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The Allen-Cahn equation

up— Au+f'(u)=0, inQx(0,+00),

with f’(u) = u® — u and Dirichlet or no-flux boundary condition
Q is a bounded domain of RN, 1 < N < 3.
The AC equation is L2 gradient flow for the functional

1
E(u) = / ~|Vul? + f(u)dx,
2
where f(u) = (v? — 1)?/4. In particular,
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Convergence to a single equilibrium was proved by Simon’83 using
a generalization of the Lojasiewicz inequality (4 Lasalle’s
invariance principle and regularizing property)



The modified Allen-Cahn equation

Bug + ur — Au+ f'(u) =0, in Qx (0,+00),

with 8 > 0, f'(u) = u® — u and no-flux or Dirichlet boundary
condition.

Q is a bounded domain of RV, 1 < N < 3.

On multiplying scalarly by u;, we see that

wz_/n\ut(tﬂ%/xﬁoy

where ) 5
5(u):/ LIV uP + F(u)+ 2w Pdx.
2 2

Jendoubi’98 proved convergence to an equilibrium by generalizing
Simon's approach.



Convergence to a single equilibrium for such PDEs is
well-understood (gradient-like structure, precompactness of
trajectories, Lojasiewicz-Simon inequality).

Contributors: Haraux, Chill, Jendoubi, Bolte;

Huang, Takac, Grasselli, Schimperna, Gatti, Miranville, Rougirel,
Wu, Zhang, Abels, Wilke, ...

see the review book of [Haraux & Jendoubi’15].

Question: what happens for a time and/or space discretization of
the PDE ?

We focus on the time discretization (in finite or infinite
dimension).



The Cahn-Hilliard equation

uy = —al?u + Af'(u), in Q x (0,400),
with f/(u) = u3 — u and Neumann boundary condition

@ Simulation on the “unit disc” for o = 0.05

@ P1-P1 finite elements (splitting method for the bilaplacian)
@ Backward Euler

o At = 0.015 and 600 iterations.

(FreeFem++4- software)
Rk: H~! gradient flow for the functional

E(u) = /Q %|Vu|2 + f(u)dx.



Initial state



Iteration n = 100



Iteration n = 400



A steady state for the Cahn-Hilliard equation



Phase-field crystal equation

uy = A(u+ 200+ A%u+ f'(u)) in Q x Ry,
with periodic boundary conditions and f'(u) = u® + ru (r < 0).
@ Finite difference (FFT) in space : 256 x 256 grid
@ linearly implicit Euler scheme in time: §t = 0.01
o r=-0.9, [,up = 0.54|Q], 15000 iterations
@ Matlab software
Rk: H~! gradient flow for the Swift-Hohenberg functional

E(u) = /Q %(u2 —2|Vul]® + |Aul?) + f(u)dx.



PFC, iteration n = 100

Q>



=y

)Y 89 0q®

JJ_ Q¢

AT

AL

0148

PFC, iteration n = 2800
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PFC, iteration n = 4000
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PFC, iteration n = 6000



PFC, iteration n = 15000
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A convergence result in the continuous case

Examples and counter-examples
Proof of convergence : the Lojasiewicz inequality

A general convergence result

Theorem (  Absil, Mahony & Andrews’05)

Let d : RY — R be real analytic and U € C}(R,,R?). Assume
that there exists § > 0 and 7 > 0 such that for all t > T,

_do(U(t))

) — _vo(ue) - v() 2 sIve(u)l U o),
(angle condition), and

do(U(t))

/
7 0=U(t)=0

(weak decrease condition).
Then either | U(t)|| — +oc or there exists U* € RY such that
u(t) —» U~
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A convergence result in the continuous case
Examples and counter-examples

Proof of convergence : the Lojasiewicz inequality

@ NB : no reference to the dynamical system (but in general U
satisfies an ODE and & is a Lyapunov function associated to
the ODE) : an optimization approach

@ 4 assumptions : analycity, angle condition, weak decrease
condition, and ||U(t)|| # 400 (compactness)

See also Barta-Chill-Fasangova’10
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A convergence result in the continuous case

Examples and counter-examples

Proof of convergence : the Lojasiewicz inequality

Example 1 : gradient-flow
Consider the gradient flow

U'(t)=-VF(U(t)) t=>0, (1)
where U = (u1,...,uq)t, F € C,})’Cl(Rd,R).
We choose ® = F and we have
SO v rue) U = 1V = IVFUE) U]

so that the angle condition is satisfied (with § = 1), and the
weak decrease condition also.

