Ship hull optimization: an approach based on Michell's formula

Morgan PIERRE

Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Université de Poitiers, France

Pau, Oct. 21st, 2021

in collaboration with J. Dambrine (LMA Poitiers) and G. Rousseaux (Pprime Institute, Poitiers)

We use a simplified approach, where the resistance of water to the motion of a ship is represented as

$$R_{water} = R_{viscous} + R_{wave},$$

and R_{wave} is given by Michell's formula (1898).

The *wave resistance* reflects the energy to push the water out of the way of the hull. This energy goes into creating the wave.

Optimization problem: minimize the resistance for a given speed U of the ship and a given volume V of the hull.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The bulbous bow of a common tanker (2)

Another bulbous bow

Vladimir Ivanovich Yurkevich – a representative of the professional shipbuilding school of the Russian Empire who emigrated from Russia after "October" revolution of 1917. It's

SS "NORMANDIE" - BULBOUS BOW

the bulbous bow of the Normandie (won the "blue ruban" in 1935)

<ロ> (四) (四) (四) (日) (日)

- 2

The bulbous bow of "Harmony of the Seas" (2015) Speed : 20 knots / Length : 362m / Fr=0.17 (/T=9.1m / B=47m)

- 2 Michell's wave resistance formula
 - Michell's formula
 - Comparison with experimental data for a Wigley hull
 - Derivation of Michell's formula (sketch)
- 3 The optimization problem (fixed support)
 - The total resistance
 - Theoretical results
 - A numerical test
- 4 Geometric shape optimization
 - Formulation of the problem
 - Numerical results
 - Theoretical results
 - Conclusions and perspectives

5 References

JOHN HENRY MICHELL (1863-1940)

< □ > < □ > < □ > < □ > < □ > < □ > = □

The domain ω of parameters (x, z)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 ∽੧<⊙

Consider a ship moving with constant velocity U on the surface of an unbounded fluid.

- coordinates xyz are fixed to the ship
- the *xy*-plane is the (undisturbed) water surface, *z* is vertically upward

The (half-)immerged hull surface is represented by a continuous **nonnegative** function

$$y = f(x, z) \ge 0, \quad (x, z) \in \omega,$$

with f(x, z) = 0 on Γ^- (= the boundary of ω under the surface)

<ロト <四ト <注入 <注下 <注下 <

Michell's formula (1898)¹ for the wave resistance reads:

$$R_{Michell}(f) = \frac{4\rho g^2}{\pi U^2} \int_1^\infty (I(\lambda)^2 + J(\lambda)^2) \frac{\lambda^2}{\sqrt{\lambda^2 - 1}} d\lambda, \qquad (1)$$

with

$$I(\lambda) = \int_{\omega} \frac{\partial f(x, z)}{\partial x} \exp\left(\frac{\lambda^2 g z}{U^2}\right) \cos\left(\frac{\lambda g x}{U^2}\right) dx dz, \qquad (2)$$

$$J(\lambda) = \int_{\omega} \frac{\partial f(x, z)}{\partial x} \exp\left(\frac{\lambda^2 g z}{U^2}\right) \sin\left(\frac{\lambda g x}{U^2}\right) dx dz.$$
(3)

- U (in $m \cdot s^{-1}$) is the speed of the ship
- ho (in kg \cdot m⁻³) is the (constant) density of the fluid
- g (in $m \cdot s^{-2}$) is the standard gravity.
- $R_{Michell}(f)$ is a force and $\lambda = 1/\cos\theta$ where θ is the angle at which the wave energy is propagating.

¹J.H. Michell. The wave resistance of a ship, Phil Mag_₹ (1898) (1898) (1898)

Michell's formula Comparison with experimental data for a Wigley hull Derivation of Michell's formula (sketch)

- The fluid is incompressible, inviscid, the flow is irrotational
- A steady state has been reached
- Linearized theory (flow potential with linearized boundary conditions)
- Thin ship assumptions: $0 \le f \ll 1$, $|\partial_x f| \ll 1$, $|\partial_z f| \ll 1$.

