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A key concept in the study of dissipative systems is the global

attractor, a compact invariant set which attracts uniformly the

bounded sets of the phase space

Some drawbacks of the global attractor:

@ it may be sensible to perturbations (if the rate of attraction of

the trajectories is small): upper semicontinuity generally
holds, but lower semicontinuity can be proved only in some
particular cases

@ it may fail to capture important transient behaviours



Example: [Stuart & Humphries 1996] we consider the
dynamical system on R defined by

where for ¢ > 0, . € C}(R) is defined by

(u+1)3 —¢, if u<-—1,
fo(u) =< eBu/2 —u3/2), if —1l<u<l,
(u—1)3+¢, if u>1.

This is a gradient flow for F. such that F/(u) = f-(u) and
F-(0) = 0. Thus, the global attractor is

A. ={0} ife>0,

and

Ao = [-1,1].
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The notion of exponential attractor has been proposed in [Eden,
Foais, Nicolaenko & Temam 1994]: a compact positively
invariant set which contains the global attractor, has finite fractal
dimension and attracts exponentially the trajectories.

@ More robust to perturbations
@ Can capture important transient behaviours

@ But : not necessarily unique (in contrast with the global
attractor)



The continuity of exponential attractors was shown in [Eden,
Foias, Nicolaenko & Temam 1994] for classical Galerkin
approximations, but only up to a time shift.

see also [Fabrie, Galunsinski & Miranville 2000], [Galusinski
PhD thesis 1996] for continuity up to a time shift, and [Aida &
Yagi 2004] for related robustness results for finite element
approximations.
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Efendiev, Miranville & Zelik (2004) proposed a construction of
exponential attractors where continuity holds without time
shift. It is based on a uniform “smoothing property” and an
appropriate error estimate. It is valid in Banach spaces and it gives
a uniform bound on the fractal dimension of the attractor.



This result has been adapted to many situations, including singular
perturbations:

[Fabrie, Galusinski, Miranville & Zelik 2004], [Gatti, Grasselli
& Pata 2004], [Conti, Pata & Squassina 2005], [Gatti,
Grasselli, Miranville & Pata 2006], [Cavaterra & Grasselli
2006] ...

see in particular the review paper by [Miranville & Zelik 2008].



Question: can we adapt the construction of Efendiev,
Miranville & Zelik (2004) when the perturbation is a space
and/or time discretization of the PDE ?
We consider a model problem: the Allen-Cahn equation in
space dimension 1 < d < 3.
We study:
o First, a space semidiscretization by P! finite elements.
@ Second, a time semidiscretization by the backward Euler
scheme.
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Some definitions

H = L2(Q) with norm | - |y and K is a closed subset of H.
A continuous-in-time semigroup {5(t), t€ R } on Kis a
family of (nonlinear) operators such that S(t) is a continuous
operator from K into itself, for all t > 0, with S(0) = Id (identity
in K) and

S(t+s)=S(t)oS(s), Vs, t>0.

A discrete-in-time semigroup {S(t), t € N} on H is a family of
(nonlinear) operators which satisfy these properties with

R (= [0,400)) replaced by N.

A discrete-in-time semigroup is usually denoted {S", n € N},
where S(= S(1)) is a continuous (nonlinear) operator from K into
itself.

Remark 1: semigroup ~ dynamical system



e disty denotes the non-symmetric Hausdorff semidistance in
H between two subsets defined as

distr(A, B) = sup inf |a — b|y.
isth( )325‘;2513 |1

Remark: disty(A,B) =0 < ACB
e Let A C H be a subset of H. For e > 0, we denote N.(A, H) the

minimum number of balls of H of radius € > 0 which are necessary
to cover A. The fractal dimension of A in H is the number

I N:(A, H
dimF(A, H) = lim sup M

m s o2, (1/) € [0, +o0].

Remark: dimg(A, H) < +00 = A is relatively compact in H.



