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A key concept in the study of dissipative systems is the global
attractor, a compact invariant set which attracts uniformly the
bounded sets of the phase space
Some drawbacks of the global attractor:

it may be sensible to perturbations (if the rate of attraction of
the trajectories is small): upper semicontinuity generally
holds, but lower semicontinuity can be proved only in some
particular cases

it may fail to capture important transient behaviours



Example: [Stuart & Humphries 1996] we consider the
dynamical system on R defined by

u′(t) = −fε(u(t)), t ≥ 0,

where for ε ≥ 0, fε ∈ C 1(R) is defined by

fε(u) =


(u + 1)3 − ε, if u ≤ −1,

ε(3u/2− u3/2), if − 1 < u < 1,

(u − 1)3 + ε, if u ≥ 1.

This is a gradient flow for Fε such that F ′ε(u) = fε(u) and
Fε(0) = 0. Thus, the global attractor is

Aε = {0} if ε > 0,

and
A0 = [−1, 1].



The potential Fε(u), ε > 0



The potential F0(u)



The notion of exponential attractor has been proposed in [Eden,
Foais, Nicolaenko & Temam 1994]: a compact positively
invariant set which contains the global attractor, has finite fractal
dimension and attracts exponentially the trajectories.

More robust to perturbations

Can capture important transient behaviours

But : not necessarily unique (in contrast with the global
attractor)



The continuity of exponential attractors was shown in [Eden,
Foias, Nicolaenko & Temam 1994] for classical Galerkin
approximations, but only up to a time shift.
see also [Fabrie, Galunsinski & Miranville 2000], [Galusinski
PhD thesis 1996] for continuity up to a time shift, and [Aida &
Yagi 2004] for related robustness results for finite element
approximations.

Efendiev, Miranville & Zelik (2004) proposed a construction of
exponential attractors where continuity holds without time
shift. It is based on a uniform “smoothing property” and an
appropriate error estimate. It is valid in Banach spaces and it gives
a uniform bound on the fractal dimension of the attractor.
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This result has been adapted to many situations, including singular
perturbations:
[Fabrie, Galusinski, Miranville & Zelik 2004], [Gatti, Grasselli
& Pata 2004], [Conti, Pata & Squassina 2005], [Gatti,
Grasselli, Miranville & Pata 2006], [Cavaterra & Grasselli
2006] . . .
see in particular the review paper by [Miranville & Zelik 2008].



Question: can we adapt the construction of Efendiev,
Miranville & Zelik (2004) when the perturbation is a space
and/or time discretization of the PDE ?

We consider a model problem: the Allen-Cahn equation in
space dimension 1 ≤ d ≤ 3.
We study:

First, a space semidiscretization by P1 finite elements.

Second, a time semidiscretization by the backward Euler
scheme.
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Some definitions

H = L2(Ω) with norm | · |H and K is a closed subset of H.
A continuous-in-time semigroup {S(t), t ∈ R+} on K is a
family of (nonlinear) operators such that S(t) is a continuous
operator from K into itself, for all t ≥ 0, with S(0) = Id (identity
in K) and

S(t + s) = S(t) ◦ S(s), ∀s, t ≥ 0.

A discrete-in-time semigroup {S(t), t ∈ N} on H is a family of
(nonlinear) operators which satisfy these properties with
R+(= [0,+∞)) replaced by N.
A discrete-in-time semigroup is usually denoted {Sn, n ∈ N},
where S(= S(1)) is a continuous (nonlinear) operator from K into
itself.
Remark 1: semigroup ' dynamical system



• distH denotes the non-symmetric Hausdorff semidistance in
H between two subsets defined as

distH(A,B) = sup
a∈A

inf
b∈B
|a− b|H .

