

−[Φ(U(t))θ]′ = −θU ′(t) · ∇Φ(U(t))Φ(U(t))θ−1

a.c. ≥ θδ‖U ′(t)‖‖∇Φ(U(t))‖Φ(U(t))θ−1

Loja. ≥ θδγ−1‖U ′(t)‖,

so Φ(U(tn))
θ − Φ(U(t))θ ≥ θδγ−1

∫ t

tn

‖U ′(s)‖ds.



A proof (convergence)
Let tn → +∞ s.t. U(tn) → U⋆. Φ(U(t)) is nonincreasing and so
has a limit Φ⋆ = Φ(U⋆) = 0. We may assume Φ(U(t)) > 0 (by the
w.d.c.). Choose n large enough so that ‖U(tn)− U⋆‖ < σ/2 and
θ−1δ−1γΦ(U(tn))

θ < σ/2, and define

t+ = sup{t ≥ tn | ‖U(s)− U⋆‖ < σ ∀s ∈ [tn, t)}.

For t ∈ [tn, t+), we have

−[Φ(U(t))θ]′ = −θU ′(t) · ∇Φ(U(t))Φ(U(t))θ−1

a.c. ≥ θδ‖U ′(t)‖‖∇Φ(U(t))‖Φ(U(t))θ−1

Loja. ≥ θδγ−1‖U ′(t)‖,

so Φ(U(tn))
θ − Φ(U(t))θ ≥ θδγ−1

∫ t

tn

‖U ′(s)‖ds.

Thus ‖U(t)− U(tn)‖ < σ/2, ∀t ∈ [tn, t+) and so t+ = +∞,
otherwise ‖U(t+)− U⋆‖ = σ and

‖U(t+)− U⋆‖ ≤ ‖U(t+)− U(tn)‖+ ‖U(tn)− U⋆‖ < σ,

a contradiction. QED.
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A first result (discrete and explicit)

Theorem (Absil, Mahony and Andrews’05)

Let Φ : Rd → R be real analytic and (Un)n in Rd such that

Φ(Un)− Φ(Un+1) ≥ δ‖∇Φ(Un)‖ ‖Un+1 − Un‖

for all n, for some δ > 0 (angle condition), and

Φ(Un+1) = Φ(Un) ⇒ Un+1 = Un

(descent condition).
Then either Un → +∞ or there exists U⋆ ∈ Rd such that
Un → U⋆.

Morgan PIERRE About discretized Allen-Cahn equations. . .
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In Alaa & P.’13, we generalized the previous result in order to
handle more general situations:

Replace “real analytic” by “Lojasiewicz inequality” :

Include implicit schemes or linearly implicit schemes

Consider Schemes with variable stepsize

Multi-step schemes

See also Attouch & Bolte’09, Merlet & P.’10, Grasselli &
P.’12.

Morgan PIERRE About discretized Allen-Cahn equations. . .



Assumptions: two descent conditions

Definition (Alaa and P.’13)

Let (τn)n be a bounded sequence of positive real numbers and let
(Un)n∈N be a sequence in Rd . We say that (Un)n satisfies
assumptions (5) and (6) for the function Φ ∈ C 1(Rd ,R) if there
exist two constants cs > 0 and δ > 0 such that

Φ(Un)− Φ(Un+1) ≥
cs
τn

‖Un+1 − Un‖2, ∀ n ≥ 0. (5)

and

Φ(Un)− Φ(Un+1) ≥ τnδ‖∇Φ(Un+1)‖2, ∀ n ≥ 0. (6)

NB: (5) and (6) imply the implicit angle condition:

Φ(Un)−Φ(Un+1) ≥ (csδ)
1/2
∥

∥∇Φ(Un+1)
∥

∥

∥

∥Un+1 − Un
∥

∥ ∀n ≥ 0,
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Theorem (Convergence result - Alaa and P.’13)

Let (τn)n be a bounded sequence of positive real numbers, and let
(Un)n be a sequence in Rd which has at least one accumulation
point U⋆. Assume that (Un)n satisfies assumptions (5) and (6) for
the function Φ ∈ C 1(Rd ,R) and that Φ satisfies the  Lojasiewicz
inequality near U⋆. Then the whole sequence (Un)n converges to
U⋆.

See also Attouch, Bolte & Svaiter’13, de Carvalho Bento, da
Cruz Neto, Soubeyran & de Sousa Junior’16

Morgan PIERRE About discretized Allen-Cahn equations. . .
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Theorem (Convergence rates - Alaa and P.’13)

Let assumptions of the previous Theorem be satisfied, and let θ
denote a  Lojasiewicz exponent of Φ near U⋆. Then the following
estimates hold:

1 if θ = 1/2, there exist C > 0, α > 0 and n̄ ∈ N⋆ such that

‖Un − U⋆‖ ≤ C exp

(

−α

n−1
∑

k=0

τk

)

∀n ≥ n̄; (7)

2 if θ ∈ (0, 1/2), there exist C > 0 and n̄ ∈ N⋆ such that

‖Un − U⋆‖ ≤ C

(

n−1
∑

k=0

τk

)−θ/(1−2θ)

∀n ≥ n̄. (8)

Morgan PIERRE About discretized Allen-Cahn equations. . .