Definition (Exponential attractor)

Let {S(t), t > 0} be a continuous or discrete semigroup on KC. A
set M C K is an exponential attractor of the dynamical system if
the following three conditions are satisfied:

Q@ M is compact in H and has finite fractal dimension;
@ M is positively invariant, i.e. S(t)M C M, for all t > 0;

© M attracts exponentially the bounded subsets of IC in the
following sense:

VB C K bounded, disty(S(t)B, M) < O(||B||y)e ", t >0,

where the positive constant o and the monotonic function Q
are independent of B. Here, ||B||n = supyep |b|H-

The exponential attractor, if it exists, contains the global
attractor.
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Definition (Exponential attractor on a bounded set)

If B is a closed bounded subset of H and if L is a (nonlinear)
continuous operator from BB into B, we will say that a set M9 C B
is an exponential attractor for (the dynamical system generated by)
the iterations of L if

Q Mijs compact and has finite fractal dimension in H,
@ MY is positively invariant, i.e. LMY c MY,
© M attracts B exponentially, i.e.

disty(L"B, M) < Ce™®", neN,

where C and o > 0 are independent of n.
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Continuity of exponential attractors

Theorem (Efendiev, Miranville & Zelik 2000)

Let H, V be two Banach spaces such that V is compactly
imbedded in H and let B be a closed bounded subset of H. Let
L : B — B be a (nonlinear) continuous mapping which enjoys the
smoothing property, i.e.

||LU1 = LU2”\/ < c\ul = U2|H, Yuy,up € B. (1)

Then the discrete dynamical system generated by the iterations of
L possesses an exponential attractor M9 c B.
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Theorem (Efendiev,Miranville & Zelik 2004)

Let H, V be two Banach spaces such that V' is compactly
imbedded in H and let B be a closed bounded subset of E. We
assume that the family of continuous operators L. : B — B,

e € [0, 1] satisfies the following assumptions:

@ (Uniform, with respect to e, smoothing property) Ve € [0, 1],
Vul, Uy € B,

|Leur — Lewo||v < ci|un — uo|h,

where c; is independent of €

@ (The trajectories of the perturbed system approach those of
the nonperturbed one, uniformly with respect to €, as € tends
to0) Ve € [0,1], Vi € N, Yu € B,

|Liu — Liu|y < cie (o independent of ).




Theorem (continued)

Then, Ve € [0, 1], the discrete dynamical system generated by the
iterations of L. possesses an exponential attractor Mg on B such
that

1. the fractal dimension of Mg is bounded, uniformly with respect
to g,

2. Mg attracts B, uniformly with respect to ¢,

3. the family {M9, ¢ € [0,1]} is continuous at 0,

distsym(Mg, ./\/lg) < cacl,

where ¢ and ¢’ € (0,1) are independent of &

distsym denotes the symmetric Hausdorff distance between sets
defined by

disteym(A, B) := max (disty(A, B), disty(B, A)).



Remark: property 3 (continuity at 0) does not imply 1 (uniform
bound on the fractal dimension).

Indeed, consider in H = /?(N) the n-dimensional ball of radius
en = 1/n, namely

Bl/n_{ukkEN Zuk< anduk_Oikan}.
Then dimg(By/p, H) = n — 400 but

. ) 1
distsym (Bl/m {0}) = disty (Bl/n, {0}) = =0

(note that disty ({0}, By/p) = 0 since 0 € Byp)



The continuous problem

We consider the following reaction-diffusion equation
Oru—Au+g(u)=0 inQ xRy, (2)

subject to homogeneous Dirichlet boundary conditions; €2 is a
convex open bounded subset of RY (1 < d < 3) with C?
boundary, and

2p—1

g(s)=> b5, byp1>0 p>1.
Jj=0

If d =3, then p € {1,2} (no restriction on p if d =1 or 2).
When g(s) = s® — s (then p = 2), equation (2) is known as the
Allen-Cahn equation.

We supplement (2) with an initial condition

u(0) = wp. (3)



The continuous problem

e H = [?(Q) with norm | - |y and scalar product (-,-)4.
oV = H&(Q) with norm H . H\/ = |V : ‘L2(Q)d.
It is well-known that (2) defines a continuous-in-time semigroup
So:
So(t):up € H— u(t) € H.
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Proposition (Absorbing set in V/, see e.g. [Temam 1997])

There exist a constant Ry > 0 and a monotonic function T;(+)
such that for all ug € H,

lu(t)llv <R1, Vt=>Ti(|uoln)-

Lemma (based on the gradient flow structure of (2))

For any Ry > 0, there exists a constant Cyi(Ry) such that for all
ug € V with HUOHV <Ry,

t
|\u(t)|y2v+/0 B, ds < G(Ry), ¥t > 0.

