Convergence of exponential attractors for a finite element discretization of the Allen-Cahn equation

Morgan PIERRE

Laboratoire de Mathématiques et Applications Université de Poitiers & CNRS, France

International Video-workshop on Infinite Dimensional Dynamical Systems Donghua University, Shanghai, China September 12th and 19th, 2020.

(日) (四) (문) (문) (문)

A key concept in the study of dissipative systems is the **global attractor**, a compact invariant set which attracts uniformly the bounded sets of the phase space Some drawbacks of the global attractor:

• it may be sensible to perturbations (if the rate of attraction of the trajectories is small): upper semicontinuity generally holds, but lower semicontinuity can be proved only in some particular cases

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• it may fail to capture important transient behaviours

Example: [Stuart & Humphries 1996] we consider the dynamical system on **R** defined by

$$u'(t) = -f_{\varepsilon}(u(t)), \quad t \geq 0,$$

where for $\varepsilon \geq 0$, $f_{\varepsilon} \in C^1(\mathbf{R})$ is defined by

$$f_arepsilon(u) = egin{cases} (u+1)^3-arepsilon, & ext{if } u\leq -1, \ arepsilon(3u/2-u^3/2), & ext{if } -1< u< 1, \ (u-1)^3+arepsilon, & ext{if } u\geq 1. \end{cases}$$

This is a gradient flow for F_{ε} such that $F'_{\varepsilon}(u) = f_{\varepsilon}(u)$ and $F_{\varepsilon}(0) = 0$. Thus, the global attractor is

$$\mathcal{A}_{arepsilon} = \{0\} \quad ext{ if } arepsilon > 0,$$

and

$$A_0 = [-1, 1].$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The potential $F_{\varepsilon}(u)$, $\varepsilon > 0$

The potential $F_0(u)$

The notion of **exponential attractor** has been proposed in **[Eden, Foais, Nicolaenko & Temam 1994]**: a compact positively invariant set which contains the global attractor, has finite fractal dimension and attracts exponentially the trajectories.

- More robust to perturbations
- Can capture important transient behaviours
- *But* : not necessarily unique (in contrast with the global attractor)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The continuity of exponential attractors was shown in [Eden, Foias, Nicolaenko & Temam 1994] for classical Galerkin approximations, but only up to a time shift. see also [Fabrie, Galunsinski & Miranville 2000], [Galusinski PhD thesis 1996] for continuity up to a time shift, and [Aida & Yagi 2004] for related robustness results for finite element approximations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The continuity of exponential attractors was shown in **[Eden, Foias, Nicolaenko & Temam 1994]** for classical Galerkin approximations, but only up to a **time shift**.

see also [Fabrie, Galunsinski & Miranville 2000], [Galusinski PhD thesis 1996] for continuity up to a time shift, and [Aida & Yagi 2004] for related robustness results for finite element approximations.

Efendiev, Miranville & Zelik (2004) proposed a construction of exponential attractors where **continuity holds without time shift**. It is based on a uniform **"smoothing property"** and an appropriate error estimate. It is valid in Banach spaces and it gives a **uniform bound on the fractal dimension** of the attractor.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

This result has been adapted to many situations, including singular perturbations:

[Fabrie, Galusinski, Miranville & Zelik 2004], [Gatti, Grasselli & Pata 2004], [Conti, Pata & Squassina 2005], [Gatti, Grasselli, Miranville & Pata 2006], [Cavaterra & Grasselli 2006] ...

see in particular the review paper by [Miranville & Zelik 2008].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Question: can we adapt the construction of **Efendiev**, **Miranville & Zelik (2004)** when the perturbation is a space and/or time discretization of the PDE ?