Let {(τ τn )n : τ > 0} denote a family of bounded sequences of
positive real numbers. The family is indexed by
τ = sup{τ τn : n ≥ 0}. (for a constant stepsize τ τn = τ for all n).

Theorem (Stability as τ → 0 - Alaa and P.’13)

Let (Un
τ )n≥0 denote a family of sequences in Rd indexed by

τ ∈ (0, τ⋆] with 0 < τ⋆ < +∞. Assume that there exist a function
Φ ∈ C 1(Rd ,R) and two positive constants cs , δ independent of τ
such that assumptions (5) and (6) hold for every sequence (Un

τ )n,
i.e.

Φ(Un
τ )− Φ(Un+1

τ ) ≥
cs
τn

‖Un+1
τ − Un

τ ‖
2, ∀ n ≥ 0,

Φ(Un
τ )− Φ(Un+1

τ ) ≥ τnδ‖∇Φ(Un+1
τ )‖2, ∀ n ≥ 0.

If Ū is a local minimizer of Φ, and if Φ satisfies the  Lojasiewicz
inequality near Ū, then for all ǫ > 0, there exists ρ > 0 such that
for all τ ∈ (0, τ⋆], if

∥

∥U0
τ − Ū

∥

∥ < ρ, the sequence (Un
τ )n converges

and satisfies
∥

∥Un
τ − Ū

∥

∥ ≤ ǫ for all n ≥ 0.



Discretizations of the gradient flow

U ′ + AU +∇F (U) = 0 t ≥ 0, (9)

where A is a symmetric positive semi-definite matrix of size d , and
F ∈ C 1(Rd ,R). Equation (9) is a gradient-flow for the energy

E (V ) =
1

2
〈AV ,V 〉+ F (V ) V ∈ Rd , (10)

For implicit schemes, we assume that ∇F satisfies a one-sided
Lipschitz condition

〈∇F (U)−∇F (V ),U − V 〉 ≥ −cF ‖U − V ‖2 ∀U,V ∈ Rd , (11)

for some (optimal) constant cF ≥ 0.
For explicit or linearly implicit schemes, we assume that ∇F is
Lipschitz continuous, i.e.

‖∇F (U)−∇F (V )‖ ≤ LF‖U − V ‖ ∀U,V ∈ Rd , (12)

for some (optimal) constant LF ≥ 0.
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Discretizations of the gradient flow
Discretizations of the modified gradient flow

We consider the following time discretizations of (9) with variable
time step:

Implicit Euler scheme (IE)

Un+1 − Un

τn
+ AUn+1 +∇F (Un+1) = 0 n ≥ 0; (13)

Linearly implicit Euler scheme (LIE)

Un+1 − Un

τn
+ AUn+1 +∇F (Un) = 0 n ≥ 0; (14)

Explicit Euler scheme (EE)

Un+1 − Un

τn
+ AUn +∇F (Un) = 0 n ≥ 0; (15)

Morgan PIERRE About discretized Allen-Cahn equations. . .
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Stabilized first order linearly implicit scheme (S1LI)

(
1

τn
+ S)(Un+1 − Un) + AUn+1 +∇F (Un) = 0 n ≥ 0, (16)

where S ≥ 0 denotes a constant which will be specified later
on;

Stabilized first order implicit scheme (S1I)

(
1

τn
+S)(Un+1−Un)+AUn+1+∇F (Un+1) = 0 n ≥ 0, (17)

where S ≥ 0 is a constant which will be specified later on.

Morgan PIERRE About discretized Allen-Cahn equations. . .
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Discretizations of the gradient flow
Discretizations of the modified gradient flow

scheme ∇F τ⋆ S

IE (13) (11) τ⋆ < 2/cF /

LIE (14) (12) τ⋆ < 2/LF /

EE (15) (12) τ⋆ < 2/(λd + LF ) /

S1LI (16) (12) τ⋆ < ∞ S ≥ LF/2

S1I (17) (11) τ⋆ < ∞ S ≥ cF /2

Table : Assumptions

Morgan PIERRE About discretized Allen-Cahn equations. . .
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Discretizations of the gradient flow
Discretizations of the modified gradient flow