Michell's formula Comparison with experimental data for a Wigley hull Derivation of Michell's formula (sketch)

- The fluid is incompressible, inviscid, the flow is irrotational
- A steady state has been reached
- Linearized theory (flow potential with linearized boundary conditions)
- Thin ship assumptions: $0 \le f \ll 1$, $|\partial_x f| \ll 1$, $|\partial_z f| \ll 1$.

Experiments starting in the 1920's (Wigley, Weinblum): reasonable good agreement between theory and experiment (Gotman'02). Typical values for Wigley: $L/B \approx 10$ and T/B = 1.5.

Michell's formula Comparison with experimental data for a Wigley hull Derivation of Michell's formula (sketch)

< /₽ > < E >

Example: the Wigley hull

For a Wigley hull with beam B and draft T, we have

$$\omega = (-L/2, L/2) \times (-T, 0)$$
 rectangle

and

$$f(x,z) = (B/2)\left(1+\frac{z}{T}\right)\left(1-\frac{4x^2}{L^2}\right).$$

Wigley hull (L = 2, B = 0.4 and T = 0.5)

<ロ> (四) (四) (三) (三)

2

Michell's formula Comparison with experimental data for a Wigley hull Derivation of Michell's formula (sketch)

The following figure shows the **wave coefficient** $C_W = 2R_{wave}/(\rho U^2 A)$ (with A the wetted surface of the hull) in terms of the **Froude number** $F = U/\sqrt{gL}$.

Comparison Michell and experimental data (parabolic Wigley model, Bai'79)

Derivation of Michell's formula (sketch)

In the coordinates xyz fixed to the ship, we have $\overline{U} = -Ue_x + u$, where u is the perturbed velocity flow. We seek a **potential flow** Φ (i.e. with $u = \nabla \Phi$), even with respect to y, which satisfies

$$\Delta \Phi = 0, \text{ in } (\mathsf{R}^2 \times \mathsf{R}_-) \setminus \overline{\omega}$$
 (4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

$$\partial_{xx}\Phi + (g/U^2)\partial_z\Phi = 0, \text{ for } z = 0$$
 (5)

$$\partial_y \Phi(x, y = 0^{\pm}, z) = \mp U \partial_x f$$
, for $(x, z) \in \omega$, (6)

$$|\nabla \Phi| \to 0 \quad \text{as } x \to +\infty.$$
 (7)

Derivation of Michell's formula (sketch)

In the coordinates xyz fixed to the ship, we have $\overline{U} = -Ue_x + u$, where u is the perturbed velocity flow. We seek a **potential flow** Φ (i.e. with $u = \nabla \Phi$), even with respect to y, which satisfies

$$\Delta \Phi = 0, \text{ in } (\mathsf{R}^2 \times \mathsf{R}_-) \setminus \overline{\omega}$$
 (4)

$$\partial_{xx}\Phi + (g/U^2)\partial_z\Phi = 0, \text{ for } z = 0$$
 (5)

$$\partial_{y}\Phi(x, y = 0^{\pm}, z) = \mp U\partial_{x}f, \text{ for } (x, z) \in \omega, \qquad (6)$$
$$|\nabla\Phi| \to 0 \quad \text{as } x \to +\infty. \qquad (7)$$

$$\begin{split} \mathbf{NB} : \overline{U} &= \nabla \tilde{\Phi} = - U e_x + \nabla \Phi \text{ is the velocity field (irrotational)} \\ \tilde{\Phi} &= - U x + \Phi \text{ is the unperturbed potential} \\ \text{div } \overline{U} &= 0 = \Delta \Phi \text{ is the incompressibility condition} \\ (5) \text{ is a consequence of the Bernoulli equation and the no-slip} \\ \text{condition on the free surface (+ linearization)} \\ (6) \text{ is the linearized no-slip condition on the hull} \end{split}$$

 Φ can be computed explicitly by means of Green functions and Fourier transform.

Remark: radiation condition and uniqueness of Φ ?