We consider a **model problem**: the **Allen-Cahn equation** in space dimension $1 \le d \le 3$. We study:

- First, a space semidiscretization by P^1 finite elements.
- Second, a **time semidiscretization** by the backward Euler scheme.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Some abstract definitions and results

- Exponential attractor of a dynamical system
- Smoothing property
- Continuity of exponential attractors
- 2 The continuous problem
- 3 The space semidiscrete problem
 - The discrete semigroup
 - A priori estimates, uniform in h
 - Error estimate with H¹ data
- 4 The main convergence result
- 5 The time semidiscrete case
 - The discrete semigroup
 - \bullet A priori estimates, uniform in τ
 - Error estimate with H^1 data
 - Convergence of exponential attractors

6 Conclusion and perspectives

 $H = L^2(\Omega)$ with norm $|\cdot|_H$ and \mathcal{K} is a closed subset of H. A **continuous-in-time semigroup** $\{S(t), t \in \mathbf{R}_+\}$ on \mathcal{K} is a family of (nonlinear) operators such that S(t) is a continuous operator from \mathcal{K} into itself, for all $t \ge 0$, with S(0) = Id (identity in \mathcal{K}) and

$$S(t+s)=S(t)\circ S(s),\quad orall s,t\geq 0.$$

A discrete-in-time semigroup $\{S(t), t \in \mathbf{N}\}$ on H is a family of (nonlinear) operators which satisfy these properties with $\mathbf{R}_+(=[0, +\infty))$ replaced by \mathbf{N} .

A discrete-in-time semigroup is usually denoted $\{S^n, n \in \mathbf{N}\}$, where S(=S(1)) is a continuous (nonlinear) operator from \mathcal{K} into itself.

Remark 1: semigroup \simeq dynamical system

• *dist_H* denotes the **non-symmetric Hausdorff semidistance** in *H* between two subsets defined as

$$dist_H(A, B) = \sup_{a \in A} \inf_{b \in B} |a - b|_H.$$

Remark: $dist_H(A, B) = 0 \iff A \subset \overline{B}$

• Let $A \subset H$ be a subset of H. For $\varepsilon > 0$, we denote $N_{\varepsilon}(A, H)$ the minimum number of balls of H of radius $\varepsilon > 0$ which are necessary to cover A. The fractal dimension of A in H is the number

$$dim_F(A,H) = \limsup_{arepsilon o 0} rac{\log_2(N_arepsilon(A,H))}{\log_2(1/arepsilon)} \in [0,+\infty].$$

Remark: $dim_F(A, H) < +\infty \Rightarrow A$ is relatively compact in H.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Definition (Exponential attractor)

Let $\{S(t), t \ge 0\}$ be a continuous or discrete semigroup on \mathcal{K} . A set $\mathcal{M} \subset \mathcal{K}$ is an exponential attractor of the dynamical system if the following three conditions are satisfied:

- **1** \mathcal{M} is compact in H and has finite fractal dimension;
- **2** \mathcal{M} is positively invariant, i.e. $S(t)\mathcal{M} \subset \mathcal{M}$, for all $t \geq 0$;
- M attracts exponentially the bounded subsets of K in the following sense:

 $\forall B \subset \mathcal{K} \text{ bounded}, \text{ dist}_{H}(S(t)B, \mathcal{M}) \leq \mathcal{Q}(\|B\|_{H})e^{-\alpha t}, t \geq 0,$

where the positive constant α and the monotonic function Q are independent of B. Here, $||B||_{H} = \sup_{b \in B} |b|_{H}$.

The exponential attractor, if it exists, contains the global attractor.

Some abstract definitions and results

The continuous problem The space semidiscrete problem The main convergence result The time semidiscrete case Conclusion and perspectives

Exponential attractor of a dynamical system Smoothing property Continuity of exponential attractors

Definition (Exponential attractor on a bounded set)

If \mathcal{B} is a closed bounded subset of H and if L is a (nonlinear) continuous operator from \mathcal{B} into \mathcal{B} , we will say that a set $\mathcal{M}^d \subset \mathcal{B}$ is an exponential attractor for (the dynamical system generated by) the iterations of L if

- **1** \mathcal{M}^d is compact and has finite fractal dimension in H,
- $\ \ \, {\cal O} \ \ \, {\cal M}^d \ \ \, is \ \ positively \ \ invariant, \ \ i.e. \ \ \, L{\cal M}^d \subset {\cal M}^d,$
- **3** \mathcal{M}^d attracts \mathcal{B} exponentially, i.e.

$$dist_H(L^n\mathcal{B},\mathcal{M}^d) \leq Ce^{-\alpha n}, \quad n \in \mathbf{N},$$

where C and $\alpha > 0$ are independent of n.