Remark: distH(A,B) = 0 ⇐⇒ A ⊂ B
• Let A ⊂ H be a subset of H. For ε > 0, we denote Nε(A,H) the
minimum number of balls of H of radius ε > 0 which are necessary
to cover A. The fractal dimension of A in H is the number

dimF (A,H) = lim sup
ε→0

log2(Nε(A,H))

log2(1/ε)
∈ [0,+∞].

Remark: dimF (A,H) < +∞⇒ A is relatively compact in H.



Definition (Exponential attractor)

Let {S(t), t ≥ 0} be a continuous or discrete semigroup on K. A
set M⊂ K is an exponential attractor of the dynamical system if
the following three conditions are satisfied:

1 M is compact in H and has finite fractal dimension;

2 M is positively invariant, i.e. S(t)M⊂M, for all t ≥ 0;

3 M attracts exponentially the bounded subsets of K in the
following sense:

∀B ⊂ K bounded, distH(S(t)B,M) ≤ Q(‖B‖H)e−αt , t ≥ 0,

where the positive constant α and the monotonic function Q
are independent of B. Here, ‖B‖H = supb∈B |b|H .

The exponential attractor, if it exists, contains the global
attractor.
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Definition (Exponential attractor on a bounded set)

If B is a closed bounded subset of H and if L is a (nonlinear)
continuous operator from B into B, we will say that a set Md ⊂ B
is an exponential attractor for (the dynamical system generated by)
the iterations of L if

1 Md is compact and has finite fractal dimension in H,

2 Md is positively invariant, i.e. LMd ⊂Md ,

3 Md attracts B exponentially, i.e.

distH(LnB,Md) ≤ Ce−αn, n ∈ N,

where C and α > 0 are independent of n.

Morgan PIERRE Convergence of exponential attractors . . .
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Theorem (Efendiev, Miranville & Zelik 2000)

Let H, V be two Banach spaces such that V is compactly
imbedded in H and let B be a closed bounded subset of H. Let
L : B → B be a (nonlinear) continuous mapping which enjoys the
smoothing property, i.e.

‖Lu1 − Lu2‖V ≤ c |u1 − u2|H , ∀u1, u2 ∈ B. (1)

Then the discrete dynamical system generated by the iterations of
L possesses an exponential attractor Md ⊂ B.

Morgan PIERRE Convergence of exponential attractors . . .



Theorem (Efendiev,Miranville & Zelik 2004)

Let H, V be two Banach spaces such that V is compactly
imbedded in H and let B be a closed bounded subset of E . We
assume that the family of continuous operators Lε : B → B,
ε ∈ [0, 1] satisfies the following assumptions:

1 (Uniform, with respect to ε, smoothing property) ∀ε ∈ [0, 1],
∀u1, u2 ∈ B,

‖Lεu1 − Lεu2‖V ≤ c1|u1 − u2|H ,

where c1 is independent of ε

2 (The trajectories of the perturbed system approach those of
the nonperturbed one, uniformly with respect to ε, as ε tends
to 0) ∀ε ∈ [0, 1], ∀i ∈ N, ∀u ∈ B,

|Liεu − Li0u|H ≤ c i2ε (c2 independent of ε).



Theorem (continued)

Then, ∀ε ∈ [0, 1], the discrete dynamical system generated by the
iterations of Lε possesses an exponential attractor Md

ε on B such
that
1. the fractal dimension of Md

ε is bounded, uniformly with respect
to ε,
2. Md

ε attracts B, uniformly with respect to ε,
3. the family {Md

ε , ε ∈ [0, 1]} is continuous at 0,

distsym(Md
ε ,Md

0 ) ≤ cεc
′
,

where c and c ′ ∈ (0, 1) are independent of ε

distsym denotes the symmetric Hausdorff distance between sets
defined by

distsym(A,B) := max
(
distH(A,B), distH(B,A)

)
.



Remark: property 3 (continuity at 0) does not imply 1 (uniform
bound on the fractal dimension).

Indeed, consider in H = l2(N) the n-dimensional ball of radius
εn = 1/n, namely

B1/n =

{
(uk)k∈N :

+∞∑
k=0

u2
k <

1

n2
and uk = 0 if k ≥ n

}
.