Thus : if F is real analytic and if U is bounded, then U(t) — U*
as t — +o00, where VF(U*) = 0. (Lojasiewicz’65)
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A convergence result in the continuous case

Examples and counter-examples

Proof of convergence : the Lojasiewicz inequality

Example 2 : Second-order gradient-like system

U'(t) + U'(t)+ VF(U(t)) =0, t>0, (2)
where F € C?(RY,R).
The energy estimate is obtained on multiplying (2) by U'(t) :

d

U@ + g (FIU@1R + Fue)) o, ve=o

Strong Lyapunov functional, obtained for e > 0 small (and for U
bounded):

(U, V) = %II V|? 4+ F(U) 4 (VF(U), V).
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A convergence result in the continuous case

Examples and counter-examples

Proof of convergence : the Lojasiewicz inequality

We write (2) as a first order system
U=V,
_ (3)
V' =~V — VF(U)

Since
O(U,V) = 3 IVIP + F(U) + =(VF(U), V),

we have

Ou®(U, V) = VF(U) + eV2F(U)V

Vo(U,V) = {8v¢(Ua V)=V +eVF(U)
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A convergence result in the continuous case

Examples and counter-examples

Proof of convergence : the Lojasiewicz inequality

Assume that U is bounded. Then V is also bounded, by the energy
estimate. By computation, for € > 0 small enough,

—VO(U, V) - (U, V) = a (IVIP+ IVFU)IP)
Moreover,

1/2
Vo, V)l < e (IVIP+ IVFW)IP)

1/2
(U2 + VD2 < e (IVIP+ IVFW)IP)

so that the angle condition is satisfied (with 6 = ¢1/(c2¢3)), and
the weak decrease condition as well. Thus, if F is real analytic
on RY, then (U(t), V(t)) — (U*,0) as t — +oo, where

VF(U*) = 0. (Haraux & Jendoubi’98).
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A convergence result in the continuous case

Examples and counter-examples
Proof of convergence : the Lojasiewicz inequality

Counter-example
The convergence result of Absil, Mahony and Andrews’05 can
fail if & € C°(R?) when d > 2. “first” counterexample in Palis
and De Melo’82.
The following counter-example is given in Absil, Mahony and
Andrews’05 (“mexican hat function”):

4r4 1

_ a—1/(1-r?) L A -
F(r,0)=e 1 4r4—i—(1—r2)4sm(9 1—r2) ,

if r <1 and F(r,0) =0 otherwise. We have F € C*, F(r,0) >0
for r < 1 so every point on the circle r = 1 is a global minimizer.
We can check that the curve defined by

0=1/(1—-r?

is a trajectory of the gradient flow U'(t) = —VF(U(t)).



N
__———
_—__

“Mexican hat” function



Definition

We say that & € C1(RY,R) satisfies the Lojasiewicz inequality
near some point U* € RY if there exist § € (0,1/2], ¢ > 0 and
v >0s.t forall VeRY,

IV — U] <o = [o(V) - o(U)]' " <4 VO(V).  (4)

0 is called a Lojasiewciz exponent of U*. If ® is analytic near
U*, then ® satisfies the Lojasiewicz inequality near U*
(Lojasiewicz’65).



Definition

We say that ® € C1(R? R) satisfies the Lojasiewicz inequality
near some point U* € RY if there exist § € (0,1/2], ¢ > 0 and
v>0s.t forall VeRY,

IV — U] <o = [o(V) - o(U)]' " <4 VO(V).  (4)

0 is called a Lojasiewciz exponent of U*. If ® is analytic near
U*, then ® satisfies the Lojasiewicz inequality near U*
(Lojasiewicz’65).

Example: for d =1 and p > 2, x — |x|P satisfies (4) at x =0
with # =1/p. (NB : also true for 1 < p < 21).

In the “generic case” where V2®(U) invertible, § = 1/2.
Counter-example: for d = 1, the C* function x ~— exp(—1/x?)
satisfies (4) at x = 0 only for § = 0 (too weak).