<ロト < 同ト < 三ト <

Some abstract definitions and results

The continuous problem The space semidiscrete problem The main convergence result The time semidiscrete case Conclusion and perspectives

Exponential attractor of a dynamical system Smoothing property Continuity of exponential attractors

Theorem (Efendiev, Miranville & Zelik 2000)

Let H, V be two Banach spaces such that V is compactly imbedded in H and let \mathcal{B} be a closed bounded subset of H. Let $L: \mathcal{B} \to \mathcal{B}$ be a (nonlinear) continuous mapping which enjoys the smoothing property, i.e.

$$\|Lu_1-Lu_2\|_V \leq c|u_1-u_2|_H, \quad \forall u_1, u_2 \in \mathcal{B}.$$
(1)

Then the discrete dynamical system generated by the iterations of L possesses an exponential attractor $\mathcal{M}^d \subset \mathcal{B}$.

Theorem (Efendiev,Miranville & Zelik 2004)

Let H, V be two Banach spaces such that V is compactly imbedded in H and let \mathcal{B} be a closed bounded subset of E. We assume that the family of continuous operators $L_{\varepsilon} : \mathcal{B} \to \mathcal{B}$, $\varepsilon \in [0,1]$ satisfies the following assumptions:

• (Uniform, with respect to ε , smoothing property) $\forall \varepsilon \in [0, 1]$, $\forall u_1, u_2 \in \mathcal{B}$,

$$\|L_{\varepsilon}u_1-L_{\varepsilon}u_2\|_V\leq c_1|u_1-u_2|_H,$$

where c_1 is independent of ε

(The trajectories of the perturbed system approach those of the nonperturbed one, uniformly with respect to ε, as ε tends to 0) ∀ε ∈ [0, 1], ∀i ∈ N, ∀u ∈ B,

$$|L_{\varepsilon}^{i}u - L_{0}^{i}u|_{H} \leq c_{2}^{i}\varepsilon$$
 (c₂ independent of ε).

Theorem (continued)

Then, $\forall \varepsilon \in [0, 1]$, the discrete dynamical system generated by the iterations of L_{ε} possesses an exponential attractor $\mathcal{M}_{\varepsilon}^{d}$ on \mathcal{B} such that

1. the fractal dimension of $\mathcal{M}^d_\varepsilon$ is bounded, uniformly with respect to ε ,

- 2. $\mathcal{M}^d_{\varepsilon}$ attracts \mathcal{B} , uniformly with respect to ε ,
- 3. the family $\{\mathcal{M}^d_{\varepsilon}, \ \varepsilon \in [0,1]\}$ is continuous at 0,

$$dist_{sym}(\mathcal{M}^d_{\varepsilon},\mathcal{M}^d_0) \leq c \varepsilon^{c'},$$

where c and $c' \in (0,1)$ are independent of arepsilon

 $\mathit{dist_{sym}}$ denotes the symmetric Hausdorff distance between sets defined by

$$dist_{sym}(A, B) := \max (dist_H(A, B), dist_H(B, A)).$$

▲口> ▲圖> ▲理> ▲理> 三理 ---

Remark: property 3 (continuity at 0) does not imply 1 (uniform bound on the fractal dimension).