Then dimF (B1/n,H) = n→ +∞ but

distsym
(
B1/n, {0}

)
= distH

(
B1/n, {0}

)
=

1

n
→ 0

(note that distH({0},B1/n) = 0 since 0 ∈ B1/n)



The continuous problem

We consider the following reaction-diffusion equation

∂tu −∆u + g(u) = 0 in Ω× R+, (2)

subject to homogeneous Dirichlet boundary conditions; Ω is a
convex open bounded subset of Rd (1 ≤ d ≤ 3) with C 2

boundary, and

g(s) =

2p−1∑
j=0

bjs
j , b2p−1 > 0, p ≥ 1.

If d = 3, then p ∈ {1, 2} (no restriction on p if d = 1 or 2).
When g(s) = s3 − s (then p = 2), equation (2) is known as the
Allen-Cahn equation.
We supplement (2) with an initial condition

u(0) = u0. (3)
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• H = L2(Ω) with norm | · |H and scalar product (·, ·)H .
• V = H1

0 (Ω) with norm ‖ · ‖V = |∇ · |L2(Ω)d .
It is well-known that (2) defines a continuous-in-time semigroup
S0:

S0(t) : u0 ∈ H 7→ u(t) ∈ H.

Morgan PIERRE Convergence of exponential attractors . . .



Proposition (Absorbing set in V , see e.g. [Temam 1997])

There exist a constant R1 > 0 and a monotonic function T1(·)
such that for all u0 ∈ H,

‖u(t)‖V ≤ R1, ∀t ≥ T1(|u0|H).

Lemma (based on the gradient flow structure of (2))

For any R1 > 0, there exists a constant C1(R1) such that for all
u0 ∈ V with ‖u0‖V ≤ R1,

‖u(t)‖2
V +

∫ t

0
|∂tu|2H ds ≤ C1(R1), ∀t ≥ 0.

In particular, for all t1, t2 ≥ 0, we have

|u(t1)− u(t2)|2H ≤ C1(R1)|t1 − t2|.



Let u and û be two solutions of (2) and let v(t) = u(t)− û(t) be
their difference, which satisfies

∂tv −∆v + g(u)− g(û) = 0 in Ω× R+. (4)

Lemma (S0(t) is Lipschitz continuous on H)

For all t ≥ 0,

|v(t)|2H + 2

∫ t

0
‖v‖2

V ds ≤ |v(0)|2H exp(2c ′1t).

Lemma (H-V smoothing property)

If ‖u(0)‖V ≤ R1 and ‖û(0)‖V ≤ R1, then for all t > 0, we have

‖v(t)‖2
V ≤ C2(R1, t)|v(0)|2H ,

where the function C2 : (0,+∞)2 → R+ is continuous.



The space semidiscrete problem

We use continuous piecewise linear (P1) finite elements.
Following [Raviart & Thomas 1983], we use a regular family of
triangulations (Th)h>0 such that for every h, Ω is approximated
by a convex d-polyhedron Ωh =

⋃
K∈Th K .

For a given Th, the finite element space is

Vh =

{
v ∈ C 0(Ω) : v = 0 on Ω \ Ωh and ∀K ∈ Th, v |K ∈ P1

}
,

and we have a conforming approximation, namely

Vh ⊂ H1
0 (Ωh) ⊂ H1

0 (Ω) = V .



A triangulation of Ωh ⊂ Ω
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The space semidiscrete scheme reads: find uh : R+ → Vh such that

d

dt
(uh(t), ϕh)H + (∇uh(t),∇ϕh)0 + (g(uh(t)), ϕh)H = 0, (5)

for all t ≥ 0 and for all ϕh ∈ Vh, with the initial condition

uh(0) = u0
h ∈ Vh. (6)

Since Vh has finite dimension, it is easily seen that for every
u0
h ∈ Vh, problem (5)-(6) has a unique solution uh ∈ C 1(R+,Vh).