A convergence result in the continuous case

Examples and counter-examples
Proof of convergence : the Lojasiewicz inequality

A general convergence result (proof)

Theorem (' Absil, Mahony & Andrews'05)

Let ® : RY — R be real analytic and U € C*(R,,RY). Assume
that there exists 6 > 0 and ™ > 0 such that for all t > T,

_do(U(t))

= Vo) U'(t) = sIVeu@)l V(1)
(angle condition), and

do(U(t))

=0= U(t)=0.
p” = U'(t)

(weak decrease condition).
Then either | U(t)|| — +oc or there exists U* € RY such that
u(t) — U*.
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—[o(u(t))’Y
Loja:
so  P(U(tn))

A

>
>

>

proof (convergence)

—0U'(t) - VO(U(t)d(U(t))?
05| U ()| [Vo(U () [[o(U(t))"
057U/ (1)),

—o(u(e)’ = 05, | U(s) lds.



A proof (convergence)
Let t, — +oo s.t. U(t,) — U*. ®(U(t)) is nonincreasing and so
has a limit ®* = ®(U*) = 0. We may assume ®(U(t)) > 0 (by the
w.d.c.). Choose n large enough so that |U(t,) — U*|| < ¢/2 and
01671y d(U(tn))? < /2, and define

tT =sup{t > t, | |U(s) — U*

| <o Vse |ty t)}

For t € [tn, tT), we have

—[o(U(e)’] = —0U'(t)- VO(U(1))o(U(r))"
ac. > 05|U(D)IVOU)P(U(t)’
Loja. > 65y U/ ()],

o o(U(E) — o) 205" [ Vsl ds.

Thus ||U(t) — U(ty)|| < 0/2, Vt € [ty,tT) and so tT = +oo0,
otherwise ||U(t") — U*|| = o and

[U(ET) = U] < U(ET) = U(ta) ]| + [ U(tn) = U*]| < o,

a contradiction. QED.



Convergence for time-discrete schemes

A first result (discrete and explicit)

Theorem (Absil, Mahony and Andrews’05)
Let ® : R — R be real analytic and (U"), in RY such that

O(U") — S(U™) > 8 Ve(UT)] U - v
for all n, for some § > 0 (angle condition), and
o(U) = o(U") = U = U”

(descent condition).
Then either U" — +00 or there exists U* € R? such that
u" — U*.
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Convergence for time-discrete schemes

In Alaa & P.’13, we generalized the previous result in order to
handle more general situations:

@ Replace “real analytic” by “Lojasiewicz inequality” :
@ Include implicit schemes or linearly implicit schemes
@ Consider Schemes with variable stepsize

@ Multi-step schemes

See also Attouch & Bolte’09, Merlet & P.’10, Grasselli &
P.’12.
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Assumptions: two descent conditions

Definition (Alaa and P."13)

Let (1,)n be a bounded sequence of positive real numbers and let
(U")nen be a sequence in RY. We say that (U"), satisfies
assumptions (5) and (6) for the function ® € C1(RY,R) if there
exist two constants ¢s > 0 and § > 0 such that

OUN) = (UM = Z|UT - U2, ¥nz0. (5)

and

(U™ — O(U™Y) > 7,0 VO(U™Y2, ¥ n>0.  (6)

4

NB: (5) and (6) imply the implicit angle condition:

(UM —d(U™) > (c6)V2 [ Vo (umh)|| U™t — um|| v >0,



Convergence for time-discrete schemes

Theorem (Convergence result - Alaa and P.'13)

Let (1,)n be a bounded sequence of positive real numbers, and let
(U"), be a sequence in R? which has at least one accumulation
point U*. Assume that (U"), satisfies assumptions (5) and (6) for
the function ® € C'(R?,R) and that ® satisfies the {.ojasiewicz
inequality near U*. Then the whole sequence (U"), converges to
U

v

See also Attouch, Bolte & Svaiter’'13, de Carvalho Bento, da
Cruz Neto, Soubeyran & de Sousa Junior’16
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Convergence for time-discrete schemes

Theorem (Convergence rates - Alaa and P.'13)

Let assumptions of the previous Theorem be satisfied, and let 6
denote a Lojasiewicz exponent of ® near U*. Then the following
estimates hold:

Q if0=1/2, there exist C >0, a > 0 and n € N* such that

n—1

|U" — U*|| < Cexp (—aZn) Vn > 7 (7)

k=0

Q if0 €(0,1/2), there exist C > 0 and n € N* such that

1 —6/(1—26)
|U"—U*| < C (Z Tk> Yn>h  (8)
k=0
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Let {(7])n : 7 > 0} denote a family of bounded sequences of
positive real numbers. The family is indexed by

7 =sup{7] :n>0}. (for a constant stepsize 77 = 7 for all n).

