
Ship hull optimization: an approach based
on Michell’s formula

Morgan PIERRE
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We use a simplified approach, where the resistance of water to the
motion of a ship is represented as

Rwater = Rviscous + Rwave ,

and Rwave is given by Michell’s formula (1898).

The wave resistance reflects the energy to push the water out of
the way of the hull. This energy goes into creating the wave.

Optimization problem: minimize the resistance for a given speed
U of the ship and a given volume V of the hull.



The bulbous bow of a common tanker



Another bulbous bow





the bulbous bow of the Normandie (won the “blue ruban” in 1935)



The bulbous bow of “Harmony of the Seas” (2015)
Speed : 20 knots / Length : 362m / Fr=0.17 (/T=9.1m / B=47m)
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Consider a ship moving with constant velocity U on the surface of
an unbounded fluid.

coordinates xyz are fixed to the ship

the xy -plane is the (undisturbed) water surface, z is vertically
upward

The (half-)immerged hull surface is represented by a continuous
nonnegative function

y = f (x , z) ≥ 0, (x , z) ∈ ω,

with f (x , z) = 0 on Γ− (= the boundary of ω under the surface)
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Michell’s formula (1898)1 for the wave resistance reads:

RMichell(f ) =
4ρg2

πU2

∫ ∞
1

(I (λ)2 + J(λ)2)
λ2

√
λ2 − 1

dλ, (1)

with

I (λ) =

∫
ω

∂f (x , z)

∂x
exp

(
λ2gz

U2

)
cos

(
λgx

U2

)
dxdz , (2)

J(λ) =

∫
ω

∂f (x , z)

∂x
exp

(
λ2gz

U2

)
sin

(
λgx

U2

)
dxdz . (3)

U (in m · s−1) is the speed of the ship

ρ (in kg ·m−3) is the (constant) density of the fluid

g (in m · s−2) is the standard gravity.

RMichell(f ) is a force and λ = 1/ cos θ where θ is the angle at
which the wave energy is propagating.

1J.H. Michell. The wave resistance of a ship, Phil. Mag. (1898)
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The fluid is incompressible, inviscid, the flow is irrotational

A steady state has been reached

Linearized theory (flow potential with linearized boundary
conditions)

Thin ship assumptions: 0 ≤ f << 1, |∂x f | << 1, |∂z f | << 1.

Experiments starting in the 1920’s (Wigley, Weinblum):
reasonable good agreement between theory and experiment
(Gotman’02). Typical values for Wigley: L/B ≈ 10 and
T/B = 1.5.
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Example: the Wigley hull

For a Wigley hull with beam B and draft T , we have

ω = (−L/2, L/2)× (−T , 0) rectangle

and

f (x , z) = (B/2)
(

1 +
z

T

)(
1− 4x2

L2

)
.
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Wigley hull (L = 2, B = 0.4 and T = 0.5)
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The following figure shows the wave coefficient
CW = 2Rwave/(ρU2A) (with A the wetted surface of the hull) in
terms of the Froude number F = U/

√
gL.
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Comparison Michell and experimental data (parabolic Wigley model, Bai’79)



Derivation of Michell’s formula (sketch)

In the coordinates xyz fixed to the ship, we have U = −Uex + u,
where u is the perturbed velocity flow. We seek a potential flow
Φ (i.e. with u = ∇Φ), even with respect to y , which satisfies

∆Φ = 0, in (R2 × R−) \ ω (4)

∂xxΦ + (g/U2)∂zΦ = 0, for z = 0 (5)

∂yΦ(x , y = 0±, z) = ∓U∂x f , for (x , z) ∈ ω, (6)

|∇Φ| → 0 as x → +∞. (7)

NB : U = ∇Φ̃ = −Uex +∇Φ is the velocity field (irrotational)
Φ̃ = −Ux + Φ is the unperturbed potential
div U = 0 = ∆Φ is the incompressibility condition
(5) is a consequence of the Bernoulli equation and the no-slip

condition on the free surface (+ linearization)
(6) is the linearized no-slip condition on the hull
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Φ can be computed explicitly by means of Green functions and
Fourier transform.
Remark: radiation condition and uniqueness of Φ ?

The wave resistance reads

Rwave = −2

∫
ω
δpfx(x , z)dxdz ,

where δp is the difference of pressure due to the ship. (Notice that
Rwave is the drag force in this linearized model).
From Φ, we derive δp so that

Rwave = −2ρU

∫
ω

Φx(x , 0, z)fx(x , z)dxdz .

Computing, we obtain Rwave = RMichell as given by (1).
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The optimization problem (fixed ω)

1st idea: finding a ship of minimal wave resistance among
admissible functions f : ω → R+, for a constant speed U and a
given volume V of the hull.
f 7→ RMichell(f ) is a positive semi-definite quadratic functional, but
the problem above is ill-posed (Sretensky’35, Krein’52).

Many authors proposed to add conditions and/or to work in finite
dimension (Weinblum’56, Kostyukov’682,. . . ).
Another approach: add the viscous resistance which can be
interpreted as a regularization and work with the total resistance
(Krein & Sizov’60, ’003, Hsiung’72, ’81, ’84, Lian-en’84,
Michalski et al’87, Dambrine, P. & Rousseaux’16).

2A. A. Kostyukov, Theory of ship waves and wave resistance, 1968
3V. G. Sizov, The seminar on ship hydrodynamics, organized by Professor

M. G. Krein (2000)
Morgan PIERRE Optimisation de carènes
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Hsiung’s thesis (1972)



Hsiung’s thesis (1972)



Michell’s wave resistance rewritten

We define

ν = g/U2 > 0 and Tf (ν, λ) = I (λ)− iJ(λ),

where I and J are given by (2)-(3). Then

Tf (ν, λ) =

∫
ω
∂x f (x , z)eλ

2νze−iλvxdxdz , (8)

and RMichell can be written

RMichell(f ) =
4ρgν

π

∫ ∞
1
|Tf (ν, λ)|2 λ2

√
λ2 − 1

dλ. (9)

Remark: RMichell(f ) is invariant by translation in the x-direction
Remark 2: ν is the Kelvin wave number (1/ν is the typical
length of transverse waves)



The viscous resistance

Rviscous(f ) =
1

2
ρU2CFA(f ),

where CF is the constant viscous drag coefficient, and A(f ) is
the wetted surface area given by

A(f ) = 2

∫
ω

√
1 + |∇f (x , z)|2 dxdz .

For instance, the ITTC 1957 model-ship correlation line gives

CF = 0.075/(log10(Re)− 2)2,

where Re = UL/ν is the Reynolds number and ν the kinematic
viscosity of water.
For small ∇f (thin ship assumption)

Rviscous(f ) ≈ ρU2 CF

(∫
ω
dxdz +

1

2

∫
ω
|∇f (x , z)|2 dxdz

)
.



The total resistance

The total water resistance functional Rtotal is

Rtotal(f ) :=
1

2
ρU2 CF

∫
ω
|∇f (x , z)|2dxdz + RMichell(f )

Remark: we have dropped the constant term ρU2CF |ω|.
Recall that:

ρ and g are given physical constants

U and CF are independent parameters and v = g/U2

the set ω is given and for simplicity we will assume

ω = (−L/2, L/2)× (−T , 0)



The domain ω of parameters (x , z) (fixed ω)

x
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T

z
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Functional setting

The function space is

H(ω) =
{
f ∈ H1(ω) : f (±L/2, ·) = 0 and f (·,T ) = 0 a.e.

}
,

Let V > 0 be the (half-)volume of an immerged hull. The set of
admissible functions is

CV (ω) =

{
f ∈ H(ω) :

∫
ω
f (x , z)dxdz = V and f ≥ 0 a.e. in ω

}
.

Notice that CV (ω) is a closed convex subset of H(ω).
NB: the volume is proportional to the displacement tonnage of the
ship.

Morgan PIERRE Optimisation de carènes
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The optimization problem (fixed ω)

Our optimization problem Pω reads: for a given Kelvin wave
number ν = g/U2, a given drag coefficient CF and a given volume
V > 0, find the function f ? which minimizes the total resistance
Rtotal(f ) among functions f ∈ CV (ω).

In short, “minimize the (total) drag for a given displacement
tonnage of the ship”.

Morgan PIERRE Optimisation de carènes
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Well-posedness

The (positive) parameters ρ, g , U (speed), ν, V (volume), and CF

are fixed (unless otherwise stated).

Theorem (Dambrine, P. & Rousseaux’15)

Problem Pω has a unique solution f ? in CV (ω). Moreover, f ? is
even with respect to x.

Existence by a minimizing sequence

Uniqueness by strict convexity

Symmetry thanks to the symmetry of RMichell and Rtotal

through x 7→ −x .

f ? depends linearly on V

Morgan PIERRE Optimisation de carènes
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Regularity of the solution

Theorem (Dambrine, P. & Rousseaux)

We have f ? ∈W 2,q(ω) for all 1 ≤ q < 5/4. In particular, f ? is
uniformly α-Hölder continuous on ω for all 0 < α < 2/5.

See also Krein & Sizov’60 (unpublished): f ? ∈ C 0(ω) (cf. the
review Sizov’00)

Morgan PIERRE Optimisation de carènes
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Regularity of the solution (continued)

Theorem (Dambrine, P. & Rousseaux)

Let ωδ = {(x , z) ∈ ω : z < −δ} with δ > 0 small. Then f ?

belongs to W 2,p(ωδ) for all 1 ≤ p <∞. In particular,

f ? ∈ C 1(ωδ).

Remark: Since f ?V = Vf ?1 , by letting V → 0+, we recover the thin
ship assumptions in ωδ (i.e. below the free surface z = 0)

Morgan PIERRE Optimisation de carènes



Sketch of proof (regularity)

The problem is a perturbation of an obstacle-type problem for
the Dirichlet energy

The Euler-Lagrange equation gives a variational inequality for
an obstacle-type problem

By a standard result, the regularity of the obstacle problem is
given by the regularity of the unconstrained problem

The unconstrained problem reads −∆f ? = w with w ∈ Lq(ω),
and homogeneous Dirichlet BC on 3 sides + no-flux BC on 1
side of the rectangle, hence (by symmetry) f ? ∈W 2,q(ω).

w ∈ Lq(ω) for 1 ≤ q < 5/4 is related to the regularity of

Michell’s wave resistance kernel, which belongs to L
5/4−ε
loc .
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A numerical test

ρ = 1000 kg ·m−3, g = 9.81m · s−2, L = 2m, T = 20 cm,
V = 0.03m3.

Nx = 100 and Nz = 20

ε = 1
2ρCFU

2 with CF = 0.01

Fr = U/
√
gL

Morgan PIERRE Optimisation de carènes
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Froude scaling

Let T = αT / L = αL / x = αx / z = αz / f (x , z) = αf (x , z).
The wave resistance reads

RMichell(ν, f ) = α3RMichell(αν, f ),

where ν = g/U2. It is natural to set ν = αν, i.e. U =
√
αU, and

with this choice,

Fr = U/
√
gL = Fr = U/

√
gL (Froude number).

The viscous drag reads

1

2
ρU2CF

∫
ω
|∇f (x , z)|2dxdz = α3 1

2
ρU

2
CF

∫
ω
|∇f (x , z)|2dxdz .

Morgan PIERRE Optimisation de carènes



Geometric shape optimization

Idea: consider also the set of parameters ω as an unknown (in
order to minimize even more the total resistance)

Formal problem: For a given area a, find ω? which solves

J (ω?) = min
|ω|=a

J (ω)

in the set of admissible sets ω, where

J (ω) = Rtotal(f
?
ω ) = min

f ∈CV (ω)
Rtotal(f ).

Here, ω is a set under the free surface.
Some issues:

Existence of ω?

Regularity of f ?ω? and of ω?

“Continuity” of f ?ω? with respect to ν and CF
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Michell’s wave resistance formula

The optimization problem (fixed support)
Geometric shape optimization

References

Formulation of the problem
Numerical results
Theoretical results
Conclusions and perspectives

In order to simplify the notation, we multiply Rtotal(f ) by the
constant 4/(ρU2CF ). We obtain the normalized total resistance

4

ρU2CF
Rtotal(f ) = 2

∫
ω
|∇f (x , z)|2dxdz +

4

ρU2CF
RMichell(f ).

Next, we consider the even symmetric of f , namely

u(x , z) =

{
f (x , z) if (x , z) ∈ ω,
f (x ,−z) if (x ,−z) ∈ ω.

Morgan PIERRE Optimisation de carènes
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f : ω → R becomes u : Ω→ R



The normalized total resistance is

J(u) = J0(u) +
1

CF
Jνwave(u), (10)

where

J0(u) =

∫
R2

|∇u(x , z)|2dxdz (11)

is the normalized viscous resistance, and

Jνwave(u) =
4ν4

π

∫ ∞
1
|Tu(ν, λ)|2 λ4

√
λ2 − 1

dλ (12)

with

Tu(ν, λ) =

∫
R2

u(x , z)e−iλνxe−λ
2ν|z|dxdz

is the normalized wave resistance functional.



The shape optimization problem in R2

Let V > 0 (the volume of the hull) and a > 0 (the area of Ω).
Find an open and symmetric set Ω? such that

J(uΩ?) = inf
{
J(uΩ), Ω ⊂ R2 open and symmetric, |Ω| = a

}
,

(13)
where uΩ is uniquely defined by

J(uΩ) = min

{
J(v), v ∈ H1

0 (Ω)+, v̌ = v ,

∫
Ω
v = V

}
. (14)

We denote here v̌(x , z) = v(x ,−z). We introduce the area
Froude number

Fra =
1√
ν
√
a

=
U√
g
√
a
.

Two questions: existence of Ω? and regularity of uΩ? ?



A minimizing sequence for Fra = 1.75



The Saint-Venant inequality

The Saint-Venant problem reads: Find an open and symmetric set
Ω? such that

J0(uΩ?) = inf
{
J0(uΩ), Ω ⊂ R2 open and symmetric, |Ω| = 1

}
,

where uΩ is uniquely defined by

J0(uΩ) = min

{
J0(v), v ∈ H1

0 (Ω)+, v̌ = v ,

∫
Ω
v = 1

}
.

The disc centered at (0, 0) solves the St-Venant problem. It is
unique up to translation (along the x-axis)4.

Moreover, J0(uΩ?) = 8π .

4L. Brasco, G. De Philippe and B. Velichkov, Faber-Kahn inequalities in
sharp quantitative form (2015)



A non-existence result (Dambrine & P.)

The problem: find an open and symmetric set Ω? such that

J(uΩ?) = inf {J(uΩ), Ω ⊂ R× R? open and symmetric, |Ω| = 1} ,

where uΩ is uniquely defined by

J(uΩ) = min

{
J(v), v ∈ H1

0 (Ω)+, v̌ = v ,

∫
Ω
v = 1

}
.

has no solution.
Proof. Recall that

J(u) = J0(u) +
1

CF
Jwave(u).

By the St-Venant inequality, the infimum is equal to 16π by
letting two symmetric balls going to z = ±∞. A result of Krein
states that if Ω is bounded, then Jwave(v) > 0 for all v in the set
above.



The initial and converged domain of arguments
(algorithm from Allaire’s book)



The corresponding optimized hull



Optimal domain for Fra = 0.67



Optimal domain for Fra = 0.81



Optimal domain for Fra = 0.98



0 2 41 3 50.5 1.5 2.5 3.5 4.5

0

10

2

4

6

8

1

3

5

7

9

Fr

J
*

local min

global min

sinking

unstable

Figure: J?num vs Fra (CF = 0.01)



0 2 41 3 50.5 1.5 2.5 3.5 4.5

0

10

2

4

6

8

12

14

1

3

5

7

9

11

13

Fr

J
*

CF=0.1

CF=0.01

CF=0.001

unstable

Figure: J?num vs Fra for three different drag coefficients



Quelques bulbes d’étrave
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The shape optimization problem in a bounding box

Let D be a symmetric bounded domain of R2 with Lipschitz
boundary such that |D| > a.
Find an open and symmetric set Ω?⊂ D such that

J(uΩ?) = inf {J(uΩ), Ω⊂ D open and symmetric, |Ω| = a} ,

where uΩ is uniquely defined by

J(uΩ) = min

{
J(v), v ∈ H1

0 (Ω)+, v̌ = v ,

∫
Ω
v = V

}
.
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The shape optimization problem in a bounding box

Let D be a symmetric bounded domain of R2 with Lipschitz
boundary such that |D| > a.
Find a quasi-open and symmetric set Ω?⊂ D such that

J(uΩ?) = inf {J(uΩ), Ω⊂ D quasi-open and symmetric, |Ω| ≤ a} ,

where uΩ is uniquely defined by

J(uΩ) = min

{
J(v), v ∈ H1

0 (Ω)+, v̌ = v ,

∫
Ω
v = V

}
.

Morgan PIERRE Optimisation de carènes



Following a standard approach (see Henrot and Pierre’s book5),
we work with the space

Ȟ = {u ∈ H1
0 (D), ǔ = u a.e. in D},

which is a closed subspace of H1
0 (D). For a function u ∈ Ȟ

Ωu = {(x , z) ∈ D : u(x , z) 6= 0}

is its support, with area |Ωu|.

We define

C a
V = {v ∈ Ȟ : v ≥ 0 a.e. in D,

∫
D
vdxdz = V , |Ωv | ≤ a},

and we reformulate the previous problem as follows:

(Pa
V )

{
Find u ∈ C a

V such that

J(u) ≤ J(v), ∀v ∈ C a
V .

5A. Henrot and M. Pierre, Variation et optimisation de formes, 2005
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V = {v ∈ Ȟ : v ≥ 0 a.e. in D,

∫
D
vdxdz = V , |Ωv | ≤ a},

and we reformulate the previous problem as follows:

(Pa
V )

{
Find u ∈ C a

V such that

J(u) ≤ J(v), ∀v ∈ C a
V .

5A. Henrot and M. Pierre, Variation et optimisation de formes, 2005



Quelques bulbes d’étrave
Michell’s wave resistance formula

The optimization problem (fixed support)
Geometric shape optimization

References

Formulation of the problem
Numerical results
Theoretical results
Conclusions and perspectives

Theorem

Problem (Pa
V ) has a solution u such that J(u) < +∞.

Existence by considering a minimizing sequence in C a
V .

NB: Dambrine & P.’20: Hölder regularity of u was proved if the
nonnegativity of u is an assumption instead of a constraint
(method of Alt and Cafarelli’81, Briançon, Hayouni &
Pierre’04).
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Continuity with respect to the speed (Dambrine &
P.’21

Using a Γ-convergence approach, we also proved that:

“the” solution uν,CF
of (Pa

V ) depends continuously (up to a
subsequence) on ν and CF for the strong H1

0 (D) topology.

As ν → 0 (i.e. U → +∞) with CF constant, uν,CF
converges

strongly in H1
0 (D) (up to a subsequence) to the solution u0 of

the Dirichlet energy functional with area and volume
constraint.

NB: The function u0 can be computed by symmetrization (if D is
large enough) and its support is a disc by the St-Venant
inequality. u0 is unique up to translation along the x-axis



Optimal domain for Fra = 2.45



Optimal domain for Fra = 3.15



Optimal domain for Fra = 4.90
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Figure: Optimal hull for Fra = 4.90
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Perspectives

Compute a hull which is optimal for U random in a range
[Umin,Umax ] (with S. Zerrouq)

Existence/non-existence in R2 ?

Regularity of u and of the optimal domain with nonnegativity
constraint ?

Morgan PIERRE Optimisation de carènes
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Optimal hull based on a half-disc for Fra = 1.75
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Figure: Optimal hull based on a half-disc for Fra = 1.75
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Jwave(u) =

∫
D

∫
D
k(x , z , x ′, z ′)u(x , z)u(x ′, z ′)dxdzdx ′dz ′ ≥ 0

(15)
is the normalized wave resistance functional. Here,
k : D × D → R belongs to Lq(D × D) for some q ∈ (1,+∞] and
satisfies the following symmetry assumptions:

k(x , z , x ′, z ′) = k(x ′, z ′, x , z) (x , z , x ′, z ′) ∈ D × D,

k(x ,−z , x ′, z ′) = k(x , z , x ′, z ′) (x , z , x ′, z ′) ∈ D × D.
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Michell’s wave resistance kernel reads

kν(x , z , x ′, z ′) =
4ν4

πCF (ν)
K (ν(x − x ′), ν(|z |+ |z ′|)), (16)

with ν = g/U2 (g=gravity and U=speed of ship), and

K (X ,Z ) =

∫ ∞
1

e−λ
2Z cos(λX )

λ4

√
λ2 − 1

dλ. (17)

Proposition

Michell’s normalized wave resistance kernel kν (16) belongs to
Lq(D × D) for all 1 ≤ q < 5/4. Moreover, if D contains an open
disc centered on the x-axis, then kν does not belong to
L5/4(D × D).
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