# Some recent developments on the longtime behaviour of discretized Allen-Cahn equations

## Morgan PIERRE

#### Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Université de Poitiers

# 11th European-Maghrebian Workshop, Hammamet, Sept. 3-7, 2018

(日) (四) (분) (분) (분) 분

#### The Allen-Cahn equation

$$u_t - \Delta u + f'(u) = 0,$$
 in  $\Omega \times (0, +\infty),$ 

with  $f'(u) = u^3 - u$  and Dirichlet or no-flux boundary condition  $\Omega$  is a bounded domain of  $\mathbb{R}^N$ ,  $1 \le N \le 3$ . The AC equation is  $L^2$  gradient flow for the functional

$$\mathcal{E}(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 + f(u) dx,$$

where  $f(u) = (u^2 - 1)^2/4$ . In particular,

$$rac{d\mathcal{E}(u(t))}{dt} = -\int_{\Omega} |u_t(t)|^2 dx \leq 0.$$

Convergence to a single equilibrium was proved by **Simon'83** using a generalization of the Lojasiewicz inequality (+ Lasalle's invariance principle and regularizing property)

#### The modified Allen-Cahn equation

$$eta u_{tt} + u_t - \Delta u + f'(u) = 0, \quad ext{ in } \Omega imes (0, +\infty),$$

with  $\beta > 0$ ,  $f'(u) = u^3 - u$  and no-flux or Dirichlet boundary condition.

 $\Omega$  is a bounded domain of  $\mathbf{R}^N$ ,  $1 \leq N \leq 3$ .

On multiplying scalarly by  $u_t$ , we see that

$$\frac{d\mathcal{E}(u(t))}{dt} = -\int_{\Omega} |u_t(t)|^2 dx \leq 0,$$

where

$$\mathcal{E}(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 + f(u) + \frac{\beta}{2} |u_t|^2 dx.$$

**Jendoubi'98** proved convergence to an equilibrium by generalizing Simon's approach.

Convergence to a single equilibrium for such PDEs is well-understood (gradient-like structure, precompactness of trajectories, Lojasiewicz-Simon inequality).

Contributors: Haraux, Chill, Jendoubi, Bolte;

Huang, Takac, Grasselli, Schimperna, Gatti, Miranville, Rougirel, Wu, Zhang, Abels, Wilke, ...

see the review book of [Haraux & Jendoubi'15].

**Question:** what happens for a time and/or space discretization of the PDE ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We focus on the **time discretization** (in finite or infinite dimension).

#### The Cahn-Hilliard equation

$$u_t = -\alpha \Delta^2 u + \Delta f'(u), \quad \text{ in } \Omega \times (0, +\infty),$$

with  $f'(u) = u^3 - u$  and Neumann boundary condition

- Simulation on the "unit disc" for  $\alpha = 0.05$
- P1-P1 finite elements (splitting method for the bilaplacian)
- Backward Euler
- Δt = 0.015 and 600 iterations.

(FreeFem++ software) **Rk:**  $H^{-1}$  gradient flow for the functional

$$\mathcal{E}(u) = \int_{\Omega} \frac{lpha}{2} |\nabla u|^2 + f(u) dx.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



Initial state



Iteration n = 100



Iteration n = 400



## A steady state for the Cahn-Hilliard equation

### Phase-field crystal equation

$$u_t = \Delta(u + 2\Delta u + \Delta^2 u + f'(u))$$
 in  $\Omega \times \mathbf{R}_+$ 

with periodic boundary conditions and  $f'(u) = u^3 + ru$  (r < 0).

- Finite difference (FFT) in space :  $256 \times 256$  grid
- linearly implicit Euler scheme in time:  $\delta t = 0.01$

• 
$$r = -0.9$$
,  $\int_{\Omega} u_0 = 0.54 |\Omega|$ , 15000 iterations

Matlab software

**Rk:**  $H^{-1}$  gradient flow for the Swift-Hohenberg functional

$$\mathcal{E}(u) = \int_{\Omega} \frac{1}{2} (u^2 - 2|\nabla u|^2 + |\Delta u|^2) + f(u) dx.$$

(日) (四) (전) (전) (전) (전)



<ロト (四) (注) (注) () ()

æ



PFC, iteration n = 2800



<ロト (四) (注) (注) () ()

æ



・ロト ・日子・ ・ヨト・・

ъ



(a)



Pseudo-energy for the MPFC,  $\langle u_t(0) \rangle = 0$ 

<ロ> (四) (四) (日) (日) (日)

æ



Pseudo-energy for the MPFC,  $\langle u_t(0) \rangle \neq 0$ 

<ロ> (四) (四) (日) (日) (日)

æ

Examples and counter-examples Proof of convergence : the Lojasiewicz inequality

## A general convergence result

## Theorem (Absil, Mahony & Andrews'05)

Let  $\Phi : \mathbf{R}^d \to \mathbf{R}$  be real analytic and  $U \in C^1(\mathbf{R}_+, \mathbf{R}^d)$ . Assume that there exists  $\delta > 0$  and  $\tau \ge 0$  such that for all  $t > \tau$ ,

$$-rac{d\Phi(U(t))}{dt}=-
abla \Phi(U(t))\cdot U'(t)\geq \delta \|
abla \Phi(U(t))\|\,\,\|U'(t)\|^2$$

(angle condition), and

$$rac{d\Phi(U(t))}{dt}=0 \Rightarrow U'(t)=0.$$

(weak decrease condition).