Theorem (Stability as 7 — 0 - Alaa and P.'13)

Let (U)o denote a family of sequences in RY indexed by

7 € (0,7*] with 0 < 7% < 4+00. Assume that there exist a function
¢ € C1(RY,R) and two positive constants cs,d independent of T
such that assumptions (5) and (6) hold for every sequence (U”),
ie.

S(UN - o(Ur) > Zurt—urlP, Vo,
OUM) — d(UIMY) > | VO(UI[2, ¥ n >0,

If U is a local minimizer of ®, and if & satisfies the tojasiewicz
inequality near U, then for all € > 0, there exists p > 0 such that
for all T € (0,7%], ifU U2 — U|| < p, the sequence (U?), converges
and satisfies H ur — UH <e€ forall n>0.

-



Discretizations of the gradient flow

U+ AU+ VFU)=0 t>0, (9)

where A is a symmetric positive semi-definite matrix of size d, and
F € C}(R9,R). Equation (9) is a gradient-flow for the energy

E(V)= %(AV, V)+F(V) VeR?, (10)

For implicit schemes, we assume that V F satisfies a one-sided
Lipschitz condition

(VF(U) = VF(V),U~-V)>—ce||U~- V|* VU,V eRY (11)

for some (optimal) constant c¢r > 0.
For explicit or linearly implicit schemes, we assume that VF is
Lipschitz continuous, i.e.

IVF(U) = VF(V)| < LF|U - V| VYU,V eRY, (12)

for some (optimal) constant Lg > 0.



Discretizations of the gradient flow

Applications Discretizations of the modified gradient flow

We consider the following time discretizations of (9) with variable
time step:

@ Implicit Euler scheme (IE)

Un+1 —_yn

Tn

+ AU L VF(U™) =0 n>0; (13)

@ Linearly implicit Euler scheme (LIE)

Un+1 o Un

+AU™ + VF(U") =0 n>0; (14)
Tn
@ Explicit Euler scheme (EE)

Un+1 o Un

Tn
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Discretizations of the gradient flow

Applications Discretizations of the modified gradient flow

@ Stabilized first order linearly implicit scheme (S1LI)
1
(T— +S)(U™ — U™+ AU £ VF(U™) =0 n>0, (16)

where S > 0 denotes a constant which will be specified later
on;

@ Stabilized first order implicit scheme (S1I)
1
(—+S)(U™ UM +AU 4 VF(U™) =0 n>0, (17)
Tn

where S > 0 is a constant which will be specified later on.
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Discretizations of the gradient flow

Applications Discretizations of the modified gradient flow

‘ scheme H VF ‘ ™ ‘ S ‘
IE (13) (11) T" < 2/cF /
LIE (14) || (12) T <2/Lf /
EE (15) || (12) | 7 < 2/(Ag + LF) /
S1LI (16) || (12) T < 00 S>Lg/2
S1I(17) || (11) ™ < 00 S>cg/2

Table : Assumptions

Morgan PIERRE About discretized Allen-Cahn equations. . .



Discretizations of the gradient flow

Applications Discretizations of the modified gradient flow

For every scheme, we choose ® = E (the stability result near a
local minimizer also applies)

| scheme | Cs ‘ 5 ‘
IE (13) cs=1—cp7*/2 d=c¢s
LIE (14) cs=1—LpT*/2 §=cs/(1+ Lpm*)?
EE (15) Cs = 1—()\d+LF)T*/2 5:C5/(1+()\d—|-LF)T*)2
S1LI (16) =1 §=1/(1+(S+Lg)m)?
S1l (17) =1 §=1/(1+ cpr*)?