For every scheme, we choose Φ = E (the stability result near a
local minimizer also applies)

scheme cs δ

IE (13) cs = 1− cF τ
⋆/2 δ = cs

LIE (14) cs = 1− LF τ
⋆/2 δ = cs/(1 + LF τ

⋆)2

EE (15) cs = 1− (λd + LF )τ
⋆/2 δ = cs/(1 + (λd + LF )τ

⋆)2

S1LI (16) cs = 1 δ = 1/(1 + (S + LF )τ
⋆)2

S1I (17) cs = 1 δ = 1/(1 + cF τ
⋆)2

Table : Conclusions

Morgan PIERRE About discretized Allen-Cahn equations. . .
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Example of a two-step scheme
We consider a second order linearly implicit scheme with fixed
stepsize (S2LI): for all n ≥ 0,

1

2τ
(3Un+1 − 4Un + Un−1) + AUn+1 +2∇F (Un)−∇F (Un−1) = 0.

(18)
For the Lyapunov functional, we use a first order approximation of
the energy E .
NB : other (stable) multistep (BDF) schemes can be considered in
the same way, up to order 5, cf. Stuart-Humphries’96,
Bouchriti-Pierre-Alaa submitted
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Discretizations of the modified gradient flow

βU ′′ + U ′ + AU +∇F (U) = 0, t ≥ 0, (19)

where U ∈ C 2(R+,R
d ) is the unknown, β > 0, A is a symmetric

positive semi-definite matrix of size d , and F ∈ C 2(Rd ,R).
Equation (19) is equivalent to the first-order system:

{

U ′ = V

βV ′ = −V − AU −∇F (U).
(20)

Morgan PIERRE About discretized Allen-Cahn equations. . .
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Implicit Euler (IE): for n ≥ 0,

{

(Un+1 − Un)/τn = V n+1

β(V n+1 − V n)/τn = −V n+1 − AUn+1 −∇F (Un+1).

(21)
If the stepsize is constant, i.e. τn = τ for all n, then by
eliminating V n, (21) is equivalent to the two-step scheme

β
Un+1 − 2Un + Un−1

τ2
+

Un+1 − Un

τ
+AUn+1+∇F (Un+1) = 0.

Moreover, if β/τ = 1/2, the latter is (curiously) equivalent to
a second order implicit discretization of the gradient flow;
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A linearly implicit first order scheme (LI)

{

(Un+1 − Un)/τn = V n+1

β(V n+1 − V n)/τn = −V n+1 − AUn+1 −∇F (Un)
(22)

If τn = τ for all n, this scheme is equivalent to

β
Un+1 − 2Un + Un−1

τ2
+

Un+1 − Un

τ
+AUn+1+∇F (Un) = 0;

A stabilized first order linearly implicit scheme (S1LI):

{

(Un+1 − Un)/τn = V n+1

β(V n+1 − V n)/τn = −V n+1 − S(Un+1 − Un)− AUn+1 −∇F (Un)

(23)
If τn = τ for all n, this scheme is equivalent to

β
Un+1 − 2Un + Un−1

τ2
+(

1

τ
+S)(Un+1−Un)+AUn+1+∇F (Un) = 0,
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Theorem (Alaa and P.’13)

Assume that F satisfies (12), that τ⋆ < 1/max{LF /2− S , 0}
(with S ≥ 0), and let (Un,V n)n be a sequence in Rd × Rd which
complies with the S1LI scheme (23). If (Un)n is bounded and if E
satisfies the  Lojasiewicz inequality near an accumulation point U⋆

of (Un)n, then
lim

n→+∞
(Un,V n) = (U⋆,V ⋆),

for some V ⋆ ∈ Rd . Moreover, the convergence rates of
Theorem 3.4 are valid for any  Lojasiewicz exponent of E near U⋆.

A similar result for the IE scheme (see also Grasselli and P.’12).
See also Grasselli & P.’16 for a second order discretization of the
MPFC.
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Example 1: Galerkin approximation with analytic nonlinearity
We consider a Galerkin approximation of the nonlinear damped
wave equation

βutt + ut −∆u + f ′(u) = 0 x ∈ Ω, t > 0, (24)

where β ≥ 0, f : R → R is real analytic, and Ω is a bounded open
subset of RN (N ∈ N⋆).
For the Galerkin approximation of (24), we assume that

V h is a finite dimensional subspace of H1(Ω) ∩ L∞(Ω), (25)

(FE or spectral discretization) The space discrete variational
formulation of (24) reads : find uh : [0,+∞) → R such that

β(uh
tt , ϕ

h) + (uh
t , ϕ

h) + (∇uh,∇ϕh) + (f ′(uh), ϕh) = 0 ∀ϕh ∈ V h,
(26)

where (·, ·) denotes the L2(Ω)-scalar product.
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Choosing an orthonormal basis of V h, (26) is equivalent to its
matrix version:

βU ′′ + U ′ + AU +∇F (U) = 0 t ≥ 0, (27)

Allen-Cahn equation. We assume that β = 0 (parabolic case)
and

f (s) =

2p
∑

k=0

aksk ∀s ∈ R (a2p > 0),

for some p ∈ N⋆. Then f is analytic, coercive and satisfies the
one-sided Lipschitz condition for some constant cf ≥ 0. We can
apply the convergence results for all the implicit schemes.
sine-Gordon equation. We assume that β > 0, that

f ′(s) = a sin s ∀s ∈ R (a > 0),

and that V h ⊂ H1
0 (Ω). The convergence results apply for the 3

schemes considered.
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FE with numerical integration and truncated potential
We assume that V h is a Pk or Qk FE space.
We use a numerical integration (·, ·)h with some basic properties.
The space discretization reads: find uh : [0,+∞) → R such that

β(uh
tt , ϕ

h)h+(uh
t , ϕ

h)h+(∇uh,∇ϕh)h+(f ′(uh), ϕh)h = 0 ∀ϕh ∈ V h.
(28)

Its matrix version is again

βU ′′ + U ′ + AU +∇F (U) = 0 t ≥ 0, (29)
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The function f is the truncated potential

f (s) =

{

(s2 − 1)2/4 if |s| ≤ M,

(3M2 − 1)s2/2 − 2M3|s|+ (3M4 + 1)/4 if |s| > M.

Then f ′ is Lipschitz continuous on R, and we can show that
E (V ) = 〈AV ,V 〉/2 + F (V ) is subanalytic. In particular, by
Bolte, Daniilidis & Lewis’06, E satisfies the Lojasiewicz
inequality near every U ∈ Rd .
Thus, we have convergence to equilibrium for every scheme
considered (β = 0 and β > 0).
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Convergence to equilibrium in infinite dimension

E(u) =

∫

Ω

1

2
|∇u|2 + f (u)dx , with f (u) = (u2 − 1)2/4.

Ω a bounded domain or RN , 1 ≤ N ≤ 3.

Theorem (A Lojasiewicz-Simon inequality)

Let u⋆ ∈ H1
0 (Ω). There exist θ ∈ (0, 1/2) and σ > 0 s.t.

∀u ∈ H1
0 (Ω),

‖u − u⋆‖H1
0 (Ω) < σ ⇒ |E(u)− E(u⋆)|1−θ ≤ ‖−∆u + f ′(u)‖H−1(Ω).

The backward Euler scheme with fixed time step τ > 0 for AC
reads: let u0 ∈ H1

0 (Ω) and for n = 0, 1, . . . let un+1 ∈ H1
0 (Ω) solve

un+1 − un

τ
−∆un+1 + f ′(un+1) = 0.



Convergence to equilibrium in infinite dimension

issues: Lojasiewicz-Simon inequality, choice of norms,
pre-compactness of trajectories

A descent method (discretized nonlocal CH): Gajewski &
Griepentrog’06

1st order time semi-discrete for AC: [Merlet & P.’10],
[Bolte, Daniilidis, Ley, Mazet’10]

2nd order time semi-discrete for CH (BDF2): [Antonietti,
Merlet, P. & Verani]’16

BDF3, 4 and 5 for AC: [Bouchriti, P., Alaa submitted]

1st order time semi-discrete for MAC: [P. & Rogeon’16]



Convergence to equilibrium in infinite dimension

issues: Lojasiewicz-Simon inequality, choice of norms,
pre-compactness of trajectories

A descent method (discretized nonlocal CH): Gajewski &
Griepentrog’06

1st order time semi-discrete for AC: [Merlet & P.’10],
[Bolte, Daniilidis, Ley, Mazet’10]

2nd order time semi-discrete for CH (BDF2): [Antonietti,
Merlet, P. & Verani]’16

BDF3, 4 and 5 for AC: [Bouchriti, P., Alaa submitted]

1st order time semi-discrete for MAC: [P. & Rogeon’16]

BDF6 for AC: open case (gradient-flow structure ?)

2nd order time semi-discrete for MAC: open case
(pre-compactness of trajectories ?)

Semi-implicit schemes: open case (Lojasiewicz-Simon
inequality ?)



Global dynamics: a 1d example

ut − ν∆u + u3 − u = 0, x ∈ [0, 1], t ≥ 0, (ν > 0)

u(0, t) = u(1, t) = −1, t ≥ 0.

Due to the gradient flow structure and the boundary condition, the
global attractor is A = {−1}.
The problem has many metastable “almost stationary” equilibria
which live up to a time t⋆ ≈ eν

−1/2
.

Allen-Cahn animation for ν = 0.0016
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Thank you !
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