In particular, for all t1,t, > 0, we have

u(tr) — u(t) [}y < G(R1) |t — o




A

Let u and & be two solutions of (2) and let v(t) = u(t) — d(t) be
their difference, which satisfies

Orv —Av+g(u) —g(d) =0 in QxRy. (4)

Lemma (Sp(t) is Lipschitz continuous on H)
For all t > 0,

t
v(t)[7 + 2/0 IVl ds < [v(0)[ exp(2¢it).

N

Lemma (H-V smoothing property)

If ||lu(0)|lv < Ry and ||d(0)||v < Ry, then for all t > 0, we have

vt} < G(Ry, 1)|v(0)[3,

where the function G, : (0,+00)? — Ry is continuous.

\




The space semidiscrete problem

We use continuous piecewise linear (P1) finite elements.

Following [Raviart & Thomas 1983], we use a regular family of
triangulations (7,)x~0 such that for every h, Q is approximated
by a convex d-polyhedron Q) = k7, K.

For a given Tp, the finite element space is

Vh:{VECO(Q) :v=00nQ\Qp,and VK € Tj, v]KEPl},

and we have a conforming approximation, namely

Vi, C H3 () C H3(Q) = V.



A triangulation of Q, C Q



The discrete semigroup
i , uniform in h
with H* data

The space semidiscrete problem

The space semidiscrete scheme reads: find up : Ry — V}, such that

d
J(un(t). on)m + (Vun(t), Vion)o + (g(un(t)), on)n = 0, (5)
for all t > 0 and for all ¢, € V}, with the initial condition

up(0) = ud € V4. (6)
Since V), has finite dimension, it is easily seen that for every
u? € Vi, problem (5)-(6) has a unique solution up € CY(Ry, V).
Thus, we have a semigroup S;, acting on V,

Sh(t) : u,? e Vy— U/-,(t) e V.

Morgan PIERRE Convergence of exponential attractors . ..



The discr emigroup

The space semidiscrete problem A mrte esiimeies, umimm im i

Error estimate with H' data

It is easy to show that for the space semidiscrete problem, we
obtain a priori estimates similar to the continuous problem, and
which are uniform in h:

Absorbing set in V), for the V-norm

e Gradient-flow structure (S, is 1/2-Holder continuous in time)
@ S, is Lipschitz continuous in space
o

H-V smoothing property
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Theorem (Error estimate with H® data)

For all Ry > 0 and for all T > 0, there exists a constant C3(Ry, T)
independent of h such that, if ||uo||v < R1 and ul = Np(uo) where
My : V — Vy is the (linear) elliptic projection, then

sup |up(t) — u(t)|y < G(R1, T)h.
te[0,T]

We follow the approach of [Johsson, Larsson, Thomée &
Wahlbin 1987] with some ideas from [Elliott & Larsson 1992]

@ Error estimates for the linear elliptic problem [Raviart &
Thomas 1983] also valid in dimension d = 3

@ Error estimates with nonsmooth data for the linear evolution
problem: book of [Thomée 2006] (smoothing properties
of the heat equation)



The main convergence result

The main result

Theorem (Convergence of exponential attractors)

The continuous semigroup {So(t), t € Ry} on H associated

to (2) possesses an exponential attractor Mgy and for every h € J,
the continuous semigroup {Sp(t), t € R} on V}, associated

to (5) possesses an exponential attractor My, such that:

NB: J = (0, hpmax| typically
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Theorem (Convergence of exponential attractors, continued)

@ the fractal dimension of My, is bounded, uniformly with
respect to h € J, dimg(Mp, H) < c10, where cio is
independent of h;

@ M, attracts the bounded sets of V/,, uniformly with respect
tohe J, ie. Yhe J, VB, C V} bounded,

dist(Su(t)Bn, Mp) < Q(IIBpllw)e” 1, t >0,

where the positive constant c;1 and the monotonic function Q
are independent of h;

@ the family {My, h e JU{0}} is continuous at 0,

distsym(Mp, Mo) < cioh”,

where c1p and k' € (0,1) are independent of h.