The wave resistance reads

$$R_{wave} = -2 \int_{\omega} \delta p f_x(x, z) dx dz,$$

where δp is the difference of pressure due to the ship. (Notice that R_{wave} is the **drag force** in this linearized model). From Φ , we derive δp so that

 $R_{wave} = -2\rho U \int_{U} \Phi_x(x,0,z) f_x(x,z) dx dz.$

Computing, we obtain $R_{wave} = R_{Michell}$ as given by (1).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The total resistance Theoretical results A numerical test

The optimization problem (fixed ω)

1st idea: finding a ship of **minimal wave resistance** among admissible functions $f : \omega \to R_+$, for a constant speed U and a given volume V of the hull.

 $f \mapsto R_{Michell}(f)$ is a positive semi-definite quadratic functional, but the problem above is **ill-posed** (Sretensky'35, Krein'52).

²A. A. Kostyukov, Theory of ship waves and wave resistance, 1968 ³V. G. Sizov, *The seminar on ship hydrodynamics, organized by Professor M. G. Krein* (2000)

The total resistance Theoretical results A numerical test

The optimization problem (fixed ω)

1st idea: finding a ship of **minimal wave resistance** among admissible functions $f : \omega \to R_+$, for a constant speed U and a given volume V of the hull.

 $f \mapsto R_{Michell}(f)$ is a positive semi-definite quadratic functional, but the problem above is **ill-posed** (Sretensky'35, Krein'52).

Many authors proposed to add conditions and/or to work in finite dimension (Weinblum'56, Kostyukov'68²,...). Another approach: add the viscous resistance which can be interpreted as a regularization and work with the total resistance (Krein & Sizov'60, '00³, Hsiung'72, '81, '84, Lian-en'84, Michalski et al'87, Dambrine, P. & Rousseaux'16).

²A. A. Kostyukov, Theory of ship waves and wave resistance, 1968 ³V. G. Sizov, *The seminar on ship hydrodynamics, organized by Professor M. G. Krein* (2000)

Hsiung's thesis (1972)

<ロ> (四) (四) (三) (三)

2

Hsiung's thesis (1972)

・ロト ・ 御 ト ・ モト ・ モト

Michell's wave resistance rewritten

We define

$$u = g/U^2 > 0 \quad \text{and} \quad T_f(\nu, \lambda) = I(\lambda) - iJ(\lambda),$$

where I and J are given by (2)-(3). Then

$$T_f(\nu,\lambda) = \int_{\omega} \partial_x f(x,z) e^{\lambda^2 \nu z} e^{-i\lambda \nu x} dx dz, \qquad (8)$$

and $R_{Michell}$ can be written

$$R_{Michell}(f) = \frac{4\rho g\nu}{\pi} \int_{1}^{\infty} \left| T_f(\nu, \lambda) \right|^2 \frac{\lambda^2}{\sqrt{\lambda^2 - 1}} d\lambda.$$
(9)

Remark: $R_{Michell}(f)$ is invariant by translation in the *x*-direction **Remark 2:** ν is the **Kelvin wave number** $(1/\nu)$ is the typical length of transverse waves)

The viscous resistance

$$R_{viscous}(f) = \frac{1}{2}\rho U^2 C_F A(f),$$

where C_F is the constant **viscous drag coefficient**, and A(f) is the wetted surface area given by

$$A(f) = 2 \int_{\omega} \sqrt{1 + |\nabla f(x, z)|^2} \, \mathrm{d}x \mathrm{d}z \,.$$

For instance, the ITTC 1957 model-ship correlation line gives

$$C_F = 0.075/(\log_{10}(Re) - 2)^2,$$

where $Re = UL/\nu$ is the Reynolds number and ν the kinematic viscosity of water.