Thus, we have a semigroup Sh acting on Vh,

Sh(t) : u0
h ∈ Vh 7→ uh(t) ∈ Vh.

Morgan PIERRE Convergence of exponential attractors . . .
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It is easy to show that for the space semidiscrete problem, we
obtain a priori estimates similar to the continuous problem, and
which are uniform in h:

Absorbing set in Vh for the V -norm

Gradient-flow structure (Sh is 1/2-Hölder continuous in time)

Sh is Lipschitz continuous in space

H-V smoothing property

Morgan PIERRE Convergence of exponential attractors . . .



Theorem (Error estimate with H1 data)

For all R1 > 0 and for all T > 0, there exists a constant C3(R1,T )
independent of h such that, if ‖u0‖V ≤ R1 and u0

h = Πh(u0) where
Πh : V → Vh is the (linear) elliptic projection, then

sup
t∈[0,T ]

|uh(t)− u(t)|H ≤ C3(R1,T )h.

We follow the approach of [Johsson, Larsson, Thomée &
Wahlbin 1987] with some ideas from [Elliott & Larsson 1992]

Error estimates for the linear elliptic problem [Raviart &
Thomas 1983] also valid in dimension d = 3

Error estimates with nonsmooth data for the linear evolution
problem: book of [Thomée 2006] (smoothing properties
of the heat equation)
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Theorem (Convergence of exponential attractors)

The continuous semigroup {S0(t), t ∈ R+} on H associated
to (2) possesses an exponential attractor M0 and for every h ∈ J,
the continuous semigroup {Sh(t), t ∈ R+} on Vh associated
to (5) possesses an exponential attractor Mh such that:

NB: J = (0, hmax ] typically

Morgan PIERRE Convergence of exponential attractors . . .



Theorem (Convergence of exponential attractors, continued)

1 the fractal dimension of Mh is bounded, uniformly with
respect to h ∈ J, dimF (Mh,H) ≤ c10, where c10 is
independent of h;

2 Mh attracts the bounded sets of Vh, uniformly with respect
to h ∈ J, i.e. ∀h ∈ J, ∀Bh ⊂ Vh bounded,

distH(Sh(t)Bh,Mh) ≤ Q(‖Bh‖H)e−c11t , t ≥ 0,

where the positive constant c11 and the monotonic function Q
are independent of h;

3 the family {Mh, h ∈ J ∪ {0}} is continuous at 0,

distsym(Mh,M0) ≤ c12h
κ′ ,

where c12 and κ′ ∈ (0, 1) are independent of h.

Remark: the global attractors Ah satisfy dimF (Ah,H) ≤ c10



Outline of the proof

We introduce the absorbing sets

B0 = {v ∈ V : ‖v‖V ≤ R1}, Bh = {vh ∈ Vh : ‖vh‖V ≤ R1},

for all h ∈ J. Note that Πh(B0) = Bh.
For T > 0 large enough, we have

S0(T )(B0) ⊂ B0 and ∀h ∈ J, Sh(T )(Bh) ⊂ Bh.

We build a robust family (Md
h)h≥0 of exponential attractors

for Lh = Sh(T ) on Bh, h ∈ J ∪ {0}. For this we adapt the
construction of [Efendiev, Miranville & Zelik], using also
some ideas from singularly perturbed case [Fabrie,
Galusinski, Miranville & Zelik 2004],[Gatti, Grasselli,
Miranville & Pata 2006], [Miranville, Pata & Zelik 2007].
The essential ingredients are the H-V smoothing property, the
error estimate on finite time intervals, and the error for Πh.
We define Mh by the standard formula

Mh =
⋃

t∈[0,T ]

Sh(t)Md
h .
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The time semidiscrete problem

We apply the backward Euler scheme to (2). τ > 0 is the time
step. Let u0 ∈ H and for n = 0, 1, 2,. . . let un+1 ∈ V solve

un+1 − un

τ
−∆un+1 + g(un+1) = 0. (7)

The discrete semi-group Sn
τ u0 = un is well-defined:

Morgan PIERRE Convergence of exponential attractors . . .