Remark: the global attractors A, satisfy dimg(Ap, H) < cio



Outline of the proof

@ We introduce the absorbing sets
B():{VEV : ||VH\/§R1}, Bh:{vhevh : thHVSRl},

for all h € J. Note that M,(By) = Bp.
@ For T > 0 large enough, we have

So(T)(Bo) CBy and VheJ, Sh(T)(Bh) C Bg.

o We build a robust family (M¢),>o of exponential attractors
for Ly = Sp(T) on By, h € JU{0}. For this we adapt the
construction of [Efendiev, Miranville & Zelik], using also
some ideas from singularly perturbed case [Fabrie,
Galusinski, Miranville & Zelik 2004],[Gatti, Grasselli,
Miranville & Pata 2006], [Miranville, Pata & Zelik 2007].
The essential ingredients are the H-V smoothing property, the
error estimate on finite time intervals, and the error for .

o We define M}, by the standard formula

My= ] Sa(timy.

te[0,T]



The discrete semigroup
A priori estimates, uniform in T
Error estimate with H™ data

The time semidiscrete case Convergence o onential attractors

The time semidiscrete problem

We apply the backward Euler scheme to (2). 7 > 0 is the time
step. Let u® € Hand for n=0, 1, 2,...let u"t! € V solve

— Au™ 4 g(u™) =0, (7)

The discrete semi-group Slup = u” is well-defined:
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Proposition (Well-posedness)

Assume that T € (0, 1g] for some 79 > 0 small enough. Then for
every u € H, there exists a unique v = v, € V such that

V—-u

—Av+g(v)=0in V' (8)

Moreover, the mapping S : u — v, , is Lipschitz continuous from
H into V, with

1S, u — S-dif|v < %u—mH, Vu,d € H. (9)

v

NB: ¢ is the optimal constant in the Poincaré inequality.

As a consequence, S is Lipschitz continuous from H into H, and
from V into V. We note that the Lipschitz constant ¢p/7 blows
up as 7 — 0T,



The discrete semigroup
A priori estimates, uniform in 7

Error estimate with H* data
The time semidiscrete case Convergence o onential attractors

For the time semidiscrete problem, we obtain a priori estimates
similar to the continuous problem, and which are uniform in 7:

@ Absorbing set in V for the V-norm
@ S, is Lipschitz continuous in H

@ bound on bounded sets of H and finite time intervals for S”
(a weak discrete version of the 1/2-Hdlder continuity)

@ H-V smoothing property
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Error estimate with H! data

We set

() = o+ T ), b e [or (n+ 1)),
T
Following the methodology of [X. Wang 2010], we obtain the
following error estimate

Theorem (Finite time uniform error estimate)

For all T >0 and Ry > 0, there is a constant C(T, Ry)
independent of T such that u® = uy and ||u®||y < Ry imply

sup  |ur(t) — u(t)|y < C(T, Ry)72.
te[0,[T/7]7]




Theorem (Convergence of exponential attractors)

For each T € (0, 9], the discrete dynamical system associated to
{87, n € N} possesses an exponential attractor M. on H, and
the continuous dynamical system {So(t), t € R} possesses an
exponential attractor My such that:
@ the fractal dimension of M is bounded, uniformly with
respect to T € [0, 10], dimpM; < ¢7 (c7 independent of T);
@ M. attracts the bounded sets of H, uniformly with respect to
S (0, 7'0],‘
Q the family {M., T € [0,74]} is continuous at 0,

distsym(M;, Mo) < g7 (cs, 9 € (0,1) independent of T)

Remark: the global attractors A, satisfy dimg(A;, H) < ¢



The discrete semigroup
A priori esti iniform in T

Error estimate with H™ data
The time semidiscrete case Convergence of exponential attractors

Remark: The upper bound on the dimension of the exponential
attractors is explicit, but it is quite crude. Namely,

dimp(Mz) < 2+ logo[Ny/(ac)(B(0,1; V), H)l,  (10)

where N.(B(0,1; V), H) is the number of ball of radius ¢ in H
which are necessary to cover the unit ball centered at 0 in V and
¢y (very large) is explicitly derived from the a priori estimates.
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Conclusion and perspectives

@ The time semidiscrete case: abstract formulation for
parabolic problems (based on [EMZ 2004])

e [Batangouna and P. 2018] applied it to a time splitting
discretization of the Caginalp phase-field system.

@ The fully discrete case for the Allen-Cahn equation: ok

@ Generalization to other (parabolic) problems and/or other

types of discretization : Navier-Stokes, Cahn-Hilliard, finite
difference, finite volume, ...7

@ Can we find a general construction of a robust family of
exponential attractors as [X. Wang 2016] did for the space
and time discretization of the global attractor ?
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Thank you !
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