For small ∇f (thin ship assumption)

$$R_{viscous}(f) pprox
ho U^2 C_F \left(\int_{\omega} dx dz + rac{1}{2} \int_{\omega} |
abla f(x,z)|^2 \, \mathrm{d}x \mathrm{d}z
ight) \,.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The total water resistance functional R_{total} is

$$R_{total}(f) := \frac{1}{2} \rho U^2 C_F \int_{\omega} |\nabla f(x, z)|^2 dx dz + R_{Michell}(f)$$

Remark: we have dropped the constant term $\rho U^2 C_F |\omega|$. Recall that:

- ρ and g are given physical constants
- U and C_F are independent parameters and $v = g/U^2$
- the set ω is given and for simplicity we will assume

$$\omega = (-L/2, L/2) \times (-T, 0)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The domain ω of parameters (x, z) (fixed ω)

▲ロト ▲御ト ▲画ト ▲画ト 三回 - のへで

The total resistance Theoretical results A numerical test

Functional setting

The function space is

$${\mathcal H}(\omega)=\left\{f\in {\mathcal H}^1(\omega)\ :f(\pm L/2,\cdot)={\mathsf 0} ext{ and } f(\cdot,\,T)={\mathsf 0} ext{ a.e. }
ight\},$$

Let V > 0 be the (half-)volume of an immerged hull. The set of admissible functions is

$$C_V(\omega) = \left\{ f \in H(\omega) \, : \, \int_{\omega} f(x,z) dx dz = V \text{ and } f \ge 0 \text{ a.e. in } \omega
ight\}.$$

Notice that $C_V(\omega)$ is a **closed convex subset** of $H(\omega)$. **NB:** the volume is proportional to the *displacement tonnage* of the ship.

The total resistance Theoretical results A numerical test

The optimization problem (fixed ω)

Our **optimization problem** \mathcal{P}_{ω} reads: for a given Kelvin wave number $\nu = g/U^2$, a given drag coefficient C_F and a given volume V > 0, find the function f^* which minimizes the total resistance $R_{total}(f)$ among functions $f \in C_V(\omega)$.

In short, "minimize the (total) drag for a given displacement tonnage of the ship".

The total resistance Theoretical results A numerical test

Well-posedness

The (positive) parameters ρ , g, U (speed), ν , V (volume), and C_F are fixed (unless otherwise stated).

Theorem (Dambrine, P. & Rousseaux'15)

Problem \mathcal{P}_{ω} has a unique solution f^* in $C_V(\omega)$. Moreover, f^* is even with respect to x.

- Existence by a minimizing sequence
- Uniqueness by strict convexity
- Symmetry thanks to the symmetry of $R_{Michell}$ and R_{total} through $x \mapsto -x$.
- f^{\star} depends linearly on V

< □ > < □ > < □ > < □ >

The total resistance Theoretical results A numerical test

Regularity of the solution

Theorem (Dambrine, P. & Rousseaux)

We have $f^* \in W^{2,q}(\omega)$ for all $1 \le q < 5/4$. In particular, f^* is uniformly α -Hölder continuous on $\overline{\omega}$ for all $0 < \alpha < 2/5$.

See also Krein & Sizov'60 (unpublished): $f^* \in C^0(\overline{\omega})$ (cf. the review Sizov'00)

The total resistance Theoretical results A numerical test

Regularity of the solution (continued)

Theorem (Dambrine, P. & Rousseaux)

Let
$$\omega^{\delta} = \{(x, z) \in \omega : z < -\delta\}$$
 with $\delta > 0$ small. Then f^* belongs to $W^{2,p}(\omega^{\delta})$ for all $1 \leq p < \infty$. In particular, $f^* \in C^1(\overline{\omega^{\delta}})$.

Remark: Since $f_V^{\star} = V f_1^{\star}$, by letting $V \to 0^+$, we recover the thin ship assumptions in ω^{δ} (i.e. below the free surface z = 0)

A (1) > A (2) > A
The problem is a perturbation of an **obstacle-type problem** for the Dirichlet energy

- The Euler-Lagrange equation gives a variational inequality for an obstacle-type problem
- By a standard result, the regularity of the obstacle problem is given by the regularity of the unconstrained problem
- The unconstrained problem reads -Δf^{*} = w with w ∈ L^q(ω), and homogeneous Dirichlet BC on 3 sides + no-flux BC on 1 side of the rectangle, hence (by symmetry) f^{*} ∈ W^{2,q}(ω).
- w ∈ L^q(ω) for 1 ≤ q < 5/4 is related to the regularity of Michell's wave resistance kernel, which belongs to L^{5/4-ε}_{loc}.