Table : Conclusions
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Discretizations of the gradient flow

Applications Discretizations of the modified gradient flow

Example of a two-step scheme
We consider a second order linearly implicit scheme with fixed
stepsize (S2LI): for all n >0,

%(3U”+1 —4U" + U™ + AU 4 2VF(U™) - VF(U™ 1) = 0.
(18)

For the Lyapunov functional, we use a first order approximation of

the energy E.

NB : other (stable) multistep (BDF) schemes can be considered in

the same way, up to order 5, cf. Stuart-Humphries’96,

Bouchriti-Pierre-Alaa submitted
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Discretizations of the gradient flow

Applications Discretizations of the modified gradient flow

Discretizations of the modified gradient flow

BU" + U + AU+ VF(U)=0, t>0, (19)

where U € C2(R,RY) is the unknown, 3 > 0, A is a symmetric
positive semi-definite matrix of size d, and F € C?(R9,R).
Equation (19) is equivalent to the first-order system:

U=V
{,BV’:—V—AU—VF(U). (20)
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Discretizations of the gradient flow

Applications Discretizations of the modified gradient flow

@ Implicit Euler (IE): for n > 0,

(Un+1 _ U")/’Tn — Vn-l—l
BVttt —vn)/r, = vl — AUt — VF(UY).
(21)
If the stepsize is constant, i.e. 7, = 7 for all n, then by
eliminating V", (21) is equivalent to the two-step scheme

Un+1 —_oyn Un—l Un+1 —_yn
8 AR 4

T

- +AU L VF(U™) = 0.

Moreover, if 3/7 = 1/2, the latter is (curiously) equivalent to
a second order implicit discretization of the gradient flow;
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@ A linearly implicit first order scheme (LI)

{(Un—i-l _ Un)/T,, — Vn+1 (22)

B(V”Jrl V"1, = —yntl _ Ayntl — VF(U™
If 7, = 7 for all n, this scheme is equivalent to

Un+1 —2Un + Un—l Un+1 —yn
g 5 +

T

+ AU L VF(U™) = 0;

T

@ A stabilized first order linearly implicit scheme (S1LI):

(Un+1 . Un)/T” — Vn+1
ﬁ(V"Jrl -V = —yntl _ S(U"Jrl - um - AU — VF(U"
(23)
If 7, = 7 for all n, this scheme is equivalent to
n+1 n n—1
ﬁU — 2UQ U +(%+S)(U"+1—U”)+AU"+1+VF(U") =0,

T




Discretizations of the gradient flow
Applications Discretizations of the modified gradient flow

Theorem (Alaa and P.'13)

Assume that F satisfies (12), that 7% < 1/ max{Lg/2 — 5,0}
(with S > 0), and let (U", V"), be a sequence in R? x R which
complies with the S1LI scheme (23). If (U"), is bounded and if E
satisfies the tojasiewicz inequality near an accumulation point U*
of (U")p, then
. n ny __ * *

Jlm (U7 V") = (U, V),
for some V* € RY. Moreover, the convergence rates of
Theorem 3.4 are valid for any tojasiewicz exponent of E near U*.

-

A similar result for the IE scheme (see also Grasselli and P.’12).
See also Grasselli & P.’16 for a second order discretization of the
MPFC.
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Example 1 : Galerkin approximation with analytic nonlinearity

Example 2: FE with truncated potential

Space and time discretizations of PDE's

Example 1: Galerkin approximation with analytic nonlinearity
We consider a Galerkin approximation of the nonlinear damped
wave equation

Bug +u —Au+f'(u)=0 xe€Q, t>0, (24)

where 5 >0, f : R — R is real analytic, and € is a bounded open
subset of RN (N € N*).
For the Galerkin approximation of (24), we assume that

V" is a finite dimensional subspace of H1(Q) N L°(Q),  (25)

(FE or spectral discretization) The space discrete variational
formulation of (24) reads : find u” : [0, +00) — R such that

Bul, ")+ (ul, ™) + (Vul, V) + (F/(u"), o") = 0 Yl € VI,
(26)
where (-,-) denotes the L2(Q)-scalar product.



Choosing an orthonormal basis of V", (26) is equivalent to its
matrix version:

BU"+ U +AU+VF(U)=0 t>0, (27)

Allen-Cahn equation. We assume that 5 = 0 (parabolic case)
and

2p
f(s) = Z aks® Vs e€R  (ay > 0),
k=0

for some p € N*. Then f is analytic, coercive and satisfies the
one-sided Lipschitz condition for some constant ¢f > 0. We can
apply the convergence results for all the implicit schemes.
sine-Gordon equation. We assume that 5 > 0, that

f'(s)=asins VseR (a>0),

and that V" C H}(Q). The convergence results apply for the 3
schemes considered.