Indeed, consider in $H = I^2(\mathbf{N})$ the *n*-dimensional ball of radius $\varepsilon_n = 1/n$, namely

$$B_{1/n} = \left\{ (u_k)_{k \in \mathbb{N}} : \sum_{k=0}^{+\infty} u_k^2 < \frac{1}{n^2} \text{ and } u_k = 0 \text{ if } k \ge n \right\}.$$

Then $dim_F(B_{1/n}, H) = n \to +\infty$ but

$$dist_{sym}\left(B_{1/n}, \{0\}\right) = dist_{H}\left(B_{1/n}, \{0\}\right) = \frac{1}{n} \to 0$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

(note that $dist_H(\{0\}, B_{1/n}) = 0$ since $0 \in B_{1/n}$)

The continuous problem

We consider the following reaction-diffusion equation

$$\partial_t u - \Delta u + g(u) = 0$$
 in $\Omega \times \mathbf{R}_+$, (2)

subject to homogeneous Dirichlet boundary conditions; Ω is a **convex** open bounded subset of \mathbf{R}^d ($1 \le d \le 3$) with C^2 boundary, and

$$g(s) = \sum_{j=0}^{2p-1} b_j s^j, \quad b_{2p-1} > 0, \, \, p \geq 1.$$

If d = 3, then $p \in \{1, 2\}$ (no restriction on p if d = 1 or 2). When $g(s) = s^3 - s$ (then p = 2), equation (2) is known as the **Allen-Cahn equation**.

We supplement (2) with an initial condition

$$u(0) = u_0.$$
 (3)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Some abstract definitions and results The continuous problem The space semidiscrete problem The main convergence result The time semidiscrete case Conclusion and perspectives

- $H = L^2(\Omega)$ with norm $|\cdot|_H$ and scalar product $(\cdot, \cdot)_H$.
- $V = H_0^1(\Omega)$ with norm $\|\cdot\|_V = |\nabla \cdot|_{L^2(\Omega)^d}$.

It is well-known that (2) defines a continuous-in-time semigroup S_0 :

$$S_0(t): u_0 \in H \mapsto u(t) \in H.$$

Image: A image: A

Proposition (Absorbing set in V, see e.g. [Temam 1997])

There exist a constant $\mathcal{R}_1 > 0$ and a monotonic function $\mathcal{T}_1(\cdot)$ such that for all $u_0 \in H$,

$$\|u(t)\|_{V} \leq \mathcal{R}_{1}, \quad \forall t \geq \mathcal{T}_{1}(|u_{0}|_{H}).$$

Lemma (based on the gradient flow structure of (2))

For any $R_1 > 0$, there exists a constant $C_1(R_1)$ such that for all $u_0 \in V$ with $||u_0||_V \leq R_1$,

$$\|u(t)\|_V^2+\int_0^t|\partial_t u|_H^2\,ds\leq C_1(R_1),\quad \forall t\geq 0.$$

In particular, for all $t_1, t_2 \ge 0$, we have

$$|u(t_1) - u(t_2)|_H^2 \leq C_1(R_1)|t_1 - t_2|.$$

Let u and \hat{u} be two solutions of (2) and let $v(t) = u(t) - \hat{u}(t)$ be their difference, which satisfies

$$\partial_t v - \Delta v + g(u) - g(\hat{u}) = 0$$
 in $\Omega \times \mathbf{R}_+$. (4)

Lemma ($S_0(t)$ is Lipschitz continuous on H)

For all $t \geq 0$,

$$|v(t)|_{H}^{2}+2\int_{0}^{t}\|v\|_{V}^{2}\,ds\leq |v(0)|_{H}^{2}\exp(2c_{1}'t).$$

Lemma (*H*-*V* smoothing property)

If $||u(0)||_V \le R_1$ and $||\hat{u}(0)||_V \le R_1$, then for all t > 0, we have $||v(t)||_V^2 \le C_2(R_1, t)|v(0)|_H^2$,

where the function $C_2: (0, +\infty)^2 \to \mathbf{R}_+$ is continuous.