Then either  $||U(t)|| \to +\infty$  or there exists  $U^* \in \mathbf{R}^d$  such that  $U(t) \to U^*$ .

| Introduction<br>A convergence result in the continuous case<br>Convergence for time-discrete schemes<br>Applications<br>Space and time discretizations of PDE's<br>About the infinite dimensional case | Examples and counter-examples<br>Proof of convergence : the Lojasiewicz inequality |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|

- NB : no reference to the dynamical system (but in general U satisfies an ODE and Φ is a Lyapunov function associated to the ODE) : an optimization approach
- 4 assumptions : analycity, angle condition, weak decrease condition, and ||U(t)|| → +∞ (compactness)

See also Barta-Chill-Fasangova'10

Examples and counter-examples Proof of convergence : the Lojasiewicz inequality

## **Example 1 : gradient-flow** Consider the **gradient flow**

$$U'(t) = -\nabla F(U(t)) \quad t \ge 0, \tag{1}$$

where  $U = (u_1, \ldots, u_d)^t$ ,  $F \in C^{1,1}_{loc}(\mathbf{R}^d, \mathbf{R})$ . We choose  $\Phi = F$  and we have

$$-rac{d\Phi(U(t))}{dt} = -
abla F(U(t)) \cdot U'(t) = \|U'(t)\|^2 = \|
abla F(U(t))\| \|U'(t)\|$$

so that the angle condition is satisfied (with  $\delta = 1$ ), and the weak decrease condition also.

Thus: if F is real analytic and if U is bounded, then  $U(t) \rightarrow U^*$  as  $t \rightarrow +\infty$ , where  $\nabla F(U^*) = 0$ . (Lojasiewicz'65)

- 不同 ト イラト イラ

## Example 2 : Second-order gradient-like system

$$U''(t) + U'(t) + \nabla F(U(t)) = 0, \quad t \ge 0,$$
 (2)

where  $F \in C^2(\mathbf{R}^d, \mathbf{R})$ . The energy estimate is obtained on multiplying (2) by U'(t):

$$\|U'(t)\|^2 + rac{d}{dt}\left(rac{1}{2}\|U'(t)\|^2 + F(U(t))
ight) = 0, \quad orall t \geq 0.$$

Strong Lyapunov functional, obtained for  $\varepsilon > 0$  small (and for U bounded):

$$\Phi(U, V) = \frac{1}{2} \|V\|^2 + F(U) + \varepsilon \langle \nabla F(U), V \rangle.$$

Examples and counter-examples Proof of convergence : the Lojasiewicz inequality

We write (2) as a first order system

$$\begin{cases} U' = V, \\ V' = -V - \nabla F(U) \end{cases}$$
(3)

Since

$$\Phi(U, V) = \frac{1}{2} \|V\|^2 + F(U) + \varepsilon \langle \nabla F(U), V \rangle,$$

we have

$$abla \Phi(U,V) = egin{cases} \partial_U \Phi(U,V) = 
abla F(U) + arepsilon 
abla^2 F(U) V \ \partial_V \Phi(U,V) = V + arepsilon 
abla F(U) \end{cases}$$

(日) (同) (日) (日)

э

Examples and counter-examples Proof of convergence : the Lojasiewicz inequality

Assume that U is bounded. Then V is also bounded, by the energy estimate. By computation, for  $\varepsilon > 0$  small enough,

$$-
abla \Phi(U,V) \cdot (U',V') \geq c_1 \left( \|V\|^2 + \|
abla F(U)\|^2 
ight)$$

Moreover,

$$egin{aligned} &\|
abla \Phi(U,V)\| \leq c_2 \left(\|V\|^2 + \|
abla F(U)\|^2
ight)^{1/2}, \ &(\|U'\|^2 + \|V'\|^2)^{1/2} \leq c_3 \left(\|V\|^2 + \|
abla F(U)\|^2
ight)^{1/2}, \end{aligned}$$

so that the **angle condition** is satisfied (with  $\delta = c_1/(c_2c_3)$ ), and the **weak decrease condition** as well. Thus, if *F* is real analytic on  $\mathbf{R}^d$ , then  $(U(t), V(t)) \rightarrow (U^*, 0)$  as  $t \rightarrow +\infty$ , where  $\nabla F(U^*) = 0$ . (Haraux & Jendoubi'98).

Examples and counter-examples Proof of convergence : the Lojasiewicz inequality

## **Counter-example**

The convergence result of **Absil**, **Mahony and Andrews'05** can fail if  $\Phi \in C^{\infty}(\mathbb{R}^d)$  when  $d \ge 2$ . "first" counterexample in **Palis and De Melo'82**.

