Optimisation

Exercice 2 de mathématiques (ch. 7)

Soit (x_0, y_0) un minimiseur de $f(x, y) = x^2 + y^2$ sur l'hyperbole \mathcal{H} d'équation

$$x^2 + 8xy + 7y^2 - 225 = 0.$$

On note $h(x,y) = x^2 + 8xy + 7y^2 - 225$. Remarquons que f et h sont de classe C^1 . Si $\nabla h(x_0, y_0) \neq 0$, alors il existe $\lambda_0 \in \mathbb{R}$ tel que

$$\nabla f(x_0, y_0) + \lambda \nabla h(x_0, y_0) = 0.$$

On vérifie facilement que si $\nabla h(x,y) = 0$ alors $(x,y) \notin \mathcal{H}$ donc la condition ci-dessus est vérifiée. Cette équation équivaut à (on omet les indices 0) :

$$\begin{cases} 2x + \lambda(2x + 8y) = 0\\ 2y + \lambda(8x + 14y) = 0. \end{cases} \iff (S) \begin{cases} (1+\lambda)x + 4\lambda y = 0\\ 4\lambda x + (1+7\lambda)y = 0 \end{cases}$$

Le déterminant de ce système (S) est

$$D(\lambda) = (1 + \lambda)(1 + 7\lambda) - 16\lambda^{2} = -9\lambda^{2} + 8\lambda + 1.$$

Notons que $\lambda = 1$ est racine évidente, de sorte que

$$D(\lambda) = (\lambda - 1)(-9\lambda - 1).$$

Si $\lambda \notin \{1, -1/9\}$ alors (S) a une unique solution (x, y) = (0, 0) mais $(0, 0) \notin \mathcal{H}$ donc ce cas n'est pas à garder.

Si $\lambda = 1$, alors (S) équivaut à x + 2y = 0, de sorte que y vérifie

$$h(-2y, y) = 4y^2 - 16y^2 + 7y^2 - 225 = 0$$

Pas de solution.

Si $\lambda = -1/9$, alors (S) équivaut à (8/9)x - (4/9)y = 0 i.e. 2x - y = 0 et donc

$$h(y/2, y) = 0 = (1/4)y^2 + 4y^2 + 7y^2 - 225 \iff (45/4)y^2 = 225 \iff y = \pm 10/\sqrt{5}.$$

On a deux possibilités pour lesquelles les valeurs de f sont les mêmes. Ce sont nos deux solutions.

Datation au carbone 14

L'exercice est une application de la méthode des moindres carrés et du calcul d'une droite de régression. Extrait du livre de Bertrandias.

```
clear
clf
t=[500 1000 2000 3000 4000 5000 6300];
A=[14.5 13.5 12.0 10.8 9.9 8.9 8.0];
lnA=log(A);
plot2d(t,lnA,style=-1)
tt=[500:10:7000];
```

```
lnAbis=interpln([t;lnA],tt);
xtitle('','t','ln(A)')

lambdagraph=(min(lnA)-max(lnA))/(max(t)-min(t))
lambdareel=-log(1/2)/5668

coefs=regress(t,lnA)

plot2d(tt,coefs(1)+coefs(2)*tt,style=1)
plot2d(tt,log(15.3)-lambdareel*tt,style=2)
legend(['experience','moindres carres','theorique']);
M=[t',ones(t')];
coefsbis=lsq(M,lnA')
coefster=(M'*M)\(M'*lnA')

tmc=-(coefs(1)-log(6.3))/coefs(2) //date calcule par moindres carrs
ttheo=(log(15.3)-log(6.3))/lambdareel //date avec les valeurs physiques
limite=log(0.01)/coefs(2)
```

Ce programme produit la figure 1 et affiche les résultats numériques suivants :

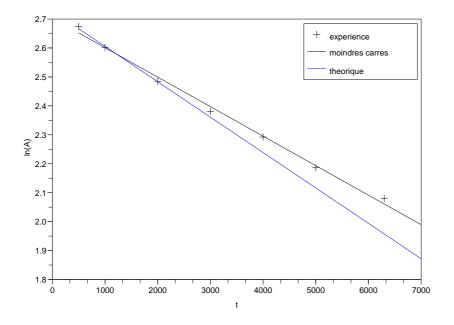


Figure 1: Datation au carbone 14

```
lambdagraph =
    - 0.0001025
lambdareel =
```

0.0001223

coefs =

2.7030902

- 0.0001019

coefsbis =

- 0.0001019

2.7030902

coefster =

- 0.0001019

2.7030902

tmc =

8461.1789

ttheo =

7255.6517

limite =

45174.884