Example 1 : Galerkin approximation with analytic nonlinearity

Example 2: FE with truncated potential
Space and time discretizations of PDE's

FE with numerical integration and truncated potential
We assume that V" is a P* or Q¥ FE space.

We use a numerical integration (-, ), with some basic properties.
The space discretization reads: find u” : [0, +00) — R such that

Buge, @M+ (uf, @M+ (Vul, Vo )+ (F/ (1), ") = 0 V" € V.
(28)

Its matrix version is again

BU" + U +AU+VF(U)=0 t>0, (29)
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Example 1 : Galerkin approximation with analytic nonlinearity

Example 2: FE with truncated potential

Space and time discretizations of PDE's

The function f is the truncated potential

f( )_ (52_1)2/4 if ‘S| <M,
K (3M2 —1)s2/2 —2M3|s| + 3M* + 1)/4 if |s| > M.

Then f’ is Lipschitz continuous on R, and we can show that
E(V) = (AV,V)/2 + F(V) is subanalytic. In particular, by
Bolte, Daniilidis & Lewis’06, E satisfies the Lojasiewicz
inequality near every U € RY.

Thus, we have convergence to equilibrium for every scheme
considered (8 =0 and § > 0).

Morgan PIERRE About discretized Allen-Cahn equations. . .



Convergence to equilibrium in infinite dimension

£(u) :/Q%\w% F(u)dx,  with F(u) = (42 — 1) /4.

Q a bounded domainor RN, 1 < N < 3.

Theorem (A Lojasiewicz-Simon inequality)

Let u* € H3(Q). There exist 0 € (0,1/2) and o > 0 s.t.
Yu € HX(Q),

lu = ull (@) < o = [E(u) = EW)F0 < || = Do+ F(u)]l-1(0).

The backward Euler scheme with fixed time step 7 > 0 for AC
reads: let u® € H}(Q) and for n =0, 1, ...let u™! € H}(Q) solve

n+1 n

u — Au™ 4 f(u"h) = 0.

—u
T



Convergence to equilibrium in infinite dimension

issues: Lojasiewicz-Simon inequality, choice of norms,
pre-compactness of trajectories

@ A descent method (discretized nonlocal CH): Gajewski &
Griepentrog’06

@ 1Ist order time semi-discrete for AC: [Merlet & P.’10],
[Bolte, Daniilidis, Ley, Mazet'10]

@ 2nd order time semi-discrete for CH (BDF2): [Antonietti,
Merlet, P. & Verani]'16

@ BDF3, 4 and 5 for AC: [Bouchriti, P., Alaa submitted]
@ Ist order time semi-discrete for MAC: [P. & Rogeon’16]



Convergence to equilibrium in infinite dimension

issues: Lojasiewicz-Simon inequality, choice of norms,
pre-compactness of trajectories

@ A descent method (discretized nonlocal CH): Gajewski &
Griepentrog’06

@ 1Ist order time semi-discrete for AC: [Merlet & P.’10],
[Bolte, Daniilidis, Ley, Mazet'10]

@ 2nd order time semi-discrete for CH (BDF2): [Antonietti,
Merlet, P. & Verani]'16

BDF3, 4 and 5 for AC: [Bouchriti, P., Alaa submitted]
Ist order time semi-discrete for MAC: [P. & Rogeon’16]
BDF6 for AC: open case (gradient-flow structure 7)

2nd order time semi-discrete for MAC: open case
(pre-compactness of trajectories ?)

@ Semi-implicit schemes: open case (Lojasiewicz-Simon
inequality ?)



Global dynamics: a 1d example

u—vAu+ v —u=0, xel0,1], t>0, (v>0)
u(0,t) =u(l,t) = -1, t > 0.

Due to the gradient flow structure and the boundary condition, the
global attractor is A = {—1}.
The problem has many metastable “almost stationary” equilibria
which live up to a time t* ~ e ",

Allen-Cahn animation for v = 0.0016



About the infinite dimensional case

Thank you !

Morgan PIERRE
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