The following counter-example is given in **Absil**, **Mahony and Andrews'05** ("mexican hat function"):

$$F(r, heta) = e^{-1/(1-r^2)} \left[ 1 - rac{4r^4}{4r^4 + (1-r^2)^4} \sin( heta - rac{1}{1-r^2}) 
ight],$$

if r < 1 and  $F(r, \theta) = 0$  otherwise. We have  $F \in C^{\infty}$ ,  $F(r, \theta) > 0$  for r < 1 so every point on the circle r = 1 is a global minimizer. We can check that the curve defined by

$$\theta = 1/(1-r^2)$$

is a trajectory of the gradient flow  $U'(t) = -\nabla F(U(t))$ .



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

#### Definition

We say that  $\Phi \in C^1(\mathbb{R}^d, \mathbb{R})$  satisfies the **Lojasiewicz inequality** near some point  $U^* \in \mathbb{R}^d$  if there exist  $\theta \in (0, 1/2]$ ,  $\sigma > 0$  and  $\gamma > 0$  s.t. for all  $V \in \mathbb{R}^d$ ,

$$\|V - U^{\star}\| < \sigma \Rightarrow |\Phi(V) - \Phi(U^{\star})|^{1-\theta} \le \gamma \|\nabla \Phi(V)\|.$$
(4)

<ロ> (四) (四) (三) (三) (三) (三)

 $\theta$  is called a **Lojasiewciz exponent** of  $U^*$ . If  $\Phi$  is analytic near  $U^*$ , then  $\Phi$  satisfies the Lojasiewicz inequality near  $U^*$  (**Lojasiewicz'65**).

#### Definition

We say that  $\Phi \in C^1(\mathbb{R}^d, \mathbb{R})$  satisfies the **Lojasiewicz inequality** near some point  $U^* \in \mathbb{R}^d$  if there exist  $\theta \in (0, 1/2]$ ,  $\sigma > 0$  and  $\gamma > 0$  s.t. for all  $V \in \mathbb{R}^d$ ,

$$\|V - U^{\star}\| < \sigma \Rightarrow |\Phi(V) - \Phi(U^{\star})|^{1-\theta} \le \gamma \|\nabla \Phi(V)\|.$$
(4)

 $\theta$  is called a **Lojasiewciz exponent** of  $U^*$ . If  $\Phi$  is analytic near  $U^*$ , then  $\Phi$  satisfies the Lojasiewicz inequality near  $U^*$  (**Lojasiewicz'65**). **Example:** for d = 1 and  $p \ge 2$ ,  $x \mapsto |x|^p$  satisfies (4) at x = 0 with  $\theta = 1/p$ . (NB : also true for 1 !). $In the "generic case" where <math>\nabla^2 \Phi(U)$  invertible,  $\theta = 1/2$ . **Counter-example:** for d = 1, the  $C^{\infty}$  function  $x \mapsto \exp(-1/x^2)$  satisfies (4) at x = 0 only for  $\theta = 0$  (too weak).

Examples and counter-examples Proof of convergence : the Lojasiewicz inequality

## A general convergence result (proof)

## Theorem (Absil, Mahony & Andrews'05)

Let  $\Phi : \mathbf{R}^d \to \mathbf{R}$  be real analytic and  $U \in C^1(\mathbf{R}_+, \mathbf{R}^d)$ . Assume that there exists  $\delta > 0$  and  $\tau \ge 0$  such that for all  $t > \tau$ ,

$$-rac{d\Phi(U(t))}{dt}=-
abla \Phi(U(t))\cdot U'(t)\geq \delta \|
abla \Phi(U(t))\|\,\,\|U'(t)\|^2$$

(angle condition), and

$$rac{d\Phi(U(t))}{dt}=0 \Rightarrow U'(t)=0.$$

(weak decrease condition). Then either  $||U(t)|| \rightarrow +\infty$  or there exists  $U^* \in \mathbf{R}^d$  such that  $U(t) \rightarrow U^*$ . A proof (convergence)

$$\begin{split} -[\Phi(U(t))^{\theta}]' &= -\theta U'(t) \cdot \nabla \Phi(U(t)) \Phi(U(t))^{\theta-1} \\ \text{a.c.} &\geq \theta \delta \|U'(t)\| \|\nabla \Phi(U(t))\| \Phi(U(t))^{\theta-1} \\ \text{Loja.} &\geq \theta \delta \gamma^{-1} \|U'(t)\|, \\ \text{so} \quad \Phi(U(t_n))^{\theta} - \Phi(U(t))^{\theta} \geq \theta \delta \gamma^{-1} \int^t \|U'(s)\| ds. \end{split}$$

so 
$$\Phi(U(t_n))^ heta - \Phi(U(t))^ heta \geq heta \delta \gamma^{-1} \int_{t_n}^t \|U'(s)\| ds$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