Proposition (Well-posedness)

Assume that τ ∈ (0, τ0] for some τ0 > 0 small enough. Then for
every u ∈ H, there exists a unique v = vτ,u ∈ V such that

v − u

τ
−∆v + g(v) = 0 in V ′. (8)

Moreover, the mapping Sτ : u 7→ vτ,u is Lipschitz continuous from
H into V , with

‖Sτu − Sτ û‖V ≤
c0

τ
|u − û|H , ∀u, û ∈ H. (9)

NB: c0 is the optimal constant in the Poincaré inequality.
As a consequence, Sτ is Lipschitz continuous from H into H, and
from V into V . We note that the Lipschitz constant c0/τ blows
up as τ → 0+.
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For the time semidiscrete problem, we obtain a priori estimates
similar to the continuous problem, and which are uniform in τ :

Absorbing set in V for the V -norm

Sτ is Lipschitz continuous in H

bound on bounded sets of H and finite time intervals for Sn
τ

(a weak discrete version of the 1/2-Hölder continuity)

H-V smoothing property

Morgan PIERRE Convergence of exponential attractors . . .



Error estimate with H1 data

We set

uτ (t) = un +
t − nτ

τ
(un+1 − un), t ∈ [nτ, (n + 1)τ).

Following the methodology of [X. Wang 2010], we obtain the
following error estimate

Theorem (Finite time uniform error estimate)

For all T > 0 and R1 > 0, there is a constant C (T ,R1)
independent of τ such that u0 = u0 and ‖u0‖V ≤ R1 imply

sup
t∈[0,[T/τ ]τ ]

|uτ (t)− u(t)|H ≤ C (T ,R1)τ1/2.



Theorem (Convergence of exponential attractors)

For each τ ∈ (0, τ0], the discrete dynamical system associated to
{Sn

τ , n ∈ N} possesses an exponential attractor Mτ on H, and
the continuous dynamical system {S0(t), t ∈ R+} possesses an
exponential attractor M0 such that:

1 the fractal dimension of Mτ is bounded, uniformly with
respect to τ ∈ [0, τ0], dimFMτ ≤ c7 (c7 independent of τ);

2 Mτ attracts the bounded sets of H, uniformly with respect to
τ ∈ (0, τ0];

3 the family {Mτ , τ ∈ [0, τ ′0]} is continuous at 0,

distsym(Mτ ,M0) ≤ c8τ
c9 (c8, c9 ∈ (0, 1) independent of τ)

Remark: the global attractors Aτ satisfy dimF (Aτ ,H) ≤ c7
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Remark: The upper bound on the dimension of the exponential
attractors is explicit, but it is quite crude. Namely,

dimF (Mτ ) ≤ 2 + log2[N1/(4c ′4)(B(0, 1;V ),H)], (10)

where Nε(B(0, 1;V ),H) is the number of ball of radius ε in H
which are necessary to cover the unit ball centered at 0 in V and
c ′4 (very large) is explicitly derived from the a priori estimates.

Morgan PIERRE Convergence of exponential attractors . . .



Conclusion and perspectives

The time semidiscrete case: abstract formulation for
parabolic problems (based on [EMZ 2004])

[Batangouna and P. 2018] applied it to a time splitting
discretization of the Caginalp phase-field system.

The fully discrete case for the Allen-Cahn equation: ok

Generalization to other (parabolic) problems and/or other
types of discretization : Navier-Stokes, Cahn-Hilliard, finite
difference, finite volume, . . . ?

Can we find a general construction of a robust family of
exponential attractors as [X. Wang 2016] did for the space
and time discretization of the global attractor ?

Thank you !
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