We use continuous piecewise linear (P_1) finite elements. Following **[Raviart & Thomas 1983]**, we use a **regular family of triangulations** $(\mathcal{T}_h)_{h>0}$ such that for every h, Ω is approximated by a convex d-polyhedron $\Omega_h = \bigcup_{K \in \mathcal{T}_h} K$. For a given \mathcal{T}_h , the finite element space is

$$V_h = \bigg\{ v \in C^0(\overline{\Omega}) \ : \ v = 0 \text{ on } \overline{\Omega} \setminus \Omega_h \text{ and } \forall K \in \mathcal{T}_h, \ v|_K \in P_1 \bigg\},$$

and we have a conforming approximation, namely

$$V_h \subset H^1_0(\Omega_h) \subset H^1_0(\Omega) = V.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

A triangulation of $\Omega_h \subset \Omega$

Some abstract definitions and results The continuous problem **The space semidiscrete problem** The main convergence result The time semidiscrete case Conclusion and perspectives

The discrete semigroup A priori estimates, uniform in hError estimate with H^1 data

The space semidiscrete scheme reads: find $u_h: \mathbf{R}_+ \to V_h$ such that

$$\frac{d}{dt}(u_h(t),\varphi_h)_H + (\nabla u_h(t),\nabla \varphi_h)_0 + (g(u_h(t)),\varphi_h)_H = 0, \quad (5)$$

for all $t \geq 0$ and for all $\varphi_h \in V_h$, with the initial condition

$$u_h(0) = u_h^0 \in V_h. \tag{6}$$

A (1) × (2) × (4)

Since V_h has finite dimension, it is easily seen that for every $u_h^0 \in V_h$, problem (5)-(6) has a unique solution $u_h \in C^1(\mathbf{R}_+, V_h)$. Thus, we have a semigroup S_h acting on V_h ,

$$S_h(t): u_h^0 \in V_h \mapsto u_h(t) \in V_h.$$

Some abstract definitions and results The continuous problem **The space semidiscrete problem** The main convergence result The time semidiscrete case Conclusion and perspectives

The discrete semigroup **A priori estimates**, uniform in *h* Error estimate with H^1 data

It is easy to show that for the space semidiscrete problem, we obtain a priori estimates similar to the continuous problem, and which are uniform in h:

- Absorbing set in V_h for the V-norm
- Gradient-flow structure (S_h is 1/2-Hölder continuous in time)
- S_h is Lipschitz continuous in space
- *H*-*V* smoothing property

Image: A image: A

Theorem (Error estimate with H¹ data)

For all $R_1 > 0$ and for all T > 0, there exists a constant $C_3(R_1, T)$ independent of h such that, if $||u_0||_V \le R_1$ and $u_h^0 = \prod_h (u_0)$ where $\prod_h : V \to V_h$ is the (linear) elliptic projection, then

$$\sup_{t\in[0,T]}|u_h(t)-u(t)|_H\leq C_3(R_1,T)h.$$

We follow the approach of [Johsson, Larsson, Thomée & Wahlbin 1987] with some ideas from [Elliott & Larsson 1992]

- Error estimates for the linear elliptic problem [Raviart & Thomas 1983] also valid in dimension d = 3
- Error estimates with nonsmooth data for the linear evolution problem: book of [Thomée 2006] (smoothing properties of the heat equation)

Some abstract definitions and results The continuous problem The space semidiscrete problem **The main convergence result** The time semidiscrete case Conclusion and perspectives

The main result

Theorem (Convergence of exponential attractors)

The continuous semigroup $\{S_0(t), t \in \mathbf{R}_+\}$ on H associated to (2) possesses an exponential attractor \mathcal{M}_0 and for every $h \in J$, the continuous semigroup $\{S_h(t), t \in \mathbf{R}_+\}$ on V_h associated to (5) possesses an exponential attractor \mathcal{M}_h such that:

NB: $J = (0, h_{max}]$ typically

Theorem (Convergence of exponential attractors, continued)

- It the fractal dimension of M_h is bounded, uniformly with respect to h ∈ J, dim_F(M_h, H) ≤ c₁₀, where c₁₀ is independent of h;
- Q M_h attracts the bounded sets of V_h, uniformly with respect to h ∈ J, i.e. ∀h ∈ J, ∀B_h ⊂ V_h bounded,

 $dist_H(S_h(t)B_h, \mathcal{M}_h) \leq \mathcal{Q}(\|B_h\|_H)e^{-c_{11}t}, \quad t \geq 0,$

where the positive constant c_{11} and the monotonic function Q are independent of h;

③ the family { M_h , $h \in J \cup \{0\}$ } is continuous at 0,

 $dist_{sym}(\mathcal{M}_h,\mathcal{M}_0) \leq c_{12}h^{\kappa'},$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

where c_{12} and $\kappa' \in (0,1)$ are independent of h.