## A proof (convergence)

Let  $t_n \to +\infty$  s.t.  $U(t_n) \to U^*$ .  $\Phi(U(t))$  is nonincreasing and so has a limit  $\Phi^* = \Phi(U^*) = 0$ . We may assume  $\Phi(U(t)) > 0$  (by the w.d.c.). Choose *n* large enough so that  $||U(t_n) - U^*|| < \sigma/2$  and  $\theta^{-1}\delta^{-1}\gamma\Phi(U(t_n))^{\theta} < \sigma/2$ , and define

$$t^+ = \sup\{t \ge t_n \mid \|U(s) - U^\star\| < \sigma \quad \forall s \in [t_n, t)\}.$$

For  $t \in [t_n, t^+)$ , we have

$$\begin{split} -[\Phi(U(t))^{\theta}]' &= -\theta U'(t) \cdot \nabla \Phi(U(t)) \Phi(U(t))^{\theta-1} \\ \text{a.c.} &\geq \theta \delta \|U'(t)\| \|\nabla \Phi(U(t))\| \Phi(U(t))^{\theta-1} \\ \text{Loja.} &\geq \theta \delta \gamma^{-1} \|U'(t)\|, \end{split}$$

so 
$$\Phi(U(t_n))^{ heta} - \Phi(U(t))^{ heta} \geq heta \delta \gamma^{-1} \int_{t_n}^t \|U'(s)\| ds.$$

Thus  $||U(t) - U(t_n)|| < \sigma/2$ ,  $\forall t \in [t_n, t^+)$  and so  $t^+ = +\infty$ , otherwise  $||U(t^+) - U^*|| = \sigma$  and

$$||U(t^+) - U^*|| \le ||U(t^+) - U(t_n)|| + ||U(t_n) - U^*|| < \sigma,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

a contradiction. QED.

## A first result (discrete and explicit)

## Theorem (Absil, Mahony and Andrews'05)

Let  $\Phi: {I\!\!R}^d \to {I\!\!R}$  be real analytic and  $(U^n)_n$  in  ${I\!\!R}^d$  such that

$$\Phi(U^n)-\Phi(U^{n+1})\geq \delta \|
abla \Phi(U^n)\|\,\,\|U^{n+1}-U^n\|$$

for all n, for some  $\delta > 0$  (angle condition), and

$$\Phi(U^{n+1}) = \Phi(U^n) \Rightarrow U^{n+1} = U^n$$

#### (descent condition).

Then either  $U^n \to +\infty$  or there exists  $U^* \in \mathbf{R}^d$  such that  $U^n \to U^*$ .

< ロ > < 同 > < 回 > < 回

In Alaa & P.'13, we generalized the previous result in order to handle more general situations:

- Replace "real analytic" by "Lojasiewicz inequality" :
- Include implicit schemes or linearly implicit schemes
- Consider Schemes with variable stepsize
- Multi-step schemes

See also Attouch & Bolte'09, Merlet & P.'10, Grasselli & P.'12.

A (1) > (1) > (1)

#### Assumptions: two descent conditions

## Definition (Alaa and P.'13)

Let  $(\tau_n)_n$  be a bounded sequence of positive real numbers and let  $(U^n)_{n \in \mathbb{N}}$  be a sequence in  $\mathbb{R}^d$ . We say that  $(U^n)_n$  satisfies assumptions (5) and (6) for the function  $\Phi \in C^1(\mathbb{R}^d, \mathbb{R})$  if there exist two constants  $c_s > 0$  and  $\delta > 0$  such that

$$\Phi(U^{n}) - \Phi(U^{n+1}) \ge \frac{c_{s}}{\tau_{n}} \|U^{n+1} - U^{n}\|^{2}, \quad \forall \ n \ge 0.$$
 (5)

and

$$\Phi(U^n) - \Phi(U^{n+1}) \ge \tau_n \delta \|\nabla \Phi(U^{n+1})\|^2, \quad \forall \ n \ge 0.$$
 (6)

▲口→ ▲御→ ▲理→ ▲理→ 三臣 …

**NB:** (5) and (6) imply the **implicit angle condition**:

$$\Phi(U^n) - \Phi(U^{n+1}) \geq (c_s \delta)^{1/2} \left\| \nabla \Phi(U^{n+1}) \right\| \left\| U^{n+1} - U^n \right\| \quad \forall n \geq 0,$$

### Theorem (Convergence result - Alaa and P.'13)

Let  $(\tau_n)_n$  be a bounded sequence of positive real numbers, and let  $(U^n)_n$  be a sequence in  $\mathbb{R}^d$  which has at least one accumulation point  $U^*$ . Assume that  $(U^n)_n$  satisfies assumptions (5) and (6) for the function  $\Phi \in C^1(\mathbb{R}^d, \mathbb{R})$  and that  $\Phi$  satisfies the Łojasiewicz inequality near  $U^*$ . Then the whole sequence  $(U^n)_n$  converges to  $U^*$ .