The total resistance Theoretical results A numerical test

A numerical test

•
$$\rho = 1000 \text{ kg} \cdot \text{m}^{-3}$$
, $g = 9.81 \text{ m} \cdot \text{s}^{-2}$, $L = 2 \text{ m}$, $T = 20 \text{ cm}$, $V = 0.03 \text{ m}^3$.

•
$$N_x = 100$$
 and $N_z = 20$

•
$$\epsilon = \frac{1}{2}\rho C_F U^2$$
 with $C_F = 0.01$

•
$$Fr = U/\sqrt{gL}$$

э

(日)

SQA

ヨー わくで

<ロ> (四) (四) (日) (日) (日)

The total resistance Theoretical results A numerical test

Froude scaling

Let $T = \alpha \overline{T} / L = \alpha \overline{L} / x = \alpha \overline{x} / z = \alpha \overline{z} / f(x, z) = \alpha \overline{f}(\overline{x}, \overline{z})$. The wave resistance reads

$$R_{\text{Michell}}(\nu, f) = \alpha^{3} \overline{R}_{\text{Michell}}(\alpha \nu, \overline{f}),$$

where $\nu = g/U^2$. It is natural to set $\overline{\nu} = \alpha \nu$, i.e. $U = \sqrt{\alpha}\overline{U}$, and with this choice,

$$Fr = U/\sqrt{gL} = \overline{Fr} = \overline{U}/\sqrt{g\overline{L}}$$
 (Froude number).

The viscous drag reads

$$\frac{1}{2}\rho U^2 C_F \int_{\omega} |\nabla f(x,z)|^2 dx dz = \alpha^3 \frac{1}{2} \rho \overline{U}^2 C_F \int_{\overline{\omega}} |\nabla \overline{f}(\overline{x},\overline{z})|^2 d\overline{x} d\overline{z}.$$

Geometric shape optimization

Idea: consider also the set of parameters ω as an unknown (in order to minimize even more the total resistance)

Formal problem: For a given area *a*, find ω^* which solves

$$\mathcal{J}(\omega^{\star}) = \min_{|\omega|=a} \mathcal{J}(\omega)$$

in the set of admissible sets ω , where

$$\mathcal{J}(\omega) = R_{total}(f_{\omega}^{\star}) = \min_{f \in C_V(\omega)} R_{total}(f).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Here, ω is a set under the free surface. **Some issues:**

- Existence of ω^*
- Regularity of $f^{\star}_{\omega^{\star}}$ and of ω^{\star}
- "Continuity" of $f_{\omega^{\star}}^{\star}$ with respect to ν and C_F

Formulation of the problem Numerical results Theoretical results Conclusions and perspectives

In order to simplify the notation, we multiply $R_{total}(f)$ by the constant $4/(\rho U^2 C_F)$. We obtain the **normalized total resistance**

$$\frac{4}{\rho U^2 C_F} R_{total}(f) = 2 \int_{\omega} |\nabla f(x,z)|^2 dx dz + \frac{4}{\rho U^2 C_F} R_{Michell}(f).$$

Next, we consider the even symmetric of f, namely

$$u(x,z) = \begin{cases} f(x,z) & \text{if } (x,z) \in \overline{\omega}, \\ f(x,-z) & \text{if } (x,-z) \in \overline{\omega}. \end{cases}$$

▲□ ► < □ ►</p>

Figure: Symmetrization $z \mapsto -z$

 $f: \omega \to \mathsf{R}$ becomes $u: \Omega \to \mathsf{R}$

(□) (@) (E) (E) E

The normalized total resistance is

$$J(u) = J_0(u) + \frac{1}{C_F} J^{\nu}_{wave}(u),$$
 (10)

where

$$J_0(u) = \int_{\mathbb{R}^2} |\nabla u(x,z)|^2 dx dz \tag{11}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 ∽੧<⊙

is the normalized viscous resistance, and

$$J_{wave}^{\nu}(u) = \frac{4\nu^4}{\pi} \int_1^\infty |T_u(\nu,\lambda)|^2 \frac{\lambda^4}{\sqrt{\lambda^2 - 1}} d\lambda$$
(12)

with

$$T_{u}(\nu,\lambda) = \int_{\mathbb{R}^{2}} u(x,z) e^{-i\lambda\nu x} e^{-\lambda^{2}\nu|z|} dx dz$$

is the normalized wave resistance functional.

The shape optimization problem in R²

Let V > 0 (the volume of the hull) and a > 0 (the area of Ω). Find an open and symmetric set Ω^* such that

$$J(u_{\Omega^{\star}}) = \inf \left\{ J(u_{\Omega}), \ \Omega \subset \mathsf{R}^2 \text{ open and symmetric}, \ |\Omega| = a \right\},$$
(13)
where u_{Ω} is uniquely defined by

$$J(u_{\Omega}) = \min\left\{J(v), v \in H^1_0(\Omega)^+, \check{v} = v, \int_{\Omega} v = V\right\}.$$
(14)

We denote here $\check{v}(x, z) = v(x, -z)$. We introduce the **area Froude number**

$$Fr_{a} = rac{1}{\sqrt{
u\sqrt{a}}} = rac{U}{\sqrt{g\sqrt{a}}}.$$

Two questions: existence of Ω^* and regularity of u_{Ω^*} ?

◆□ → ◆□ → ◆三 → ◆三 → ○へ ⊙

The Saint-Venant inequality

The Saint-Venant problem reads: Find an open and symmetric set Ω^{\star} such that

$$J_0(\mathit{u}_{\Omega^\star}) = \inf \left\{ J_0(\mathit{u}_\Omega), \; \Omega \subset \mathsf{R}^2 \; \mathsf{open} \; \mathsf{and} \; \mathsf{symmetric}, \; |\Omega| = 1
ight\},$$

where u_{Ω} is uniquely defined by

$$J_0(u_\Omega)=\min\left\{J_0(v),\ v\in H^1_0(\Omega)^+,\ \check{v}=v,\ \int_\Omega v=1
ight\}.$$

The disc centered at (0,0) solves the St-Venant problem. It is unique up to translation (along the x-axis)⁴. Moreover, $\int_{0} (u_{\Omega^{\star}}) = 8\pi$.

⁴L. Brasco, G. De Philippe and B. Velichkov, *Faber-Kahn inequalities in sharp quantitative form* (2015)

A non-existence result (Dambrine & P.)

The problem: find an open and symmetric set Ω^* such that

 $J(u_{\Omega^{\star}}) = \inf \left\{ J(u_{\Omega}), \ \Omega \subset \mathsf{R} \times \mathsf{R}^{\star} \text{ open and symmetric, } |\Omega| = 1 \right\},$

where u_{Ω} is uniquely defined by

$$J(u_\Omega)=\min\left\{J(v),\ v\in H^1_0(\Omega)^+,\ \check{v}=v,\ \int_\Omega v=1
ight\}.$$

has no solution.

Proof. Recall that

$$J(u) = J_0(u) + \frac{1}{C_F} J_{wave}(u).$$

By the St-Venant inequality, the infimum is equal to 16π by letting two symmetric balls going to $z = \pm \infty$. A result of Krein states that if Ω is bounded, then $J_{wave}(v) > 0$ for all v in the set above.

The initial and converged domain of arguments (algorithm from Allaire's book)

The corresponding optimized hull

<ロ> (四) (四) (三) (三)

æ

<ロ> (四) (四) (日) (日) (日)

2

Figure: J_{num}^{\star} vs Fr_a ($C_F = 0.01$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Figure: J_{num}^{\star} vs Fr_a for three different drag coefficients

Formulation of the problem Numerical results **Theoretical results** Conclusions and perspectives

The shape optimization problem in a bounding box

Let *D* be a symmetric bounded domain of \mathbb{R}^2 with Lipschitz boundary such that |D| > a. Find an open and symmetric set $\Omega^* \subset D$ such that

 $J(u_{\Omega^{\star}}) = \inf \{J(u_{\Omega}), \ \Omega \subset D \text{ open and symmetric, } |\Omega| = a\},\$

where u_{Ω} is uniquely defined by

$$J(u_{\Omega}) = \min\left\{J(v), \ v \in H^1_0(\Omega)^+, \ \check{v} = v, \ \int_{\Omega} v = V
ight\}.$$

・ 同 ト ・ ヨ ト ・ ヨ

Formulation of the problem Numerical results **Theoretical results** Conclusions and perspectives

The shape optimization problem in a bounding box

Let *D* be a symmetric bounded domain of \mathbb{R}^2 with Lipschitz boundary such that |D| > a. Find a **quasi**-open and symmetric set $\Omega^* \subset D$ such that

 $J(u_{\Omega^{\star}}) = \inf \left\{ J(u_{\Omega}), \ \Omega \subset D \text{ quasi-open and symmetric}, \ |\Omega| \leq a \right\},$

where u_{Ω} is uniquely defined by

$$J(u_{\Omega})=\min\left\{J(v), \ v\in H^1_0(\Omega)^+, \ \check{v}=v, \ \int_{\Omega}v=V
ight\}.$$

Following a standard approach (see **Henrot and Pierre's book**⁵), we work with the space

$$\check{H} = \{ u \in H^1_0(D), \ \check{u} = u \text{ a.e. in } D \},$$

which is a closed subspace of $H_0^1(D)$. For a function $u \in \check{H}$

$$\Omega_u = \{(x,z) \in D : u(x,z) \neq 0\}$$

is its support, with area $|\Omega_u|$.

⁵A. Henrot and M. Pierre, Variation et optimisation de formes, 2005, 💦 🛓

Following a standard approach (see **Henrot and Pierre's book**⁵), we work with the space

$$\check{H} = \{ u \in H^1_0(D), \ \check{u} = u \text{ a.e. in } D \},$$

which is a closed subspace of $H_0^1(D)$. For a function $u \in \check{H}$

$$\Omega_u = \{(x,z) \in D : u(x,z) \neq 0\}$$

is its support, with area $|\Omega_u|$. We define

$$C_V^a = \{ v \in \check{H} : v \ge 0 \text{ a.e. in } D, \int_D v dx dz = V, |\Omega_v| \le a \},$$

and we reformulate the previous problem as follows:

$$(\mathcal{P}_V^a) igg\{ egin{array}{ll} {\sf Find} \ u \in C_V^a \ {\sf such that} \ J(u) \leq J(v), \ orall v \in C_V^a. \end{array} igg]$$

æ

⁵A. Henrot and M. Pierre, Variation et optimisation de formes, 2005

Formulation of the problem Numerical results **Theoretical results** Conclusions and perspectives

Theorem

Problem (\mathcal{P}_V^a) has a solution u such that $J(u) < +\infty$.

Existence by considering a minimizing sequence in C_V^a .

(日)

Formulation of the problem Numerical results **Theoretical results** Conclusions and perspectives

Theorem

Problem (\mathcal{P}_V^a) has a solution u such that $J(u) < +\infty$.

Existence by considering a minimizing sequence in C_V^a .

NB: Dambrine & P.'20: Hölder regularity of *u* was proved if the nonnegativity of *u* is an assumption instead of a constraint (method of **Alt and Cafarelli'81, Briançon, Hayouni & Pierre'04**).

< D > < P > < P > < P >

Using a Γ -convergence approach, we also proved that:

- "the" solution u_{ν,CF} of (P^a_V) depends continuously (up to a subsequence) on ν and C_F for the strong H¹₀(D) topology.
- As $\nu \to 0$ (i.e. $U \to +\infty$) with C_F constant, u_{ν,C_F} converges strongly in $H^1_0(D)$ (up to a subsequence) to the solution u_0 of the Dirichlet energy functional with area and volume constraint.

NB: The function u_0 can be computed by symmetrization (if *D* is large enough) and its support is a disc by the **St-Venant inequality**. u_0 is unique up to translation along the *x*-axis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - 釣��

◆□> <圖> <필> < => < =>

æ

・ロト ・御ト ・モト ・モト

2

Formulation of the problem Numerical results **Theoretical results** Conclusions and perspectives

Figure: Optimal hull for $Fr_a = 4.90$

< ロ > < 部 > < 注 > < 注 >

э

Formulation of the problem Numerical results Theoretical results Conclusions and perspectives

Perspectives

- Compute a hull which is optimal for *U* random in a range $[U_{min}, U_{max}]$ (with **S. Zerrouq**)
- Existence/non-existence in R^2 ?
- Regularity of *u* and of the optimal domain with nonnegativity constraint ?

A (1) > (1) = (1)

- J. Dambrine, M. P. and G. Rousseaux, A theoretical and numerical determination of optimal ship forms based on Michell's wave resistance, ESAIM COCV (2016)
- J. Dambrine and M. P., *Regularity of optimal ship forms based* on *Michell's wave resistance*, Appl. Math. Optim. (2018)
- E. Noviani, PhD thesis (2018)
- J. Dambrine, E. Noviani and M. P., *Rankine-type cylinders* having zero wave resistance, IMA J. Appl. Math. (2020)
- J. Dambrine and M. P., *Continuity with respect to the speed* for optimal ship forms based on Michell's formula, Math. Control Relat. Fields (2021)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Selected references

- E.O. Tuck, "The wave resistance formula of J.H. Michell (1898) and its significance to recent research in ship hydrodynamics" (1989)
- V.G. Sizov, "The seminar on ship hydrodynamics, organized by Professor M.G. Krein" (2000)
- A. Gotman, "Navigating the wake of past efforts" (2007)
- L. D. Ferreiro, "The social history of the bulbous bow" (2011)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Selected references

- E.O. Tuck, "The wave resistance formula of J.H. Michell (1898) and its significance to recent research in ship hydrodynamics" (1989)
- V.G. Sizov, "The seminar on ship hydrodynamics, organized by Professor M.G. Krein" (2000)
- A. Gotman, "Navigating the wake of past efforts" (2007)
- L. D. Ferreiro, "The social history of the bulbous bow" (2011)

Thank you for your attention !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Optimal hull based on a half-disc for $Fr_a = 1.75$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ
Quelques bulbes d'étrave Michell's wave resistance formula The optimization problem (fixed support) Geometric shape optimization **References**

Figure: Optimal hull based on a half-disc for $Fr_a = 1.75$

・ 一 マ ト ・ 日 ト ・

э

э

Quelques bulbes d'étrave Michell's wave resistance formula The optimization problem (fixed support) Geometric shape optimization **References**

$$J_{wave}(u) = \int_{D} \int_{D} k(x, z, x', z') u(x, z) u(x', z') dx dz dx' dz' \ge 0$$
(15)

is the **normalized wave resistance** functional. Here, $k: D \times D \rightarrow \mathbb{R}$ belongs to $L^q(D \times D)$ for some $q \in (1, +\infty]$ and satisfies the following symmetry assumptions:

$$k(x, z, x', z') = k(x', z', x, z) \quad (x, z, x', z') \in D \times D,$$

 $k(x, -z, x', z') = k(x, z, x', z') \quad (x, z, x', z') \in D \times D.$

Quelques bulbes d'étrave Michell's wave resistance formula The optimization problem (fixed support) Geometric shape optimization **References**

Michell's wave resistance kernel reads

$$k_{\nu}(x,z,x',z') = \frac{4\nu^4}{\pi C_F(\nu)} K(\nu(x-x'),\nu(|z|+|z'|)), \qquad (16)$$

with $\nu=g/U^2$ (g=gravity and U=speed of ship), and

$$K(X,Z) = \int_{1}^{\infty} e^{-\lambda^{2}Z} \cos(\lambda X) \frac{\lambda^{4}}{\sqrt{\lambda^{2} - 1}} d\lambda.$$
(17)

Proposition

Michell's normalized wave resistance kernel k_{ν} (16) belongs to $L^q(D \times D)$ for all $1 \le q < 5/4$. Moreover, if D contains an open disc centered on the x-axis, then k_{ν} does not belong to $L^{5/4}(D \times D)$.

・ 同 ト ・ ヨ ト ・ ヨ ト