Remark: the global attractors A_h **satisfy** $dim_F(A_h, H) \leq c_{10}$

Outline of the proof

• We introduce the absorbing sets

 $\mathcal{B}_0 = \{ v \in V : \|v\|_V \le \mathcal{R}_1 \}, \quad \mathcal{B}_h = \{ v_h \in V_h : \|v_h\|_V \le \mathcal{R}_1 \},$

for all $h \in J$. Note that $\prod_h (\mathcal{B}_0) = \mathcal{B}_h$.

• For T > 0 large enough, we have

 $S_0(T)(\mathcal{B}_0) \subset \mathcal{B}_0$ and $\forall h \in J, \ S_h(T)(\mathcal{B}_h) \subset \mathcal{B}_h.$

- We build a robust family (M^d_h)_{h≥0} of exponential attractors for L_h = S_h(T) on B_h, h ∈ J ∪ {0}. For this we adapt the construction of [Efendiev, Miranville & Zelik], using also some ideas from singularly perturbed case [Fabrie, Galusinski, Miranville & Zelik 2004],[Gatti, Grasselli, Miranville & Pata 2006], [Miranville, Pata & Zelik 2007]. The essential ingredients are the H-V smoothing property, the error estimate on finite time intervals, and the error for Π_h.
- We define \mathcal{M}_h by the standard formula

$$\mathcal{M}_{h} = \bigcup_{t \in [0,T]} S_{h}(t) \mathcal{M}_{h}^{d}.$$

Some abstract definitions and results The continuous problem The space semidiscrete problem The main convergence result **The time semidiscrete case** Conclusion and perspectives

The discrete semigroup A priori estimates, uniform in τ Error estimate with H^1 data Convergence of exponential attractors

The time semidiscrete problem

We apply the backward Euler scheme to (2). $\tau > 0$ is the time step. Let $u^0 \in H$ and for n = 0, 1, 2, ... let $u^{n+1} \in V$ solve

$$\frac{u^{n+1}-u^n}{\tau} - \Delta u^{n+1} + g(u^{n+1}) = 0.$$
 (7)

The discrete semi-group $S_{\tau}^{n}u_{0} = u^{n}$ is well-defined:

A (1) > A (2)

Proposition (Well-posedness)

Assume that $\tau \in (0, \tau_0]$ for some $\tau_0 > 0$ small enough. Then for every $u \in H$, there exists a unique $v = v_{\tau,u} \in V$ such that

$$\frac{v-u}{\tau} - \Delta v + g(v) = 0 \text{ in } V'.$$
(8)

Moreover, the mapping $S_{\tau} : u \mapsto v_{\tau,u}$ is Lipschitz continuous from H into V, with

$$\|S_{\tau}u - S_{\tau}\hat{u}\|_{V} \leq \frac{c_{0}}{\tau}|u - \hat{u}|_{H}, \quad \forall u, \hat{u} \in H.$$
(9)

NB: c_0 is the optimal constant in the Poincaré inequality. As a consequence, S_{τ} is Lipschitz continuous from H into H, and from V into V. We note that the Lipschitz constant c_0/τ blows up as $\tau \to 0^+$. Some abstract definitions and results The continuous problem The space semidiscrete problem The main convergence result **The time semidiscrete case** Conclusion and perspectives

The discrete semigroup A priori estimates, uniform in τ Error estimate with H^1 data Convergence of exponential attractors

For the time semidiscrete problem, we obtain a priori estimates similar to the continuous problem, and which are uniform in τ :