See also Attouch, Bolte & Svaiter'13, de Carvalho Bento, da Cruz Neto, Soubeyran & de Sousa Junior'16

A (1) > A (2) > A

## Theorem (Convergence rates - Alaa and P.'13)

Let assumptions of the previous Theorem be satisfied, and let  $\theta$  denote a Łojasiewicz exponent of  $\Phi$  near U<sup>\*</sup>. Then the following estimates hold:

**(**) if  $\theta = 1/2$ , there exist C > 0,  $\alpha > 0$  and  $\bar{n} \in \mathbf{N}^*$  such that

$$\|U^n - U^\star\| \le C \exp\left(-\alpha \sum_{k=0}^{n-1} \tau_k\right) \quad \forall n \ge \bar{n};$$
 (7)

2) if  $\theta \in (0, 1/2)$ , there exist C > 0 and  $\overline{n} \in \mathbf{N}^*$  such that

$$\|U^n - U^\star\| \le C\left(\sum_{k=0}^{n-1} \tau_k\right)^{-\theta/(1-2\theta)} \quad \forall n \ge \bar{n}.$$
 (8)

Let  $\{(\tau_n^{\tau})_n : \tau > 0\}$  denote a family of bounded sequences of positive real numbers. The family is indexed by  $\tau = \sup\{\tau_n^{\tau} : n \ge 0\}$ . (for a constant stepsize  $\tau_n^{\tau} = \tau$  for all n).

#### Theorem (Stability as au ightarrow 0 - Alaa and P.'13)

Let  $(U_{\tau}^{n})_{n\geq 0}$  denote a family of sequences in  $\mathbb{R}^{d}$  indexed by  $\tau \in (0, \tau^{*}]$  with  $0 < \tau^{*} < +\infty$ . Assume that there exist a function  $\Phi \in C^{1}(\mathbb{R}^{d}, \mathbb{R})$  and two positive constants  $c_{s}, \delta$  independent of  $\tau$  such that assumptions (5) and (6) hold for every sequence  $(U_{\tau}^{n})_{n}$ , *i.e.* 

$$\begin{split} \Phi(U^n_{\tau}) - \Phi(U^{n+1}_{\tau}) &\geq \frac{c_s}{\tau_n} \|U^{n+1}_{\tau} - U^n_{\tau}\|^2, \quad \forall \ n \geq 0, \\ \Phi(U^n_{\tau}) - \Phi(U^{n+1}_{\tau}) &\geq \tau_n \delta \|\nabla \Phi(U^{n+1}_{\tau})\|^2, \quad \forall \ n \geq 0. \end{split}$$

If  $\overline{U}$  is a local minimizer of  $\Phi$ , and if  $\Phi$  satisfies the Łojasiewicz inequality near  $\overline{U}$ , then for all  $\epsilon > 0$ , there exists  $\rho > 0$  such that for all  $\tau \in (0, \tau^*]$ , if  $||U_{\tau}^0 - \overline{U}|| < \rho$ , the sequence  $(U_{\tau}^n)_n$  converges and satisfies  $||U_{\tau}^n - \overline{U}|| \le \epsilon$  for all  $n \ge 0$ .

### Discretizations of the gradient flow

$$U' + AU + \nabla F(U) = 0 \quad t \ge 0, \tag{9}$$

where A is a symmetric positive semi-definite matrix of size d, and  $F \in C^1(\mathbb{R}^d, \mathbb{R})$ . Equation (9) is a gradient-flow for the energy

$$E(V) = \frac{1}{2} \langle AV, V \rangle + F(V) \quad V \in \mathbf{R}^{d},$$
(10)

For implicit schemes, we assume that  $\nabla F$  satisfies a one-sided Lipschitz condition

$$\langle \nabla F(U) - \nabla F(V), U - V \rangle \geq -c_F \|U - V\|^2 \quad \forall U, V \in \mathbf{R}^d,$$
(11)

for some (optimal) constant  $c_F \ge 0$ . For explicit or linearly implicit schemes, we assume that  $\nabla F$  is Lipschitz continuous, i.e.

$$\|\nabla F(U) - \nabla F(V)\| \le L_F \|U - V\| \quad \forall U, V \in \mathbf{R}^d,$$
(12)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

for some (optimal) constant  $L_F \ge 0$ .

Discretizations of the gradient flow Discretizations of the modified gradient flow

We consider the following time discretizations of (9) with variable time step:

• Implicit Euler scheme (IE)

$$\frac{U^{n+1} - U^n}{\tau_n} + AU^{n+1} + \nabla F(U^{n+1}) = 0 \quad n \ge 0;$$
 (13)

• Linearly implicit Euler scheme (LIE)

$$\frac{U^{n+1}-U^n}{\tau_n} + AU^{n+1} + \nabla F(U^n) = 0 \quad n \ge 0;$$
(14)

• Explicit Euler scheme (EE)

$$\frac{U^{n+1}-U^n}{\tau_n}+AU^n+\nabla F(U^n)=0 \quad n\geq 0; \qquad (15)$$

▲ 同 ▶ → ミ ● ▶

Discretizations of the gradient flow Discretizations of the modified gradient flow

• Stabilized first order linearly implicit scheme (S1LI)

$$(\frac{1}{\tau_n}+S)(U^{n+1}-U^n)+AU^{n+1}+\nabla F(U^n)=0 \quad n\geq 0, \ (16)$$

where  $S \ge 0$  denotes a constant which will be specified later on;

• Stabilized first order implicit scheme (S1I)

$$(\frac{1}{\tau_n} + S)(U^{n+1} - U^n) + AU^{n+1} + \nabla F(U^{n+1}) = 0 \quad n \ge 0,$$
(17)

where  $S \ge 0$  is a constant which will be specified later on.

(日) (同) (日) (日)

Applications

Discretizations of the gradient flow

About the infinite dimensional case

| scheme    | $\nabla F$ | $	au^{\star}$                       | S             |
|-----------|------------|-------------------------------------|---------------|
| IE (13)   | (11)       | $	au^{\star} < 2/c_{F}$             | /             |
| LIE (14)  | (12)       | $	au^{\star} < 2/L_{F}$             | /             |
| EE (15)   | (12)       | $	au^{\star} < 2/(\lambda_d + L_F)$ | /             |
| S1LI (16) | (12)       | $\tau^{\star} < \infty$             | $S \ge L_F/2$ |
| S1I (17)  | (11)       | $\tau^{\star} < \infty$             | $S \ge c_F/2$ |

Table : Assumptions

<ロ> <同> <同> < 回> < 回>

э

| Introduction<br>A convergence result in the continuous case<br>Convergence for time-discrete schemes<br><b>Applications</b><br>Space and time discretizations of PDE's<br>About the infinite dimensional case | Discretizations of the gradient flow<br>Discretizations of the modified gradient flow |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|

For every scheme, we choose  $\Phi = E$  (the stability result near a local minimizer also applies)

| scheme    | Cs                                                | δ                                                                     |
|-----------|---------------------------------------------------|-----------------------------------------------------------------------|
| IE (13)   | $c_s = 1 - c_F \tau^\star/2$                      | $\delta = c_s$                                                        |
| LIE (14)  | $c_{s}=1-L_{F}	au^{\star}/2$                      | $\delta = c_{s}/(1+L_{F}	au^{\star})^{2}$                             |
| EE (15)   | $c_{s} = 1 - (\lambda_{d} + L_{F})\tau^{\star}/2$ | $\delta = c_s/(1+(\lambda_d+L_F)	au^{\star})^2$                       |
| S1LI (16) | $c_s = 1$                                         | $\delta = 1/(1+(\mathcal{S}+\mathcal{L}_{\mathcal{F}})	au^{\star})^2$ |
| S1I (17)  | $c_{s} = 1$                                       | $\delta = 1/(1+c_{F}	au^{\star})^{2}$                                 |

Table : Conclusions

**₽ > < E >** 

## Example of a two-step scheme

We consider a second order linearly implicit scheme with fixed stepsize (S2LI): for all  $n \ge 0$ ,

$$\frac{1}{2\tau}(3U^{n+1} - 4U^n + U^{n-1}) + AU^{n+1} + 2\nabla F(U^n) - \nabla F(U^{n-1}) = 0.$$
(18)

For the Lyapunov functional, we use a first order approximation of the energy E.

NB : other (stable) multistep (BDF) schemes can be considered in the same way, up to order 5, cf. **Stuart-Humphries'96**, **Bouchriti-Pierre-Alaa submitted** 

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Discretizations of the gradient flow Discretizations of the modified gradient flow

#### Discretizations of the modified gradient flow

$$\beta U'' + U' + AU + \nabla F(U) = 0, \quad t \ge 0,$$
(19)

where  $U \in C^2(\mathbf{R}_+, \mathbf{R}^d)$  is the unknown,  $\beta > 0$ , A is a symmetric positive semi-definite matrix of size d, and  $F \in C^2(\mathbf{R}^d, \mathbf{R})$ . Equation (19) is equivalent to the first-order system:

$$\begin{cases} U' = V \\ \beta V' = -V - AU - \nabla F(U). \end{cases}$$
(20)

A (1) > A (2) > A

Discretizations of the gradient flow Discretizations of the modified gradient flow

• Implicit Euler (IE): for  $n \ge 0$ ,

$$\begin{cases} (U^{n+1} - U^n)/\tau_n = V^{n+1} \\ \beta(V^{n+1} - V^n)/\tau_n = -V^{n+1} - AU^{n+1} - \nabla F(U^{n+1}). \end{cases}$$
(21)

If the stepsize is constant, i.e.  $\tau_n = \tau$  for all *n*, then by eliminating  $V^n$ , (21) is equivalent to the two-step scheme

$$\beta \frac{U^{n+1} - 2U^n + U^{n-1}}{\tau^2} + \frac{U^{n+1} - U^n}{\tau} + AU^{n+1} + \nabla F(U^{n+1}) = 0.$$

Moreover, if  $\beta/\tau = 1/2$ , the latter is (curiously) equivalent to a second order implicit discretization of the gradient flow;

< ロ > < 同 > < 三 > < 三 >

• A linearly implicit first order scheme (LI)

$$\begin{cases} (U^{n+1} - U^n) / \tau_n = V^{n+1} \\ \beta (V^{n+1} - V^n) / \tau_n = -V^{n+1} - AU^{n+1} - \nabla F(U^n) \end{cases}$$
(22)

If  $\tau_n = \tau$  for all *n*, this scheme is equivalent to

$$\beta \frac{U^{n+1} - 2U^n + U^{n-1}}{\tau^2} + \frac{U^{n+1} - U^n}{\tau} + AU^{n+1} + \nabla F(U^n) = 0;$$

• A stabilized first order linearly implicit scheme (S1LI):

$$\begin{cases} (U^{n+1} - U^n)/\tau_n = V^{n+1} \\ \beta(V^{n+1} - V^n)/\tau_n = -V^{n+1} - S(U^{n+1} - U^n) - AU^{n+1} - \nabla F(U^n) \\ \end{cases}$$
(23)

If  $\tau_n = \tau$  for all *n*, this scheme is equivalent to

$$\beta \frac{U^{n+1} - 2U^n + U^{n-1}}{\tau^2} + (\frac{1}{\tau} + S)(U^{n+1} - U^n) + AU^{n+1} + \nabla F(U^n) = 0,$$

(日) (四) (전) (전) (전) (전)

Discretizations of the gradient flow Discretizations of the modified gradient flow

#### Theorem (Alaa and P.'13)

Assume that F satisfies (12), that  $\tau^* < 1/\max\{L_F/2 - S, 0\}$ (with  $S \ge 0$ ), and let  $(U^n, V^n)_n$  be a sequence in  $\mathbb{R}^d \times \mathbb{R}^d$  which complies with the S1LI scheme (23). If  $(U^n)_n$  is bounded and if E satisfies the Łojasiewicz inequality near an accumulation point  $U^*$ of  $(U^n)_n$ , then

$$\lim_{n\to+\infty}(U^n,V^n)=(U^\star,V^\star),$$

for some  $V^* \in \mathbf{R}^d$ . Moreover, the convergence rates of Theorem 3.4 are valid for any Łojasiewicz exponent of E near  $U^*$ .

A similar result for the IE scheme (see also **Grasselli and P.'12**). See also **Grasselli & P.'16** for a second order discretization of the MPFC.

・ロト ・同ト ・ヨト ・ヨト

**Example 1: Galerkin approximation with analytic nonlinearity** We consider a Galerkin approximation of the nonlinear damped wave equation

$$\beta u_{tt} + u_t - \Delta u + f'(u) = 0 \quad x \in \Omega, \ t > 0,$$
(24)

where  $\beta \geq 0$ ,  $f : \mathbf{R} \to \mathbf{R}$  is real analytic, and  $\Omega$  is a bounded open subset of  $\mathbf{R}^N$  ( $N \in \mathbf{N}^*$ ).

For the Galerkin approximation of (24), we assume that

 $V^h$  is a finite dimensional subspace of  $H^1(\Omega) \cap L^{\infty}(\Omega)$ , (25)

(FE or spectral discretization) The space discrete variational formulation of (24) reads : find  $u^h : [0, +\infty) \to \mathbf{R}$  such that

$$\beta(u_{tt}^h,\varphi^h) + (u_t^h,\varphi^h) + (\nabla u^h,\nabla\varphi^h) + (f'(u^h),\varphi^h) = 0 \ \forall \varphi^h \in V^h,$$
(26)

where  $(\cdot, \cdot)$  denotes the  $L^2(\Omega)$ -scalar product,

Choosing an orthonormal basis of  $V^h$ , (26) is equivalent to its matrix version:

$$\beta U'' + U' + AU + \nabla F(U) = 0 \quad t \ge 0, \tag{27}$$

Allen-Cahn equation. We assume that  $\beta = 0$  (parabolic case) and

$$f(s) = \sum_{k=0}^{2p} a_k s^k \quad \forall s \in \mathbf{R} \quad (a_{2p} > 0),$$

for some  $p \in \mathbf{N}^*$ . Then f is analytic, coercive and satisfies the one-sided Lipschitz condition for some constant  $c_f \ge 0$ . We can apply the convergence results for all the implicit schemes. sine-Gordon equation. We assume that  $\beta > 0$ , that

$$f'(s) = a \sin s \quad \forall s \in \mathbf{R} \quad (a > 0),$$

and that  $V^h \subset H^1_0(\Omega)$ . The convergence results apply for the 3 schemes considered.

Example 1 : Galerkin approximation with analytic nonlinearity Example 2: FE with truncated potential

**FE with numerical integration and truncated potential** We assume that  $V^h$  is a  $P^k$  or  $Q^k$  FE space. We use a numerical integration  $(\cdot, \cdot)_h$  with some basic properties. The space discretization reads: find  $u^h : [0, +\infty) \to \mathbf{R}$  such that

 $\beta(u_{tt}^h,\varphi^h)_h + (u_t^h,\varphi^h)_h + (\nabla u^h,\nabla\varphi^h)_h + (f'(u^h),\varphi^h)_h = 0 \ \forall \varphi^h \in V^h.$ (28)

Its matrix version is again

$$\beta U'' + U' + AU + \nabla F(U) = 0 \quad t \ge 0,$$
(29)

Example 1 : Galerkin approximation with analytic nonlinearity Example 2: FE with truncated potential

▲ @ ▶ ▲ @ ▶ ▲

The function f is the truncated potential

$$f(s) = egin{cases} (s^2-1)^2/4 & ext{if } |s| \leq M, \ (3M^2-1)s^2/2 - 2M^3|s| + (3M^4+1)/4 & ext{if } |s| > M. \end{cases}$$

Then f' is Lipschitz continuous on  $\mathbf{R}$ , and we can show that  $E(V) = \langle AV, V \rangle / 2 + F(V)$  is **subanalytic**. In particular, by **Bolte, Daniilidis & Lewis'06**, E satisfies the Lojasiewicz inequality near every  $U \in \mathbf{R}^d$ . Thus, we have convergence to equilibrium for every scheme

considered ( $\beta = 0$  and  $\beta > 0$ ).

## Convergence to equilibrium in infinite dimension

$$\mathcal{E}(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 + f(u) dx$$
, with  $f(u) = (u^2 - 1)^2 / 4$ .

 $\Omega$  a bounded domain or  $\mathbf{R}^N$ ,  $1 \le N \le 3$ .

Theorem (A Lojasiewicz-Simon inequality)

Let 
$$u^* \in H^1_0(\Omega)$$
. There exist  $\theta \in (0, 1/2)$  and  $\sigma > 0$  s.t.  $\forall u \in H^1_0(\Omega)$ ,

$$\|u-u^{\star}\|_{H_0^1(\Omega)} < \sigma \Rightarrow |\mathcal{E}(u)-\mathcal{E}(u^{\star})|^{1-\theta} \leq \|-\Delta u+f'(u)\|_{H^{-1}(\Omega)}.$$

The backward Euler scheme with fixed time step  $\tau > 0$  for AC reads: let  $u^0 \in H_0^1(\Omega)$  and for n = 0, 1, ... let  $u^{n+1} \in H_0^1(\Omega)$  solve

$$\frac{u^{n+1}-u^n}{\tau} - \Delta u^{n+1} + f'(u^{n+1}) = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Convergence to equilibrium in infinite dimension

**issues:** Lojasiewicz-Simon inequality, choice of norms, pre-compactness of trajectories

- A descent method (discretized nonlocal CH): Gajewski & Griepentrog'06
- 1st order time semi-discrete for AC: [Merlet & P.'10], [Bolte, Daniilidis, Ley, Mazet'10]
- 2nd order time semi-discrete for CH (BDF2): [Antonietti, Merlet, P. & Verani]'16
- BDF3, 4 and 5 for AC: [Bouchriti, P., Alaa submitted]
- 1st order time semi-discrete for MAC: [P. & Rogeon'16]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

# Convergence to equilibrium in infinite dimension

**issues:** Lojasiewicz-Simon inequality, choice of norms, pre-compactness of trajectories

- A descent method (discretized nonlocal CH): Gajewski & Griepentrog'06
- 1st order time semi-discrete for AC: [Merlet & P.'10], [Bolte, Daniilidis, Ley, Mazet'10]
- 2nd order time semi-discrete for CH (BDF2): [Antonietti, Merlet, P. & Verani]'16
- BDF3, 4 and 5 for AC: [Bouchriti, P., Alaa submitted]
- 1st order time semi-discrete for MAC: [P. & Rogeon'16]
- BDF6 for AC: open case (gradient-flow structure ?)
- 2nd order time semi-discrete for MAC: **open case** (pre-compactness of trajectories ?)
- Semi-implicit schemes: **open case** (Lojasiewicz-Simon inequality ?)

## Global dynamics: a 1d example

$$u_t - \nu \Delta u + u^3 - u = 0, \quad x \in [0, 1], \ t \ge 0, \ (\nu > 0)$$
  
 $u(0, t) = u(1, t) = -1, \ t \ge 0.$ 

Due to the gradient flow structure and the boundary condition, the global attractor is  $\mathcal{A} = \{-1\}$ .

The problem has many metastable "almost stationary" equilibria which live up to a time  $t^* \approx e^{\nu^{-1/2}}$ .

Allen-Cahn animation for  $\nu = 0.0016$ 

(日) (四) (전) (전) (전) (전)

## Thank you !

Morgan PIERRE About discretized Allen-Cahn equations...

< ロ > < 回 > < 回 > < 回 > < 回 >

æ