- Absorbing set in V for the V-norm
- S_{τ} is Lipschitz continuous in H
- bound on bounded sets of H and finite time intervals for S_{τ}^{n} (a weak discrete version of the 1/2-Hölder continuity)
- *H*-*V* smoothing property

・ 同・ ・ ヨ・

Error estimate with H^1 data

We set

$$u_{\tau}(t)=u^n+rac{t-n au}{ au}(u^{n+1}-u^n),\quad t\in [n au,(n+1) au).$$

Following the methodology of **[X. Wang 2010]**, we obtain the following error estimate

Theorem (Finite time uniform error estimate)

For all T > 0 and $R_1 > 0$, there is a constant $C(T, R_1)$ independent of τ such that $u^0 = u_0$ and $||u^0||_V \le R_1$ imply

$$\sup_{\tau \in [0, [T/\tau]\tau]} |u_{\tau}(t) - u(t)|_{H} \leq C(T, R_{1})\tau^{1/2}.$$

<ロト <四ト <注入 <注下 <注下 <

Theorem (Convergence of exponential attractors)

For each $\tau \in (0, \tau_0]$, the discrete dynamical system associated to $\{S_{\tau}^n, n \in \mathbf{N}\}$ possesses an exponential attractor \mathcal{M}_{τ} on H, and the continuous dynamical system $\{S_0(t), t \in \mathbf{R}_+\}$ possesses an exponential attractor \mathcal{M}_0 such that:

- the fractal dimension of M_τ is bounded, uniformly with respect to τ ∈ [0, τ₀], dim_FM_τ ≤ c₇ (c₇ independent of τ);
- **2** \mathcal{M}_{τ} attracts the bounded sets of H, uniformly with respect to $\tau \in (0, \tau_0]$;
- the family $\{\mathcal{M}_{\tau}, \tau \in [0, \tau'_0]\}$ is continuous at 0,

 $dist_{sym}(\mathcal{M}_{ au},\mathcal{M}_0) \leq c_8 au^{c_9} \ (c_8,c_9 \in (0,1) \ independent \ of \ au)$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Remark: the global attractors A_{τ} satisfy $dim_F(A_{\tau}, H) \leq c_7$

Some abstract definitions and results The continuous problem The space semidiscrete problem The main convergence result **The time semidiscrete case** Conclusion and perspectives

The discrete semigroup A priori estimates, uniform in τ Error estimate with H^1 data Convergence of exponential attractors

Remark: The upper bound on the dimension of the exponential attractors is **explicit**, but it is quite crude. Namely,

$$\dim_{F}(\mathcal{M}_{\tau}) \leq 2 + \log_{2}[N_{1/(4c'_{4})}(B(0,1;V),H)], \quad (10)$$

where $N_{\varepsilon}(B(0,1; V), H)$ is the number of ball of radius ε in H which are necessary to cover the unit ball centered at 0 in V and c'_4 (very large) is explicitly derived from the a priori estimates.

A (1) < (1) < (1) </p>

Conclusion and perspectives

- The time semidiscrete case: abstract formulation for parabolic problems (based on [EMZ 2004])
- [Batangouna and P. 2018] applied it to a time splitting discretization of the Caginalp phase-field system.
- The fully discrete case for the Allen-Cahn equation: ok
- Generalization to other (parabolic) problems and/or other types of discretization : Navier-Stokes, Cahn-Hilliard, finite difference, finite volume, ...?
- Can we find a general construction of a robust family of exponential attractors as **[X. Wang 2016]** did for the space and time discretization of the global attractor ?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Conclusion and perspectives

- The time semidiscrete case: **abstract formulation** for parabolic problems (based on **[EMZ 2004]**)
- [Batangouna and P. 2018] applied it to a time splitting discretization of the Caginalp phase-field system.
- The fully discrete case for the Allen-Cahn equation: ok
- Generalization to other (parabolic) problems and/or other types of discretization : Navier-Stokes, Cahn-Hilliard, finite difference, finite volume, ...?
- Can we find a general construction of a robust family of exponential attractors as **[X. Wang 2016]** did for the space and time discretization of the global attractor ?

Thank you !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで